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Abstract—In emergency communications, guaranteeing ultra-
reliable and low-latency communication is challenging yet crucial
to save human lives and to coordinate the operations of first respon-
ders. To address this problem, we introduce a general approach for
channel selection in mission-critical communications, i.e., choose
channels with the best quality timely and accurately via channel
probing. Since the channel conditions are dynamic and initially
unknown to wireless users, choosing channels with the best con-
ditions is nontrivial. Thus, we adopt online learning methods to
let users probe channels and predict the channel conditions by a
restricted time interval of observation. We formulate this problem
as an emerging branch of the classic multiarmed bandit (MAB)
problem, namely the pure-exploration bandit problem, to achieve a
tradeoff between sampling time/resource budget and the channel
selection accuracy (i.e., the probability of selecting optimal chan-
nels). The goal of the learning process is to choose the “optimal
subset” of channels after a limited time period of channel probing.
We propose and evaluate one learning policy for the single-user
case and three learning policies for the distributed multiuser cases.
We take communication costs and interference costs into account,
and analyze the tradeoff between these costs and the accuracy of
channel selection. Extensive simulations are conducted and the re-
sults show that the proposed algorithms can achieve considerably
higher channel selection accuracy than previous exploration bandit
approaches and classic MAB methods.

Index Terms—Online learning, emergency communications,
channel probing, exploration multi-armed bandits.
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I. INTRODUCTION

E
MERGENCY circumstances such as accidents, natural

disasters, or terrorist attacks require immediate attention

from first responders and can be considered as mission-critical

conditions. In such scenarios, guaranteeing ultra-reliable and

low-latency communications is challenging yet crucial to save

human lives and to coordinate the operations of first responders.

Due to the complex wireless environment and the limitation of

wireless resources, in many such scenarios, wireless users must

be well aware of the wireless channel conditions to select the

best channels in a timely manner. However, this is challenging

since channel conditions are highly dynamic and users have no

prior knowledge of channel changes. Thus, learning-based re-

source management algorithms are always adopted to solve this

problem.

In the channel selection problem, channel selection accuracy

represents the probability of the user choosing optimal chan-

nels. For critical communications where reliability and latency

are of great importance, selecting channels timely and accurately

is fundamental for high-quality communications. For instance,

in public safety communications [1], choosing a high-rate and

ultra-reliable wireless channel can guarantee the quality of com-

munication, and could potentially save lots of lives. In addition,

to guarantee low latency for emergency messages, the time it

takes for channel selection cannot be too long. Thus, choosing

channels with the best quality in a given, the short time duration

is clearly a crucial step before the actual communication takes

place.

The Defense Advanced Research Projects Agency (DARPA)

raises a Spectrum Collaboration Challenge [2] to help to en-

sure that the exponentially growing number of military and

civilian wireless devices will have full access to the increas-

ingly crowded electromagnetic spectrums. Classical approaches

manually divide the spectrum into licensed bands and allocate

them to primary users, while secondary users share the unused

channels. Apparently, those approaches are not very suitable

for the increasing spectrum demand and dynamically chang-

ing environments. Under such a circumstance, next-generation

spectrum access strategies may also require channel sharing

among primary users. Especially, in channel access for crit-

ical communications, users with high priorities also need to

share channels with other users. Thus, channel selection, as

an essential step to choose optimal channels before channel

access, requires all wireless users to actively probe multiple
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channels while these channels are shared among users at the

same time. Active channel probing allows a user to collect suf-

ficient channel information to select a bunch of high-quality

channels based on probing results; Channel sharing guaran-

tees minimum or no interference between different users. After

channel selection, users can follow a uniform channel alloca-

tion or a user negotiation strategy to share channels with other

users.

Existing works with learning-based methods on channel prob-

ing and sharing, such as [3], [4], mainly solve the problem

of achieving the highest cumulative throughput for secondary

users based on the historical communication information. How-

ever, such methods are not applicable to the channel selection

problems in critical communications because they only con-

sider cumulative results. Such existing schemes may choose a

sub-optimal channel whose quality is close to the best chan-

nel, while still achieve good performance. Therefore, relatively

good (but not the best) channels can be chosen during the entire

process and it can be harmful to emergency communications.

Moreover, the existing schemes need to constantly change the

target channel during the communication process, leading to

potentially high channel switching cost for users. If we divide

the process into a channel probing period and a channel access

period separately, we could avoid these problems. Consider the

channel allocation problem for mobile phone communications

illustrated in [5], during a very short time period before the com-

munication starts, a cell phone can explore the set of channels to

identify the best one to operate on. Each evaluation of a channel

is noisy and there are a limited number of evaluations before

the communication starts. The connection is then launched on

the channel which is believed to be the best. The cumulative

throughput during the exploration phase is irrelevant since the

user is only interested in the quality of its communication after

the exploration phase. Apparently, using a metric of selection

accuracy is more appropriate than cumulative throughput in this

scenario.

In this paper, we investigate the problem of channel selection

for multiple users of mission-critical communications in both

centralized and distributed paradigms. A user as a wireless de-

vice is given a time budget to perform channel probing, then

it tries to choose the best available channel to access based on

its channel probing results . When multiple users coexist in the

same area, we try to figure out how to coordinate these users and

make the optimal selection of channels. The goal is to maximize

the user’s chance of choosing optimal channels after the channel

probing period.

Since the channel activities are initially unknown to the

users, intuitively, if the users spend more time on probing, they

will obtain more accurate results. However, in mission-critical

communications, users cannot spend a long time on channel

selection thus a time budget is needed. As a result, there is a

trade-off between completing the probing more quickly versus

making a more accurate selection of channels. This non-trivial

problem inspires us to formulate a distributed exploration bandit

or pure exploration problem, which is a subclass of the classic

multi-armed bandit (MAB) problem [6]. In contrast to standard

MAB algorithms such as UCB [7], which are evaluated in

terms of cumulative regret,1 pure exploration methods focus on

identifying the arm(s) with the maximum expected rewards

rather than maximizing arm rewards during the entire learning

process.

First, we study the channel selection problem with a single

user. Although the user can only probe one channel at a time, it

can sample different channels sequentially. Thus, by predicting

channel condition after a short time of observation, we could

have the user probe multiple channels. We model this problem as

a multiple arm identification problem with a fixed budget [8]. We

propose an elimination-based learning algorithm, which allows

the user to reduce the number of channels to be probed during

the iterations.

Next, we consider the case where multiple users coexist in the

same area. If the users are allowed to communicate with each

other, they can share channel information to obtain more accu-

rate probing results. Nevertheless, due to the geographical sepa-

ration of the users, such cooperation incurs extra communication

cost. For such a scenario, we propose a distributed exploration

bandit algorithm with limited communications. Specifically,

during the channel probing period, when multiple users

targeting at the same channel simultaneously, interferences

between different users will hurt their ability to get accurate re-

sults and cause energy waste. We call this type of interference as

collision and we want to avoid collisions during channel probing

and access.

The main contributions of this work are summarized as

follows:
� We address the channel selection problem in critical com-

munications by formulating it as an exploration bandit

problem and develop effective solution algorithms. Com-

pared with classic exploration-exploitation methods, our

algorithms can achieve better performance in terms of

channel selection accuracy. Both single and multiple user

algorithms are proposed for different applications in this

paper.
� We investigate the distributed exploration bandit problem

in the fixed budget setting. This online learning technique

has lots of potential applications in wireless communica-

tions but few prior works have been done.
� Communication costs and collision losses are taken into

consideration in this paper. Several well-designed algo-

rithms are proposed to mitigate the negative impact of

collisions and improve channel selection accuracy by ex-

ploiting communications among users.

The rest of this paper is organized as follows. In Section II,

related works on channel sharing and distributed online learning

are discussed. Section III introduces the problem formulation.

Algorithms for the single user and multiple users are presented

in Section IV and V, respectively. In Section VI we discuss how

to access channels after channel selection. Simulation results

are presented in Section VII. Finally, we conclude this paper in

Section VIII.

1Cumulative regret is defined as the cumulative difference between the ex-
pected rewards of the optimal strategy made by a genie and that of the given
policy in the whole process.
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II. RELATED WORK

In this section, we introduce the key related works on

spectrum sharing and distributed online learning. For spectrum

sharing [9], many works have been done, such as [3], [4], but

the existing algorithms are not suitable for the primary user

spectrum sharing problem. For channel access of secondary

users, existing algorithms (e.g., [10], [11]) let users keep on

probing the channels and switching the target channel according

to probing results. However, in critical communications, even

licensed users need to share channels during and after the

channel selection process. By adopting channel selection

techniques in this paper, we guarantee that primary users are

able to find a (set of) good channel(s) and they will not suffer

high channel switching costs after channel selection.

In critical wireless communications such as public safety ap-

plications [12], there are also some efforts on spectrum sharing

[13]–[15], but the same flaw as in classic spectrum sharing has

been observed. Furthermore, cooperation in spectrum probing

has been studied [16] but the communication cost can be high if

the algorithm does not take such cost into consideration. Some

papers studied collaborative algorithms in channel probing and

resource allocation [17], [18]. However, they did not fully con-

sider all the possible conditions such as cooperations may not be

allowed in some cases. Tan et al. [19] treated the joint process

of channel probing and scheduling for communications under

delay constraints as a maximal-rate-of-return problem. Authors

used a pure threshold policy as optimal distributed opportunis-

tic scheduling method, but they didn’t consider cooperations

between users. In contrast to these prior works, we take all the

possible cases into consideration and propose different algo-

rithms under different circumstances.

In the area of online learning, multi-armed bandit (MAB)

problem has drawn a lot of attention in recent years. MAB is

a classic example of the tradeoff between exploration and ex-

ploitation, aiming to achieve the maximum cumulative sum of

rewards in the learning process. Lai & Robbins proposed an in-

dex policy in [6] with a logarithmic regret bound and Auer et al.

[7] introduced the well-known UCB strategy which achieves

O(log T ) regret uniformly over time.

Exploration bandit is a new branch of MAB and it can be

divided into two main categories: fixed budget setting and fixed

confidence setting. In the fixed budget setting, players should

seek for a single best arm or a best subset of arms with a fixed

time budget. In fixed confidence setting, such as Even-Dar et al.

in [20] and Kalyanakrishnan et al. in [21], players aim at reduc-

ing the number of samples (i.e., simple regret in [22]) to sat-

isfy the specific constant of finding near-optimal arm(s). Since

channel probing time is limited for critical communications, we

focus on fixed budget setting in this paper. Compared with clas-

sic exploration-exploitation MAB methods, pure exploration

bandit methods can achieve more accurate results in channel

selection because the cumulative regret evaluation metric is not

suitable for lowering the channel selection error probability, es-

pecially when time budget is small since classic MAB methods

spend significantly more time on sub-optimal channels at the be-

ginning stage. Above all, we develop fixed budget exploration

bandit algorithms for channel selections in this paper.

In the exploration bandit problem, many works on the multi-

ple identifications problem (EXPLORE-m in [23]) has been done,

such as [8], [21], [24]. Recently, Shahrampour et al. [25] have

proposed a general unified theory for sequential elimination

algorithms in exploration bandit. The authors indicate its im-

portant applications for mobile communications where users

can explore the set of channels (arms) to find the best one to

operate. Nevertheless, none of the existing work has considered

subset selection with different players. Different from the ex-

isting literature, we study the challenging problem of multiple

identifications in the distributed setting.

There have also been considerable efforts on distributed learn-

ing techniques for MAB. In the area of distributed learning, Liu

and Zhao [3] introduced the time-division fair sharing (TDFS)

policy for a centralized time-sharing schedule for multiple users.

Tekin and Liu [26] utilized the regenerative property of the

Markov chain to solve the problem of rested and restless MAB

problems with multiple players. Kalathil et al. in [27] proposed

an algorithm based on the Bertsekas auction algorithm, which

has O(log2 t) regret bound due to the communication cost.

Distributed exploration bandit was studied by Hillel et al. in

[28]. Their work is most related to this paper. However, Hillel

et al. studied the distributed exploration problem in the fixed

confidence setting while we mainly focus on the fixed budget

setting. They speed up the learning process via communications

among users. In contrast to their work, algorithms requiring

different amounts of communications are proposed in our pa-

per to handle different scenarios. Our preliminary work focused

on wireless monitoring is published in [29], this paper stud-

ies a completely different and more important application in

emergency communications, provides more rigorous theoretical

analysis, and proposes new collaborative algorithm and channel

access policies where cooperations improve channel selection

performance significantly.

III. PROBLEM FORMULATION

A. System Model

Consider single or multiple users try to access some channels

among K wireless channels in critical wireless communica-

tions. When K is large, the user wants to choose a subset of best

channels for high-quality communications. The communication

process is consist of two phases: channel selection period and

channel access period. For channel selection, channel informa-

tion is collected by probing K channels, then users select best

channels based on channel probing results. In many emergency

circumstances, the channel selection task needs to be completed

with limited resources (e.g., time, energy, etc.). In channel se-

lection period, to guarantee the lowest communication delay, we

focus on the limited time scenario where the user chooses M
(M < K) best channels out of K channels within the time bud-

get T . In different scenarios, the time budget varies and users ac-

complish the channel selection with or without communicating

with each other. After channel selection, users access channels

based on their channel selection results for communication.

For channel probing, we assume that a user can only probe

one channel at a time. In the single user scenario, the user is
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TABLE I
SUMMARY OF NOTATION

given a time budget T firstly, then it chooses M channels within

time T . In most applications, we can use the simplest assumption

where one user just need to choose one channel after the probing

phase. After finishing the channel selection, the user will access

the channel according to the probing results.

In the multi-user scenario, each user will get a complete out-

come of M channels (M = 1 in most cases) independently.

Since users will actively probe channels, interferences will hap-

pen if multiple users probe the same channel simultaneously.

Thus, we should try to mitigate or get rid of the negative effect

of collisions.

Assume there are n users and n ≤ M . If all users are allowed

to communicate with each other, they can exchange informa-

tion during the probing process to avoid collisions and improve

the channel selection accuracy. However, extra communication

costs will also affect the probing results achieved by the users,

and further hurt the accuracy of the selection. Thus, algorithms

with an appropriate amount of communications are necessary

for channel selection. After channel selection, n users access

channels among M chosen channels based on channel selection

result.

Next, we introduce some notations (summarized in Table I)

and complexity measurements in this paper.

B. Notations and Complexity Measurements

Consider K channels in a wireless network, where K =
{1, . . . , K} is the channel pool. For simplicity, we assume that

each channel j’s activity in the wireless network follows an

i.i.d. distribution with density function f(x; θj ), while the pa-

rameter θj is a unknown priori. Each time the user observes

the channels, it will obtain a reward which contains the chan-

nel information. When there are multiple users in the system,

let N = {1, . . . , n} denote the set of users. Let φ be the chan-

nel selection policy adopted by the users. During the channel

selection process, all users have the same time budget T and

their clocks are synchronized. Assume that each channel j has

a mean reward µj according to its density function f(x; θj ),

which is the mean of random variable Xj (t). We rank them in

descending order, i.e., µ1 > · · · > µK . The ground truth of the

channel selection result is the channel set M with mean rewards

µ1, . . . , µM . After the channel probing phase, users obtain the

empirical reward µ̂j for channel j, and µ̂j =
∑

t Xj (t)/T . We

also rank these empirical rewards in a descending order. The

user chooses the first M channels with the highest empirical

rewards as its channel selection result, denoted by channel set

M̂. The error probability for channel selection can be defined

as

e = P [M̂ �= M]. (1)

The channel selection accuracy is defined as 1 − e. We also

define the error probability eφ
i to be the probability of choosing

sub-optimal channels by user i under policy φ. Divide the total

probing time into several rounds, in round τ , users will spend tτ
time on its target channels. For user i, our goal is to minimize

the error probability within the given time budget, which means

min eφ
i s.t.

∑

τ

tτ < T. (2)

In our experiments, to better compare performance between

different algorithms under a uniform metric, we use the evalu-

ation metric simple regret [22] which represents the difference

between true means of the optimal M channels and that of chan-

nel chosen by the users. For user i, we define simple regret ri as

ri =

M
∑

j=1

(µj − µ̂j ), (3)

and the total simple regret for all user is
∑n

i=1 ri . We also

introduce the notation of hardness HM . We define the gaps and

the complexity measures of the distributed channel selection in

mission-critical communication as follows

∆M
j = |µM − µj |, ∆min = min

1≤j<k≤K
(µk − µj ), (4)

HM
1 =

K
∑

j=2

1

(∆M
j )2

, HM
2 = max

j∈K

j
(

∆M
j

)2
, (5)

where the notation j ∈ {1, . . . , K} is determined by order

of ∆M
1 ≤ · · · ≤ ∆M

K . Note that from [5] we know HM
1 and

HM
2 are equivalent up to a logarithmic factor, and we have

HM
2 ≤ HM

1 ≤ HM
2 log 2K. These notations decide the lower

bound on the number of evaluations necessary to identify the

best channel, which means the hardness of finding the optimal

channels during the channel selection process. We will discuss

more details in the following sections.

IV. SINGLE USER CHANNEL SELECTION

In this section, we introduce a novel single user channel selec-

tion algorithm, namely Sequential Multiple Elimination (SME)

for channel selection in critical communications. Details of the

proposed algorithm are given in Algorithm 1. The general idea

for SME is to maintain an active set initialized by K chan-

nels, and then to discard channels sequentially within the time

budget until there are M channels left. Time budget is divided
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Algorithm 1: Sequential Multiple Elimination for Single

User (SME).

1: Input : K channels, M chosen channels, time budget

T , learning rate η.

2: Initialization : Let l = �logη ((η − 1)(K − M) + 1)�,

A0 = K, Aτ = |Aτ |, Kτ =
⌈

(η−1)(K−M )+1

η τ

⌉

.

3: for each τ = 1, 2, . . . , l do

4: Sample all channels in Aτ for tτ = � T
lA τ

� times;

5: Rank these channels according to their empirical

rewards, let µ̂1 > · · · > µ̂A τ
;

6: Eliminate all the channels in

Kτ = {j : µ̂j ≤ µ̂A τ −K τ
}, Aτ +1 := Aτ /Kτ ;

7: end for

8: Output : Al .

evenly into several rounds. Different from previous elimination-

based algorithms, we allow users to eliminate multiple channels

in each round, and they will drop fewer channels in the later

rounds. The number of eliminated channels is chosen based on

a learning rate η, which is a constant greater than 1, and users

will eliminate 1/η of channels as in the previous round. This

policy helps users to observe channels more frequently when it is

hard to distinguish “good” channels from “bad” channels, since

the reward gap between different channels becomes smaller as

exploration time increases. While finding the optimal choice of

η is difficult and may vary for different tasks, we try different

settings of learning rate in our experiments. More details about

the learning rate can be found in Section VII.

First, we divide the channel selection process into l rounds

evenly. To ensure that
∑l

τ =1 ητ−1 = K − M , we set l =
⌈

logη ((η − 1)(K − M) + 1)
⌉

. In round τ , the user will remove

Kτ = �((η − 1)(K − M) + 1)/ητ � channels with the lowest

empirical rewards from the remaining active channel set Aτ ,

and put them into set Kτ . It follows that

l
∑

τ =1

Kτ ≥
η

η − 1
((η − 1)(K − M) + 1)(1 − η−l) = K − M.

(6)

Based on Kτ , we have Aτ = |Aτ | and Aτ =
⌈

K−M
η τ + 1

(η−1)·η τ + M − 1
η−1

⌉

, for all τ ≤ l. After l

rounds, the user will provide the result of M chosen channels.

SME allows the user to reduce the number of samples con-

stantly during the process of channel selection, and guaran-

tees that each channel will be sufficiently sampled before being

dropped. To calculate the error probability of SME, we introduce

a lemma first.

Lemma 1: In SME, assume a channel p outside M is not

eliminated before round τ . Then in round τ , for channel j ∈ M,

the probability of µ̂j < µ̂p satisfies

P [µ̂j < µ̂p ] ≤ exp
(

−2
∑

tτ (∆M
j + ∆M

p )2
)

. (7)

Proof: Let ∆jp = ∆M
j + ∆M

p when j ≤ M and p > M . For

α > 0 and β > 0, by the Chernoff-Hoeffding inequality, we

have

P [µ̂p > µp + α∆jp ] ≤ exp
(

−2
∑

tτ (α∆jp)
2
)

P [µ̂j < µj − β∆jp ] ≤ exp
(

−2
∑

tτ (β∆jp)
2
)

.

Since ∆jp = ∆M
j + ∆M

p = µj − µp , we have

P [µ̂j < µ̂p ] ≤ exp
(

−2
∑

tτ ((α∆jp)
2 + (β∆jp)

2)
)

≤ exp
(

−
∑

tτ (∆M
j + ∆M

p )2
)

,

where the last inequality is due to the fact that if α + β ≥ 1,

then α2 + β2 ≥ 1
2
. �

From Lemma 1 we know that under the policy of SME, when

the mean reward gap between good channels and bad channels

∆jp is large, the probability for the user to identify the optimal

channels becomes high. Furthermore, if the user spends more

time on probing, it will achieve a lower probability of choosing

bad channels. Then we can derive an upper bound for the error

probability of SME.

Theorem 1: The error probability of SME is upper bounded

by

P [Al �= M] ≤
l

∑

τ =1

M(Aτ − M) exp

(

−
τT

lH2

)

, (8)

where Aτ =
⌈

K−M
η τ + 1

(η−1)·η τ + M − 1
η−1

⌉

and l = �logη

((η − 1)(K − M) + 1)�.

Proof: The probability for user making wrong selections af-

ter l rounds is

P [Al �= M] = P [M∩∪l
τ =1Kτ �= ∅] =

l
∑

τ =1

P [Kτ ∩M �= ∅].

(9)

Assume that channel j ∈ M is not eliminated by SME in the

first τ − 1 rounds. Then in round τ , with a union bound, the

probability for channel j of being eliminated satisfies

P [Kτ ∩M �= ∅] ≤
∑

j∈M

∑

A τ ≤p≤K

P [µ̂j < µ̂p ]

≤
∑

j∈M

∑

A τ ≤p≤K

exp

(

−
∑

τ

tτ ∆2
jp

)

≤
∑

j∈M

(Aτ − M) exp

(

−
∑

τ

tτ ∆2
jA τ

)

≤ M(Aτ − M) exp

(

−
τT

lH2

)

. (10)

Then for all rounds, we have

P [Al �= M] =
l

∑

τ =1

P [Kτ ∩M �= ∅]

≤
l

∑

τ =1

M(Aτ − M) exp

(

−
τT

lH2

)

. (11)

�
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According to Theorem 1, if we consider the extreme case

where l = 1 (although l cannot be smaller than 2) and M = 1,

then we have P [Al �= M] ≤ (K − 1) exp(−T/H2). From (11)

we can see that large values of l increase τ in terms of

exp(−τT/lH2) and decrease Aτ in each round, but also in-

crease the total number of rounds. Since l is determined by the

learning rate η, there is a trade-off in choosing η and the optimal

choice of η varies from application to application. More details

can be found in Section VII where we compare the performance

for different η in different settings via experiments.

Theorem 1 shows that the error probability of SME is O(e−T )
with respect to time budget T . So as the time budget grows, the

error probability of SME decreases exponentially. Also, SME

needs at most O(H2 log K) times of observation with respect

to the number of channels K to identify the optimal chan-

nels, and has a smaller factor than existing algorithms such as

SAR [8].

V. DISTRIBUTED CHANNEL SELECTION

In this section, we examine the scenarios of multiple users

probing multiple channels in the same area. Assume there are n
users probing K channels simultaneously, while each channel’s

information is initially unknown to all users. Each user will

determine a complete set of M chosen channels after a given

time budget T .

In the channel selection period, an important issue is that

when multiple users are probing the same channel, interference

between them will hurt the results observed by each user. This

type of collision should not be neglected in the design of a

multiple user scheme. To completely avoid collisions among

different users, users could either communicate with other users

to avoid the same choice of channels, or stay idle for a while

and yield to other users to prevent collisions from happening.

Communication will cost energy and may hurt the information

obtained by users; Concession will sacrifice channel sampling

time and also affect the channel selection results. Although in

most cases algorithms with communication have better perfor-

mance in terms of selection accuracy, in some specific appli-

cations (such as military tasks) where communication can be

very costly or dangerous, a yielding algorithm will be a better

choice.

Based on our single user algorithm, we introduce three al-

gorithms that require limited communications. The first two al-

gorithms are collision-free and each user works independently;

The third one exploits the cooperation of users to improve the

channel selection accuracy.

First, we introduce two algorithms with no collisions. We

assume that users can communicate with each other to avoid

the collision. However, as discussed before, the communication

cost will degrade the accuracy of the results gained by users. So

it would be costly for users to keep on exchanging information

with each other. During the learning process, each user has to

make their own decision with limited help from other users. We

propose two distributed exploration bandit algorithms in this

section. In the proposed algorithms, communication cost for

each user is taken into account.

Fig. 1. Channel sampling strategy in Algorithm 2.

For the policy that allows concession, we propose an algo-

rithm called Distributed Sequential Multiple Elimination with

Virtual Channels (DSME-VC) presented in Algorithm 2. In

DSME-VC, we evenly divide the time budget T into l rounds.

The elimination process is the same as the SME. Next, the user

will add its chosen channels into a channel set V , which we call

the virtual channel set. The user will stay on virtual channels

but it will not collect any channel information. Meanwhile, the

user will broadcast its chosen channels to all other users. If one

channel is chosen by all the users, then the user will remove this

channel from V .

As illustrated in Fig. 1, with a round-robin fashion time allo-

cation policy, if the user encounters a channel outside its virtual

channel set, it will probe it as usual. When user 2 is assigned to

probe a virtual channel 2, it won’t collect any information about

channel 2 and yield to other users. In other words, the user will

spend time tτ on a void channel. This strategy can completely

avoid the potential collisions among users. For different users,

they may choose different channels in the same round. So we

calculate the probability for a channel of being chosen by all the

users. Then we can compute the expectation of the remaining

channels in each round.

In DSME-VC, we completely avoid the potential collisions

among users by introducing the virtual channels. A user never

really drops a channel unless it believes the channel is selected

by all users simultaneously. Compared with the single user algo-

rithm, DSME-VC wastes some time on virtual channels, which

is an inevitable cost for avoiding collisions. At round τ , assume

the communication cost for each user is cτ . Since we divide

T into l rounds, the total communication cost of l rounds is

C =
∑

cτ . Actually, the communication cost will hurt the re-

sults observed by users, and will affect the accuracy of channel

selection results.

Step 6 of Algorithm 2 shows the round-robin fashion

channel assignment policy. Channel [(i + τ + k) mod K − 1]
is assigned to user i so that different users could aim at different

channels in each round. If some user joins this probing activity

halfway, existing users do not need to change their activities

and the new user will also follow the channel assignment

policy. However, the new user will not be able to have a channel

selection result after this batch of probing. It should wait for the

next batch and continue its probing until the number of rounds

reaches l. Similarly, when some user leaves halfway, it will not

affect other users’ activity. Thus, this algorithm works well for

the dynamic scenarios in real life.
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Algorithm 2: Distributed Sequential Multiple Elimination

with Virtual Channels (DSME-VC).

1: Input : K channels, M chosen channels, n users, time

budget T , learning rate η.

2: Initialization : Let l = �logη ((η − 1)(K − M) + 1)�,

Aτ = |Aτ |, A0 = K, Kτ =
⌈

(η−1)(K−M )+1

η τ

⌉

,

k = 0, V = ∅.

3: for each τ = 1, 2, . . . , l do

4: for each user i ∈ N do

5: while k ≤ K do

6: if the channel [(i + τ + k) mod K − 1] belongs

to Aτ then

7: Sample it for tτ = T
l|Aτ

⋃

V| times;

8: end if

9: k := k + 1;

10: end while

11: Let k := 0, rank channels according to their

empirical rewards where µ̂1 > · · · > µ̂A τ
;

12: Choose all the channels in Kτ = {j : µ̂j ≤
µ̂A τ −K τ

}, Aτ +1 := Aτ /Kτ . Broadcast chosen

channels to other users;

13: Eliminate channels chosen by all users, and add

others back to V as virtual channels;

14: end for

15: end for

16: Output : Al .

To calculate the communication cost of DSME-VC, we first

define the complexity of communication cost as

c0 = max
i∈N ,j∈K

{ci,j}, (12)

where ci,j is the communication cost for user i of broadcasting

information about channel j to other users and c0 here refers to

the maximum communication cost for a single user and single

channel.

Consider n users probing multiple channels simultane-

ously. Then user i’s communication cost in round τ is ci,τ =

n
∑K τ

j=1 ci,j . Thus, the total communication cost for user i is

upper bounded as

Ci =
l

∑

τ =1

ci,τ = n
l

∑

τ =1

K τ
∑

j=1

ci,τ ≤ n
l

∑

τ =1

Kτ c0 = n(K − M)c0.

(13)

In the following, we derive an upper bound for the probability

for any channel j to be selected in round τ . Then we prove the

expected number of channels chosen by all users.

Lemma 2: In DSME-VC, The probability for channel j
where j is smaller than Kτ being chosen by one user in round

τ satisfies

P [j ∈ Ai,τ ] ≤ Kτ−1 exp(−∆2
minTτ−1) − Kτ exp(−∆2

minTτ ).
(14)

Proof: Based on Lemma 1 and a union bound, we have

P [j ∈ Ai,τ ] ≤ P [
⋃

A τ <k≤A τ −1

(µ̂j < µ̂k )]

≤

A τ −1
∑

k>A τ

P [µ̂j < µ̂k ]

≤

A τ −1
∑

k>A τ

exp(−(∆jk )2tτ )

≤ (Aτ−1 − Aτ ) exp
(

−(∆jA τ
)2tτ

)

.

For any j < Kτ , we have

P [j < Kτ |j ∈ Ai,τ ]

≤ (Aτ−1 − Aτ ) exp(−(∆jA τ
)2tτ )

≤ (Aτ−1 − Aτ ) exp(−(∆A τ −1
− ∆A τ

)2tτ )

≤ (Aτ−1 − Aτ ) exp(−∆2
mintτ )

≤ Aτ−1 exp(−∆2
mintτ−1) − Aτ exp(−∆2

mintτ ). (15)

�

With Lemma 2, we can now prove the expected number of

channels chosen by all users.

Theorem 2: In DSME-VC, the expectation of number of

channels chosen by all users in the round τ satisfies

E [# of channels chosen by all users]

≥ (Aτ−1 − Aτ )

(

1

Aτ−1 − Aτ
− Aτ exp

(

−∆2
min

T

Kl

))n

� Nτ . (16)

Proof: For a channel inside Kτ , the probability of being

chosen by one user is at least 1 −
∑A τ

j=1 P [j ∈ Ai,τ ]. Then we

have

E [# of channels chosen by all users]

≥ (Aτ−1 − Aτ )

(

1 − Aτ P [j ∈ Ai,τ ]

Aτ−1 − Aτ

)n

≥ (Aτ−1 − Aτ )

(

1

Aτ−1 − Aτ
− Aτ exp(−∆2

mintτ )

)n

,

(17)

where (17) follows from the last inequality in (15). Since tτ =
T/l(K −

∑τ
r=1 Nr ) ≤ T/Kl, we have Theorem 2. �

In Theorem 2, the probability for all users choosing the same

channel grows exponentially as the increase of the number of

users n. This fact guarantees that when there are many users

in the same area, DSME-VC will not have too many virtual

channels. Next, we derive an upper bound on each user’s error

probability for Algorithm 2.
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Theorem 3: The error probability of DSME-VC for each user

satisfies

P [Al �= M] ≤
l

∑

τ =1

M(Aτ − M)

× exp

(

−
τTM

lH2(K − N
′

1 + N ′

τ )

)

, (18)

where N
′

τ is Aτ

(

1/(Aτ−1 − Aτ ) − Aτ exp(−∆2
minT/Kl)

)n
.

Proof: First, we modify the time allocation policy used in

Algorithm 4 as

Tτ =

τ
∑

r=1

tr ≤
τ

∑

r=1

T

l
(

K −
∑

r≤τ Nr

) , (19)

from Theorem 2 we have that

∑

r≤τ

Nr ≥ K

(

4

3(K − M) + 1
− A1 exp

(

−∆2
min

T

Kl

))n

− Aτ

(

1

Aτ−1 − Aτ
− Aτ exp

(

−∆2
min

T

Kl

))n

.

With (10) in Theorem 1, the error probability in round τ is upper

bounded as

P [Kτ ∩M �= ∅] ≤ M(Aτ − M) exp

(

−
τTAτ

lH2(K−
∑

r≤τ Nr )

)

≤ M(Aτ − M) exp

(

−
τTM

lH2(K− (N
′

1 − N ′

τ )

)

. (20)

Then, the total error probability of Algorithm 2 is

P [Al �= M] =

l
∑

τ =1

P [Kτ ∩M �= ∅]

≤
l

∑

τ =1

M(Aτ − M) exp

(

−
τTM

lH2(K − N
′

1 + N ′

τ )

)

.

�

Compared with Theorem 1, Theorem 3 shows that the upper

bound on the error probability of DSME-VC is bigger than that

of SME. However, it completely eliminates the collisions among

users and when K is not very large, the error probability of

DSME-VC is close to that of SME. So the DSME-VC algorithm

is applicable for distributed channel selection when the number

of users is relatively small.

We also propose a distributed algorithm without using vir-

tual channels in Algorithm 3, named Distributed Auction-based

Channel Assignment (DACA). DSME-VC solves the potential

collision problem and only needs very little communications,

however, when K becomes very large, DSME-VC may waste

too much time on virtual channels. So Algorithm 2 is not effi-

cient enough when the channel pool is very large. DACA solves

this problem without using the virtual channels.

The basic idea of Algorithm 3 is based on an auction process

among different users. Assume there is an undirected bipartite

graph G(S,U , E), where S and U are the set of users and

Fig. 2. The negotiation process between users in Algorithm 3.

Algorithm 3: Distributed Auction-based Channel Assign-

ment Algorithm (DACA).

1: Input : K channels, M chosen channels, n users, time

budget T , learning rate η.

2: Initialization : Let l = �logη ((η − 1)(K − M) + 1)�,

Aτ = |Aτ |, A0 = K, Kτ =
⌈

(η−1)(K−M )+1

η τ

⌉

. For a

random channel j, user i provides a price pij randomly,

broadcast pij to other users.

3: for each τ = 1, 2, . . . , l do

4: while k < Aτ do

5: For user i, let j = arg maxj∈Sk , τ
µ̂i,j ;

6: if i = arg maxi∈N pij then

7: User i samples channel j for tτ = � T
lK τ

�
times, broadcast to all other users that it has

finished this round, then waits for other users;

8: else

9: Move to another channel s ∈ Sk,τ randomly. Let

pis = µ̂i,s , communicate with other remaining

users, and go back to step 6;

10: end if

11: Let Sk,τ := Sk,τ /j, k := k + 1;

12: end while

13: Update the empirical reward µ̂i,j for all j ∈ Aτ .

Eliminate channels in Kτ = {j : µ̂j ≤ µ̂A τ −K τ
},

Aτ +1 := Aτ /Kτ , k := 1,Sk,τ := Aτ ;

14: end for

15: Output : Al .

channels, respectively. E stands for the connection between

users and channels. When user i eliminates channel j, the

edge E(i, j) will also be removed from set E . So the user

will only provide a price to the channel in its active set and

each user’s price is set to be the channel’s empirical rewards

observed by the user. This setting is intuitively reasonable

since users prefer to choose channels that seem “good” to

them. When communicating with others, the user will decide

whether to probe the channel or not. If user i is not the

highest bidder for channel j, it will choose another channel

randomly.

For example, in Fig. 2, there are three users probing three

channels. In the first communication round, both users 1 and 2

bid for channel 1 and user 3 bids for channel 3. After communi-

cation with each other, users 1 and 3 finds them to be the highest

bidder for channel 1 and 3, respectively. In the second round,

user 2 bids for channel 2. After communicating with user 1, user
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Algorithm 4: Collaborative Sequential Multiple Elimina-

tion for Channel Selection (CSME).

1: Input : i ∈ N , channel set Ki , K channels, M chosen

channels, n users, time budget T , learning rate η.

2: Initialization : Let l = �logη ((η − 1)(K − M) + 1)�,

Ai
τ = |Ai

τ |, A
i
0 = Ki , Aτ = |Aτ |, A0 = K,

Kτ =
⌈

(η−1)(K−M )+1

η τ

⌉

, k = 0.

3: for each τ = 1, 2, . . . , l do

4: for each user i ∈ N do

5: while k ≤ Aτ do

6: if channel [(i + τ + k) mod Aτ − 1] belongs to

Ai
τ then

7: Sample it for tτ = T
l|Ai

τ |
times;

8: end if

9: k := k + 1;

10: end while

11: Let k := 0, and broadcast results to all other users;

12: Update the empirical reward µ̂j for all j ∈ Aτ .

Eliminate channels in Kτ = {j : µ̂j ≤ µ̂A τ −K τ
},

Aτ +1 := Aτ /Kτ , Ai
τ +1 := Ai

τ /(Kτ ∩ Ai
τ );

13: end for

14: end for

15: Output : Al .

2 starts to collect information of channel 2. This process lasts

until every user finds a channel. After a channel is observed by

some user, it will be removed from set E temporarily until the

next round.

Since the channel selection process of DACA is the same

as SME, the error probability of Algorithm 3 will be the

same as Algorithm 4 and users could spend more time on

the channels than in DSME-VC. Thus, the performance of

DACA will be better than DSME-VC. However, to better eval-

uate DACA, we should also take communication cost into

consideration.

Then we will derive the communication cost of DACA. First,

we introduce a lemma to bound the number of communications

in DACA.

Lemma 3: The communication cost for each user in DACA

satisfies

Ci ≤

(

K − M +

(

M −
1

η − 1

)

l

)

n3 − n

6
c0.

Proof: Consider the worst case of Algorithm 3. When user

i communicates with other users in the negotiation phase of the

τ th round, if it always fails to provide the highest price, it has to

keep on communicating with all the remaining users. Then the

number of communications is at most

((n − 1)(n − 2) · · · 1)Aτ =
n3 − n

6
Aτ . (21)

Fig. 3. Channel assignment model of CSME.

The total communication cost satisfies

Ci =
l

∑

τ =1

ci,τ ≤
l

∑

τ =1

n3 − n

6
Aτ c0

=

(

K − M +

(

M −
1

η − 1

)

l

)

n3 − n

6
c0

�

With Lemma 3, we obtain an upper bound for the commu-

nication cost of DACA. Lemma 3 also shows that when the

number of users becomes very large, the DACA algorithm has

a higher communication cost than DSME-VC. The numerical

results on the communication cost of DACA and DSME-VC

can be found in Section VII.

As mentioned before, the error probability of DACA is the

same as SME in Theorem 1. Compared with Theorem 3, DACA

has a lower error probability bound than DSME-VC. The rea-

son is that DACA does not use virtual channels, so the user

can sample each channel with longer time than DSME-VC, and

thus it generates more accurate results. Meanwhile, DACA re-

quires much more communications than DSME-VC. When the

communication cost is high, the low communication cost of

DSME-VC might outweigh the better accuracy of DACA. This

is a choice of horses for courses.

After the discussion of different users probing the same

amount channels, we then consider improving the accuracy and

efficiency of channel selection by allowing user collaboration.

Compared to multi-user channel selection algorithms without

collaboration, if different users could focus on different sets of

channels and broadcast their channel probing results to other

users, every user will have an identical channel selection result

after the channel probing period with high accuracy. Assume

each user is only in charge of probing a portion of K channel;

the channel set for user i is Ki , and its cardinality is denoted

by Ki . As illustrated in Fig. 3, each user has its own channel

set to be probed but every channel will be probed by at least

one user. There are potential overlapping areas among different
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users’ channel sets. The channel assignment policy guarantees

that no channel will be missed in the channel probing process.

In our proposed algorithm, termed Collaborative Sequential

Multiple Elimination (CSME), users will follow almost the same

round-robin fashion channel assignment policy as in DSME-VC

in case there are some overlap among different users’ channel

sets. The only difference is that there are no virtual channels

during the channel probing. After one probing round, each user

will broadcast its probing results to all other users and update

all remaining channel’s empirical rewards accordingly. In round

τ , let µ̂i
j represent user i’s probing result for channel j and tiτ

be the time spent on each channel, we have

µ̂j :=

∑τ
k=1

∑N
i=1 µ̂i

j t
i
k

∑τ
k=1

∑N
i=1 tik

. (22)

The elimination process is based on all users’ probing results

and the user will only eliminate channels in its own channel set.

Let’s consider the general case for CSME. Since the channel

assignment policy avoids the collision, in round τ , each channel

will be sampled by at least T/(maxi Ki l) times. Combined with

(10) and (11), we have that

P [Al �= M] =
l

∑

τ =1

P [Kτ ∩M �= ∅]

≤ max
i

l
∑

τ =1

M(Aτ − M) exp

(

−
τT

lKi
∆2

min

)

.

(23)

In the best case, if there are no overlapping between different

users’ channel sets, we have
∑

i Ki = K. In this case, each

user only needs to communicate with others once in each

probing round for broadcasting channel probing results. Thus,

the communication cost will be the same as DSME-VC.

The bound (23) indicates that if all channels are allocated

evenly to all users and there are no overlapping among different

channel sets, i.e., Ki = K/n for any i, we have

P [Al �= M] ≤
l

∑

τ =1

M(Aτ − M) exp

(

−
nτT

lK
∆2

min

)

. (24)

Now we consider the worst case for CSME. If some user i
probes all K channels and some channels are only probed by

user i, then we have

P [Al �= M] ≤
l

∑

τ =1

M(Aτ − M) exp

(

−
τT

lK
∆2

min

)

, (25)

which is the error probability bound for CSME.

If every user probes all K channels, which means ∀i ∈ N :
Ki = K, then in each probing round, users do one more broad-

casting than in DSME-VC. We can show that the communication

cost of CSME satisfies

Ci =

l
∑

τ =1

ci,τ ≤ 2n(K − M)c0. (26)

The number of communications in CSME is between the

number in DSME-VC and DACA. In the following section,

we consider the channel access after users get their channel

selection results.

VI. CHANNEL ACCESS AFTER CHANNEL SELECTION

Although we mainly focus on channel selection for mission-

critical communications in this paper, we need to consider chan-

nel access after the channel probing period for the multi-user

scenario. With our proposed channel selection algorithms, each

user will have a result of M best channels after the probing time

T . For mission-critical communications, how to coordinate dif-

ferent users to access the channels and avoid collisions among

them remains to be unsolved.

First, we consider the case where each user has the same

channel selection results (such as in CSME). We adopt a round-

robin fashion channel allocation policy to let users loop through

these M channels. Assume each user only needs one channel

for communication. Let t denotes the total communication time

and we evenly divide it into R time slots. In time slot r, user i is

allocated with channel [(i + r) mod M ]. This policy guaran-

tees that no collision will happen in the channel access period

and the user does not need to communicate with other users.

If different users have different channel selection results after

the channel probing period, extra steps are taken to make sure no

users will access the same channel at the same time. We divide

t into R time slots and user i is allocated with channel [(i + r)
mod M ] initially, but it needs to communicate with other users

in case they choose the same channel. Same as the negotiation

phase in DCAC, the user provides a price for its target channel

according to the empirical rewards from the channel probing

period. If the user is not the highest bidder of that channel, it

will choose another channel which has not been chosen by other

users to bid.

Since each user needs to communicate with others once in

each time slot, the communication cost in the channel access

period is bounded as

Ci =

R
∑

r=1

ci,r ≤ nRc0. (27)

Note that to completely avoid collisions, the users have to com-

municate with each other. If users want to avoid communications

with other users in channel access period, they should adopt al-

gorithms such as CSME which requires extra communications

during the channel selection period; If users prefer less or no

communication costs during channel probing and selection, they

have to except additional communication cost in the channel ac-

cess.

VII. SIMULATION RESULTS

In this section, we present the simulation results on the

proposed channel selection algorithms. We use simple regret

of channel selection results (defined in Section III) to com-

pare performance between different algorithms. First, we com-

pare our single user algorithm with the SAR algorithm in

[8] and discuss the different choices of learning rate. Then

we illustrate the performance of the proposed distributed al-
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Fig. 4. Error probability performances comparison for different learning rates.

Fig. 5. Regret performances comparison for single user.

gorithms and compare them with the distributed UCB algo-

rithm proposed in [3]. We consider a few different setups

where number of channels and users varies. With out loss

of generality, we assume that each channel’s reward is as-

sociated with an i.i.d. Bernoulli distribution as in [4], [27].

When K = 49,M = 10 and K = 99,M = 15, the parameters

of each distribution are Θ = (0.02, 0.04, 0.06, . . . , 0.98) and

Θ = (0.01, 0.02, 0.03, . . . , 0.99), respectively. All simulation

results are averaged over 50 runs.

In Fig. 4, we compare error probability with different set-

tings of learning rate η in SME, where the time budget is the

number of time slots. Note that a less number of suboptimal

channels indicates a better performance in channel selection.

In both scenarios for K = 99 and K = 49, η = 4 and η = 2

have better performance than η = 6 and η = 8, and they have

similar performance. When K = 49, η = 2 has slightly lower

error probability than η = 4. However, we can see the trend that

η = 4 is getting better when K becomes large. Although the op-

timal choice of η varies for different applications, for simplicity,

we choose η = 4 in our simulations .

In Fig. 5, SME has much smaller regret when compared with

SAR, especially when K is large. When K = 99, compared with

SAR, SME improves the accuracy and efficiency significantly.

Fig. 6. Regret performances comparison for multiple users with
communications.

Fig. 7. Expected communication cost for each user.

Even when K = 49, the proposed SME algorithm is ten times

better than SAR.

For channel selection with communications, from Fig. 6, we

can see that the DACA algorithm has lower regret bound than

DSME-VC in both scenarios. When K = 99, compared with

DSME-VC, DACA improves the accuracy of channel selection

for more than 30%. Although DACA has higher accuracy, we

need to consider its high communication cost. We compare the

communication cost for three algorithms in Fig. 7.

In Fig. 7, we set K = 99, M = 15, T = 5000 and randomly

assign K/2 channels to each user for CSME. One can see

that when the number of users is 5, the difference between

three algorithms is not very large, which indicates that the

communication cost of DACA is acceptable for relatively small

number of users. However, when n equals to 10, compared

with DSME-VC and CSME, the communication frequency of

DACA becomes high, which also demonstrates the advantage

of DSME-VC/CSME with massive users.

We also compare the performance of CSME with a classic

distributed UCB algorithm with the TDFS policy proposed in

[3] in Fig. 8. For CSME, we set the number of users to be 10 and

randomly assign K/2 channels to each user. We observe that

CSME improves the channel selection performance significantly
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Fig. 8. Regret performances comparison for multiple users without
communications.

TABLE II
SUMMARY OF THE PROPOSED ALGORITHMS

compared to conventional UCB, especially when time budget is

small. Although the performance of CSME depends heavily on

the channel assignment result, this simulation result shows that

collaboration indeed helps users make the better selection.

The numerical results suggest that as the time budget

increases, error probabilities for all algorithms decrease

exponentially, which is completely in conformity with our

theoretical analysis. They beat both classic MAB algorithm

and previous exploration bandit algorithm in different cases.

Moreover, each algorithm has its own advantages in specific

scenarios. In summary, simulation results prove the advantages

of the proposed algorithms in the channel selection for

mission-critical communications.

VIII. CONCLUSION

In this paper, we studied the problem of channel selection for

mission-critical communications. We considered both cases of

a single user and multiple users with a pure-exploration bandit

problem formulation. As illustrated in Table II, a few single

or distributed channel selection algorithms were proposed for

different settings. By applying the proposed channel selection

algorithms, users could select a set of good channels via a short

period of channel probing, which guarantees the ultra-reliable

and low-latency communication in emergency circumstances.

The performance of the proposed algorithms was analyzed,

simulations were conducted and the results illustrated the

performance of the proposed algorithms for the multiple

channel selection. Both theoretical analysis and simulation

results showed that the well-designed algorithms proposed in

this paper have impressive performances for channel selection

in different scenarios. Moreover, the proposed pure-exploration

bandits algorithms are not limited to channel selection for

emergency communications. The proposed schemes are quite

general and can apply to general wireless communications sce-

narios (e.g., cognitive radio networks), where user QoS/QoE is

considered.
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