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Abstract—Fog radio access networks (F-RANs) are seen as
potential architectures to support services of Internet of Things
by leveraging edge caching and edge computing. However, cur-
rent works studying resource management in F-RANs mainly
consider a static system with only one communication mode.
Given network dynamics, resource diversity, and the coupling of
resource management with mode selection, resource management
in F-RANs becomes very challenging. Motivated by the recent
development of artificial intelligence, a deep reinforcement learn-
ing (DRL) based joint mode selection and resource management
approach is proposed. Each user equipment (UE) can operate
either in cloud RAN (C-RAN) mode or in device-to-device mode,
and the resource managed includes both radio resource and
computing resource. The core idea is that the network controller
makes intelligent decisions on UE communication modes and
processors’ on-off states with precoding for UEs in C-RAN
mode optimized subsequently, aiming at minimizing long-term
system power consumption under the dynamics of edge cache
states. By simulations, the impacts of several parameters, such
as learning rate and edge caching service capability, on system
performance are demonstrated, and meanwhile the proposal is
compared with other different schemes to show its effectiveness.
Moreover, transfer learning is integrated with DRL to accelerate
learning process.

Index Terms—Fog radio access networks, communication
mode selection, resource management, deep reinforcement learn-
ing, artificial intelligence.

I. INTRODUCTION

As a promising architecture, the fog radio access network
(F-RAN) can well support the future services of internet
of things (IoT) with the help of edge caching and edge
computing [1], [2]. These services include patient health
monitoring [3], services with low latency [4], large scale IoT
data analytics [5], and so on. In F-RANSs, each user equip-
ment (UE) can potentially operate in different communication
modes including cloud RAN (C-RAN) mode, fog radio access
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point (FAP) mode, device-to-device (D2D) mode, and so on.
In C-RAN mode, UEs are served by multiple cooperative
remote radio heads (RRHs), benefited from centralized signal
processing and resource allocation, while UEs in FAP mode
and D2D mode are served locally by FAPs and UEs equipped
with cache, respectively. Recently, many studies have been
conducted on F-RANS, in terms of performance analysis [6],
radio resource allocation [7], the joint design of cloud and
edge processing [8], the impact of cache size [9], and so on.

Although significant progress has been achieved, resource
management in F-RANs still needs further investigation.
Compared with resource management in traditional wireless
networks, communication mode selection should be addressed
as well due to the coupling with resource management, and
meanwhile the dynamics of edge caching complicate the
network environment, which both lead to a more challeng-
ing problem. Specifically, from the perspective of optimiza-
tion, communication mode selection problem is usually NP-
hard [10]. To solve the problem, classical algorithms like
branch and bound and particle swarm can be adopted. Nev-
ertheless, considering the network dynamics, communication
modes of UEs need to be frequently updated, which makes
algorithms with high complexity less applicable.

On the other hand, owing to the great development of fast
and massively parallel graphical processing units as well as the
explosive growth of data, deep learning has attracted a lot of
attention and is widely adopted in speech recognition, image
recognition, localization [11], [12], and so on. To help the
computer learn environment from high-dimensional raw input
data and make intelligent decisions, the author in [13] proposes
to combine deep learning with reinforcement learning, and
the proposal is known as deep reinforcement learning (DRL).
In DRL, the deep neural network (DNN) adopted as the Q-
function approximator is called deep Q network (DQN). Using
replay memory and target DQN, DRL algorithm can realize
stable training.

Totally speaking, applying DRL to wireless networks has
the following considerable advantages. First, a DNN with a
moderate size can finish the prediction given the input in al-
most real time since only a small number of simple operations
is required for forward passing [14]. This facilitates a DRL
agent to make a quick control decision on networks based
on the Q values output by the DQN. Second, the powerful
representation capabilities of DNNs allows the DRL agent to
learn directly from the raw collected network data with high
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dimension instead of manual inputs. Third, by distributing
computation across multiple machines and multiple cores,
the time to train DQN can be greatly reduced [15]. Fourth,
the DRL agent aims at optimizing a long-term performance,
considering the impact of actions on future reward/cost. The
fifth advantage of DRL is that it is a model-free approach, and
hence does not rely on a specific system model that can be
based on some ideal assumptions. At last, it is convenient for
DRL based schemes to consider the cost incurred by system
state transitions.

Motivated by the benefits of DRL, a DRL based joint mode
selection and resource management approach is proposed,
aiming at minimizing the long-term F-RAN system power
consumption. Using DRL, the controller can quickly control
the communication modes of UEs and the on-off states of
processors in the cloud facing with the dynamics of edge
caching states. After the controller makes the decision, pre-
coding for UEs in C-RAN mode is optimized subsequently
with quality of service (QoS) constraints and the computing
capability constraint in the cloud.

A. Related Work and Challenges

Up to now, some attention has been paid to radio re-
source management in fog radio access networks. In [7], a
cloud radio access network with each RRH equipped with
a cache is investigated, and a content-centric beamforming
design is presented, where a group of users requesting the
same content is served by a RRH cluster. A mixed-integer
nonlinear programming problem is formulated to minimize the
weighted sum of backhaul cost and transmit power under the
QoS constraint of each user group. While in [16], a similar
network scenario is considered, aiming at minimizing the
total system power consumption by RRH selection and load
balancing. Specifically, the RRH operation power incurred by
circuits and cooling system is included and backhaul capacity
constraint is involved. The author in [17] goes one step further
by jointly optimizing RRH selection, data assignment, and
multicast beamforming. The data assignment refers to whether
the content requested by a user group is delivered to a RRH via
backhaul, which is not handled in [7] and [16]. To solve the
NP-hard network power consumption minimization problem,
which consists of RRH power consumption and backhaul
power consumption, a generalized layered group sparse beam-
forming modeling framework is proposed. Different from
previous works that mainly optimize network cost or system
power consumption, the author in [18] tries to minimize the
total content delivery latency of the network, which is the sum
of wireless transmission latency and backhaul latency caused
by downloading the uncached contents. Due to the fractional
form and /-0 norm in the objective function, the formulated
problem is non-convex, which is then decomposed into beam-
forming design problem and data assignment problem.

Although the proposals in the above works achieve good
performance, only C-RAN mode is taken into account. When
a UE in F-RANs is allowed to operate in different commu-
nication modes, the problem of user communication mode
selection should be handled, which is the key to gaining the

benefits of F-RANs [19]. In [20], the author investigates a
joint mode selection and resource allocation problem in a
downlink F-RAN, and particle swarm optimization is utilized
to optimize user communication modes. Other approaches to
mode selection problems include branch and bound [10] as
well as Tabu search [21]. However, these optimization methods
can induce high computational complexity. While in [22],
evolutionary game is adopted to model the interaction of
users for mode selection, in which the payoff of each user
involves both the ergodic rate under a certain mode and the
delay cost. Then, an algorithm based on replicator dynamics
is proposed to achieve evolutionary equilibrium. Nevertheless,
the proposed algorithm can get only the proportion of users
selecting each communication mode, and therefore accurate
communication mode control can not be realized.

Moreover, the works [7], [16]-[18], [20] research resource
management problems under a static environment where con-
tent availability at each cache is unchanged. This assumption
is reasonable for content delivery via FAPs or RRHs with a
cache, since cached contents are usually updated on a large
time scale, and meanwhile FAPs and RRHs have stable power
supplies to keep the normal operations of their caches. On
the contrary, for content delivery via D2D transmission, cache
state dynamics should be taken into account. That is the local
availability of the content requested by a UE at the cache of
its paired UE can easily change with time, incurred by the
autonomous and frequent cache update behavior of the UE
holders, the dynamic battery level of the paired UE, user time-
varying content requests, and so on. These dynamics will make
mode selection algorithms with high complexity inapplicable.
Even worse, the existence of interference between active D2D
links and UEs in C-RAN mode complicates the wireless
environment as well.

Fortunately, DRL, as an emerging approach to complicated
control problems, has the potential to provide efficient so-
lutions for wireless network design. In [23], a DRL based
communication link scheduling algorithm is developed for a
cache-enabled opportunistic interference alignment wireless
network. Markov process is used to model the network dynam-
ics including the dynamics of cache states at the transmitter
side and channel state information (CSI). To extract features
from the high dimensional input composed of CSI and cache
states, a DNN with several convolutional layers is used to learn
the state representation. In [24], DRL is applied in mobility
management, and a convolutional NN and a recurrent NN are
responsible for feature extraction from the Received Signal
Strength Indicator. The performance is evaluated on a prac-
tical testbed in a wireless local area network, and significant
throughput improvement is observed. While in [25], the author
revisits the power consumption minimization problem in C-
RANS using DRL to control the activation of RRHs, where the
power consumption caused by the RRH on-off state transition
is considered as well. In addition, the author in [26] shows that
DRL based on Wolpertinger architecture is effective in cache
management. Specifically, the request frequencies of each file
over different time durations and the current file requests from
users constitute the input state, and the action decides whether
to cache the requested content.
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B. Contributions and Organization

In this paper, a network power consumption minimization
problem for a downlink F-RAN is studied. Different from [7],
[16], [17], [25], the power consumption induced by the running
processors in the cloud for centralized signal processing is
included as well. Owing to the caching capability of D2D
transmitters, UEs can acquire the desired contents locally
without accessing RRHs. This can help traffic offloading
which alleviates the burden of fronthaul on one hand and
on the other hand allows turning off some processors in
the cloud to save energy since less computing resource is
needed to support less number of UEs. Facing with the
dynamic cache states at D2D transmitters and the interference
between UEs in the same communication mode, a DRL based
approach is proposed to help the network controller learn the
environment from raw collected data and make intelligent and
fast decisions on network operations to reduce system power
consumption. As far as we know, our paper is the first work to
adopt DRL to solve joint communication mode selection and
resource management problem taking the dynamics of edge
cache states into account to achieve a green F-RAN. The main
contributions of the paper are:

¢ An energy minimization problem in a downlink F-RAN
with two potential communication modes, i.e., C-RAN
mode and D2D mode, is investigated. To make the system
model more practical, the dynamics of cache states at
D2D transmitters are considered, which are modeled by
Markov process, and the power consumption caused by
processors in the cloud is taken into account. Based on the
system model, a Markov decision problem is formulated,
where the network controller aims at minimizing the
long-term system power consumption by controlling UE
communication modes and processors’ on-off states at
each decision step with the precoding for UEs in C-RAN
mode optimized subsequently.

o For the precoding optimization under given UE commu-
nication modes and processors’ on-off states, the cor-
responding problem is formulated as a RRH transmis-
sion power minimization problem under per-UE QoS
constraints, per-RRH transmission power constraints, and
the computing resource constraint in the cloud, which
is solved by an iterative algorithm based on [-0 norm
approximation. Then, a DRL based approach is proposed
with UE communication modes, edge cache states, and
processors’ on-off states as input to select actions for
communication mode and processor state control. After
precoding optimization, the negative of system power
consumption is determined and fed back to the controller
as the reward, based on which the controller updates
DQN.

o The impacts of important learning parameters and edge
caching service capability on system performance are il-
lustrated, and the proposal is compared with other several
communication mode and processor state control schemes
including Q-learning and random control. Furthermore,
the effectiveness of integrating transfer learning with
DRL to accelerate the training process in a new but

similar environment is demonstrated.

The remainder of this paper is organized as follows. Section
IT describes the downlink F-RAN model. Section III formu-
lates the concerned energy minimization problem, and the
DRL based approach is specified in Section IV. Simulation
results are illustrated in Section V, followed by the conclusion
in Section VI.

II. SYSTEM MODEL

The discussed downlink F-RAN system is shown in Fig.
1, which consists of one cloud, multiple RRHs, multiple
UEs with their paired D2D transmitters. The cloud contains
multiple processors of heterogenous computing capabilities
which are connected with each other via fiber links to achieve
computing resource sharing, and the computing capability of
processor n is characterized by D, whose unit is million
operations per time slot (MOPTS) [27]. For each processor
in the cloud, it has two states, i.e., on state and off state,
which are indicated by sP7?¢¢%%°" = 1 and sPo¢¢**°" = (),
respectively. Meanwhile, content servers provide large-scale
caching capability, and the controller is used for network con-
trol like resource management. The set of processors, RRHs,
and UEs are denoted by N =1,2,..., N, K =1,2,..., K, and
M =1,2,..., M, respectively. Each RRH is equipped with L
antennas, and each UE is with one antenna. In addition, RRHs
communicate with the cloud via high-bandwidth fronthaul.

The paired D2D transmitter for each UE is chosen by
comprehensively considering the social tie and the physical
condition as per in [28]. In the considered scenario, each UE
can operate either in D2D mode or C-RAN mode which are
denoted by a 0-1 indicator s7°%. Specifically, s7°% = 1
means UE m operates in D2D mode, while s%"d‘i = 0 means
that UE m is served by RRHs. Moreover, suppose that the
D2D transmission does not interfere the RRH transmission
by operating in different frequency bands, and all the UEs
in the same communication mode share the same frequency
band, hence interfering with each other. Finally, the high power
node (HPN) with wide coverage is responsible for delivering
control signalling and exchanges control information with
the controller via backhaul [29]. In the following, models
for communication, computing, caching, and system energy
consumption are elaborated.

A. Communication Model

By the collaborative transmission of RRHs, the received
symbol of UE m in C-RAN mode is given by

C H
Ym = Z hm,kvm,kxm+

ke
Z Z hgykvm’,kxm’ + Zmy (1)

m’€M7m’7ém,s:;§’de:O keK

where z,, is the message of UE m, hm’ ;. 1s the channel vector
between RRH k and UE m, v, ) is the precoding vector of
RRH k for UE m, and z,, is the noise which follows the
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Fig. 1. A downlink F-RAN system.

distribution of CA (0,02). Then the data rate achieved by
UE m is given by

2
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For UE m in D2D mode, it is assumed that the D2D trans-

mitter transmits at a constant power level, and the received
symbol of UE m is given by

m’EM,m’;ém,sZ/o'ie:l

V pm’hm,m’xm’ + Zm,

3)
where p,, is the transmit power of the D2D transmitter paired
with UE m, h,,, is the channel coefficient between UE m and
its D2D transmitter, h,, - is the channel coefficient between
the D2D transmitter of UE m’ and UE m. Then the data rate
achieved by UE m in D2D mode is given by

2o e Mo, smge =1 Pt [t [2 + 02

4)

RP) = log(1 +

B. Computing Model

To finish the basedband processing and generate the trans-
mitted signals for RRHs, computing resource provision in the
cloud plays a key role, whose model follows that in [27].
Specifically, the computing resource consumed by coding and
modulation for UE m is given by

Dm,l = BRma (5)

where R,, is the data rate of UE m. Meanwhile, the computing
resource consumed by calculating the transmit signal for UE
m depends on the number of non-zeros elements in its network
wide precoding vector vy, which is modeled as

(6)

Do = avaHO'

Then, the computing resource consumption for the whole
system is calculated as

Dsystem = Z (Dm7l + Dm72)
m,smode=Q
=8 > Ruta > |vale O
m,smode=(Q m,smode=Q

Note that only the UEs accessing RRHs consume computing
resource, and hence computing resource needed may decrease
by serving UEs locally via D2D communication, which further
allows turning off some processors to save energy. Moreover,
it should be highlighted that additional constant terms can be
added to (7) to account for the computing resource consumed
by other baseband operations, which has no impact on our
proposal.

C. Caching Model

We define the value of the cache state at a D2D transmitter
is True only when the requested content is cached in the D2D
transmitter and the transmitter’s battery level is high enough
so that the holder is willing to share contents, and the cache
state is False otherwise. Note that the cache state at each
D2D transmitter can be highly dynamic due to the following
reasons. First, although UEs are paired based on their social
ties, this can not imply the content requested by a UE must be
cached by its partner whose cached contents can be frequently
updated by the device holder based on its own interest. Second,
the UE battery level dynamically changes with time, and the
user content request is time-varying.

To characterize the dynamics of cache states, Markov pro-
cess is adopted as per [23] with the probability transition
matrix given by

PrTrue,False
PrFalsmFalse

PrTrue,True
PrFals@True

Prcachc == (8)
where Pro,ye Faise denotes the transition probability of the
cache state at a D2D transmitter from True to False.

D. Energy Consumption Model

Totally speaking, the energy consumption in the concerned
downlink F-RAN includes the energy consumption incurred
by the running processors, fronthaul transmission, and wireless
transmission. First, according to [30], the energy consumed by
processor n in Watts is given by

Processor __ ,processor 3
En = Sn :uD'rL?

©))

where p is a parameter depending on the structure of the
processor. Second, the wireless transmission power for UE
m is as follows.

, 1 1
E;u@zreless _ (1 _ S%Ode) - ||VmH§ + S%Ode—Pm, (10)
m "2

which is the transmission power when UE m is either served
by RRHs or served by its paired D2D transmitter. n; and 72
are the efficiency of the power amplifier at each RRH and
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at each UE, respectively [30]. Third, for the fronthaul energy
consumption corresponding to UE m, it is simply modeled as

(1)

with P/7°™ a constant representing the energy consumption
for delivering the processed signal of UE m to its associated
RRHs via fronthaul [16]. Then, the energy consumption of the
whole system is given by

rocessor ronthaul wireless
Esystem = § Eg + § E/,J:L + § Em .
m m

! (12)
It should be noted that the modeling of the caching state
using a Markov process motivates the adoption of the Markov
decision process (MDP) to formulate our concerned problem.
In addition, since our aim is to achieve a green F-RAN under
user QoS and computing resource constraints , the reward
setting of the MDP will be closely related to the data rate,
computing, and energy consumption models.

Efronthn,ul _ (1 _ Smode) Pfr(mt

m m ’

III. PROBLEM FORMULATION AND DECOUPLING

In this section, an optimization problem aiming at minimiz-
ing the energy consumption in a downlink F-RAN is formu-
lated from an MDP perspective. Specifically, the problem is
decoupled into a joint control problem of processors’ on-off
states and UEs’ communication modes and a precoding design
problem under the computing resource constraint.

A. The Basics of MDP

From the energy consumption model, it can be seen that the
cache state for each UE plays a key role in the following ways.
On one hand, the cache state will influence the set of UEs that
can potentially exploit D2D communication, which directly
influences the energy consumption incurred by fronthaul and
wireless transmission. On the other hand, since UEs served by
local caching do not consume computing resource in the cloud
anymore, there is a chance to turn off some processors to save
energy. Facing with the dynamics of cache state for each UE
pair, it is natural to formulate the energy minimization problem
from an MDP perspective.

MDP provides a formalism for reasoning about planning
and acting in the face of uncertainty, which can be defined
using a tuple (S, A, {Pry, (-)},U). S is the set of possible
states, A is the set of available actions, {Prs, (-)} gives the
transition probabilities to each state if action a is taken in
state s, and U is the reward function. The process of MPD is
described as follows. At an initial state sg, the agent takes an
action ag. Then the state of the system transits to the next state
s1 according to the transition probabilities {Prs,q, ()}, and
the agent receives a reward Uy. With the process continuing,
a state sequence sg, S, So, ... is generated. The agent in an
MPD aims to maximize a discounted accumulative reward
when starting in state s, which is called state-value function
and defined as

VT (s) = E (13)

o
Z’tht ‘80 = 377T‘| 3
t=0

where U; is the reward received at decision step ¢, v is a
discount factor adjusting the effect of future rewards to the
current decisions, and the policy 7 is a mapping from state
s to a probability distribution over actions that the agent can
take in state s.

The optimal state-value function is given by

V*(s) =max V" (s). (14)
Then, if V* (s) is available, the optimal policy 7* is deter-
mined as

7 (51) = argmax Uy, + D Proa(ser1) V* (si01), (15)

St4+1

where l_]sat is the expected reward by taking action a at
state s;. To calculate V* (s), the value-iteration algorithm
can be adopted. However, since the transition probabilities
{Prsq ()} are not easy to acquire in many practical problems,
reinforcement learning algorithms, especially Q-learning, are
widely adopted to handle MDP problems, for which the state
space, explicit transition probabilities, and the reward function
are not essential [31].
In Q-learning, the Q function is defined as

oo
QW(S,(I):E Z’}/tUt‘SOZS,QOZCL,ﬂ' )
t=0

(16)

which is the expected accumulative reward when starting from
state s with action a and then following policy 7. Similarly,
we can define the optimal Q function as

Q" (s,a) = max Q7 (s,a).

Q-learning is ensured to reach the optimal Q values under
certain conditions [31], which is executed iteratively according
to

7

Qi1 (s,0) = (1= @) Qi (s.0)+a [ Uy + ymax Qs (si+1,0')]

(18)
where « is the learning rate. Once Q* (s,a) for each state-
action pair is achieved, the optimal policy can be determined
as

7 (s) = argmax Q™ (s, a) .

acA (19

B. Problem Formulation

In this paper, the energy minimization problem for the con-
sidered downlink F-RAN is formulated as an MDP problem,
where the controller in the cloud tries to minimize long-
term system energy consumption by controlling the on-off
states of processors, the communication mode of each UE,
and optimizing precoding vectors for RRH transmission. More
formally, our concerned MPD problem is defined as follows.

o State space: The state space S is defined as a set of
tuples S= {{Sprocessor’Smode7scache}}. Sprocessor is a
vector representing the current on-off states of all the
processors, where the n-th element is sE"°°°*%°" . s, 4,
is a vector representing the current communication modes
of all the UEs, where the m-th element is s7°%. While

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2871020, IEEE Internet of

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2871020, IEEE Internet of

Things Journal

sc@che is a vector consisting of the cache state at each

D2D transmitter.

« Action space: The action space A is defined as a set of
tuples A= {{aprocessoraamode}}~ QAprocessor repfesents
to turn on or turn off a certain processor, while @,ode
represents to change the communication mode of a certain
UE. Note that the network controller controls the on-
off state of only one processor and the communication
mode of only one UE each time to reduce the number
of actions [25]. Moreover, the precoding design for
RRH transmission is handled separately for the same
reason [25].

e Reward: The immediate reward U is taken as the neg-
ative of system energy consumption which is the sum
of energy consumption incurred by the running proces-
sors, fronthaul transmission, and wireless transmission
as defined in (12). Hence, after communication mode
and processor state control followed by the precoding
optimization for UEs in C-RAN mode, the reward can
be totally determined.

Note that due to the cache state dynamics, the state after
control can transit to an infeasible state. In summary, three
situations should be properly handled. The first one is that the
controller selects D2D mode for a UE, but the cache state at its
paired UE after transition is False. The second one is that the
QoS of a UE in the C-RAN mode is not met due to too many
sleeping processors, and the third one is that the QoS of a UE
in D2D mode is unsatisfied because of the strong interference
among active D2D links. To deal with these situations and
always guarantee the QoS of UEs, protecting operations will
be performed. Specifically, the UE with QoS violation will
inform the HPN over the control channel, and then the HPN
sends protecting operation information to the controller that
reactivates all the processors and switches each UE in D2D
mode with QoS violation to RRHs. In addition, the precoding
for UEs in C-RAN mode will be re-optimized.

Motivated by the recent advances in artificial intelligence,
DRL is utilized to control the on-off states of processors and
the communication modes of UEs. The details about the DRL
based approach will be introduced in the next section. After
the controller takes an action using DRL, precoding is then
optimized for RRH transmission, which is formulated as the
following optimization problem.

min
Vin} m, smode—(
(al) Ry > Ry min, Y,
(@2 ¥

m, sﬁ"de:()

(@3)8 >, Rm+ta«

m,s;;;"de:()

2
Vil

< Pmax, Yk,

2

mode —
m,smede=0

2
va,k”2
||V77LHO < Z SPTOCGSSOTD

(20)
where v, is the network wide precoding vector for UE m,
the first constraint is to meet the QoS demand for each UE,
the second constraint is the transmission power constraint for
each RRH, while the last constraint is the computing resource
constraint in the cloud. Note that once the controller takes
an action, the parameters {sm°} and {s£"°°***°"} will be
determined.

IV. DRL BASED MODE SELECTION AND RESOURCE
MANAGEMENT

In this section, the precoding optimization given processors’
on-off states and communication modes of UEs is handled
first, and then a DRL based algorithm is proposed to control
the network facing with the dynamics of caching states at D2D
transmitters and complex radio environment.

A. Precoding Design with the Computing Resource Constraint

For problem (20), the main difficultly to solve it lies in the
non-convex constraint (al) as well as the /-0 norm and the
sum rate in constraint (a3). Fortunately, the QoS constraint
(al) can be transformed into a second order cone constraint by
the phase rotation of precoding [30]. Moreover, the [-0 norm
term in constraint (a3) can be approximated by re-weighted
I-1 norm as per [27] and [32]. Then, inspired by the proposal
in [32], problem (20) can be solved iteratively and the problem
for each iteration is as follows:

. 2

min Vin

pin 3 vl

(el) S v P 4o2< /14 %Re {bfv,}, vm,

m/aSZ:IOdC:O
e2)Im {hflv,,} =0,Vm,
(63) Z ||Vm,kH§ S pmax;\v/k7
mﬁs%odezo

COEEEDY

m, Smode 0

@ Z Zzomklh}mk” < ZSPT‘OCessorD

msnLode =0 k

(€5) Ui,k = 0,4 f it is set to 0 in the last iteration,

R+

(21
where h,, is the channel vector from all the RRHs to UE m,
Um, k1 i the precoding of the [/-th antenna of RRH k for UE
m, Ry, is the data rate of UE m calculated by the precoding
output by the last iteration, > Z Z Ol [V, k1] 18

m, S'lnode 0

the norm approximation of the term
m, Smode =0

constraint (a3) of problem (20). 0,, 1 is updated as

1
|Um k1| + €
with v, 1; the precoding calculated by the last iteration and
¢ a small enough parameter. Note that problem (21) is a
convex optimization problem that can be efficiently solved by
CVX [33], and the proof of the convexity is given by the
following proposition.

Proposition 1: Problem (21) is a convex optimization prob-
lem.

Proof: First, it has been shown that constraints (e3) and
(65) are convex in [34], and meanwhile, the objective function
as well as constraints (el) and (e2) are also convex according
to [35]. For the constraint (e4), it can be reformulated as the
following inequality:

> Zzgmklh}m,k,” <

m,smode=0 k

va”o in

GTYL,k’,l - 5 Vm,Vk,Vl, (22)

N (23)
i Z Sgrocessoan_ﬁ Z Rm

m,smode=(Q
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, where the right side is a constant and the left side is a convex
reweighted [-1 norm [36]. Hence, it can be concluded that
problem (21) is convex. ]

The algorithm diagram is listed in Algorithm 1. First, the
precoding is initialized, which can be got by solving a relaxed
version of problem (20) without considering the computing
resource constraint. Then, Rm and the weight 6, ,; can be
calculated, based on which problem (21) can be solved. At
the end of each iteration, vy, ;; with small enough |vy, k| is
set to 0, and one possible criteria is comparing the value of

|V, k1| With & [16]. By updating 6,, i ; iteratively, the above

Algorithm 1 Precoding optimization under the computing
resource constraint
1: Stage 1:
The controller initializes precoding v, 1, Vm, Vk, VI, and
then computes the weight 6., . ; and data rate Rm.
2: Stage 2:
Compute the optimal precoding by solving problem (21)
using CVX;
Update weight 0,, . ; based on the precoding result;
Let vy, equal to O if |v,, 5] is less than a given small
threshold.

3: Stage 3:
Repeat Stage 2 until the RRH transmit power consumption
converges.
algorithm gradually sets v, ;; = O for the UE-antenna link

that has low transmit power [32]. Meanwhile, utilizing the
interior point method, the complexity of the above algorithm

for each iteration is O ((KLM)3'5).

B. DRL based Mode Selection and Resource Management

After the precoding design under fixed UE communication
modes and processors’ on-off states is handled, the remaining
task is to find a way of reaching a good policy for the MDP
formulated in Subsection B of Section III. As introduced be-
fore, Q-learning is a widely adopted algorithm in the research
of wireless networks for network control without knowing the
transition probability and reward function in advance. How-
ever, Q-learning has three factors which can limit its applica-
tion in future wireless networks. First, traditional Q-learning
stores the Q-values in a tabular form. Second, to achieve the
optimal policy, Q-learning needs to revisit each state-action
pair infinitely often [31]. Third, the state for Q-learning is often
manually defined like in [37]. These three characteristics will
make Q-learning impractical when considering large system
state and action spaces [38]. While DRL proposed in [13] can
overcome these problems, and has the potential to achieve
better performance owing to the following facts. First, DRL
uses DQN to store learned Q-values in the form of connection
weights between different layers. Second, with the help of
replay memory and generalization capability brought by NN,
DRL can achieve good performance with less interactions with
complex environments. Third, with DQN, DRL can directly
learn the representation from high dimensional raw network
data, and hence manual input is avoided.

Considering these benefits, the controller uses DRL to
learn the control policy of UE communication modes and
processors’ on-off states by interacting with the dynamic
environment to minimize the discounted and accumulative
system power consumption for 7" decision steps, and that is

T—1

to maximize the long term reward given by I | > ~!U;|.
The training procedure of the DRL is shown in Altg_oorithm 2.
Specifically, given the current system state composed of UE
communication modes, cache states at D2D transmitters, and
processors’ states, the controller takes this state as input of
DQN to output the Q-values @ (s,a, w) corresponding with
each action. Then, an action is selected based on ¢ greedy
scheme, and the operational states of a certain processor and
a certain UE are changed if needed. Afterward, the controller
optimizes the precoding using Algorithm 1, and the cache state
at each D2D transmitter transits according to the transition
matrix. Once any QoS violation information from UEs is
received by the HPN, the HPN will help those UEs with
unsatisfied QoS in D2D mode access the C-RAN and the
controller will activate all the processors. Next, this interaction
is stored in the replay memory of the controller containing the
state transition, the action, and the negative of system power
consumption which is the reward. After several interactions,
the controller will update DQN by training over a batch of
interaction data randomly sampled from the replay memory,
intending to minimize the mean-squared-error between the
target Q values and the predicted Q values of DQN. In
addition, every larger period, the controller will set the weights
of DQN to the target DQN.

In addition to the proposal in [13], researchers have made
some enhancements on DRL subsequently. To more effectively
reuse the experienced transitions in the replay memory, priori-
tized replay is proposed. Moreover, double DRL is introduced
to overcome the optimistic Q-value estimation involved in
the calculation of the target value, while dueling DRL is
proposed to effectively learn in the situation where the state
value should be more cared about. Furthermore, DRL with
deep deterministic policy gradient is introduced to address the
continuous control problem. All these new DRL approaches
take the advantage of the ideas of replay memory and target
DQN in [13], and their specifications can be referred to [38].
Although only the proposal in [13] is adopted for our com-
munication mode selection and resource management in this
paper, these advances can be utilized as well, which does not
affect the core idea and the main conclusions of the paper.

V. SIMULATION RESULTS AND ANALYSIS

The simulation scenario is illustrated in Fig. 2 where the
distance between each pair of RRHs is 800 m, and four UEs
are randomly distributed within a disk area of radius 100 m
whose center is the same as that of the RRHs. Each UE has
a corresponding potential D2D transmitter that is randomly
located within the distance of 20 m away from the UE. Each
RRH is equipped with two antennas, and each UE is equipped
with one antenna. The channel coefficient of each UE-antenna
link consists of the fading related to distance modeled by
distance™2, shadow fading of 8 dB, and small scale fading
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Algorithm 2 DRL based communication mode selection and
resource management
1: Stage 1:
Randomly initialize a deep neural network as DQN with
parameters w and make a copy of it to construct the
target DQN with parameters w = w. Then, the controller
randomly selects actions for a period of time to store
enough interaction samples into the replay memory, each
of which consists of the state transition, the action, and
reward .
2: Stage 2:
For epoch e =0,1,...., F — 1:
Initialize the beginning state sg.

For decision step t = 0,1,...,T — 1:

Generate a random number = between 0 and 1.

Ifx<e:

The controller randomly selects an action.

Else:

The controller selects the action a; as a; =
arg max Q (s¢,a,w).

If end.

The system state s; transits to s;41 according to the
executed action a; and the cache state transition matrix.

Optimize the precoding for UEs in C-RAN mode by
Algorithm 1.

If any UE reports a QoS violation to the HPN via
the control channel, the HPN delivers the message to the
controller via backhaul and the controller then executes
the protecting operation as specified in Subsection B of
Section III.

If end.

The controller stores the reward U; which is the negative
of the system power consumption together with sy, s¢1,
and a; as an interaction sample into the replay memory.
When the capacity of the replay memory is full, the
earliest sample is abandoned.

If the remainder when ¢ + 1 is divided by 7”7 is 0:

Randomly fetch a mini-batch of interaction samples
from the replay memory, and perform a single ggadient

update on (rt + Q (St41,at, W) — Q (s, at,w)> with
respect to w.
If end.
Periodically set the value of parameters w to W.
For end.
For end.

modeled by CA/(0,1), while the channel coefficients among
UEs are only related to distance. The maximum transmission
power of each RRH is set to 1.5 W, and the constant trans-
mission power of each D2D transmitter is set to 100 mW. The
QoS requirement of each UE is 5 dB. There are six processors
with heterogeneous power consumptions and computing capa-
bilities. The power consumptions corresponding with these six
processors are 21.6 W, 6.4 W, 5 W, 8 W, 12.5 W, and 12.5 W,
and their corresponding computing capabilities are 6 MOPTS,
4 MOPTS, 1 MOPTS, 2 MOPTS, 5 MOPTS, and 5 MOPTS.

500 \
CUE
4001 X D2D transmitter i
RRH
300 1
200 1
: o
€ ’
100 1 ¢ o 1
0r b
-100 1 1
200 N
_300 1 1 1 1 1 1
-400 -300 -200 -100 0 100 200 300 400
Fig. 2. The simulation scenario.
TABLE I

SIMULATION PARAMETERS

Parameter Value Parameter Value
The learning rate of  0.0001 RRH power effi- 4—10
Adam optimizer ciency

The capacity of re- 5000 UE power 2—10
play memory efficiency

The number of 480 Discounted factor 0.99
steps to update

target DQN

The number of 3 Noise 10713
steps to update W
DQN

The number of 3000 Fronthaul transmis- 5 W
steps for € linearly sion power for each
annealing from 1 UE

to 0.01

Batch size for each 32 The initial steps 1000
DQN update to populate replay

memory by random
action selection

It is assumed that Pro,ye True=P7Faise, True=pm for UE m,
where p,, can be explained as caching service capability of
UE m’s paired D2D transmitter. The adopted DQN is a dense
NN constructed by an input layer, two hidden layers, and an
output layer. The number of neurons in the input layer is 14,
while that in the output layer is 96. There are 24 neurons
in each hidden layer, and ReLu is utilized as the activation
function. All other parameters in the simulation are listed in
Table I.

A. The Impacts of Learning Parameters

In this subsection, we investigate the impacts of learning
rate and batch size on the performance of our proposal by
training DRL with 32000 epochs. The initial state for each
epoch in this section is that all the UEs operate in C-RAN
mode with all processors turning on, and the cache state at
each D2D transmitter is False. From Fig. 3, discounted and

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2871020, IEEE Internet of

Things Journal

2500

n

(39
W
(=
=

2100 i)
1900
1700
1500

1300

Batch size=8
—+— Batch size=32

—a— Batch size=64

1100

900

Accumulative System Power Consumption (W

700 i i i i
0 8 16 24 32 40 48 56 64

Epochs (*500)

Fig. 3. The evolution of discounted accumulative system power consumption

under different batch sizes.
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Fig. 4. The evolution of discounted accumulative system power consumption
under different learning rates.

accumulative system power consumption is evaluated under
different batch sizes with p,,, = 0.9, Vm. It can be seen that the
performance when batch size is equal to 32 is the best, whose
possible reason can be explained as follows. With a small
batch size, the gradient is only a very rough approximation
of the true gradient, and hence long time can be needed to
achieve a good policy. On the contrary, if the batch size is
too large, although the calculated gradient is more accurate,
there is a chance that the learning process is trapped in local
optimum. Under batch size of 32, simulation is conducted
to select an appropriate learning rate as shown in Fig. 4. It
can be observed that using a too small learning rate 0.00001,
the learning process of DRL is slow, while a larger learning
rate 0.001 will result in local optimum. Hence, we select the
learning rate as 0.0001.

B. The Impact of Edge Caching Service Capability

To demonstrate the influence of edge caching on system
performance, we let p,,, = p, Ym, and vary the value of p. Fig.
5 shows the evolution of long term system power consumption
under different p. It can be seen that a smaller p leads to more
system power consumption. This is because when edge caches

2500

2300
2100 54
1900
1700
1500

1300

1100

900

Accumulative System Power Consumption (W)

700 ; ; i i i i i
0 8 16 24 32 40 48 56 64

Epochs (*500)

Fig. 5. The evolution of discounted accumulative system power consumption
under different edge caching service capability.

1800

16001 3
1400 : 1
1200 e
1000 1

800 1

600 : 1

400r ——p=0.9

—+—p=0.75 ]

—&—p=0.6

2001

Expected Accum. Sys. Power Consump. (W)

G i i i i I
0 5 10 15 20 25 30

Decision Steps

Fig. 6. The expected discounted accumulative system power consumption
under different edge caching service capability.

have poorer service capability, more UEs need to be served
by RRHs, which thus causes larger processor and fronthaul
power consumption. In addition, Fig. 6 is drawn to intuitively
show the expectation of long term system performance. The
expected performance for each p is estimated by using the
corresponding model trained in Fig. 5 to perform tests over
10000 epochs and then taking the average.

C. The Effectiveness of Integrating Transfer Learning

To help the DRL model quickly adaptive to new environ-
ment where the cache state transition matrix at each D2D
transmitter changes, transfer learning can be adopted, which
is expected to accelerate the learning process by transferring
the knowledge learned in a source task to a different but
similar task. Since the learned knowledge of the DRL is
stored in the form of connection weights of the DQN, we
propose to set the weights of a well-trained DRL model to
another new DRL model to be trained to avoid training from
scratch. To verify this idea, the weights of the DRL model
that is trained when p,, = 0.9, Vm, are used for the weight
initialization of the DRL model to be trained in two different
environments with p,, = 0.75, Vm, and p,, = 0.6, Vm,
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Fig. 8. The evolution of discounted accumulative system power consumption
with transfer learning when p,, = 0.75, for all m.

respectively. By the results shown in Fig. 7 and Fig. 8§, it
is observed that transfer learning can effectively help DRL
achieve performance similar to that achieved by training from
scratch but with much less training time. Nevertheless, transfer
learning can lead to negative guidance on the target task when
the similarity between the source task and the target task is
low [39].

D. Performance with Other Baselines

To verify the superiority of our proposal, the following
baseline schemes are adopted in our simulation study:

e D2D mode always: In this scheme, the controller always
progressively makes UEs operate in D2D mode and turns
off all the processors.

o DRL based, C-RAN mode only: In this scheme, all the
UEs operate in C-RAN mode, and the controller uses
DRL to control the on-off states of processors only.

o Q-learning based control: In this scheme, the controller
controls the UE communication modes and processors’
states using the iterative Q-learning based on equation
(18).
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Fig. 9. Performance comparison with benchmark schemes.

e Random control: In this scheme, the controller selects
each action with equal probability.

Note that in the above comparison baselines, after commu-
nication mode selection and processor state control is finished,
precoding is optimized using Algorithm 1 if needed, and
the protecting operation still applies to always guarantee the
QoS of UEs. The comparison result is illustrated in Fig. 9,
where a more general heterogenous caching service capability
at each D2D transmitter is considered. Specifically, we set
p1 = 0.5, po = 0.9, p3 = 0.9, and py = 0.5. It can be
found that our proposal performs the best, which shows its
effectiveness on network control facing with dynamic and
complex wireless environment. Specifically, due to the cache
state dynamics and the interference among active D2D links,
the D2D mode always scheme can lead to more frequent
D2D communication failure compared with our proposal and
hence more frequent protecting operations. While for the
DRL based, C-RAN mode only scheme, although it does
not suffer from the dynamic environment since all the UEs
access RRHs, delivering all the traffic via RRH transmission
will induce high fronthaul and processor power consumption.
Moreover, compared with Q-learning, since replay memory
helps DRL review the historical interactions and DQN has the
capability of generalizing learned knowledge to new situations,
our proposal therefore achieves better performance with the
same number of interactions with the environment.

VI. CONCLUSION

In this article, a deep reinforcement learning (DRL) based
approach has been developed for a fog radio access network
(F-RAN) to minimize the long-term system power consump-
tion under the dynamics of edge caching states. Specifically,
the network controller can make a quick and intelligent
decision on the user equipment (UE) communication modes
and processors’ on-off states given the current system state
using the well trained DRL model, and the precoding for UEs
in cloud RAN mode is then optimized under per UE quality of
service constraints, per-RRH transmission power constraints,
and the computing capability constraint in the cloud based on
an iterative algorithm. By simulations, the impacts of learning
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rate and batch size have been shown. Moreover, the impact of
edge caching service capability on system power consumption
has been demonstrated, and the superiority of DRL based
approach compared with other baselines is significant. Finally,
transfer learning has been integrated with DRL, which can
reach performance similar to the case without transfer learning
but needs much less interactions with the environment. In the
future, it is interesting to incorporate power control of device-
to-device UEs, subchannel allocation, as well as fronthaul
resource allocation into DRL based resource management
to achieve better F-RAN performance and make the system
model more practical.
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