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Abstract—In emergency communications, guaranteeing ultra-
reliable and low-latency communication is challenging yet crucial
to save human lives and to coordinate the operations of first respon-
ders. To address this problem, we introduce a general approach for
channel selection in mission-critical communications, i.e., choose
channels with the best quality timely and accurately via channel
probing. Since the channel conditions are dynamic and initially
unknown to wireless users, choosing channels with the best con-
ditions is nontrivial. Thus, we adopt online learning methods to
let users probe channels and predict the channel conditions by a
restricted time interval of observation. We formulate this problem
as an emerging branch of the classic multiarmed bandit (MAB)
problem, namely the pure-exploration bandit problem, to achieve a
tradeoff between sampling time/resource budget and the channel
selection accuracy (i.e., the probability of selecting optimal chan-
nels). The goal of the learning process is to choose the “optimal
subset” of channels after a limited time period of channel probing.
We propose and evaluate one learning policy for the single-user
case and three learning policies for the distributed multiuser cases.
We take communication costs and interference costs into account,
and analyze the tradeoff between these costs and the accuracy of
channel selection. Extensive simulations are conducted and the re-
sults show that the proposed algorithms can achieve considerably
higher channel selection accuracy than previous exploration bandit
approaches and classic MAB methods.

Index Terms—Online learning, emergency communications,
channel probing, exploration multi-armed bandits.
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1. INTRODUCTION

MERGENCY circumstances such as accidents, natural

disasters, or terrorist attacks require immediate attention
from first responders and can be considered as mission-critical
conditions. In such scenarios, guaranteeing ultra-reliable and
low-latency communications is challenging yet crucial to save
human lives and to coordinate the operations of first responders.
Due to the complex wireless environment and the limitation of
wireless resources, in many such scenarios, wireless users must
be well aware of the wireless channel conditions to select the
best channels in a timely manner. However, this is challenging
since channel conditions are highly dynamic and users have no
prior knowledge of channel changes. Thus, learning-based re-
source management algorithms are always adopted to solve this
problem.

In the channel selection problem, channel selection accuracy
represents the probability of the user choosing optimal chan-
nels. For critical communications where reliability and latency
are of great importance, selecting channels timely and accurately
is fundamental for high-quality communications. For instance,
in public safety communications [1], choosing a high-rate and
ultra-reliable wireless channel can guarantee the quality of com-
munication, and could potentially save lots of lives. In addition,
to guarantee low latency for emergency messages, the time it
takes for channel selection cannot be too long. Thus, choosing
channels with the best quality in a given, the short time duration
is clearly a crucial step before the actual communication takes
place.

The Defense Advanced Research Projects Agency (DARPA)
raises a Spectrum Collaboration Challenge [2] to help to en-
sure that the exponentially growing number of military and
civilian wireless devices will have full access to the increas-
ingly crowded electromagnetic spectrums. Classical approaches
manually divide the spectrum into licensed bands and allocate
them to primary users, while secondary users share the unused
channels. Apparently, those approaches are not very suitable
for the increasing spectrum demand and dynamically chang-
ing environments. Under such a circumstance, next-generation
spectrum access strategies may also require channel sharing
among primary users. Especially, in channel access for crit-
ical communications, users with high priorities also need to
share channels with other users. Thus, channel selection, as
an essential step to choose optimal channels before channel
access, requires all wireless users to actively probe multiple
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channels while these channels are shared among users at the
same time. Active channel probing allows a user to collect suf-
ficient channel information to select a bunch of high-quality
channels based on probing results; Channel sharing guaran-
tees minimum or no interference between different users. After
channel selection, users can follow a uniform channel alloca-
tion or a user negotiation strategy to share channels with other
users.

Existing works with learning-based methods on channel prob-
ing and sharing, such as [3], [4], mainly solve the problem
of achieving the highest cumulative throughput for secondary
users based on the historical communication information. How-
ever, such methods are not applicable to the channel selection
problems in critical communications because they only con-
sider cumulative results. Such existing schemes may choose a
sub-optimal channel whose quality is close to the best chan-
nel, while still achieve good performance. Therefore, relatively
good (but not the best) channels can be chosen during the entire
process and it can be harmful to emergency communications.
Moreover, the existing schemes need to constantly change the
target channel during the communication process, leading to
potentially high channel switching cost for users. If we divide
the process into a channel probing period and a channel access
period separately, we could avoid these problems. Consider the
channel allocation problem for mobile phone communications
illustrated in [5], during a very short time period before the com-
munication starts, a cell phone can explore the set of channels to
identify the best one to operate on. Each evaluation of a channel
is noisy and there are a limited number of evaluations before
the communication starts. The connection is then launched on
the channel which is believed to be the best. The cumulative
throughput during the exploration phase is irrelevant since the
user is only interested in the quality of its communication after
the exploration phase. Apparently, using a metric of selection
accuracy is more appropriate than cumulative throughput in this
scenario.

In this paper, we investigate the problem of channel selection
for multiple users of mission-critical communications in both
centralized and distributed paradigms. A user as a wireless de-
vice is given a time budget to perform channel probing, then
it tries to choose the best available channel to access based on
its channel probing results . When multiple users coexist in the
same area, we try to figure out how to coordinate these users and
make the optimal selection of channels. The goal is to maximize
the user’s chance of choosing optimal channels after the channel
probing period.

Since the channel activities are initially unknown to the
users, intuitively, if the users spend more time on probing, they
will obtain more accurate results. However, in mission-critical
communications, users cannot spend a long time on channel
selection thus a time budget is needed. As a result, there is a
trade-off between completing the probing more quickly versus
making a more accurate selection of channels. This non-trivial
problem inspires us to formulate a distributed exploration bandit
or pure exploration problem, which is a subclass of the classic
multi-armed bandit (MAB) problem [6]. In contrast to standard
MAB algorithms such as UCB [7], which are evaluated in
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terms of cumulative regret,' pure exploration methods focus on
identifying the arm(s) with the maximum expected rewards
rather than maximizing arm rewards during the entire learning
process.

First, we study the channel selection problem with a single
user. Although the user can only probe one channel at a time, it
can sample different channels sequentially. Thus, by predicting
channel condition after a short time of observation, we could
have the user probe multiple channels. We model this problem as
amultiple arm identification problem with a fixed budget [8]. We
propose an elimination-based learning algorithm, which allows
the user to reduce the number of channels to be probed during
the iterations.

Next, we consider the case where multiple users coexist in the
same area. If the users are allowed to communicate with each
other, they can share channel information to obtain more accu-
rate probing results. Nevertheless, due to the geographical sepa-
ration of the users, such cooperation incurs extra communication
cost. For such a scenario, we propose a distributed exploration
bandit algorithm with limited communications. Specifically,
during the channel probing period, when multiple users
targeting at the same channel simultaneously, interferences
between different users will hurt their ability to get accurate re-
sults and cause energy waste. We call this type of interference as
collision and we want to avoid collisions during channel probing
and access.

The main contributions of this work are summarized as
follows:

® We address the channel selection problem in critical com-
munications by formulating it as an exploration bandit
problem and develop effective solution algorithms. Com-
pared with classic exploration-exploitation methods, our
algorithms can achieve better performance in terms of
channel selection accuracy. Both single and multiple user
algorithms are proposed for different applications in this
paper.

* We investigate the distributed exploration bandit problem
in the fixed budget setting. This online learning technique
has lots of potential applications in wireless communica-
tions but few prior works have been done.

® Communication costs and collision losses are taken into
consideration in this paper. Several well-designed algo-
rithms are proposed to mitigate the negative impact of
collisions and improve channel selection accuracy by ex-
ploiting communications among users.

The rest of this paper is organized as follows. In Section II,
related works on channel sharing and distributed online learning
are discussed. Section III introduces the problem formulation.
Algorithms for the single user and multiple users are presented
in Section IV and V, respectively. In Section VI we discuss how
to access channels after channel selection. Simulation results
are presented in Section VII. Finally, we conclude this paper in
Section VIII.

ICumulative regret is defined as the cumulative difference between the ex-
pected rewards of the optimal strategy made by a genie and that of the given
policy in the whole process.
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II. RELATED WORK

In this section, we introduce the key related works on
spectrum sharing and distributed online learning. For spectrum
sharing [9], many works have been done, such as [3], [4], but
the existing algorithms are not suitable for the primary user
spectrum sharing problem. For channel access of secondary
users, existing algorithms (e.g., [10], [11]) let users keep on
probing the channels and switching the target channel according
to probing results. However, in critical communications, even
licensed users need to share channels during and after the
channel selection process. By adopting channel selection
techniques in this paper, we guarantee that primary users are
able to find a (set of) good channel(s) and they will not suffer
high channel switching costs after channel selection.

In critical wireless communications such as public safety ap-
plications [12], there are also some efforts on spectrum sharing
[13]-[15], but the same flaw as in classic spectrum sharing has
been observed. Furthermore, cooperation in spectrum probing
has been studied [16] but the communication cost can be high if
the algorithm does not take such cost into consideration. Some
papers studied collaborative algorithms in channel probing and
resource allocation [17], [18]. However, they did not fully con-
sider all the possible conditions such as cooperations may not be
allowed in some cases. Tan et al. [19] treated the joint process
of channel probing and scheduling for communications under
delay constraints as a maximal-rate-of-return problem. Authors
used a pure threshold policy as optimal distributed opportunis-
tic scheduling method, but they didn’t consider cooperations
between users. In contrast to these prior works, we take all the
possible cases into consideration and propose different algo-
rithms under different circumstances.

In the area of online learning, multi-armed bandit (MAB)
problem has drawn a lot of attention in recent years. MAB is
a classic example of the tradeoff between exploration and ex-
ploitation, aiming to achieve the maximum cumulative sum of
rewards in the learning process. Lai & Robbins proposed an in-
dex policy in [6] with a logarithmic regret bound and Auer et al.
[7] introduced the well-known UCB strategy which achieves
O(log T') regret uniformly over time.

Exploration bandit is a new branch of MAB and it can be
divided into two main categories: fixed budget setting and fixed
confidence setting. In the fixed budget setting, players should
seek for a single best arm or a best subset of arms with a fixed
time budget. In fixed confidence setting, such as Even-Dar ez al.
in [20] and Kalyanakrishnan et al. in [21], players aim at reduc-
ing the number of samples (i.e., simple regret in [22]) to sat-
isfy the specific constant of finding near-optimal arm(s). Since
channel probing time is limited for critical communications, we
focus on fixed budget setting in this paper. Compared with clas-
sic exploration-exploitation MAB methods, pure exploration
bandit methods can achieve more accurate results in channel
selection because the cumulative regret evaluation metric is not
suitable for lowering the channel selection error probability, es-
pecially when time budget is small since classic MAB methods
spend significantly more time on sub-optimal channels at the be-
ginning stage. Above all, we develop fixed budget exploration
bandit algorithms for channel selections in this paper.
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In the exploration bandit problem, many works on the multi-
ple identifications problem (EXPLORE-m in [23]) has been done,
such as [8], [21], [24]. Recently, Shahrampour ef al. [25] have
proposed a general unified theory for sequential elimination
algorithms in exploration bandit. The authors indicate its im-
portant applications for mobile communications where users
can explore the set of channels (arms) to find the best one to
operate. Nevertheless, none of the existing work has considered
subset selection with different players. Different from the ex-
isting literature, we study the challenging problem of multiple
identifications in the distributed setting.

There have also been considerable efforts on distributed learn-
ing techniques for MAB. In the area of distributed learning, Liu
and Zhao [3] introduced the time-division fair sharing (TDFS)
policy for a centralized time-sharing schedule for multiple users.
Tekin and Liu [26] utilized the regenerative property of the
Markov chain to solve the problem of rested and restless MAB
problems with multiple players. Kalathil ez al. in [27] proposed
an algorithm based on the Bertsekas auction algorithm, which
has O(log? t) regret bound due to the communication cost.

Distributed exploration bandit was studied by Hillel ef al. in
[28]. Their work is most related to this paper. However, Hillel
et al. studied the distributed exploration problem in the fixed
confidence setting while we mainly focus on the fixed budget
setting. They speed up the learning process via communications
among users. In contrast to their work, algorithms requiring
different amounts of communications are proposed in our pa-
per to handle different scenarios. Our preliminary work focused
on wireless monitoring is published in [29], this paper stud-
ies a completely different and more important application in
emergency communications, provides more rigorous theoretical
analysis, and proposes new collaborative algorithm and channel
access policies where cooperations improve channel selection
performance significantly.

III. PROBLEM FORMULATION
A. System Model

Consider single or multiple users try to access some channels
among K wireless channels in critical wireless communica-
tions. When K is large, the user wants to choose a subset of best
channels for high-quality communications. The communication
process is consist of two phases: channel selection period and
channel access period. For channel selection, channel informa-
tion is collected by probing K channels, then users select best
channels based on channel probing results. In many emergency
circumstances, the channel selection task needs to be completed
with limited resources (e.g., time, energy, etc.). In channel se-
lection period, to guarantee the lowest communication delay, we
focus on the limited time scenario where the user chooses M
(M < K) best channels out of K channels within the time bud-
getT". In different scenarios, the time budget varies and users ac-
complish the channel selection with or without communicating
with each other. After channel selection, users access channels
based on their channel selection results for communication.

For channel probing, we assume that a user can only probe
one channel at a time. In the single user scenario, the user is
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TABLE I
SUMMARY OF NOTATION
Notation | Definition
K set of channels, and [K] = K
M set of best (or worst) channels, and |M| = M
N set of users, and [N =n
T time budget, number of time slots
tr sampling time for round
l number of total rounds
Ar set of remaining channels in round 7, and [A,[ = A,
K, number of channels to be eliminated in round 7
1 actual mean rewards for channel j
[23.%% actual mean rewards for Mth best channel
it empirical mean rewards for channel j
ef user i’s probability of wrong selection under policy ¢
r; simple regret of channel selection results for user ¢
A;V difference in mean rewards between channel j and M
M hardness of the channel selection problem
Cij user ¢’s communication cost of broadcasting channel j
co complexity of communication cost in each time slot
R number of time slots in channel accessing period

given a time budget 7" firstly, then it chooses M channels within
time 7'. In most applications, we can use the simplest assumption
where one user just need to choose one channel after the probing
phase. After finishing the channel selection, the user will access
the channel according to the probing results.

In the multi-user scenario, each user will get a complete out-
come of M channels (M =1 in most cases) independently.
Since users will actively probe channels, interferences will hap-
pen if multiple users probe the same channel simultaneously.
Thus, we should try to mitigate or get rid of the negative effect
of collisions.

Assume there are n users and n < M. If all users are allowed
to communicate with each other, they can exchange informa-
tion during the probing process to avoid collisions and improve
the channel selection accuracy. However, extra communication
costs will also affect the probing results achieved by the users,
and further hurt the accuracy of the selection. Thus, algorithms
with an appropriate amount of communications are necessary
for channel selection. After channel selection, n users access
channels among M chosen channels based on channel selection
result.

Next, we introduce some notations (summarized in Table I)
and complexity measurements in this paper.

B. Notations and Complexity Measurements

Consider K channels in a wireless network, where I =
{1,..., K} is the channel pool. For simplicity, we assume that
each channel j’s activity in the wireless network follows an
iid. distribution with density function f(x;6;), while the pa-
rameter ; is a unknown priori. Each time the user observes
the channels, it will obtain a reward which contains the chan-
nel information. When there are multiple users in the system,
let V= {1,...,n} denote the set of users. Let ¢ be the chan-
nel selection policy adopted by the users. During the channel
selection process, all users have the same time budget 7" and
their clocks are synchronized. Assume that each channel j has
a mean reward f; according to its density function f(x;60;),
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which is the mean of random variable X (¢). We rank them in
descending order, i.e., pi; > - -+ > ug . The ground truth of the
channel selection result is the channel set M with mean rewards
W1, ..., par . After the channel probing phase, users obtain the
empirical reward /i; for channel j, and fi; = >, X;(t)/T. We
also rank these empirical rewards in a descending order. The
user chooses the first M channels with the highest empirical
rewards as its channel selection result, denoted by channel set
M. The error probability for channel selection can be defined
as

e =P[M # M. (1)

The channel selection accuracy is defined as 1 — e. We also
define the error probability ef to be the probability of choosing
sub-optimal channels by user ¢ under policy ¢. Divide the total
probing time into several rounds, in round 7, users will spend ¢
time on its target channels. For user ¢, our goal is to minimize
the error probability within the given time budget, which means

min e;p s.t. Z t, <T. ()

In our experiments, to better compare performance between
different algorithms under a uniform metric, we use the evalu-
ation metric simple regret [22] which represents the difference
between true means of the optimal M channels and that of chan-
nel chosen by the users. For user ¢, we define simple regret r; as

M
ri = Z(Nj — f15), (3)
j=1

and the total simple regret for all user is ) ;" , r;. We also
introduce the notation of hardness H . We define the gaps and
the complexity measures of the distributed channel selection in
mission-critical communication as follows

AY =y =il A = i (o =) @)
K 1 j
HlM = Z 5 Hé\[ = max ——— (&)
] 5 ; N2’
= (81) e (A)

where the notation j € {1,..., K} is determined by order
of A{” <. < AJ}([ . Note that from [5] we know H lM and
HJ' are equivalent up to a logarithmic factor, and we have
H} < HM < H) log2K. These notations decide the lower
bound on the number of evaluations necessary to identify the
best channel, which means the hardness of finding the optimal
channels during the channel selection process. We will discuss
more details in the following sections.

IV. SINGLE USER CHANNEL SELECTION

In this section, we introduce a novel single user channel selec-
tion algorithm, namely Sequential Multiple Elimination (SME)
for channel selection in critical communications. Details of the
proposed algorithm are given in Algorithm 1. The general idea
for SME is to maintain an active set initialized by K chan-
nels, and then to discard channels sequentially within the time
budget until there are M channels left. Time budget is divided
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Algorithm 1: Sequential Multiple Elimination for Single
User (SME).
1: Input : K channels, M chosen channels, time budget
T, learning rate 7).
2: Initialization : Let | = [log, ((n —
A=K, A, = A, K, =
: foreach7=1,2,...,ldo
Sample all channels in A, for ¢, = [l%] times;
5:  Rank these channels according to their empirical
rewards, let ji; > -+ > fia_;
6:  Eliminate all the channels in
Kr={j:fy <pa, k. b A1 =
7: end for
: Output : A;.

DK = M) +1)],
W_l)%—wﬂ'

& W

A JKxs

o0

evenly into several rounds. Different from previous elimination-
based algorithms, we allow users to eliminate multiple channels
in each round, and they will drop fewer channels in the later
rounds. The number of eliminated channels is chosen based on
a learning rate 7, which is a constant greater than 1, and users
will eliminate 1/ of channels as in the previous round. This
policy helps users to observe channels more frequently when it is
hard to distinguish “good” channels from “bad” channels, since
the reward gap between different channels becomes smaller as
exploration time increases. While finding the optimal choice of
7 is difficult and may vary for different tasks, we try different
settings of learning rate in our experiments. More details about
the learning rate can be found in Section VII.

First, we divide the channel selection process into [ rounds
evenly. To ensure that Zi:l n ' =K-—-M, we set [ =
[log, ((n — 1)(K — M) +1)].Inround 7, the user will remove
K. =[((n—1)(K — M)+ 1)/n"] channels with the lowest
empirical rewards from the remaining active channel set A,
and put them into set /C;. It follows that

l
DK 2 (= (K = M) +

D(1-n'=K-M.
T=1
(6)
Based on K., we have A =|A;| and A, =
K-M
(B0 4 e+ M= ], for all T <L After

rounds, the user will provide the result of M chosen channels.

SME allows the user to reduce the number of samples con-
stantly during the process of channel selection, and guaran-
tees that each channel will be sufficiently sampled before being
dropped. To calculate the error probability of SME, we introduce
a lemma first.

Lemma 1: In SME, assume a channel p outside M is not
eliminated before round 7. Then in round 7, for channel j € M,
the probability of /i; < /i, satisfies

Pla; < ] < exp( ZZt AM A[)[)z) 7

Proof: LetAj, = AM + A” whenj < M andp > M. For
a >0 and 8> 0, by the Chernoff Hoeffding inequality, we

10999

have

Pl > pp + )] <exp( ZZt (ad\j,) )

Pl < 1y — B8] < exp (<234 (84,,)7) -

Since Aj, = AM + AM = p; — i, we have
Pl < ] < exp (<23 te((ad,)? + (58;)%)
<

exp (= Dt (A) + AN
where the last inequality is due to the fact that if a + G > 1,
then o2 + 3> > % [ |
From Lemma 1 we know that under the policy of SME, when
the mean reward gap between good channels and bad channels
Ay, is large, the probability for the user to identify the optimal
channels becomes high. Furthermore, if the user spends more
time on probing, it will achieve a lower probability of choosing
bad channels. Then we can derive an upper bound for the error
probability of SME.

Theorem 1: The error probability of SME is upper bounded
by

l
AZ;&MSZ

where AT = K_’;.AM + W + M — f-‘ arld l = |—10gn

((n =K = M)+ 1)].
Proof: The probability for user making wrong selections af-
ter [ rounds is

[
PA # M| =PIMNU,_ K, # 0] =Y PIK, n M #0).
T=1

©)

Assume that channel j € M is not eliminated by SME in the
first 7 — 1 rounds. Then in round 7, with a union bound, the
probability for channel j of being eliminated satisfies

P, NMAD <Y > P

jEM A <p<K

< Z Z exp (ZtTA§p>
JEMA; <p<K T
M) exp ( Zt )

i1 < fip)

< M(A, — M)exp (17152) (10)
Then for all rounds, we have
P[4, # M] = ip[/@ NM # ()]
—
1 T
< ;M(AT — M) exp (—ZH2> . D
]



11000

According to Theorem 1, if we consider the extreme case
where [ = 1 (although [ cannot be smaller than 2) and M =1,
then we have P[A; # M| < (K — 1) exp(—T/H,). From (11)
we can see that large values of [ increase 7 in terms of
exp(—7T/lH,) and decrease A, in each round, but also in-
crease the total number of rounds. Since [ is determined by the
learning rate 7, there is a trade-off in choosing 7 and the optimal
choice of 7 varies from application to application. More details
can be found in Section VII where we compare the performance
for different 7 in different settings via experiments.

Theorem 1 shows that the error probability of SME is O(e~71)
with respect to time budget 7'. So as the time budget grows, the
error probability of SME decreases exponentially. Also, SME
needs at most O(H; log K') times of observation with respect
to the number of channels K to identify the optimal chan-
nels, and has a smaller factor than existing algorithms such as
SAR [8].

V. DISTRIBUTED CHANNEL SELECTION

In this section, we examine the scenarios of multiple users
probing multiple channels in the same area. Assume there are n
users probing K channels simultaneously, while each channel’s
information is initially unknown to all users. Each user will
determine a complete set of M chosen channels after a given
time budget 7.

In the channel selection period, an important issue is that
when multiple users are probing the same channel, interference
between them will hurt the results observed by each user. This
type of collision should not be neglected in the design of a
multiple user scheme. To completely avoid collisions among
different users, users could either communicate with other users
to avoid the same choice of channels, or stay idle for a while
and yield to other users to prevent collisions from happening.
Communication will cost energy and may hurt the information
obtained by users; Concession will sacrifice channel sampling
time and also affect the channel selection results. Although in
most cases algorithms with communication have better perfor-
mance in terms of selection accuracy, in some specific appli-
cations (such as military tasks) where communication can be
very costly or dangerous, a yielding algorithm will be a better
choice.

Based on our single user algorithm, we introduce three al-
gorithms that require limited communications. The first two al-
gorithms are collision-free and each user works independently;
The third one exploits the cooperation of users to improve the
channel selection accuracy.

First, we introduce two algorithms with no collisions. We
assume that users can communicate with each other to avoid
the collision. However, as discussed before, the communication
cost will degrade the accuracy of the results gained by users. So
it would be costly for users to keep on exchanging information
with each other. During the learning process, each user has to
make their own decision with limited help from other users. We
propose two distributed exploration bandit algorithms in this
section. In the proposed algorithms, communication cost for
each user is taken into account.
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l:l Normal Channel l:l Virtual Channel
[////] Abandoned Channel

——>  Start Here

wrl | [ VD
wl | [ |\ D
L
wol | [ [ VD
Channel 1 Channel 2 Channel 3 Channel 4 Channel 5
Fig. 1. Channel sampling strategy in Algorithm 2.

For the policy that allows concession, we propose an algo-
rithm called Distributed Sequential Multiple Elimination with
Virtual Channels (DSME-VC) presented in Algorithm 2. In
DSME-VC, we evenly divide the time budget 7" into [ rounds.
The elimination process is the same as the SME. Next, the user
will add its chosen channels into a channel set V), which we call
the virtual channel set. The user will stay on virtual channels
but it will not collect any channel information. Meanwhile, the
user will broadcast its chosen channels to all other users. If one
channel is chosen by all the users, then the user will remove this
channel from V.

As illustrated in Fig. 1, with a round-robin fashion time allo-
cation policy, if the user encounters a channel outside its virtual
channel set, it will probe it as usual. When user 2 is assigned to
probe a virtual channel 2, it won’t collect any information about
channel 2 and yield to other users. In other words, the user will
spend time ¢, on a void channel. This strategy can completely
avoid the potential collisions among users. For different users,
they may choose different channels in the same round. So we
calculate the probability for a channel of being chosen by all the
users. Then we can compute the expectation of the remaining
channels in each round.

In DSME-VC, we completely avoid the potential collisions
among users by introducing the virtual channels. A user never
really drops a channel unless it believes the channel is selected
by all users simultaneously. Compared with the single user algo-
rithm, DSME-VC wastes some time on virtual channels, which
is an inevitable cost for avoiding collisions. At round 7, assume
the communication cost for each user is ¢,. Since we divide
T into [ rounds, the total communication cost of [ rounds is
C =" ¢,;. Actually, the communication cost will hurt the re-
sults observed by users, and will affect the accuracy of channel
selection results.

Step 6 of Algorithm 2 shows the round-robin fashion
channel assignment policy. Channel [(i + 7 + k) mod K — 1]
is assigned to user ¢ so that different users could aim at different
channels in each round. If some user joins this probing activity
halfway, existing users do not need to change their activities
and the new user will also follow the channel assignment
policy. However, the new user will not be able to have a channel
selection result after this batch of probing. It should wait for the
next batch and continue its probing until the number of rounds
reaches [. Similarly, when some user leaves halfway, it will not
affect other users’ activity. Thus, this algorithm works well for
the dynamic scenarios in real life.
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Algorithm 2: Distributed Sequential Multiple Elimination
with Virtual Channels (DSME-VC).

1: Input : K channels, M chosen channels, n users, time
budget 7', learning rate 7.
2: Initialization : Let | = [log, ((n — 1)(K — M) +1)],
AT = |AT|’ -AO = K:» KT = ’7(77—1)(177(7—1\”1)"!‘1—"
k=0,V=a.
foreachT=1,2,...,ldo
for each user i € N do
while £ < K do
if the channel [(i + 7 + k) mod K — 1] belongs
to A, then
Sample it for ¢
end if
k:=k+1;
end while
Let k := 0, rank channels according to their
empirical rewards where ji; > -+ > fi4_;
12: Choose all the channels in I, = {j : f1; <
fa, —r. b Arp1 = A; /K. Broadcast chosen
channels to other users;

AR A

— T .
= T OV times;

—
Do e

13: Eliminate channels chosen by all users, and add
others back to V as virtual channels;

14:  end for

15: end for

16: Output : A4;.

To calculate the communication cost of DSME-VC, we first
define the complexity of communication cost as

co= max {c;}, (12)

ieN,jeK
where ¢; ; is the communication cost for user 7 of broadcasting
information about channel j to other users and ¢y here refers to
the maximum communication cost for a single user and single
channel.

Consider n users probing multiple channels simultane-
ously. Then user ¢’s communication cost in round 7 is ¢; , =
nZK' ¢;,j- Thus, the total communication cost for user ¢ is
upper bounded as

C; = Zc”—nZZc”<nZKco—nK M)y

T=1j=1
13)

In the following, we derive an upper bound for the probability
for any channel j to be selected in round 7. Then we prove the
expected number of channels chosen by all users.

Lemma 2: In DSME-VC, The probability for channel j
where j is smaller than K, being chosen by one user in round
T satisfies

P[J € Ai,T] < Kfrfl eXp( A TT 1)

min - KT exp( A T )

min

(14)

11001

Proof: Based on Lemma 1 and a union bound, we have

Plj e Ai-] < P[UAT<k§A,,,<ﬂj < fu)]
Ar
< > Pl < )
k>A.
AT—I
< Y exp(—(Ap)t)
k>A,

< (Ao — A exp (—(Aja ) -
For any j < K, we have

PU <.K;Lj€.A@J

< (Ar = Ar)exp(—(Aja, )tT)
< (A = Ay )exp(—(Aa, , — A )%tr)
< ( 717 ) p( mmt )
< A, 1€Xp( Am1n ) A exp( Amlnt ) 15)
[ |

With Lemma 2, we can now prove the expected number of
channels chosen by all users.

Theorem 2: In DSME-VC, the expectation of number of
channels chosen by all users in the round 7 satisfies

T n
A2
min Kl ))

(16)

E [# of channels chosen by all users]

1
(Arfl _AT) (AT—I —A—r -

2 N,.

Y

A exp (

Proof: For a channel inside /C., the probability of being
chosen by one user is at least 1 — Zj‘;l P[j € A; ;]. Then we
have

E [# of channels chosen by all users]

1-APjeA]\"
AT—] 7A7'

> (-

1

Z (AT,I — AT) <M A eXp( Amlnt )> ,

7)

where (17) follows from the last inequality in (15). Since ¢, =
T/I(K -3 _, N,) <T/KI, we have Theorem 2. |

In Theorem 2, the probability for all users choosing the same
channel grows exponentially as the increase of the number of
users n. This fact guarantees that when there are many users
in the same area, DSME-VC will not have too many virtual
channels. Next, we derive an upper bound on each user’s error
probability for Algorithm 2.
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Theorem 3: The error probability of DSME-VC for each user
satisfies

l
PA # M| < Y M(A, — M)

x exp | — T ) s
IHy(K — N, + N.)

where N, is A, (1/(A;_1 — A;) — A exp(— AL T/KD)".
Proof: First, we modify the time allocation policy used in
Algorithm 4 as

TT:Zt <Z

r=1 7 <r

ARG

from Theorem 2 we have that

4 , T "
> _— — P g
ZN K( K — M) Al €Xp ( Anun Kl))
AZ

r<rt
1 T "
A .
<A7—1 _ AT min Kl))

With (10) in Theorem 1, the error probability in round 7 is upper
bounded as

A, exp <

P, N M # () SM(ATM)exp< le(KTT§T< ))

L7
<MA. — M — - - 20
<t -mew (-l ) @
Then, the total error probability of Algorithm 2 is
l
PlA # M) =) PIK, N M # (]
T=1
7T M
< M(A, — M - 7 ;
_; ( )exp< le(K—N1+NT)>
[ |

Compared with Theorem 1, Theorem 3 shows that the upper
bound on the error probability of DSME-VC is bigger than that
of SME. However, it completely eliminates the collisions among
users and when K is not very large, the error probability of
DSME-VC is close to that of SME. So the DSME-VC algorithm
is applicable for distributed channel selection when the number
of users is relatively small.

We also propose a distributed algorithm without using vir-
tual channels in Algorithm 3, named Distributed Auction-based
Channel Assignment (DACA). DSME-VC solves the potential
collision problem and only needs very little communications,
however, when K becomes very large, DSME-VC may waste
too much time on virtual channels. So Algorithm 2 is not effi-
cient enough when the channel pool is very large. DACA solves
this problem without using the virtual channels.

The basic idea of Algorithm 3 is based on an auction process
among different users. Assume there is an undirected bipartite
graph G(S,U,E), where S and U are the set of users and
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Channel Set

User Set

User Set Channel Set

Fig. 2. The negotiation process between users in Algorithm 3.

Algorithm 3: Distributed Auction-based Channel Assign-
ment Algorithm (DACA).
1: Input : K channels, M chosen channels, n users, time

budget 7', learning rate 7.

2: Initialization : Let [ = [log, ((n — 1)(K — M) +1)],
A=A, Ay =K, K, = [W%MW—‘.Fora
random channel j, user i provides a price p;; randomly,
broadcast p;; to other users.

3: foreacht =1,2,...,ldo

4: while k < A, do

5: For user 7, let j = argmaxjes, . fli j;

6 if i = arg max;cy p;; then

7 User ¢ samples channel j for ¢, = (%}

times, broadcast to all other users that it has
finished this round, then waits for other users;

8: else

9: Move to another channel s € Sj; ; randomly. Let

Dis = [li,s, communicate with other remaining
users, and go back to step 6;
10: end if
11: LetSir =Sk /jk:=k+1;
12:  end while
13:  Update the empirical reward fi; ; for all j € A;.
Eliminate channels in /C; = {j : fi; < fia, —k, },
Ay = A /K k=18, = A
14: end for
15: Output : A;.

channels, respectively. £ stands for the connection between
users and channels. When user 7 eliminates channel j, the
edge E(i,j) will also be removed from set £. So the user
will only provide a price to the channel in its active set and
each user’s price is set to be the channel’s empirical rewards
observed by the user. This setting is intuitively reasonable
since users prefer to choose channels that seem “good” to
them. When communicating with others, the user will decide
whether to probe the channel or not. If user ¢ is not the
highest bidder for channel j, it will choose another channel
randomly.

For example, in Fig. 2, there are three users probing three
channels. In the first communication round, both users 1 and 2
bid for channel 1 and user 3 bids for channel 3. After communi-
cation with each other, users 1 and 3 finds them to be the highest
bidder for channel 1 and 3, respectively. In the second round,
user 2 bids for channel 2. After communicating with user 1, user
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Algorithm 4: Collaborative Sequential Multiple Elimina-
tion for Channel Selection (CSME).
1: Input: i € N, channel set K, K channels, M chosen
channels, n users, time budget 7', learning rate 7).
2: Initialization : Let | = [log, ((n — 1)(K — M)+ 1)],
AL = |ALL A, =K A = A, Ay =K,
K, = "(n—l)(ln(r—M)-&-l—" E—0.

3: foreachT=1,2,...,ldo

4.  for eachuseri € N do

5: while £ < A, do

6: if channel [(i + 7 + k) mod A, — 1] belongs to

A’ then

7: Sample it for t, = ﬁ times;

8 end if

9: k:=k+1;
10: end while
11: Let &£ := 0, and broadcast results to all other users;

12: Update the empirical reward ji; for all j € A..
Eliminate channels in /C; = {j : i; < fia, —k. },
A=A K AL = AL (K- N AL);

13:  end for

14: end for

15: Output : A;.

2 starts to collect information of channel 2. This process lasts
until every user finds a channel. After a channel is observed by
some user, it will be removed from set £ temporarily until the
next round.

Since the channel selection process of DACA is the same
as SME, the error probability of Algorithm 3 will be the
same as Algorithm 4 and users could spend more time on
the channels than in DSME-VC. Thus, the performance of
DACA will be better than DSME-VC. However, to better eval-
uate DACA, we should also take communication cost into
consideration.

Then we will derive the communication cost of DACA. First,
we introduce a lemma to bound the number of communications
in DACA.

Lemma 3: The communication cost for each user in DACA

satisfies
1 ; n—n
Co.
p— 6 0

Proof: Consider the worst case of Algorithm 3. When user
1 communicates with other users in the negotiation phase of the
tth round, if it always fails to provide the highest price, it has to
keep on communicating with all the remaining users. Then the
number of communications is at most

C; < <KM+<M

1A, = A 1)

11003

Channel Sets
with Overlap

Channel Sets
without Overlap

Channel

Fig. 3. Channel assignment model of CSME.

The total communication cost satisfies

l l TL3 —n
Ci=) cir ) —c—Arc
T=1 T=1

:(K—M+(M_

1 I nd—n
n— 1> ) 6

|

With Lemma 3, we obtain an upper bound for the commu-
nication cost of DACA. Lemma 3 also shows that when the
number of users becomes very large, the DACA algorithm has
a higher communication cost than DSME-VC. The numerical
results on the communication cost of DACA and DSME-VC
can be found in Section VII.

As mentioned before, the error probability of DACA is the
same as SME in Theorem 1. Compared with Theorem 3, DACA
has a lower error probability bound than DSME-VC. The rea-
son is that DACA does not use virtual channels, so the user
can sample each channel with longer time than DSME-VC, and
thus it generates more accurate results. Meanwhile, DACA re-
quires much more communications than DSME-VC. When the
communication cost is high, the low communication cost of
DSME-VC might outweigh the better accuracy of DACA. This
is a choice of horses for courses.

After the discussion of different users probing the same
amount channels, we then consider improving the accuracy and
efficiency of channel selection by allowing user collaboration.
Compared to multi-user channel selection algorithms without
collaboration, if different users could focus on different sets of
channels and broadcast their channel probing results to other
users, every user will have an identical channel selection result
after the channel probing period with high accuracy. Assume
each user is only in charge of probing a portion of K channel;
the channel set for user 7 is K?, and its cardinality is denoted
by K'. As illustrated in Fig. 3, each user has its own channel
set to be probed but every channel will be probed by at least
one user. There are potential overlapping areas among different
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users’ channel sets. The channel assignment policy guarantees
that no channel will be missed in the channel probing process.

In our proposed algorithm, termed Collaborative Sequential
Multiple Elimination (CSME), users will follow almost the same
round-robin fashion channel assignment policy as in DSME-VC
in case there are some overlap among different users’ channel
sets. The only difference is that there are no virtual channels
during the channel probing. After one probing round, each user
will broadcast its probing results to all other users and update
all remaining channel’s empirical rewards accordingly. In round
T, let ﬂ; represent user i’s probing result for channel j and t.
be the time spent on each channel, we have

i i T S ity
DY)t

The elimination process is based on all users’ probing results
and the user will only eliminate channels in its own channel set.
Let’s consider the general case for CSME. Since the channel
assignment policy avoids the collision, in round 7, each channel
will be sampled by at least 7'/ (max; K1) times. Combined with
(10) and (11), we have that

l

> PIK- N M # 0]

T=1

!
7T
max Z M(A; — M)exp (—WAfnin) .
T=1
(23)

In the best case, if there are no overlapping between different
users’ channel sets, we have Zi K" = K. In this case, each
user only needs to communicate with others once in each
probing round for broadcasting channel probing results. Thus,
the communication cost will be the same as DSME-VC.

The bound (23) indicates that if all channels are allocated
evenly to all users and there are no overlapping among different
channel sets, i.e., K’ = K /n for any i, we have

(22)

P[A; # M]

IN

l
PA # M] <Y M(A; — M)exp (—%Aim) .24
=1

Now we consider the worst case for CSME. If some user ¢
probes all K channels and some channels are only probed by
user 7, then we have

l

7T
P <Y M(A -M ——AL. ), @5
e M) < 3200, = aexp () 29
which is the error probability bound for CSME.

If every user probes all K channels, which means Vi € N :
K, = K, then in each probing round, users do one more broad-
casting than in DSME-VC. We can show that the communication
cost of CSME satisfies

1
OL' = ZC“— < 2’1’L(K — M)Co.

T=1

(26)

The number of communications in CSME is between the
number in DSME-VC and DACA. In the following section,

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 67, NO. 11, NOVEMBER 2018

we consider the channel access after users get their channel
selection results.

VI. CHANNEL ACCESS AFTER CHANNEL SELECTION

Although we mainly focus on channel selection for mission-
critical communications in this paper, we need to consider chan-
nel access after the channel probing period for the multi-user
scenario. With our proposed channel selection algorithms, each
user will have a result of M best channels after the probing time
T'. For mission-critical communications, how to coordinate dif-
ferent users to access the channels and avoid collisions among
them remains to be unsolved.

First, we consider the case where each user has the same
channel selection results (such as in CSME). We adopt a round-
robin fashion channel allocation policy to let users loop through
these M channels. Assume each user only needs one channel
for communication. Let ¢ denotes the total communication time
and we evenly divide it into R time slots. In time slot r, user ¢ is
allocated with channel [(i +7) mod M]. This policy guaran-
tees that no collision will happen in the channel access period
and the user does not need to communicate with other users.

If different users have different channel selection results after
the channel probing period, extra steps are taken to make sure no
users will access the same channel at the same time. We divide
t into R time slots and user ¢ is allocated with channel [(i + r)
mod M7 initially, but it needs to communicate with other users
in case they choose the same channel. Same as the negotiation
phase in DCAC, the user provides a price for its target channel
according to the empirical rewards from the channel probing
period. If the user is not the highest bidder of that channel, it
will choose another channel which has not been chosen by other
users to bid.

Since each user needs to communicate with others once in
each time slot, the communication cost in the channel access
period is bounded as

R
C; = ZCW < nRcy.

r=1

27)

Note that to completely avoid collisions, the users have to com-
municate with each other. If users want to avoid communications
with other users in channel access period, they should adopt al-
gorithms such as CSME which requires extra communications
during the channel selection period; If users prefer less or no
communication costs during channel probing and selection, they
have to except additional communication cost in the channel ac-
cess.

VII. SIMULATION RESULTS

In this section, we present the simulation results on the
proposed channel selection algorithms. We use simple regret
of channel selection results (defined in Section III) to com-
pare performance between different algorithms. First, we com-
pare our single user algorithm with the SAR algorithm in
[8] and discuss the different choices of learning rate. Then
we illustrate the performance of the proposed distributed al-
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Fig. 5. Regret performances comparison for single user.

gorithms and compare them with the distributed UCB algo-
rithm proposed in [3]. We consider a few different setups
where number of channels and users varies. With out loss
of generality, we assume that each channel’s reward is as-
sociated with an i.i.d. Bernoulli distribution as in [4], [27].
When K =49, M = 10and K = 99, M = 15, the parameters
of each distribution are © = (0.02,0.04,0.06,...,0.98) and
O = (0.01,0.02,0.03,...,0.99), respectively. All simulation
results are averaged over 50 runs.

In Fig. 4, we compare error probability with different set-
tings of learning rate n in SME, where the time budget is the
number of time slots. Note that a less number of suboptimal
channels indicates a better performance in channel selection.
In both scenarios for K =99 and K =49, n =4 and n =2
have better performance than n = 6 and n = 8, and they have
similar performance. When K = 49, n = 2 has slightly lower
error probability than = 4. However, we can see the trend that
n = 41is getting better when K becomes large. Although the op-
timal choice of 7 varies for different applications, for simplicity,
we choose 17 = 4 in our simulations .

In Fig. 5, SME has much smaller regret when compared with
SAR, especially when K is large. When K = 99, compared with
SAR, SME improves the accuracy and efficiency significantly.
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Even when K = 49, the proposed SME algorithm is ten times
better than SAR.

For channel selection with communications, from Fig. 6, we
can see that the DACA algorithm has lower regret bound than
DSME-VC in both scenarios. When K = 99, compared with
DSME-VC, DACA improves the accuracy of channel selection
for more than 30%. Although DACA has higher accuracy, we
need to consider its high communication cost. We compare the
communication cost for three algorithms in Fig. 7.

In Fig. 7, we set K = 99, M = 15, T = 5000 and randomly
assign K/2 channels to each user for CSME. One can see
that when the number of users is 5, the difference between
three algorithms is not very large, which indicates that the
communication cost of DACA is acceptable for relatively small
number of users. However, when n equals to 10, compared
with DSME-VC and CSME, the communication frequency of
DACA becomes high, which also demonstrates the advantage
of DSME-VC/CSME with massive users.

We also compare the performance of CSME with a classic
distributed UCB algorithm with the TDFS policy proposed in
[3]in Fig. 8. For CSME, we set the number of users to be 10 and
randomly assign K /2 channels to each user. We observe that
CSME improves the channel selection performance significantly
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TABLE I
SUMMARY OF THE PROPOSED ALGORITHMS

Algorithm | Distributed? | Communications? | Collisions?
SME X X X
DSME-VC v low rate X
DACA v high rate X
CSME v medium rate X

compared to conventional UCB, especially when time budget is
small. Although the performance of CSME depends heavily on
the channel assignment result, this simulation result shows that
collaboration indeed helps users make the better selection.

The numerical results suggest that as the time budget
increases, error probabilities for all algorithms decrease
exponentially, which is completely in conformity with our
theoretical analysis. They beat both classic MAB algorithm
and previous exploration bandit algorithm in different cases.
Moreover, each algorithm has its own advantages in specific
scenarios. In summary, simulation results prove the advantages
of the proposed algorithms in the channel selection for
mission-critical communications.

VIII. CONCLUSION

In this paper, we studied the problem of channel selection for
mission-critical communications. We considered both cases of
a single user and multiple users with a pure-exploration bandit
problem formulation. As illustrated in Table II, a few single
or distributed channel selection algorithms were proposed for
different settings. By applying the proposed channel selection
algorithms, users could select a set of good channels via a short
period of channel probing, which guarantees the ultra-reliable
and low-latency communication in emergency circumstances.
The performance of the proposed algorithms was analyzed,
simulations were conducted and the results illustrated the
performance of the proposed algorithms for the multiple
channel selection. Both theoretical analysis and simulation
results showed that the well-designed algorithms proposed in
this paper have impressive performances for channel selection
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in different scenarios. Moreover, the proposed pure-exploration
bandits algorithms are not limited to channel selection for
emergency communications. The proposed schemes are quite
general and can apply to general wireless communications sce-
narios (e.g., cognitive radio networks), where user QoS/QoE is
considered.
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