This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2876279, IEEE Internet of

Things Journal

Optimized Computation Offloading Performance in Virtual
Edge Computing Systems via Deep Reinforcement Learning

Xianfu Chen, Member, IEEE, Honggang Zhang, Senior Member, IEEE, Celimuge Wu, Member, IEEE, Shiwen
Mao, Senior Member, IEEE, Yusheng Ji, Senior Member, IEEE, and Mehdi Bennis, Senior Member, IEEE

Abstract—To improve the quality of computation experience
for mobile devices, mobile-edge computing (MEC) is a promising
paradigm by providing computing capabilities in close proximity
within a sliced radio access network (RAN), which supports both
traditional communication and MEC services. Nevertheless, the
design of computation offloading policies for a virtual MEC
system remains challenging. Specifically, whether to execute a
computation task at the mobile device or to offload it for
MEC server execution should adapt to the time-varying network
dynamics. This paper considers MEC for a representative mobile
user in an ultra-dense sliced RAN, where multiple base stations
(BSs) are available to be selected for computation offloading.
The problem of solving an optimal computation offloading policy
is modelled as a Markov decision process, where our objective
is to maximize the long-term utility performance whereby an
offloading decision is made based on the task queue state, the
energy queue state as well as the channel qualities between
MU and BSs. To break the curse of high dimensionality in
state space, we first propose a double deep ()-network (DQN)
based strategic computation offloading algorithm to learn the
optimal policy without knowing a priori knowledge of network
dynamics. Then motivated by the additive structure of the utility
function, a ()-function decomposition technique is combined with
the double DQN, which leads to a novel learning algorithm
for the solving of stochastic computation offloading. Numerical
experiments show that our proposed learning algorithms achieve
a significant improvement in computation offloading performance
compared with the baseline policies.

Index Terms—NetworKk slicing, radio access networks, network
virtualization, mobile-edge computing, Markov decision process,
deep reinforcement learning, Q-function decomposition.

I. INTRODUCTION

With the proliferation of smart mobile devices, a multitude
of mobile applications are emerging and gaining popularity,
such as location-based virtual/augmented reality and online
gaming [1]. However, mobile devices are in general resource-
constrained, for example, the battery capacity and the local
CPU computation power are limited. When executed at the
mobile devices, the performance and Quality-of-Experience
(QoE) of computation-intensive applications are significantly
affected by the devices’ limited computation capabilities.
The tension between computation-intensive applications and

X. Chen is with the VTT Technical Research Centre of Finland, Finland
(e-mail: xianfu.chen@vtt.fi). H. Zhang is with the College of Information
Science and Electronic Engineering, Zhejiang University, Hangzhou, China
(e-mail: honggangzhang @zju.edu.cn). C. Wu is with the Graduate School of
Informatics and Engineering, University of Electro-Communications, Tokyo,
Japan (email: clmg@is.uec.ac.jp). S. Mao is with the Department of Elec-
trical and Computer Engineering, Auburn University, Auburn, AL, USA
(email: smao@ieee.org). Y. Ji is with the Information Systems Architecture
Research Division, National Institute of Informatics, Tokyo, Japan (e-mail:
kei@nii.ac.jp). M. Bennis is with the Centre for Wireless Communications,
University of Oulu, Finland (email: bennis@ee.oulu.fi).

resource-constrained mobile devices creates a bottleneck for
having a satisfactory Quality-of-Service (QoS) and QoE, and
is hence driving a revolution in computing infrastructure [2].

In contrast to cloud/fog computing [3], [4], mobile-edge
computing (MEC) is envisioned as a promising paradigm,
which provides computing capabilities within the radio access
networks (RANSs) in close proximity to mobile users (MUs)
[5], [6]. By offloading computation tasks to the resource-rich
MEC servers, not only the computation QoS and QoE can be
greatly improved, but the capabilities of mobile devices can
be augmented for running a variety of resource-demanding
applications. Recently, lots of efforts have been put to the
design of computation offloading policies. In [7], Wang et al.
developed an alternating direction method of multipliers-based
algorithm to solve the problem of revenue maximization by
optimizing computation offloading decision, resource alloca-
tion and content caching strategy. In [8], Hu et al. proposed a
two-phase based method for joint power and time allocation
when considering cooperative computation offloading in a
wireless power transfer-assisted MEC system. In [9], Wang
et al. leveraged a Lagrangian duality method to minimize the
total energy consumption in a computation latency constrained
wireless powered multiuser MEC system.

For a MEC system, the computation offloading requires
wireless data transmission, hence how to allocate wireless
radio resource between the traditional communication service
and the MEC service over a common RAN raises a series
of technical challenges. Network slicing is a key enabler for
RAN sharing, with which the traditional single ownership
of network infrastructure and spectrum resources can be
decoupled from the wireless services [10]. Consequently, the
same physical network infrastructure is able to host multiple
wireless service providers (WSPs) [11], [12]. In literature,
there exist several efforts investigating joint communication
and computation resource management in such virtualized
networks, which support both the traditional communication
service and the MEC service [13], [14]. In this work, we
focus on designing optimal stochastic computation offload-
ing policies in a sliced RAN, where a centralized network
controller (CNC) is responsible for control-plane decisions
on wireless radio resource orchestration over the traditional
communication and MEC services.

The computation offloading policy designs in previous
works [7], [8], [13]-[16] are mostly based on one-shot op-
timization and fail to characterize long-term computation
offloading performance. In a virtual MEC system, the design
of computation offloading policies should account for the
environmental dynamics, such as the time-varying channel

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2876279, IEEE Internet of

Things Journal

quality and the task arrival and energy status at a mobile
device. In [17], Liu et al. formulated the problem of delay-
optimal computation task offloading under a Markov decision
process (MDP) framework and developed an efficient one-
dimensional search algorithm to find the optimal solution.
However, the challenge lies in the dependence on statistical
information of channel quality variations and computation
task arrivals. In [18], Mao et al. investigated a dynamic
computation offloading policy for a MEC system with wireless
energy harvesting-enabled mobile devices using a Lyapunov
optimization technique. The same technique was adopted to
study the power-delay tradeoff in the scenario of computation
task offloading by Liu et al. [19] and Jiang et al. [20]. The
Lyapunov optimization can only construct an approximately
optimal solution. Xu et al. developed in [21] a reinforcement
learning based algorithm to learn the optimal computation
offloading policy, which at the same time does not need a
priori knowledge of network statistics.

When the MEC meets an ultra-dense sliced RAN, multiple
base stations (BSs) with different data transmission qualities
are available for offloading a computation task. In this context,
the explosion in state space makes the conventional reinforce-
ment learning algorithms [21]-[23] infeasible. Moreover, in
this paper, wireless charging [24] is integrated into a MEC
system, which on one hand achieves sustained computation
performance but, on the other hand, makes the design of a
stochastic computation offloading policy even more challeng-
ing. The main contributions in this work are fourfold.

« We formulate the stochastic computation offloading prob-
lem in a sliced RAN as a MDP, in which the time-varying
communication qualities and computation resources are
taken into account.

o To deal with the curse of state space explosion, we resort
to a deep neural network based function approximator
[25] and derive a double deep Q-network (DQN) [26]
based reinforcement learning (DARLING) algorithm to
learn the optimal computation offloading policy without
any a priori knowledge of network dynamics.

o By further exploring the additive structure of the u-
tility function, we attain a novel online deep state-
action-reward-state-action based reinforcement learning
algorithm (Deep-SARL) for the problem of stochastic
computation offloading. To the best knowledge of the
authors, this is the first work to combine a @Q-function
decomposition technique with the double DQN.

o Numerical experiments based on TensorFlow [27] are
conducted to verify the theoretical studies in this paper.
It shows that both of our proposed online learning al-
gorithms outperform three baseline schemes. Especially,
the Deep-SARL algorithm achieves the best computation
offloading performance.

The rest of the paper is organized as follows. In the next
section, we describe the system model and the assumptions
made throughout this paper. In Section III, we formulate the
problem of designing an optimal stochastic computation of-
floading policy as a MDP. We detail the derived online learning
algorithms for stochastic computation offloading in a virtual

Mobile Users Base Stations CNC Resource Slicing
Wireless Charging Z | -
((())) Time
Energy Qum%T)@:- =1
[=gl [SRNE=S =
Task Quene —— =
sk Quene ﬂ:]:]:l

t)

Computation Offloading Internet

Fig. 1. Tllustration of mobile-edge computing (MEC) in a virtualized radio
access network, where the devices of mobile users are wireless charging
enabled, the radio resource is sliced between conventional communication
services (the links in black color) and MEC services (the links in blue color),
and a centralized network controller (CNC) is responsible for all control plane
decisions over the network.

MEC system in Section IV. To validate the proposed studies,
we provide numerical experiments under various settings in
Section V. Finally, we draw the conclusions in Section VI.

II. SYSTEM DESCRIPTIONS AND ASSUMPTIONS

As illustrated in Fig. 1, we shall consider in this paper an
ultra-dense service area covered by a virtualized RAN with a
set B={1,---, B} of BSs. Both traditional communication
services and MEC services are supported over the common
physical network infrastructure. A MEC server is implemented
at the network edge, providing rich computing resources for
the MUs. By strategically offloading the generated compu-
tation tasks via the BSs to the MEC server for execution,
the MUs can expect a significantly improved computation
experience. We assume that the wireless radio resources are
divided into traditional communication and MEC slices to
guarantee inter-slice isolation. All control plane operations
happening in such a hybrid network are managed by the CNC.
The focus of this work is to optimize computation performance
from a perspective of the MUs, while the design of joint
traditional communication and MEC resource allocation is left
for our next-step investigation. In a dense networking area, our
analysis hereinafter concentrates on a representative MU. The
time horizon is discretized into decision epochs, each of which
is of equal duration § (in seconds) and is indexed by an integer
7 € INL. Let W (in Hz) denote the frequency bandwidth
allocated to the MEC slice, which is shared among the MUs
simultaneously accessing the MEC service.

This work assumes that the mobile device of the MU is
wireless charging enabled and the received energy can be
stored in an energy queue. The computation task generated by
the MU across the time horizon form an independent and iden-
tically distributed sequence of Bernoulli random variables with
a common parameter ;) € [0, 1]. We denote azt) € {0,1} as
the task arrival indicator, that is, a’ o =1 if a computation task
is generated from the MU during a decision epoch j and other-
wise af,y = 0. Then, Pr{a(,) = 1} = 1—-Pr{ay,) = 0} = A).
where Pr{-} denotes the probability of the occurrence of an
event. We represent a computation task by (u,) with p and
v being, respectively, the input data size (in bits) and the total
number of CPU cycles required to accomplish the task. A
computation task generated at a current decision epoch can
be executed starting from the next epoch. The generated but

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2876279, IEEE Internet of

Things Journal

not processed computation tasks can be queued at the mobile
device of the MU. Based on a first-in first-out principle, a
computation task from the task queue can be scheduled for
execution either locally on the mobile device or remotely at
the MEC server. More specifically, at the beginning of each
decision epoch 7, the MU makes a joint control action (cj el),
where ¢/ € {0} UB is the computation offloading decision and
e’ € IN, is the number of allocated energy units'. We have
¢ > 0 if the MU chooses to offload the scheduled computation
task to the MEC server via BS ¢/ € B and ¢/ = 0 if the MU
decides to execute the computation task locally on its own
mobile device. Note that when e/ = 0, the queued tasks will
not be executed.

When a computation task is scheduled for processing locally
at the mobile device of the MU during a decision epoch j, i.e.,
¢ = 0, the allocated CPU-cycle frequency with e/ > 0 energy
units can be calculated as
el

f I = T
TV
where 7 is the effective switched capacitance that depends
on chip architecture of the mobile device [28] Moreover, the
CPU-cycle frequency is constrained by f7 < f((g];fj) Then
the time needed for local computation task execution 1s given

by
J -
d(mobile) - fj’ (1

which decreases as the number of allocated energy units
increases. ‘

We denote gy as the channel gain state between the MU
and a BS b € B during each decision epoch j, which
independently picks a value from a finite state space G,. The
channel state transitions across the time horizon are modelled
as a finite-state discrete-time Markov chain. At the beginning
of a decision epoch j, if the MU lets the MEC server execute
the scheduled computation task on behalf of the mobile device,
the input data of the task needs to be offloaded to the chosen
BS ¢/ € B. The MU-BS association has to be first established.
If the chosen BS ¢’ is different from the previously associated
one, a handover between the two BSs hence happens [29].
Denote s/ € B as the MU-BS association state at a decision
epoch 52,

s = b Lie-1opbeB)v{{ci-1=0}A{si1=b}}}»

where the symbols V and A mean “logic OR” and “logic
AND”, respectively, and 1oy is the indicator function that
equals 1 if the condition €2 is satisfied and otherwise 0.
We assume that the energy consumption during the handover
procedure is negligible at the mobile device. In our considered
dense networking scenario, the achievable data rate can be
written as

! An energy unit corresponds to an amount of energy, say, 2 - 10~3 Joules
as in numerical experiments.

2We assume that if the MU processes a computation task locally or no task
is executed at a decision epoch j — 1, then the MU-BS association does not
change, namely, s/ = s7~1. In this case, no handover will be triggered.

where I is the received average power of interference plus
additive background Gaussian noise and

eJ
J
Py = 5
ury
is the transmit power with
dy =2, 3)

(tr) =

being the time of transmitting task input data. The transmit
power is constrained by the maximum transmit power of the
mobile device pEmdx) [30], i.e.,

Pl <0005 @

In (3) above, we assume that the energy is evenly assigned
to the input data bits of the computation task. In other words,
the transmission rate keeps unchanged during the input data
transmission. Lemma 1 ensures that d{tr) is the minimum
transmission time given the allocated energy units e/ > 0.

Lemma I: Given the computation offloading decision ¢/ € B
and the allocated energy units ¢/ > 0 at a decision epoch 7,
the optimal transmission policy achieving the minimum trans-
mission time is a policy with which the rate of transmitting
task input data remains a constant.

Proof: The proof is given as Appendix A. U

Lemma 2: Given the computation offloading decision ¢/ € B
at a decision epoch j, the input data transmission time dztr)
is a monotonically decreasing function of the allocated energy
units e/ > 0.

Proof: The proof is given in Appendix B. |

In addition, we assume in this paper that the battery capacity
at the mobile device of the MU is limited and the received
energy units across the time horizon take integer values. Let
qJe) be the energy queue length of the MU at the beginning
of a decision epoch j, which evolves according to

J+ . i i J (max)
e) —mln{‘J(e) e+ ey 9o }

(max)

where (e € IN, denotes the battery capacity limit and

€ IN, is the number of energy units received by the end
o% decision epoch j.

III. PROBLEM FORMULATION

In this section, we shall first formulate the problem of
stochastic computation offloading within the MDP framework
and then discuss the optimal solutions.

A. Stochastic Computation Task Offloading

The experienced delay is the key performance indicator for
evaluating the quality of a task computing experience. The
delay of a computation task is defined as the period of time
from when the task arrives to the computation task queue to
when the task is successfully removed from the task queue.
Thus the experienced delay includes the computation task
execution delay and the task queuing delay. We assume that
there is a delay of ¢ seconds for control signalling during the
occurrence of one handover. With a joint control action (¢/, e’)

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2876279, IEEE Internet of

Things Journal

at a decision epoch j, the handover delay can be then given
as

W = (- 1(cieByn{eizsit}- ©)

According to (1), (3) and (5), we obtain the task execution
delay as?

d{mobﬂ?), if e >0 and ¢ = 0;
h o+ dZtr) + d(server): if €/ >0 and ¢/ € B;
0, if e =0,

dl =

where d(server) i time consumed for task execution at the
MEC server. Due to the sufficient available computation
resource at the MEC server, we assume that d(server) 1S a
sufficiently small constant.

Notice that if: 1) the MU fails to process a computation
task at the mobile device within one decision epoch; or 2) a
computation task is scheduled for MEC server execution but
the computation result cannot be sent back via the chosen BS
within the decision epoch, the task execution fails and the task
will remain in the queue until being successfully executed.
The dynamics of the computation task queue at the MU can
be hence expressed as

Q'(j:)rl = min{q{t) - 1{0<di’§5} + a'gt), qg‘x;ax)})

where qft) is the number of computation tasks in the queue
at the beginning of each decision epoch j and q((in) e N,
limits the maximum number of computation tasks that can be
queued at the mobile device. There will be computation task
drops once the task queue is full. We let

7 —max{ —1{0<d1<6}+a(t) E?)m) 0}

define a computation task drop.

If a computation task remains in the queue for a decision
epoch, a delay of § seconds will be incurred to the task. We
treat the queuing delay during a decision epoch j equivalently
as the length of a task queue, that is,

Pj = qgt) — 1iaiso}-
As previously discussed, if d? > §, the execution of a
computation task fails. In this case, the MU receives a penalty,
which is defined by

¢ =1iaiss)

Moreover, a payment is required for the access to MEC service
when the MU decides to offload a computation task for MEC
server execution. The payment is assumed to be proportional
to the time consumed for transmitting and processing the task
input data. That is, the payment can be calculated as

¢j =T - (min{dj,é} — hj) . 1{CJEB}a

3In this work, we assume that the BSs are connected to the MEC server
via fibre links. Hence, the round-trip delay between the BSs and the MEC
server is negligible. Further, we neglect the time overhead for the selected
BS to send back the computation result due to the fact that the size of a
computation outcome is much smaller than the input data of a computation
task [31].

4

where m € R is the price paid for the MEC service per unit
of time.
The network state of the MU during each decision epoch
j j def
(Q(t)a qie)r S

j can be characterized by x/ = gl)e X =

{071,--- (max)}x{O L. 7q(g)l‘“)}><l§c’><{><beggb} where
gl = (g : b € B). At the beginning of epoch j, the MU

decides a joint task offloading and energy allocation decision
(¢,e) € Y <L ({oyuB} x {0,1,--- , Qo) }* according to
the stationary control policy defined by Definition 1. In line
with the discussions, we define an immediate utility at epoch
7 to quantify the task computation experience for the MU,

u(od (¢ ¢h)) = wr - u) (min{d, 5) +wa - u ()
+ ws - u(‘j)()+ wy U(4)(<Pj)
+ws - u®(¢), ©)

where the positive monotonically deceasing functions u(!)(-),
u@ (), u® (), u® () and u®(-) measure the satisfaction-
s of the task execution delay, the computation task drop-
s, the task queuing delay, the penalty of failing to ex-
ecute a computation task and the payment of accessing
the MEC service, and wj, we, w3, wy, ws € Ry are
the weights that combine different types of function with
different units into a universal utility function. With s-
light abuse of notations, we rewrite u(™(-), u®(-), u®(.),
u® () and u® () as uM (7, (c7,e?)), uP (X, (c7,e?)),
u® (x7, (¢4, e7)), u®) (37, (¢, e7)) and u® (x7, (e, €)).

Definition 1 (Joint Task Offloading and Energy Allocation
Control Policy): A stationary joint task offloading and energy
allocation control policy ® is defined as a mapping: ® : X —
Y. More specifically, the MU determines a joint control action
D (x7) = (P(e)(X?), P(e)(X?)) = (¢, €7) € Y according to P
after observing network state x’/ € X at the beginning of each
decision epoch j, where ® = (O (), ®(o)) with &) and P (.
being, respectively, the stationary task offloading and energy
allocation policies.

Given a stationary control policy ®, the {x’ : j € N} is
a controlled Markov chain with the following state transition
probability

Prix’*[x’, ‘I>()} =
Pr{qzﬂq@)} Pr{ai il 2 0) |-
Pr{s’™'|s’, ®(x’)} HPI’{ j+1|gb}

beB

Taking expectation with respect to the per-epoch utilities
{u(x?, ®(x?)) : j € N, } over the sequence of network states
{x? : j € N,}, the expected long-term utility of the MU
conditioned on an initial network state x' can be expressed
as

Vix,®) =

)3 07"

Jj=1

L@ () Ix'=x|. @

Eo|(1—7~

4To keep what follows uniform, we do not exclude the infeasible joint
actions.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2876279, IEEE Internet of

Things Journal

where X = (1), q(c): 5:8) € X, g = (gp : b€ B), v € [0, 1)
is the discount factor, and (v)j —1 denotes the discount factor
to the (j — 1)-th power. V(x, ®) is also named as the state-
value function for the MU in the state x under policy ®.

Problem 1: The MU aims to design an optimal stationary
control policy ®* = ((IDE‘C), <I>’(ke)) that maximizes the expected
long-term utility performance, V (x, ®), for any given initial
network state ©x, which can be formally formulated as in the
following

®* = argmax V(x, ®),Vx € X.
@

Vix) = V(x,®*) is defined as the optimal state-value
function, Vx € X.

Remark 1: The formulated problem of stochastic computa-
tion offloading optimization as in Problem 1 is in general a
single-agent infinite-horizon MDP with the discounted utility
criterion. Nevertheless, (7) can also be used to approximate
the expected infinite-horizon undiscounted utility [32]

J
1 . .
f— 1 —_ . J J 1:
U(x,®) =Es Jim > ulx’, (X)) Ix' = x|-

j=1

when approaches 1.

B. Learning Optimal Solution to Problem 1

The stationary control policy achieving the optimal state-
value function can be obtained by solving the following
Bellman’s optimality equation [23]: Vx € X,

V00 = max { (1) ulx (e.0)
(c.e)
P P) VOO b ®
X
where u(x, (¢, e)) is the achieved utility when a joint control
action (c,e) € Y is performed under network state x and
x = (qgt),qge),s’ ,g') € X is the subsequent network state
with g’ = (g, : b € B).

Remark 2: The traditional solutions to (8) are based on the
value iteration or the policy iteration [23], which need com-
plete knowledge of the computation task arrival, the received
energy unit and the channel state transition statistics.

One attractiveness of the off-policy ()-learning is that it
assumes no a priori knowledge of the network state transition
statistics [23]. We define the right-hand side of (8) by

Q(Xa (Cv 6)) = (1 - ’7) : U(Xv (Cv 6))
+7- Y Pr{XIx. (c.e)} - V(X), (9

X

Vx € X. The optimal state-value function V() can be hence
directly obtained from

Vix) = rggg@(x, (c,e))-
By substituting (10) into (9), we get
Qx; (c,e)) = (1 —7) -ulx; (c,e))
+7- > Pr{xX/|x (c,e)} - max Q' (¢',¢')),
"

(10)

5

where we denote (¢/,e’) € Y as a joint control action
performed under the network state x’. In practice, the com-
putation task arrival and the number of energy units that can
be received by the end of a decision epoch are unavailable
beforehand. Using standard -learning, the MU tries to learn
Q(x, (c,€e)) in a recursive way based on the observation of
network state x = X’ at a current decision epoch j, the
performed joint action (c,e) = (c/,e’), the achieved utility
u(x, (c,e)) and the resulting network state x’ = x?*! at the
next epoch j + 1. The updating rule is given in (11), where
ol € [0,1) is a time-varying learning rate. It has been proven
that if 1) the network state transition probability under the
optimal stationary control policy is stationary, 2) Z;’il ol is
infinite and Z;’;l(aj)z is finite, and 3) all state-action pairs
are visited infinitely often, the ()-learning process converges
and eventually finds the optimal control policy [22]. The last
condition can be satisfied if the probability of choosing any
action in any network state is non-zero (i.e., exploration).
Meanwhile, the MU has to exploit the most recent knowledge
of @-function in order to perform well (i.e., exploitation). A
classical way to balance the trade-off between exploration and
exploitation is the e-greedy strategy [23].

Remark 3: From (11), we can find that the standard Q-
learning rule suffers from poor scalability. Due to the tabular
nature in representing (Q-function values, (-learning is not
readily applicable to high-dimensional scenarios with extreme-
ly huge network state and/or action spaces, where the learning
process is extremely slow [33], [34]. In our considered system
model, the sizes of the network state space A and the action
space) can be calculated as X = (1+q§;’a"))'(1+q§:)‘a"))~B~

[loeslGsland Y = (1+B)-(1 +qg$ax)), respectively, where
|G| means the cardinality of the set G. It can be observed that
X grows exponentially as the number B of BSs increases.
Suppose there is a MEC system with 6 BSs and for each BS,
the channel gain is quantized into 6 states (as assumed in
our experiment setups). If we set qg;lax) = q((:)‘ax) = 4, the
MU has to update in total X - Y = 2.44944 - 108 Q-function
values during the learning process, which is impossible for
the ()-learning process to converge within limited number of
decision epoches.

The next section thereby focuses on developing practically
feasible and computationally efficient algorithms to approach

the optimal control policy.

IV. APPROACHING THE OPTIMAL POLICY

In this section, we proceed to approach the optimal control
policy by developing practically feasible algorithms based on
recent advances in deep reinforcement learning and a linear
@-function decomposition technique.

A. Deep Reinforcement Learning Algorithm

Inspired by the success of modelling an optimal state-action
Q-function with a deep neural network [25], we adopt a double
DQN to address the massive network state space X [26].
Specifically, the @Q-function expressed as in (9) is approxi-

mated by Q(x, (c,e)) ~ Q(x, (¢, €); 0), where (x, (c,e)) €

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2876279, IEEE Internet of

Things Journal

Perform (¢, &)

Policy

Observe xJ

ux, (¢, &)

Observe x/+!

Network

eplay

Memory

Mobile User

Fig. 2. Double deep @-network (DQN) based reinforcement learning (DAR-
LING) for stochastic computation offloading in a mobile-edge computing
system.

X x Y and 6 denotes a vector of parameters associated with the
DQN. The DQN-based reinforcement learning (DARLING)
for stochastic computation offloading in our considered MEC
system is illustrated in Fig. 2, during which instead of finding
the optimal @)-function, the DQN parameters can be learned
iteratively.

The mobile device is assumed to be equipped with a
replay memory of a finite size M to store the experience
m! = (x7,(c,e?),u(x?, (¢7,e?)),x? 1) that is happened
at the transition of two consecutive decision epoches j and
j + 1 during the learning process of DARLING, where x7,
xX’t! € X and (¢/,e¢?) €). The experience pool can
be represented as M7 {m/=M+1 ... 'mi}. The MU
maintains a DQN and a target DQN, namely, Q(x; (¢, e); 67)
and Q(x;, (c,e); 8”), with parameters 67 at a current decision
epoch j and 6’ at some previous epoch before decision epoch
J, ¥(x, (c,e)) € X x Y. According to the experience replay
technique [36], the MU then randomly samples a mini-batch
MJ C M from the pool M7 of historical experiences at
each decision epoch j to online train the DQN. That is, the
parameters 67 are updated in the direction of minimizing the
loss function, which is defined by (12), where (¢/,¢e’) € Y. The
loss function L(DARLINg)(aj) is a mean-squared measure of
the Bellman equation error at a decision epoch 5 (i.e., the last
term of (11)) by replacing Q7 (x, (c,e)) and its corresponding
target (1 — 7) - u(x; (¢,€)) + 7 - max(e.o) Q7 (X, (¢,¢'))
with Q(x, (c,e);67) and (1 — 7) - u(x,(c€)) + v -
QX' argmax s) Q(x', (', €');67); 87) [26], respectively.
By differentiating the loss function L(DARLIN(;)(BJ‘) with
respect to the DQN parameters 67, we obtain the gradient
as in (13). Algorithm 1 summarizes the implementation of
the online DARLING algorithm by the MU for stochastic
computation offloading in our considered MEC system.

B. Linear Q-Function Decomposition based Deep Reinforce-
ment Learning

1) Linear Q-Function Decomposition: It can be found
that the utility function in (6) is of an additive structure,
which motivates us to linearly decompose the state-action -
function, namely, Q(x, (c,e)), Y(x, (c,e)) € X x Y, based
on the pattern K = {1,---,K} of classifying the satis-

6

Algorithm 1 Online DARLING Algorithm for Stochastic
Computation Task Offloading in A MEC System

1: input A DQN and a target DQN with two sets 87 and 67
of random parameters, for 7 = 1.

2: initialize the replay memo ory M with a finite size of
M € N, the mini-batch M7 with a size of M < M for
experience replay, for j = 1.

3: repeat

At the beginning of decision epoch j, the MU observes
the network state xj € X, which is taken as an input to
the DQN with parameters 67, and then selects a joint
control action (¢?,e/) €) randomly with probability

e or (¢/,e7) = argmax. ey Q(X’, (¢c,e); 07) with
probability 1 —e.
5: After performing the selected joint control ac-

tion (¢’,e’), the MU realizes an immediate utility
u(x?,(c’,e?)) and observes the new network state
x’T1 € X at the next decision epoch j + 1.

6: The MU updates the replay memory M/ at the mo-
bile device with the most recent transition m/ =
(X, (¢, e7), u(x, (7, e7)), x 7).

7. With a randomly sampled mini-batch of transitions
MJ C MJ from the replay memory, the MU updates
the DQN parameters 7 with the gradient given by (13).

8: The MU regularly resets the target DQN parameters
with 877! = 07, and otherwise 7' = 67 .

9: The decision epoch index is updated by j < j + 1.

10: until A predefined stopping condition is satisfied.

11: return The parameters 0 associated with the DQN of the

MU.

factions regarding the task execution delay, the computation
task drops, the task queuing delay, the penalty of failing to
process a computation task and the payment of using the
MEC service. For example, we can divide the utility into four
satisfaction categories, namely, u(x, (¢,e)) = ui(x, (¢, e)) +
U2 (X> (Cv 6))+U3 (X, (07 e))+U4 (X7 (C, e)) with uy (X? (C, 6)) =
wr - u(l)(X7 (C, 6)) + w3 - u(3)(X7 (C7 6)), UQ(X,(C,€>) =
u(® (X? (C7 e))’ U3(X, (Cv 6)) = W4 u(4)(X7 (C’ 6)) and
us(x, (c,e)) = ws - u®(x, (c,e)), then £ = {1,2,3,4}
forms a classification pattern. In our considered stochastic
computation offloading scenario, it’s easy to see that K < 5.
Mathematically, Q(x, (¢, €)) is decomposed into [35]

ZQkX7 Ce

ke

Q(x; (c,e) (14)

where the MU deploys a “virtual” agent k£ € IC to learn the
optimal per-agent state-action @-function Qg (x, (c,e)) that
satisfies
Qk(Xa (C7 6)) = (1 _7) 'uk(X7 (Ca 6)) (15)
- 3PN (60 Qulxs B (X)),

X/

Q7 (x. (6€)) = QU (x, (¢ €)) + o ((17)~U(x,(&)+ max @ (x, (¢, ¢)) -

Q (x, (ae))) (11)

(¢e")

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2876279, IEEE Internet of

Things Journal

with ug(x, (c,e)) being the immediate utility related to a
satisfaction category k. We emphasize that the optimal joint
control action in (15) of an agent k across the time horizon
should reflect the optimal control policy implemented by the
MU. In other words, the MU makes an optimal joint control
action decision ®*(x) under a network state x

®*(x) = arg max Z Qr(x; (c,e)),
(¢0) kex
to maximize the aggregated @)-function values from all the
agents. We will see in Theorem 1 that the linear @Q-function
decomposition technique achieves the optimal solution to
Problem 1.

Theorem 1: The linear Q-function decomposition approach
as in (14) asserts the optimal computation offloading perfor-
mance.

Proof: The proof is given in Appendix C. (]

Remark 4: An apparent advantage of the linear (Q-function
decomposition technique is that it potentially simplifies the
problem solving. Back to the example above, agent 2 learns
the optimal expected long-term satisfaction measuring the
computation task drops across the time horizon. It’s obvious
that a computation task drop 77_j at a decision epoch j depends
only on the task queue state qg £ (rather than the network state
x’ € X) and the performed joint control action (¢/,e’) by
the MU.

Recall that the joint control action of each agent should be in
accordance with the optimal control policy of the MU, the Q-
learning rule, which involves off-policy updates, is obviously
not applicable to finding the optimal per-agent state-action (-
functions. The state-action-reward-state-action (SARSA) algo-
rithm [23], [37], which applies on-policy updates, fosters a
promising alternative, namely, a SARSA-based reinforcement
learning (SARL). Having the observations of the network state
X = X’, the performed joint control action (c,e) = (¢/,e’) by
the MU, the realized per-agent utilities (ux(x, (c,€)) : k € K)
at a current decision epoch j and the resulting network state
X' = x’*!, the joint control action (¢,e’) = (c/T1 elT1)
selected by the MU at the next epoch j+ 1, each agent k € K
updates the state-action (Q-function on the fly according to
(16), where different from off-policy @Q-learning, (¢,e’) is
an actually performed joint control action in the subsequent
network state, rather than the hypothetical one that maximizes
the per-agent state-action @)-function. Theorem 2 ensures that
the SARL algorithm converges.

Theorem 2: The sequence {(Q7.(x, (¢,e)) : x € X, (c,e) €
Yand k € K) : j € N;} by SARL converges to the optimal

7

per-agent state-action Q-functions Q(x, (c,€)), Vx € X,
V(c,e) € Y and VEk € K if and only if the state-action pairs
(x, (¢c,e)) € X x) are visited infinitely often and the learning
rate o’ satisfies: 7% af = oo and Y777, (a’)? < oc.

Proof: The proof is given in Appendix D. |

Remark 5: Implementing the derived SARL algorithm,
the size of (-function faced by each agent remains the
same as the standard @-learning algorithm. From Remark
4, the linear @-function decomposition technique provides
the possibility of simplifying the solving of the stochastic
computation offloading problem through introducing multiple
“virtual” agents. Each agent learns the respective expected
long-term satisfaction by exploiting the key network state
information and is hence enabled to use a simpler DQN to
approximate the optimal state-action @)-function.

2) Deep SARSA Reinforcement Learning (Deep-SARL):
Applying the linear ()-function decomposition technique, the
DQN Q(x, (¢, e);0), which approximates the optimal state-
action Q-function Q(x, (c,¢€)), ¥(x, (c,e)) € X x Y, can be
reexpressed as,

Q(x. (c,€);0) = > Qi(x, (¢, €); Or),

ke

where 8 = (0, : k € K) is a collection of parameters
associated with the DQNs of all agents and Q(x, (¢, e); 0x)
(for k € K) is the per-agent DQN. Accordingly, we derive
a novel deep SARSA reinforcement learning (Deep-SARL)
based stochastic computation offloading algorithm, as depicted
in Fig. 3, where different from the DARLING algorithm, the
parameters 6 are learned locally at the agents in an online
iterative way.

Implementing our proposed Deep-SARL algorithm, at each
decision epoch j, the MU updates the experience pool A7
with the most recent N experiences {n/~N+1 ... ni} with
each experience n/ = (X7, (c?,e), (ur(x’, (¢/,e?)) : k €
K),x? Tt (¢, e/th)). To train the DQN parameters, the
MU first randomly samples a mini-batch ANV C AV and then
updates 87 = (0], : k € K) for all agents at each decision
epoch j to minimize the accumulative loss function, which
is given by (17), where 87 = (8] : k € K) are the
parameters of the target DQNs of all eigents at some previous
decision epoch before epoch j. The gradient for each agent
k € K can be calculated as in (18). We summarize the
online implementation of our proposed Deep-SARL algorithm
for solving the stochastic computation offloading in a MEC
system as in Algorithm 2.

Lpartine) (07) = (12)
2

E (x.(c:6) 30 () x) €A ((1 =) -ulx, (c;e)) +7-Q (x', arg max QX (¢,¢'); 6%) ;91) - Q(x: (c,e); 6”))

Vei Liparring) (07) = (13)

((1 —v) - ulx, (c,e)) +v- Q(x’,argmax Q(X’, (c’,e’);@-j) ;0j> — Q(x7 (e, e);0-7)> .

(c',e")

VWQ(X; (Cv 6); 0j)

E(x7(c76) u(x,(ce)),x’)EMI

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2876279, IEEE Internet of

Things Journal

Perform
(&, /(T e

Policy
Observe x/

Observe y/+!
(Uk(X/ (f” J)):
K)

Network

Loss and
Gradient

Parameter
Updating

Mobile User »

Fig. 3. Deep SARSA reinforcement learning (Deep-SARL) based stochastic
computation offloading in a mobile-edge computing system.

Algorithm 2 Online Deep-SARL Algorithm for Stochastic
Computation Task Offloading in A MEC System

1: input The DQNSs and the target DQNs with two sets 6/ =
(6, : k € K) and 82 = (8], _ : k € K) of random
parameters, for j = 1.

2: initialize for j = 1, the replay memory N J with a finite
size of N € IN,, the mini-batch N7 with asize of N < N
for experience replay, the initial network state x7 € X, a
joint control action (¢’, /) €) randomly with probability

e or (¢J,el) = argmax(ceyey > pex @r(X7, (¢, €); 0%)
with probability 1 — e.
3: repeat

4: After performing the selected joint control ac-
tion (c’,e’), the agents realize immediate utilities
(o, (€)1 k € K).

5. The MU observes the new network state x’T! €
X at the next epoch j 4+ 1, which is taken as an
input to the DQNs of all agents with parameters
07, and selects a joint control action (¢/*! eitl) €
Y randomly with probability € or (¢/T! eitl) =
argmax (e eyey 2 pex @k (X7, (¢, e); 63) with proba-
bility 1 — .

6: The replay memory A/ is updated with the most recent
transition n? = (x7, (¢/,e’), (up(x?, (¢!, e?)) : k €
)X, (1, e 1)),

7. With a randomly sampled mini-batch of transitions
N7 C N7, all agents update the DQN parameters 67
using the gradient as in (18).

8: The target DQNs are regularly reset by 6’ =97, and
otherwise 87! = @7 .

9: The decision epoch index is updated by j < j + 1.

10: until A predefined stopping condition is satisfied.

11: return The parameters @ = (0, : k € K) associated with

the DQNs of all agents.

V. NUMERICAL EXPERIMENTS

In this section, we proceed to evaluate the stochastic com-
putation offloading performance achieved from our derived
online learning algorithms, namely, DARLING and Deep-
SARL.

8

A. General Setup

Throughout the experiments, we suppose there are B =
6 BSs in the system connecting the MU with the MEC
server. The channel gain states between the MU and the
BSs are from a common finite set {—11.23,—9.37,—7.8,
—6.3,—4.68,—2.08} (dB), the transitions of which happen
across the discrete decision epochs following respective ran-
domly generated matrices. Each energy unit corresponds to
21072 Joule, and the number of energy units received from
the wireless environment follows a Poisson arrival process
with average arrival rate A (in units per epoch). We set K =
5 for the Deep-SARL algorithm, while the u¥) (x7, (¢/, e7)),
u(2)(xj,(cj,ej)), U(S)(Xj’(cj’ej))’ u(4)(xj,(cj,ej)) and
u® (x7,(c?,€7)) in (6) are chosen to be the exponential
functions. Then,

ul(xj,(cj,ej)) =w -u(l)(xj,(cj,ej))
=w ~exp{f1rnin{dj,5}}7
uz (X7, (7, ¢7)) = wa - u® (X7, (¢, €7))
= wy -exp{—1’},
us(x7, (7, ¢7)) = ws - u® (x7, (¢, €7))
= w; -exp{—p’},
us (X7, (0, e7)) = wy-u® (X7, (¢, €7))
=wy -exp{—¢’},
us (x7, (7, e7)) = ws - u® (x7, (¢, €))
= ws -exp{—(bj}.

Based on the works [39] and [40], we use a single hidden
layer consisting of 200 neurons® for the design of a DQN in
DARLING algorithm and select tanh as the activation function
[42] and Adam as the optimizer. The same number of 200
neurons are employed to design the single-layer DQNs of all
agents in Deep-SARL and hence for each DQN of an agent,
there are in total 40 neurons. Both the DARLING and the
Deep-SARL algorithms are experimented in TensorFlow [27].
Other parameter values used in experiments are listed in Table
L.

For the purpose of performance comparisons, we simulate
three baselines as well, namely,

1) Mobile Execution — The MU processes all scheduled
computation task at the mobile device with maximum
possible energy, that is, at each decision epoch j, =0
and

el =

. 3 .
. (max . .
mm{qge)7 {(f(CPU))) . TJ } , if qge) > 0;
0, if g, =0,
SThe tradeoff between a time demanding training process and an improve-

ment in performance with a deeper and/or wider neural network is still an
open problem [41].

QL (0 () = QLx (e,€) + - (1 =9) -k (x, (e€)) +7 - QL (¢, ¢)) = QL (e))

(16)

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Things Journal

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2876279, IEEE Internet of

TABLE I 25 i5
PARAMETER VALUES IN EXPERIMENTS.
20 !
Parameter Value %3
Replay memory capacities M, N 5000, 5000 a1 o ¢
Mini-batch sizes M, N 200, 200 S 05 5
Decision epoch duration § 5-103 second 10 g
Channel bandwidth W 0.6 MHz T
Noise power [1.5-10~% Watt ° 15
Input data size p 107 bits 0 »
CPU cycles v 7.375 - 105 o o5 1 15 225 3
Decision Epoch “
Maximum CPU-cycle frequency f((én;é)) 2 x 10° Hz coision =pachs "
Maximum transmit power pEZT?M 2 Watt Fig. 4. Illustration for the convergence property of DARLING and Deep-
Handover delay ¢ 2 x 10~3 second SARL.
MEC service price & 1
Weights w1, w2, w3, w4, ws 3,9,5,2, 1
. (max) . .
Maximum task queue length g, 4 tasks (2,4) and j € IN,) for the DARLING algorithm as well as the
Maximum energy queue length q((:)lax) 4 units loss function defined by (17) for the Deep-SARL algorithm
Discount factor ~y 0.9 versus the decision epochs in Fig. 4, which reveals that the
Exploration probability 0.01 convergence behaviours of both DARLING and Deep-SARL

where the allocation of energy units takes into account
the maximum CPU-cycle frequency f((g‘;i?) and |[-]
means the floor function.

2) Server Execution — According to Lemma 2, with max-
imum possible energy units in the energy queue that
satisfy the maximum transmit power constraint, the MU
always selects a BS that achieves the minimum task
execution delay to offload the input data of a scheduled
computation task for MEC server execution.

3) Greedy Execution — At each decision epoch, the MU
decides to execute a computation task at its own mobile
device or offload it to the MEC server for processing
with the aim of minimizing the immediate task execution
delay.

B. Experiment Results

We carry out experiments under various settings to validate
the proposed studies in this paper.

1) Experiment 1 — Convergence performance: Our goal
in this experiment is to validate the convergence property
of our proposed algorithms, namely, DARLING and Deep-
SARL, for stochastic computation offloading in the considered
MEC system. We set the task arrival probability and the
average energy arrival rate to be Ay = 0.5 and Ay = 0.8
units per epoch, respectively. Without loss of the generality,
we plot the simulated variations in Q(x;, (c,€);87) (where
x = (2,2,2,(—6.3,-6.3,—4.68,-7.8,—6.3, —6.3)), (¢, e) =

are similar. The two algorithms converge at a reasonable speed,
for which around 1.5 x 10* decision epochs are needed.

2) Experiment 2 — Performance under various A): In this
experiment, we try to demonstrate the average computation
offloading performance per epoch in terms of the average
utility, the average task execution delay, the average task
drops, the average task queuing delay, the average task failure
penalty and the average MEC service payment under different
computation task arrival probability settings. We choose for
the average energy unit arrival rate as A\) = 1.6 units per
epoch. The results are exhibited in Fig. 5. Fig. 5 (a) illustrates
the average utility performance when the MU implements
DARLING and Deep-SARL. Figs. 5 (b)-(f) illustrate the
average task execution delay, the average task drops, the
average task queuing delay, the average task failure penalty
and the average MEC service payment.

Each plot compares the performance of the DARLING
and the Deep-SARL to the three baseline computation of-
floading schemes. From Fig. 5, it can be observed that both
the proposed schemes achieve a significant gain in average
utility. Similar observations can be made from the curves
in other plots, though the average MEC service payment
per epoch from Deep-SARL is a bit higher than that from
DARLING. This can be explained by the reason that with
the network settings by increasing the task arrival probability
in this experiment, more tasks are scheduled for execution
at the MEC server using the Deep-SARL algorithm. As the
computation task arrival probability increases, the average
utility performances decrease due to the increases in average

L(DeepfsARL) (03) = (17)
. . 2
E(X,(Qe),(uk(X,(C,e));kg;c),x/7(0/76/))6j\7j Z ((1 =) - uk(x; (c,e)) + v Qk (le (¢, e); 0£,7> — Qg (X7 (ce); 0%))
ke
ve-}iL(Deep—SARL)(ej) = (18)

E(x.(c,e),(uk-(x,(c,e»:kem,xx<cce’))ex\7j

((1 —) - ug(x, (¢, e)) +v- Qk (X/a (c,e); 0%7_) — Qk (X’ (c,e); 0@) '

a1 (. (c.:6))

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2876279, IEEE Internet of

Things Journal

10

-3
20 & ppat 07
—— Mobile Execution i
3.5 0.6 | |—*— Server Execution
18 2 A —6— Greedy Execution
T3 2 0.5 |-4—DARLING
8 a © | | —-=—Deep-SARL
St ges e
=) 5 R
X g 2 =
S 14 -\ | " " 303
[o 15 —+—Mobile Execution <]
z ——Mobile Execution = —»— Server Execution [
—#—Server Execution 1 —6—Greedy Execution < 3
12 | |—8—Greedy Execution z) —A—DARLING
—A—DARLING 0.54 —8—Deep-SARL 0.1
—8—Deep-SARL
10 0 08
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Task Arrival Probabilities Task Arrival Probabilities Task Arrival Probabilities
(a) Average utility per epoch. (b) Average execution delay per epoch. (c) Average task drops per epoch.
-3
4 06 35710
—— Mobile Execution —— Mobile Execution
@ 3.5 |——Server Execution 05 —+—Mobile Execution 3 | {—+—Sserver Execution
& —6— Greedy Execution e —+—Server Execution a —6— Greedy Execution
8 3 |-&DARLING 4 = —6—Greedy Execution < —A—DARLING
] A G 25
o —&—Deep-SARL < 0.4 DARLING £ —=—Deep-SARL
525 i —&—Deep-SARL &
5} ® a2 A
) g %)
S 2 So03 2
% K S5
1.5 [0} @
<
g 1 g 2
H <o <
<05 : 05
4 T N A A A A
08 of T %
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

Task Arrival Probabilities

(d) Average task queuing delay per epoch.

Fig. 5.

task execution delay, average task drops, average task queuing
delay, average task failure penalty and average MEC service
payment. Since there are not enough energy units in the
energy queue during one decision epoch on average, in order
to avoid task drops and task failure penalty, only a portion
of the queued energy units are allocated for processing a
scheduled computation task, hence leading to more queued
tasks, i.e., an increased average task queueing delay. The
utility performance from Deep-SARL outperforms that from
DARLING. This indicates that by combining a deep neural
network and the @-function decomposition technique, the
original stochastic computation offloading problem becomes
simplified, hence performance improvement can be expected
from approximating the state-action ()-functions of all agents
with the same number of neurons.

3) Experiment 3 — Performance with changing A): We
do the third experiment to simulate the average computa-
tion offloading performance per epoch achieved from the
derived DARLING and Deep-SARL algorithms and other
three baselines versus the average energy unit arrival rates.
The computation task arrival probability in this experiment is
set to be A(;) = 0.6. The per epoch average utility, average
task execution delay, average task drops, average task queuing
delay, average task failure penalty and average MEC service
payment across the entire learning period are depicted in Fig.
6. We can clearly see from Fig. 6 that as the available energy
units increase, the overall computation offloading performance
improves. However, as the energy unit arrival rate increases,
the average task execution delay, the average task failure
penalty and the average MEC service payment® first increase

6It’s easy to see that the mobile execution scheme does not use MEC
service, hence no MEC service payment needs to be made.

Task Arrival Probabilities

(e) Average task failure penalty per epoch.

Task Arrival Probabilities

(f) Average MEC service payment per epoch.

Average computation offloading performance versus task arrival probabilities.

but then decrease. Compared to w1y, w4 and ws, we set larger
values for we and ws. The priority of minimizing average
task drops and average task queuing delay pushes the MU to
schedule as many computation tasks for execution as possible.
Hence the increasing number of queued energy units provides
more opportunities to execute a computation task during each
decision epoch, and at the same time, increases the possibility
of failing to execute a task. When the average number of
energy units in the energy queue increases to a sufficiently
large value, enough energy units can be allocated to each
scheduled computation task, due to which the task execution
delay, the possibility of task computation failures and the MEC
service payment decrease.

VI. CONCLUSIONS

In this paper, we put our emphasis to investigate the
design of a stochastic computation offloading policy for a
representative MU in an ultra-dense sliced RAN by taking
into account the dynamics generated from the time-varying
channel qualities between the MU and the BSs, energy units
received from the wireless environment as well as compu-
tation task arrivals. The problem of stochastic computation
offloading is formulated as a MDP, for which we propose two
double DQN-based online strategic computation offloading al-
gorithms, namely, DARLING and Deep-SARL. Both learning
algorithms survive the curse of high dimensionality in state
space and need no a priori information of dynamics statistics.
We find from numerical experiments that compared to three
baselines, our derived algorithms can achieve much better
long-term utility performance, which indicates an optimal
tradeoff among the computation task execution delay, the task
drops, the task queuing delay, the task failure penalty and the

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2876279, IEEE Internet of

Things Journal

11

-3
20 510 07
—+—Mobile Execution —+—Mobile Execution —+— Mobile Execution
—»—Server Execution } 4.5 I |—»—Server Execution 0.64 —— Server Execution
18 - |—©—Greedy Execution 2 —6—Greedy Execution —— Greedy Execution
—4—DARLING 2 4f|-4-DARLING 205 —A—DARLING
8 —&—Deep-SARL o —5—Deep-SARL o 4 —5—Deep-SARL
S 5% 204
5 =] 5 04)
g g 3 -
I il 2,03
> 14l 25 A ?
z =4 7] a
© =02
G o 28 <
12 z
1 1.58 0.1
10 1 0
05 07 09 11 13 15 17 19 21 05 07 09 11 13 15 17 19 21 05 07 09 11 13 15 17 19 21
Energy Arrival Rates (units/epoch) Energy Arrival Rates (units/epoch) Energy Arrival Rates (units/epoch)
(a) Average utility per epoch. (b) Average execution delay per epoch. (c) Average task drops per epoch.
-3
4 06 35710
—+—Mobile Execution
<8 Z!.Si1 —s— Server Execution —+—Mobile Execution 3
kel —6— Greedy Execution 2 05 —*—Server Execution @
83 —A—DARLING = —6—Greedy Execution S5
o —&—Deep-SARL %o.‘t_‘ —A—DARLING 2
25 & —8—Deep-SARL 9
§ 3 o > a2
g 2 S03 Q
E & S5 v - {
T {5 ° @ ® ! —+— Mobile Execution
o 0.2 I3 ——Server Execution
s g 51 —6— Greedy Execution
g 2 z —A—DARLING
Zo05 b o1 05 —=—Deep-SARL
A A i A A N
0 0 0
05 07 09 11 13 15 17 19 21 05 07 09 11 13 15 17 19 241 05 07 09 11 13 15 17 19 21

Energy Arrival Rates (units/epoch)

(d) Average task queuing delay per epoch.

Fig. 6.

MEC service payment. Moreover, the Deep-SARL algorithm
outperforms the DARLING algorithm by taking the advantage
of the additive utility function structure.

ACKNOWLEDGEMENTS

This research was supported in part by National Key R&D
Program of China under Grant 2018YFB0803702, National
Natural Science Foundation of China under Grants 61701439
and 61731002, Zhejiang Key Research and Development Plan
under Grant 2018C03056, National Science Foundation under
Grant CNS-1702957, Wireless Engineering Research and En-
gineering Center (WEREC) at Auburn University, JSPS KAK-
ENHI under Grant JP16H02817, and Academy of Finland
under grant 289611.

APPENDIX A: PROOF OF LEMMA 1

With the decisions of computation offloading ¢/ € B and
energy unit allocation e/ > 0 at an epoch j, the input data
transmission is independent of the network dynamics. Suppose
there exists a new transmission policy with which the MU
changes its transmission rate from 77:(1) to 77:(2) =£ 335:(1) at
a certain point during the task input data transmission. We
denote the time durations corresponding to transmission rates
7 (1) and 1) ag dag) and dﬁg), respectively. Taking into
account the maximum transmit power of the mobile device
(4), it is easy to verify that the following two constraints on
total energy consumption:

. i 79,(1) 7,(2)) ., (max) | _
mln{ej, (d(tr) + d(tr))-p(tr) } =

L (e PACONNE g e=nC) 3.(2)
j-(z W —1)~d(tr) o 27w —1)-diitY,

9. i

Energy Arrival Rates (units/epoch)

(e) Average task failure penalty per epoch.

Energy Arrival Rates (units/epoch)

(f) Average MEC service payment per epoch.

Average computation offloading performance versus average energy unit arrival rates.

and total transmitted data bits:

(1) 44,(1) i(2) 39,(2) _
A)'d(tr) + (2 Ay = 1
can be satisfied. On the other hand, the average transmission

rate within a duration of dZtS) + d?tg) can be written as

7 =
g e (o) a2 i)
W -log,| 1+ 2 . i ;
? I 20 L @
(tr) (tr)

Consider using 7/ as the only transmission rate during the
whole period of task input data transmission, we construct
the deduction as in (19), where the inequality originates from
the concavity of a logarithmic function. From (19), we can
find that with a constant transmission rate, more data can
be transmitted within the same transmission period. Hence,
applying a constant rate for the transmission of p task input
data bits achieves the minimum transmission time, which can
be solved according to (2) and (3). This completes the proof.

APPENDIX B: PROOF OF LEMMA 2
By replacing 77 in (2) with (3), we get

_ i o1 I 1
logo| 14+ 171 g/, -6l - — = . — (20)
‘ Ay) W iy

Alternatively, we take 1/ d{tr) as the solution of (20), which

is an intersection of two lines, namely, /1 (z) = logy(1 + g7, -
It .el - z) and ly(x) = # -, for 2 > 0. From the non-
negativity and the monotonicity of a logarithmic function and a
linear function, it is easy to see that 1/ d{) is a monotonically

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2876279, IEEE Internet of

Things Journal

increasing function of e’. Thus, d{tr) is a monotonically
decreasing function of e’.

APPENDIX C: PROOF OF THEOREM 1

For the state-action ()-function of a joint action (c,e) € Y
in a network state x € X as in (9), we have (21), which
completes the proof.

APPENDIX D: PROOF OF THEOREM 2

Since the per-agent state-action ()-functions are learned
simultaneously, we consider the monolithic updates during the
learning process of the SARL algorithm, namely, the updating
rule in (16) can be then encapsulated as

12

Lemma 1] are satisfied. Therefore, the convergence of the
SARL learning process is ensured.

REFERENCES
(1]
[2]

“Cisco visual networking index: Global mobile data traffic forecast
update, 2016-2021,” White Paper, Cisco, Feb. 2017.

M. Satyanarayanan, “The emergence of edge computing,” IEEE Com-
put., vol. 50, no. 1, pp. 30-39, Jan. 2017.

K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, “Dynamic energy-aware
cloudlet-based mobile cloud computing model for green computing,” J.
Netw. Comput. Appl., vol. 59, pp. 4654, Jun. 2016.

Z. Su, Q. Xu, J. Luo, H. Pu, Y. Peng, and R. Lu, “A secure content
caching scheme for disaster backup in fog computing enabled mobile
social networks,” IEEE Trans. Ind. Informat., vol. 14, no. 10, pp. 4579—
4589, Oct. 2018.

Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
IEEE

[3]

[4]

[5]

G4+1 on mobile edge computing: The communication perspective,”
> o (ce) = (1—a?) - > QLx (c,e)+ (22) Commun. Surveys Tuts.. vol. 19, no. 4, pp. 2322-2358, Q4 2017.
kel ke [6] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Commun. Surveys Tuts., vol.
J. _ . . Ji St (A 19, no. 3, pp. 1628-1656, Q3 2017.
@ (1 7) Z Uk(X, (C’ e)) + Z Qk(x ’ (C)€)) ’ [71 C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
kek kek offloading and resource allocation in wireless cellular networks with
’ ;o . mobile edge computing,” IEEE Trans. Wireless Commun., vol. 16, no.
where (x, (¢, e)), (X ,(d,e) € X x Y. We rewrite (22) as 8. pp. 49244938, Aug, 2017,
1 - j [8] X. Hu, K.-K. Wong, and K. Yang, “Wireless powered cooperation-
Z Q, (x; (c,e) Z Qr(x; (c,e)) = (1 —a?) (23) assisted mobile edge computing,” IEEE Trans. Wireless Commun., vol.
kel ke 17, no. 4, pp. 2375-2388, Apr. 2018.
[9]1 F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
J _ Jj. Y optimization in wireless powered mobile-edge computing systems,”
Z Q1. (x: (¢,¢)) Z Qr(x; (¢;€)) | +a’ - T (x, (¢), IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1784-1797, Mar.
ke kex 2018.
where [10] X. Costa-Péerez, J. Swetina, T. Guo, R. Mahindra, and S. Rangarajan,
“Radio access network virtualization for future mobile carrier networks,”
j — o . IEEE Commun. Mag., vol. 51, no. 7, pp. 27-35, Jul. 2013.
T (x,(¢.e)) = (1 =) Z“k(x’ (e e))+ [11] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, “NVS: A
kex substrate for virtualizing wireless resources in cellular networks,”
J // IEEE/ACM Trans. Netw., vol. 20, no. 5, pp. 1333-1346, Oct. 2012.
m _
v (C//%//) Z Q Z Qx (X’ (C, e>))+ [12] X. Chen, Z. Han, H. Zhang, G. Xue, Y. Xiao, and M. Bennis, “Wireless
kek keK resource scheduling in virtualized radio access networks using stochastic
) learning,” IEEE Trans. Mobile Comput., vol. 17, no. 4, pp. 961-974, Apr.
J() (A J // e
ZQk(X ,(c,e — max ZQ) 2018.) . . . -
ek (c',e) ek [13] P. Zhao, H. Tian, S. Fan, and A. Paulraj, “Information prediction and
€ € dynamic programming based RAN slicing for mobile edge computing,”
Let Oj _ 0({(XZ (CZ 62) (Uk (XZ (CZ 62)) = IEEE Wireless Commun. Lett., Early Access Article, 2018.
K < . ’ j ’ ’ ’ ’ X [14] Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, “Resource allocation for
)) 2 =7 } ’ (Qk(x’ (Cv e))_ X €) (C’ e) € information-centric virtualized heterogeneous networks with in-network
VYV, k € ’C)) denote the learning history for the first caching and mobile edge computing,” IEEE Trans. Veh. Technol., vol.
j decision epochs. The per-agent state-action @Q-functions 66, no. 12, pp. 11339-11351, Dec. 2017. ,

Oj bl h h 41 [15] C. You, K. Huang, H. Chae, and B. H. Kim, “Energy-efficient resource
are -measurable, thus the ,(ZkEIC Qk (X’ (C’ e)) N allocation for mobile-edge computation offoading,” IEEE Trans. Wire-
> orek @r(X; (c,e))) and the Y/(x,(c,e)) are both O/- less Commun., vol. 16, no. 3, pp. 13971411, Mar. 2017. -
measurable. We then arrive at (24), where (a) is due to [16] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, “Energy-
th tv of tandard Q 1 . [22]. W efficient admission of delay-sensitive tasks for mobile edge computing,”

€ Conver.gence P rqper y ob a standar - ee}rnu}g y © IEEE Trans. Commun., Early Access Article, 2018.
are left with verifying that [|E[y - (Zkezc Q. (x',(c,€)) — 1171 I.Liy, Y. Mao, J. Zhang, and K. B. Letaief, ‘Delay-optimal computation
max . o) Ekelc Qi: (X/, (C”, 6”)))|OJ]HOO converges to zero task scheduling for’ moblle—edge computing systems,” in Proc. IEEE
. o ISIT, Barcelona, Spain, Jul. 2016.
with pFObablhty 1, which in .Our CO.nSlqered scenario fOIIQWS [18] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
from: i) an e-greedy strategy is applied in SARL for choosing for mobile-edge computing with energy harvesting devices,” IEEE J.
joint control actions; ii) the per-agent state-action Q-functions Sel. Areas Commun., vol. 34, no. 12, pp. 3590-3605, Dec. 2016.
b ded: d iii) both th t K stat d th [19] C.-F. Liu, M. Bennis, and H. V. Poor, “Latency and reliability-aware
?r? upper boun .e ; and iii) bo . € networ .S.a € a.n € task offloading and resource allocation for mobile edge computing,” in
joint control action spaces are finite. All conditions in [38, Proc. IEEE GLOBECOM WKSHP, Singapore, Dec. 2017.
23, (1) 1 rd(2) 2
B 1+ D) =W log,1 (Bl) iy + (2 ") iy P L @
P ()) = W tom 1+ FRONAC) () +)
(tr) (tr)
e 42 _ _
> | 3. (tr) 73(2) (tr) : (& 4 dﬂ (%)) =D gD 4 i@ g (19)
= F0 L @ F0 L @ (i) () (1)
(tr) (tr) (tr) (tr)

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2876279, IEEE Internet of

Things Journal

13

[20] Z. Jiang and S. Mao, “Energy delay tradeoff in cloud offloading for [36] L.-J. Lin, “Reinforcement learning for robots using neural networks,”
multi-core mobile devices,” IEEE Access, vol. 3, pp. 2306-2316, Nov. Carnegie Mellon University, 1992.

2015. [37] G. A. Rummery and M. Niranjan. Online Q-learning using connectionist

[21] J. Xu, L. Chen, and S. Ren, “Online learning for offloading and systems, Tech. Rep. CUED/F-INFENG/TR 166, Cambridge University
autoscaling in energy harvesting mobile edge computing,” IEEE Trans. Engineering Department, Sep. 1994.

Cogn. Commun. Netw., vol. 3, no. 3, pp. 361-373, Jul. 2017. [38] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvdri, “Convergence

[22] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, results for single-step on-policy reinforcement-learning algorithms,”
no. 3—4, pp. 279-292, May 1992. Mach. Learn., vol. 38, no. 3, pp. 287-308, Mar. 2000.

[23] R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. ~ [39] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Perfor-
Cambridge, MA: MIT Press, 1998. mance optimization in mobile-edge computing via deep reinforcement

[24] M. Abu Alsheikh, D. Niyato, S. Lin, H.-P. Tan, and D. I. Kim, “Fast learning,” arXiv, Mar. 2018.
adaptation of activity sensing policies in mobile devices,” IEEE Trans. [40] K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image
Veh. Technol., vol. 66, no. 7, pp. 5995-6008, Jul. 2017. recognition,” in Proc. IEEE CVPR, Las Vegas, NV, Jun. 2016.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. [4]1] C. L. P. Chen and Z. Liu, “Broad learning system: An effective
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. and efficient incremental learning system without the need for deep
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. architecture,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 1,
Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep pp. 10-24, Jan. 2018.
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533, Feb. [42] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best
2015. multi-stage architecture for object recognition?” in Proc. IEEE ICCV,

[26] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning Kyoto, Japan, Sep.—Oct. 2009.
with double Q-learning,” in Proc. AAAI, Phoenix, AZ, Feb. 2016.

[27] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.

Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S.
Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in Proc. OSDI, Savannah, GA, Nov. 2016.

[28] T. D. Burd and R. W. Brodersen, ‘“Processor design for portable
systems,” J. VLSI Signal Process. Syst., vol. 13, no. 2-3, pp. 203-221,

Aug. 1996.

[29] X. Chen, P. Liu, H. Liu, C. Wu, and Y. Ji, “Multipath transmission
;;:;gagu[léné Eanmsgl”git;rl\v/}/g\jel\;;(;ugoizc.llo access metworks,” in Proc. Xianfu Cheq received h.is Ph.D. degree in Signal

[30] J. Kwak, O. Choi, S. Chong, and P. Mohapatra, “Processor-network and Informfmon F"rocessmg, from t}}e Departmfﬂnt
speed scaling for energy-delay tradeoff in smartphone applications,” of InformatlonHSmence gnd Electromc Engmeepng
IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1647-1660, Jun. 2016. (ISEE) at Zhejiang University, Hangzhou, China,

[31] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation 1n. March 2012. SIPCC April 2012, he has. been
offloading for mobile-edge cloud computing,” IEEE Trans. Netw., vol. with the VTT Technical Researph Centre of lea'nd
24, no. 5, pp. 2795-2808, Oct. 2016. Lt(_i, Qulu, leand, where he is currenthly a Senior

[32] D. Adelman and A. J. Mersereau, “Relaxations of weakly coupled SCICH,US[‘ His research Interests Cover various aspects
stochastic dynamic programs,” Oper. Res., vol. 56, no. 3, pp. 712-727, of w1re_less communications and Vnet'wo'rkmg_, with
Jan. 2008. emphasis on human—leYel and artlﬁcu.il mtelllgem.e

[33] K. Gai, M. Qiu, Z. Xiong, and M. Liu, “Optimal resource allocation . . for resource awareness in next-generation communi-
using reinforcement learning for IoT content-centric services,” Appl. Soft cation networks. He is an IEEE member.

Comput., vol. 70, pp. 12-21, Sep. 2018.

[34] K. Gai, M. Qiu, M. Liu, H. Zhao, “Smart resource allocation using
reinforcement learning in content-centric cyber-physical systems,” in
Proc. SmartCom, Shenzhen, China, Dec. 2017.

[35] S. Russel and A. L. Zimdars, “Q-decomposition for reinforcement
learning agents,” in Proc. ICML, Washington DC, Aug. 2003.

o0
Q(X7 (C7 8)) = E‘i’* (1 - 7) Z(’Y)] L ’U'(Xj7 (C] e])) |X =X (C el) = (Ca 6)
j=1
oo
=Ea[(1=7) > ()77 Y u(xd, (¢,67) Ix' = x. (¢, et) = (c.e)
j=1 kek
(o)
=) Ea-|(1=7)- > (0w, (,6) Ix! = x, (che') = (e,e)| =) Qrlx:(ce)) 2D
kek j=1 kek
E[(x, (¢,) |O7]]| (24)
<||E|(1—=7)- Z ur(x, (c,e)) + v e Z QL (<", - Z Qr(x; (c,€))|0’ +
L keK keK kex 0o
Elv [D0 Qb (¢heh) = max > QX (¢"¢") | O
L kek (e ek -
(a) - . ,
S’Y Z Q?@(Xa (C7 6)) - Z Qk:(X7 (Ca 6)) Z Q?c(xla (C/a - (Iga);) Z Q] CH7 6”)) |Oj
kex kex o kex kex .

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2018.2876279, IEEE Internet of

Things Journal

Honggang Zhang is a Full Professor with the
College of Information Science and Electronic Engi-
neering, Zhejiang University, Hangzhou, China. He
is an Honorary Visiting Professor at the University
of York, York, UK. He was the International Chair
Professor of Excellence for Université Européenne
de Bretagne (UEB) and Supélec, France. He served
as the Chair of the Technical Committee on Cogni-
tive Networks of the IEEE Communications Society
from 2011 to 2012. He is currently active in the re-
search on green communications and was the leading
Guest Editor of the IEEE COMMUNICATIONS MAGAZINE special issues
on “Green Communications”. He was the co-author and an editor of two books
with the titles of Cognitive Communications Distributed Artificial Intelligence
(DAI), Regulatory Policy and Economics, Implementation (John Wiley &
Sons) and Green Communications: Theoretical Fundamentals, Algorithms and
Applications (CRC Press), respectively. He is an IEEE senior member.

Celimuge Wu received his PhD degree from The U-
niversity of Electro-Communications, Japan in 2010,
where he is currently an associate professor. His
current research interests include vehicular ad hoc
networks, IoT, 5G, and mobile cloud computing.
He is/has been a TPC Co-Chair of Wireless Days
2019, ICT-DM 2018, and a track Co-Chair of many
international conferences including ICCCN 2019,
PIMRC 2016, IEEE ISC2 2017, ISNCC 2017, and
WICON 2016. He is/has been serving as an associate
editor of IEICE Transactions on Communications, a
guest editor of IEEE Transactions on Emerging Topics in Computational Intel-
ligence, IEEE Computational Intelligence Magazine, ACM/Springer MONET,
MDPI Sensors, and Hindawi MIS. He is an IEEE member.

Shiwen Mao received a Ph.D. in electrical and
computer engineering from Polytechnic University,
Brooklyn, NY in 2004. He is the Samuel Ginn
Distinguished Professor and Director of the Wire-
less Engineering Research and Education Center
(WEREC) at Auburn University, Auburn, AL. His
research interests include wireless networks and
multimedia communications. He is a Distinguished
Lecturer of the IEEE Vehicular Technology Soci-
ety in the Class of 2014. He is on the Editorial
Board of IEEE Transactions on Mobile Computing,
IEEE Transactions on Multimedia, IEEE Internet of Things Journal, IEEE
Multimedia, and ACM GetMobile, among others. He received the Auburn
University Creative Research & Scholarship Award in 2018, the 2017 IEEE
ComSoc ITC Outstanding Service Award, the 2015 IEEE ComSoc TC-CSR
Distinguished Service Award, the 2013 IEEE ComSoc MMTC Outstanding
Leadership Award, and the NSF CAREER Award in 2010. He is a co-
recipient of the 2017 Best Conference Paper Award of IEEE ComSoc MMTC,
IEEE SECON 2017 Best Demo Award, the Best Paper Awards from IEEE
GLOBECOM 2016 & 2015, IEEE WCNC 2015, and IEEE ICC 2013, and
the 2004 IEEE Communications Society Leonard G. Abraham Prize in the
Field of Communications Systems. He is an IEEE senior member.

14

Yusheng Ji received her B.E., M.E., and D.E.
degrees in electrical engineering from the University
of Tokyo. She joined the National Center for Science
Information Systems, Japan (NACSIS) in 1990. Cur-
rently, she is a Professor at the National Institute
of Informatics, Japan (NII), and SOKENDALI (the
Graduate University for Advanced Studies). Her re-
search interests include network architecture, mobile
computing, and network resource management. She
is/has been an Editor of IEEE TVT, Associate Ed-
itor of IEICE Transactions and IPSJ Journal, Guest
Editor-in-Chief, Guest Editor, and Guest Associate Editor of Special Issues
of IEICE Transactions and IPSJ Journal, Symposium Co-chair of IEEE
GLOBECOM 2012, 2014, Track Chair of IEEE VTC 2016 Fall, 2017 Fall,
General Co-Chair of ICT-DM 2018, and a TPC member of IEEE INFOCOM,
ICC, GLOBECOM, WCNC, VTC etc. She is an IEEE senior member.

Mehdi Bennis received his M.Sc. degree in Electri-
cal Engineering jointly from the EPFL, Switzerland
and the Eurecom Institute, France in 2002. From
2002 to 2004, he worked as a research engineer at
IMRA-EURORPE investigating adaptive equalization
algorithms for mobile digital TV. In 2004, he joined
the Centre for Wireless Communications (CWC)
at the University of Oulu, Finland as a research
scientist. In 2008, he was a visiting researcher at the
Alcatel-Lucent chair on flexible radio, SUPELEC.
He obtained his Ph.D. in December 2009 on spec-
trum sharing for future mobile cellular systems. Currently Dr. Bennis is
an Adjunct Professor at the University of Oulu and Academy of Finland
research fellow. His main research interests are in radio resource management,
heterogeneous networks, game theory and machine learning in 5G networks
and beyond. He has co-authored one book and published more than 100
research papers in international conferences, journals and book chapters. He
was the recipient of the prestigious 2015 Fred W. Ellersick Prize from the
IEEE Communications Society and the 2016 Best Tutorial Prize from the
IEEE Communications Society. Dr. Bennis serves as an editor for the IEEE
Transactions on Wireless Communication. He is an IEEE senior member.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

