
2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2876279, IEEE Internet of

Things Journal

1

Optimized Computation Offloading Performance in Virtual

Edge Computing Systems via Deep Reinforcement Learning

Xianfu Chen, Member, IEEE, Honggang Zhang, Senior Member, IEEE, Celimuge Wu, Member, IEEE, Shiwen

Mao, Senior Member, IEEE, Yusheng Ji, Senior Member, IEEE, and Mehdi Bennis, Senior Member, IEEE

Abstract—To improve the quality of computation experience
for mobile devices, mobile-edge computing (MEC) is a promising
paradigm by providing computing capabilities in close proximity
within a sliced radio access network (RAN), which supports both
traditional communication and MEC services. Nevertheless, the
design of computation offloading policies for a virtual MEC
system remains challenging. Specifically, whether to execute a
computation task at the mobile device or to offload it for
MEC server execution should adapt to the time-varying network
dynamics. This paper considers MEC for a representative mobile
user in an ultra-dense sliced RAN, where multiple base stations
(BSs) are available to be selected for computation offloading.
The problem of solving an optimal computation offloading policy
is modelled as a Markov decision process, where our objective
is to maximize the long-term utility performance whereby an
offloading decision is made based on the task queue state, the
energy queue state as well as the channel qualities between
MU and BSs. To break the curse of high dimensionality in
state space, we first propose a double deep Q-network (DQN)
based strategic computation offloading algorithm to learn the
optimal policy without knowing a priori knowledge of network
dynamics. Then motivated by the additive structure of the utility
function, a Q-function decomposition technique is combined with
the double DQN, which leads to a novel learning algorithm
for the solving of stochastic computation offloading. Numerical
experiments show that our proposed learning algorithms achieve
a significant improvement in computation offloading performance
compared with the baseline policies.

Index Terms—Network slicing, radio access networks, network
virtualization, mobile-edge computing, Markov decision process,
deep reinforcement learning, Q-function decomposition.

I. INTRODUCTION

With the proliferation of smart mobile devices, a multitude

of mobile applications are emerging and gaining popularity,

such as location-based virtual/augmented reality and online

gaming [1]. However, mobile devices are in general resource-

constrained, for example, the battery capacity and the local

CPU computation power are limited. When executed at the

mobile devices, the performance and Quality-of-Experience

(QoE) of computation-intensive applications are significantly

affected by the devices’ limited computation capabilities.

The tension between computation-intensive applications and

X. Chen is with the VTT Technical Research Centre of Finland, Finland
(e-mail: xianfu.chen@vtt.fi). H. Zhang is with the College of Information
Science and Electronic Engineering, Zhejiang University, Hangzhou, China
(e-mail: honggangzhang@zju.edu.cn). C. Wu is with the Graduate School of
Informatics and Engineering, University of Electro-Communications, Tokyo,
Japan (email: clmg@is.uec.ac.jp). S. Mao is with the Department of Elec-
trical and Computer Engineering, Auburn University, Auburn, AL, USA
(email: smao@ieee.org). Y. Ji is with the Information Systems Architecture
Research Division, National Institute of Informatics, Tokyo, Japan (e-mail:
kei@nii.ac.jp). M. Bennis is with the Centre for Wireless Communications,
University of Oulu, Finland (email: bennis@ee.oulu.fi).

resource-constrained mobile devices creates a bottleneck for

having a satisfactory Quality-of-Service (QoS) and QoE, and

is hence driving a revolution in computing infrastructure [2].

In contrast to cloud/fog computing [3], [4], mobile-edge

computing (MEC) is envisioned as a promising paradigm,

which provides computing capabilities within the radio access

networks (RANs) in close proximity to mobile users (MUs)

[5], [6]. By offloading computation tasks to the resource-rich

MEC servers, not only the computation QoS and QoE can be

greatly improved, but the capabilities of mobile devices can

be augmented for running a variety of resource-demanding

applications. Recently, lots of efforts have been put to the

design of computation offloading policies. In [7], Wang et al.

developed an alternating direction method of multipliers-based

algorithm to solve the problem of revenue maximization by

optimizing computation offloading decision, resource alloca-

tion and content caching strategy. In [8], Hu et al. proposed a

two-phase based method for joint power and time allocation

when considering cooperative computation offloading in a

wireless power transfer-assisted MEC system. In [9], Wang

et al. leveraged a Lagrangian duality method to minimize the

total energy consumption in a computation latency constrained

wireless powered multiuser MEC system.

For a MEC system, the computation offloading requires

wireless data transmission, hence how to allocate wireless

radio resource between the traditional communication service

and the MEC service over a common RAN raises a series

of technical challenges. Network slicing is a key enabler for

RAN sharing, with which the traditional single ownership

of network infrastructure and spectrum resources can be

decoupled from the wireless services [10]. Consequently, the

same physical network infrastructure is able to host multiple

wireless service providers (WSPs) [11], [12]. In literature,

there exist several efforts investigating joint communication

and computation resource management in such virtualized

networks, which support both the traditional communication

service and the MEC service [13], [14]. In this work, we

focus on designing optimal stochastic computation offload-

ing policies in a sliced RAN, where a centralized network

controller (CNC) is responsible for control-plane decisions

on wireless radio resource orchestration over the traditional

communication and MEC services.

The computation offloading policy designs in previous

works [7], [8], [13]–[16] are mostly based on one-shot op-

timization and fail to characterize long-term computation

offloading performance. In a virtual MEC system, the design

of computation offloading policies should account for the

environmental dynamics, such as the time-varying channel

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2876279, IEEE Internet of

Things Journal

2

quality and the task arrival and energy status at a mobile

device. In [17], Liu et al. formulated the problem of delay-

optimal computation task offloading under a Markov decision

process (MDP) framework and developed an efficient one-

dimensional search algorithm to find the optimal solution.

However, the challenge lies in the dependence on statistical

information of channel quality variations and computation

task arrivals. In [18], Mao et al. investigated a dynamic

computation offloading policy for a MEC system with wireless

energy harvesting-enabled mobile devices using a Lyapunov

optimization technique. The same technique was adopted to

study the power-delay tradeoff in the scenario of computation

task offloading by Liu et al. [19] and Jiang et al. [20]. The

Lyapunov optimization can only construct an approximately

optimal solution. Xu et al. developed in [21] a reinforcement

learning based algorithm to learn the optimal computation

offloading policy, which at the same time does not need a

priori knowledge of network statistics.

When the MEC meets an ultra-dense sliced RAN, multiple

base stations (BSs) with different data transmission qualities

are available for offloading a computation task. In this context,

the explosion in state space makes the conventional reinforce-

ment learning algorithms [21]–[23] infeasible. Moreover, in

this paper, wireless charging [24] is integrated into a MEC

system, which on one hand achieves sustained computation

performance but, on the other hand, makes the design of a

stochastic computation offloading policy even more challeng-

ing. The main contributions in this work are fourfold.

• We formulate the stochastic computation offloading prob-

lem in a sliced RAN as a MDP, in which the time-varying

communication qualities and computation resources are

taken into account.

• To deal with the curse of state space explosion, we resort

to a deep neural network based function approximator

[25] and derive a double deep Q-network (DQN) [26]

based reinforcement learning (DARLING) algorithm to

learn the optimal computation offloading policy without

any a priori knowledge of network dynamics.

• By further exploring the additive structure of the u-

tility function, we attain a novel online deep state-

action-reward-state-action based reinforcement learning

algorithm (Deep-SARL) for the problem of stochastic

computation offloading. To the best knowledge of the

authors, this is the first work to combine a Q-function

decomposition technique with the double DQN.

• Numerical experiments based on TensorFlow [27] are

conducted to verify the theoretical studies in this paper.

It shows that both of our proposed online learning al-

gorithms outperform three baseline schemes. Especially,

the Deep-SARL algorithm achieves the best computation

offloading performance.

The rest of the paper is organized as follows. In the next

section, we describe the system model and the assumptions

made throughout this paper. In Section III, we formulate the

problem of designing an optimal stochastic computation of-

floading policy as a MDP. We detail the derived online learning

algorithms for stochastic computation offloading in a virtual

Fig. 1. Illustration of mobile-edge computing (MEC) in a virtualized radio
access network, where the devices of mobile users are wireless charging
enabled, the radio resource is sliced between conventional communication
services (the links in black color) and MEC services (the links in blue color),
and a centralized network controller (CNC) is responsible for all control plane
decisions over the network.

MEC system in Section IV. To validate the proposed studies,

we provide numerical experiments under various settings in

Section V. Finally, we draw the conclusions in Section VI.

II. SYSTEM DESCRIPTIONS AND ASSUMPTIONS

As illustrated in Fig. 1, we shall consider in this paper an

ultra-dense service area covered by a virtualized RAN with a

set B = {1, · · · , B} of BSs. Both traditional communication

services and MEC services are supported over the common

physical network infrastructure. A MEC server is implemented

at the network edge, providing rich computing resources for

the MUs. By strategically offloading the generated compu-

tation tasks via the BSs to the MEC server for execution,

the MUs can expect a significantly improved computation

experience. We assume that the wireless radio resources are

divided into traditional communication and MEC slices to

guarantee inter-slice isolation. All control plane operations

happening in such a hybrid network are managed by the CNC.

The focus of this work is to optimize computation performance

from a perspective of the MUs, while the design of joint

traditional communication and MEC resource allocation is left

for our next-step investigation. In a dense networking area, our

analysis hereinafter concentrates on a representative MU. The

time horizon is discretized into decision epochs, each of which

is of equal duration δ (in seconds) and is indexed by an integer

j ∈ N+. Let W (in Hz) denote the frequency bandwidth

allocated to the MEC slice, which is shared among the MUs

simultaneously accessing the MEC service.

This work assumes that the mobile device of the MU is

wireless charging enabled and the received energy can be

stored in an energy queue. The computation task generated by

the MU across the time horizon form an independent and iden-

tically distributed sequence of Bernoulli random variables with

a common parameter λ(t) ∈ [0, 1]. We denote aj(t) ∈ {0, 1} as

the task arrival indicator, that is, aj(t) = 1 if a computation task

is generated from the MU during a decision epoch j and other-

wise aj(t) = 0. Then, Pr{aj(t) = 1} = 1−Pr{aj(t) = 0} = λ(t),

where Pr{·} denotes the probability of the occurrence of an

event. We represent a computation task by (µ, ν) with µ and

ν being, respectively, the input data size (in bits) and the total

number of CPU cycles required to accomplish the task. A

computation task generated at a current decision epoch can

be executed starting from the next epoch. The generated but

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2876279, IEEE Internet of

Things Journal

3

not processed computation tasks can be queued at the mobile

device of the MU. Based on a first-in first-out principle, a

computation task from the task queue can be scheduled for

execution either locally on the mobile device or remotely at

the MEC server. More specifically, at the beginning of each

decision epoch j, the MU makes a joint control action (cj , ej),
where cj ∈ {0}∪B is the computation offloading decision and

ej ∈ N+ is the number of allocated energy units1. We have

cj > 0 if the MU chooses to offload the scheduled computation

task to the MEC server via BS cj ∈ B and cj = 0 if the MU

decides to execute the computation task locally on its own

mobile device. Note that when ej = 0, the queued tasks will

not be executed.

When a computation task is scheduled for processing locally

at the mobile device of the MU during a decision epoch j, i.e.,

cj = 0, the allocated CPU-cycle frequency with ej > 0 energy

units can be calculated as

f j =

√
ej

τ · ν
,

where τ is the effective switched capacitance that depends

on chip architecture of the mobile device [28]. Moreover, the

CPU-cycle frequency is constrained by f j ≤ f
(max)
(CPU). Then

the time needed for local computation task execution is given

by

dj(mobile) =
ν

f j
, (1)

which decreases as the number of allocated energy units

increases.

We denote gjb as the channel gain state between the MU

and a BS b ∈ B during each decision epoch j, which

independently picks a value from a finite state space Gb. The

channel state transitions across the time horizon are modelled

as a finite-state discrete-time Markov chain. At the beginning

of a decision epoch j, if the MU lets the MEC server execute

the scheduled computation task on behalf of the mobile device,

the input data of the task needs to be offloaded to the chosen

BS cj ∈ B. The MU-BS association has to be first established.

If the chosen BS cj is different from the previously associated

one, a handover between the two BSs hence happens [29].

Denote sj ∈ B as the MU-BS association state at a decision

epoch j2,

sj = b · 1{{cj−1=b,b∈B}∨{{cj−1=0}∧{sj−1=b}}},

where the symbols ∨ and ∧ mean “logic OR” and “logic

AND”, respectively, and 1{Ω} is the indicator function that

equals 1 if the condition Ω is satisfied and otherwise 0.

We assume that the energy consumption during the handover

procedure is negligible at the mobile device. In our considered

dense networking scenario, the achievable data rate can be

written as

rj = W · log2

(
1 + I−1 · gjb · p

j

(tr)

)
, (2)

1An energy unit corresponds to an amount of energy, say, 2 · 10−3 Joules
as in numerical experiments.

2We assume that if the MU processes a computation task locally or no task
is executed at a decision epoch j − 1, then the MU-BS association does not
change, namely, sj = sj−1. In this case, no handover will be triggered.

where I is the received average power of interference plus

additive background Gaussian noise and

pj(tr) =
ej

dj(tr)
,

is the transmit power with

dj(tr) =
µ

rj
, (3)

being the time of transmitting task input data. The transmit

power is constrained by the maximum transmit power of the

mobile device p
(max)
(tr) [30], i.e.,

pj(tr) ≤ p
(max)
(tr) . (4)

In (3) above, we assume that the energy is evenly assigned

to the input data bits of the computation task. In other words,

the transmission rate keeps unchanged during the input data

transmission. Lemma 1 ensures that dj(tr) is the minimum

transmission time given the allocated energy units ej > 0.

Lemma 1: Given the computation offloading decision cj ∈ B
and the allocated energy units ej > 0 at a decision epoch j,

the optimal transmission policy achieving the minimum trans-

mission time is a policy with which the rate of transmitting

task input data remains a constant.

Proof: The proof is given as Appendix A. �

Lemma 2: Given the computation offloading decision cj ∈ B
at a decision epoch j, the input data transmission time dj(tr)
is a monotonically decreasing function of the allocated energy

units ej > 0.

Proof: The proof is given in Appendix B. �

In addition, we assume in this paper that the battery capacity

at the mobile device of the MU is limited and the received

energy units across the time horizon take integer values. Let

qj(e) be the energy queue length of the MU at the beginning

of a decision epoch j, which evolves according to

qj+1
(e) = min

{
qj(e) − ej + aj(e), q

(max)
(e)

}
,

where q
(max)
(e) ∈ N+ denotes the battery capacity limit and

aj(e) ∈ N+ is the number of energy units received by the end

of decision epoch j.

III. PROBLEM FORMULATION

In this section, we shall first formulate the problem of

stochastic computation offloading within the MDP framework

and then discuss the optimal solutions.

A. Stochastic Computation Task Offloading

The experienced delay is the key performance indicator for

evaluating the quality of a task computing experience. The

delay of a computation task is defined as the period of time

from when the task arrives to the computation task queue to

when the task is successfully removed from the task queue.

Thus the experienced delay includes the computation task

execution delay and the task queuing delay. We assume that

there is a delay of ζ seconds for control signalling during the

occurrence of one handover. With a joint control action (cj , ej)

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2876279, IEEE Internet of

Things Journal

4

at a decision epoch j, the handover delay can be then given

as

hj = ζ · 1{{cj∈B}∧{cj ̸=sj}}. (5)

According to (1), (3) and (5), we obtain the task execution

delay as3

dj =





dj(mobile), if ej > 0 and cj = 0;

hj + dj(tr) + d(server), if ej > 0 and cj ∈ B;

0, if ej = 0,

where d(server) is time consumed for task execution at the

MEC server. Due to the sufficient available computation

resource at the MEC server, we assume that d(server) is a

sufficiently small constant.

Notice that if: 1) the MU fails to process a computation

task at the mobile device within one decision epoch; or 2) a

computation task is scheduled for MEC server execution but

the computation result cannot be sent back via the chosen BS

within the decision epoch, the task execution fails and the task

will remain in the queue until being successfully executed.

The dynamics of the computation task queue at the MU can

be hence expressed as

qj+1
(t) = min

{
qj(t) − 1{0<dj≤δ} + aj(t), q

(max)
(t)

}
,

where qj(t) is the number of computation tasks in the queue

at the beginning of each decision epoch j and q
(max)
(t) ∈ N+

limits the maximum number of computation tasks that can be

queued at the mobile device. There will be computation task

drops once the task queue is full. We let

ηj = max
{
qj(t) − 1{0<dj≤δ} + aj(t) − q

(max)
(t) , 0

}
,

define a computation task drop.

If a computation task remains in the queue for a decision

epoch, a delay of δ seconds will be incurred to the task. We

treat the queuing delay during a decision epoch j equivalently

as the length of a task queue, that is,

ρj = qj(t) − 1{dj>0}.

As previously discussed, if dj > δ, the execution of a

computation task fails. In this case, the MU receives a penalty,

which is defined by

φj = 1{dj>δ}.

Moreover, a payment is required for the access to MEC service

when the MU decides to offload a computation task for MEC

server execution. The payment is assumed to be proportional

to the time consumed for transmitting and processing the task

input data. That is, the payment can be calculated as

ϕj = π ·
(
min

{
dj , δ

}
− hj

)
· 1{cj∈B},

3In this work, we assume that the BSs are connected to the MEC server
via fibre links. Hence, the round-trip delay between the BSs and the MEC
server is negligible. Further, we neglect the time overhead for the selected
BS to send back the computation result due to the fact that the size of a
computation outcome is much smaller than the input data of a computation
task [31].

where π ∈ R+ is the price paid for the MEC service per unit

of time.

The network state of the MU during each decision epoch

j can be characterized by χj = (qj(t), q
j

(e), s
j ,gj) ∈ X

def
=

{0, 1, · · · , q
(max)
(t) }×{0, 1, · · · , q

(max)
(e) }×B×{×b∈BGb}, where

gj = (gjb : b ∈ B). At the beginning of epoch j, the MU

decides a joint task offloading and energy allocation decision

(cj , ej) ∈ Y
def
= {{0} ∪ B} × {0, 1, · · · , Q(e)}

4 according to

the stationary control policy defined by Definition 1. In line

with the discussions, we define an immediate utility at epoch

j to quantify the task computation experience for the MU,

u
(
χj , (cj , ej)

)
= ω1 · u

(1)
(
min

{
dj , δ

})
+ ω2 · u

(2)(ηj)

+ ω3 · u
(3)(ρj) + ω4 · u

(4)(φj)

+ ω5 · u
(5)(ϕj), (6)

where the positive monotonically deceasing functions u(1)(·),
u(2)(·), u(3)(·), u(4)(·) and u(5)(·) measure the satisfaction-

s of the task execution delay, the computation task drop-

s, the task queuing delay, the penalty of failing to ex-

ecute a computation task and the payment of accessing

the MEC service, and ω1, ω2, ω3, ω4, ω5 ∈ R+ are

the weights that combine different types of function with

different units into a universal utility function. With s-

light abuse of notations, we rewrite u(1)(·), u(2)(·), u(3)(·),
u(4)(·) and u(5)(·) as u(1)(χj , (cj , ej)), u(2)(χj , (cj , ej)),
u(3)(χj , (cj , ej)), u(4)(χj , (cj , ej)) and u(5)(χj , (cj , ej)).

Definition 1 (Joint Task Offloading and Energy Allocation

Control Policy): A stationary joint task offloading and energy

allocation control policy Φ is defined as a mapping: Φ : X →
Y . More specifically, the MU determines a joint control action

Φ(χj) = (Φ(c)(χ
j),Φ(e)(χ

j)) = (cj , ej) ∈ Y according to Φ

after observing network state χj ∈ X at the beginning of each

decision epoch j, where Φ = (Φ(c),Φ(e)) with Φ(c) and Φ(e)

being, respectively, the stationary task offloading and energy

allocation policies.

Given a stationary control policy Φ, the {χj : j ∈ N+} is

a controlled Markov chain with the following state transition

probability

Pr
{
χj+1|χj ,Φ

(
χj
)}

=

Pr

{
qj+1
(t) |q

j

(t),Φ
(
χj
)}
· Pr

{
qj+1
(e) |q

j

(e),Φ
(
χj
)}
·

Pr
{
sj+1|sj ,Φ

(
χj
)}
·
∏

b∈B

Pr

{
gj+1
b |gjb

}
.

Taking expectation with respect to the per-epoch utilities

{u(χj ,Φ(χj)) : j ∈ N+} over the sequence of network states

{χj : j ∈ N+}, the expected long-term utility of the MU

conditioned on an initial network state χ1 can be expressed

as

V (χ,Φ) =

EΦ


(1− γ) ·

∞∑

j=1

(γ)j−1 · u
(
χj ,Φ

(
χj
))
|χ1 = χ


 , (7)

4To keep what follows uniform, we do not exclude the infeasible joint
actions.

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2876279, IEEE Internet of

Things Journal

5

where χ = (q(t), q(e), s,g) ∈ X , g = (gb : b ∈ B), γ ∈ [0, 1)
is the discount factor, and (γ)j−1 denotes the discount factor

to the (j − 1)-th power. V (χ,Φ) is also named as the state-

value function for the MU in the state χ under policy Φ.

Problem 1: The MU aims to design an optimal stationary

control policy Φ∗ = (Φ∗
(c),Φ

∗
(e)) that maximizes the expected

long-term utility performance, V (χ,Φ), for any given initial

network state χ, which can be formally formulated as in the

following

Φ∗ = argmax
Φ

V (χ,Φ), ∀χ ∈ X .

V (χ) = V (χ,Φ∗) is defined as the optimal state-value

function, ∀χ ∈ X .

Remark 1: The formulated problem of stochastic computa-

tion offloading optimization as in Problem 1 is in general a

single-agent infinite-horizon MDP with the discounted utility

criterion. Nevertheless, (7) can also be used to approximate

the expected infinite-horizon undiscounted utility [32]

U(χ,Φ) = EΦ


 lim
J→∞

1

J
·

J∑

j=1

u(χj ,Φ(χj))|χ1 = χ


.

when γ approaches 1.

B. Learning Optimal Solution to Problem 1

The stationary control policy achieving the optimal state-

value function can be obtained by solving the following

Bellman’s optimality equation [23]: ∀χ ∈ X ,

V (χ) = max
(c,e)

{
(1− γ) · u(χ, (c, e))

+ γ ·
∑

χ′

Pr{χ′|χ, (c, e)} · V (χ′)

}
, (8)

where u(χ, (c, e)) is the achieved utility when a joint control

action (c, e) ∈ Y is performed under network state χ and

χ′ = (q′(t), q
′
(e), s

′,g′) ∈ X is the subsequent network state

with g′ = (g′b : b ∈ B).
Remark 2: The traditional solutions to (8) are based on the

value iteration or the policy iteration [23], which need com-

plete knowledge of the computation task arrival, the received

energy unit and the channel state transition statistics.

One attractiveness of the off-policy Q-learning is that it

assumes no a priori knowledge of the network state transition

statistics [23]. We define the right-hand side of (8) by

Q(χ, (c, e)) = (1− γ) · u(χ, (c, e))

+ γ ·
∑

χ′

Pr{χ′|χ, (c, e)} · V (χ′), (9)

∀χ ∈ X . The optimal state-value function V (χ) can be hence

directly obtained from

V (χ) = max
(c,e)

Q(χ, (c, e)). (10)

By substituting (10) into (9), we get

Q(χ, (c, e)) = (1− γ) · u(χ, (c, e))

+ γ ·
∑

χ′

Pr{χ′|χ, (c, e)} · max
(c′,e′)

Q(χ′, (c′, e′)),

where we denote (c′, e′) ∈ Y as a joint control action

performed under the network state χ′. In practice, the com-

putation task arrival and the number of energy units that can

be received by the end of a decision epoch are unavailable

beforehand. Using standard Q-learning, the MU tries to learn

Q(χ, (c, e)) in a recursive way based on the observation of

network state χ = χj at a current decision epoch j, the

performed joint action (c, e) = (cj , ej), the achieved utility

u(χ, (c, e)) and the resulting network state χ′ = χj+1 at the

next epoch j + 1. The updating rule is given in (11), where

αj ∈ [0, 1) is a time-varying learning rate. It has been proven

that if 1) the network state transition probability under the

optimal stationary control policy is stationary, 2)
∑∞

j=1 α
j is

infinite and
∑∞

j=1(α
j)2 is finite, and 3) all state-action pairs

are visited infinitely often, the Q-learning process converges

and eventually finds the optimal control policy [22]. The last

condition can be satisfied if the probability of choosing any

action in any network state is non-zero (i.e., exploration).

Meanwhile, the MU has to exploit the most recent knowledge

of Q-function in order to perform well (i.e., exploitation). A

classical way to balance the trade-off between exploration and

exploitation is the ϵ-greedy strategy [23].

Remark 3: From (11), we can find that the standard Q-

learning rule suffers from poor scalability. Due to the tabular

nature in representing Q-function values, Q-learning is not

readily applicable to high-dimensional scenarios with extreme-

ly huge network state and/or action spaces, where the learning

process is extremely slow [33], [34]. In our considered system

model, the sizes of the network state space X and the action

space Y can be calculated as X = (1+q
(max)
(t))·(1+q

(max)
(e))·B·

∏
b∈B |Gb| and Y = (1+B) · (1+q

(max)
(e)), respectively, where

|G| means the cardinality of the set G. It can be observed that

X grows exponentially as the number B of BSs increases.

Suppose there is a MEC system with 6 BSs and for each BS,

the channel gain is quantized into 6 states (as assumed in

our experiment setups). If we set q
(max)
(t) = q

(max)
(e) = 4, the

MU has to update in total X · Y = 2.44944 · 108 Q-function

values during the learning process, which is impossible for

the Q-learning process to converge within limited number of

decision epoches.

The next section thereby focuses on developing practically

feasible and computationally efficient algorithms to approach

the optimal control policy.

IV. APPROACHING THE OPTIMAL POLICY

In this section, we proceed to approach the optimal control

policy by developing practically feasible algorithms based on

recent advances in deep reinforcement learning and a linear

Q-function decomposition technique.

A. Deep Reinforcement Learning Algorithm

Inspired by the success of modelling an optimal state-action

Q-function with a deep neural network [25], we adopt a double

DQN to address the massive network state space X [26].

Specifically, the Q-function expressed as in (9) is approxi-

mated by Q(χ, (c, e)) ≈ Q(χ, (c, e);θ), where (χ, (c, e)) ∈

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2876279, IEEE Internet of

Things Journal

6

⁞

⁞

⁞

Fig. 2. Double deep Q-network (DQN) based reinforcement learning (DAR-
LING) for stochastic computation offloading in a mobile-edge computing
system.

X×Y and θ denotes a vector of parameters associated with the

DQN. The DQN-based reinforcement learning (DARLING)

for stochastic computation offloading in our considered MEC

system is illustrated in Fig. 2, during which instead of finding

the optimal Q-function, the DQN parameters can be learned

iteratively.

The mobile device is assumed to be equipped with a

replay memory of a finite size M to store the experience

mj = (χj , (cj , ej), u(χj , (cj , ej)),χj+1) that is happened

at the transition of two consecutive decision epoches j and

j + 1 during the learning process of DARLING, where χj ,

χj+1 ∈ X and (cj , ej) ∈ Y . The experience pool can

be represented as Mj = {mj−M+1, · · · ,mj}. The MU

maintains a DQN and a target DQN, namely, Q(χ, (c, e);θj)
and Q(χ, (c, e);θj

−), with parameters θj at a current decision

epoch j and θ
j
− at some previous epoch before decision epoch

j, ∀(χ, (c, e)) ∈ X × Y . According to the experience replay

technique [36], the MU then randomly samples a mini-batch

M̃j ⊆ Mj from the pool Mj of historical experiences at

each decision epoch j to online train the DQN. That is, the

parameters θj are updated in the direction of minimizing the

loss function, which is defined by (12), where (c′, e′) ∈ Y . The

loss function L(DARLING)(θ
j) is a mean-squared measure of

the Bellman equation error at a decision epoch j (i.e., the last

term of (11)) by replacing Qj(χ, (c, e)) and its corresponding

target (1 − γ) · u(χ, (c, e)) + γ · max(c′,e′) Q
j(χ′, (c′, e′))

with Q(χ, (c, e); θj) and (1 − γ) · u(χ, (c, e)) + γ ·
Q(χ′, argmax(c′,e′) Q(χ′, (c′, e′);θj);θj

−) [26], respectively.

By differentiating the loss function L(DARLING)(θ
j) with

respect to the DQN parameters θj , we obtain the gradient

as in (13). Algorithm 1 summarizes the implementation of

the online DARLING algorithm by the MU for stochastic

computation offloading in our considered MEC system.

B. Linear Q-Function Decomposition based Deep Reinforce-

ment Learning

1) Linear Q-Function Decomposition: It can be found

that the utility function in (6) is of an additive structure,

which motivates us to linearly decompose the state-action Q-

function, namely, Q(χ, (c, e)), ∀(χ, (c, e)) ∈ X × Y , based

on the pattern K = {1, · · · ,K} of classifying the satis-

Algorithm 1 Online DARLING Algorithm for Stochastic

Computation Task Offloading in A MEC System

1: input A DQN and a target DQN with two sets θj and θ
j
−

of random parameters, for j = 1.

2: initialize the replay memory Mj with a finite size of

M ∈ N+, the mini-batch M̃j with a size of M̃ < M for

experience replay, for j = 1.

3: repeat

4: At the beginning of decision epoch j, the MU observes

the network state χj ∈ X , which is taken as an input to

the DQN with parameters θj , and then selects a joint

control action (cj , ej) ∈ Y randomly with probability

ϵ or (cj , ej) = argmax(c,e)∈Y Q(χj , (c, e); θj) with

probability 1− ϵ.
5: After performing the selected joint control ac-

tion (cj , ej), the MU realizes an immediate utility

u(χj , (cj , ej)) and observes the new network state

χj+1 ∈ X at the next decision epoch j + 1.

6: The MU updates the replay memory Mj at the mo-

bile device with the most recent transition mj =
(χj , (cj , ej), u(χj , (cj , ej)),χj+1).

7: With a randomly sampled mini-batch of transitions

M̃j ⊆ Mj from the replay memory, the MU updates

the DQN parameters θj with the gradient given by (13).

8: The MU regularly resets the target DQN parameters

with θ
j+1
− = θj , and otherwise θ

j+1
− = θ

j
−.

9: The decision epoch index is updated by j ← j + 1.

10: until A predefined stopping condition is satisfied.

11: return The parameters θ associated with the DQN of the

MU.

factions regarding the task execution delay, the computation

task drops, the task queuing delay, the penalty of failing to

process a computation task and the payment of using the

MEC service. For example, we can divide the utility into four

satisfaction categories, namely, u(χ, (c, e)) = u1(χ, (c, e)) +
u2(χ, (c, e))+u3(χ, (c, e))+u4(χ, (c, e)) with u1(χ, (c, e)) =
ω1 · u

(1)(χ, (c, e)) + ω3 · u
(3)(χ, (c, e)), u2(χ, (c, e)) =

ω2 · u
(2)(χ, (c, e)), u3(χ, (c, e)) = ω4 · u

(4)(χ, (c, e)) and

u4(χ, (c, e)) = ω5 · u
(5)(χ, (c, e)), then K = {1, 2, 3, 4}

forms a classification pattern. In our considered stochastic

computation offloading scenario, it’s easy to see that K ≤ 5.

Mathematically, Q(χ, (c, e)) is decomposed into [35]

Q(χ, (c, e)) =
∑

k∈K

Qk(χ, (c, e)), (14)

where the MU deploys a “virtual” agent k ∈ K to learn the

optimal per-agent state-action Q-function Qk(χ, (c, e)) that

satisfies

Qk(χ, (c, e)) = (1− γ) · uk(χ, (c, e)) (15)

+ γ ·
∑

χ′

Pr{χ′|χ, (c, e)} ·Qk(χ
′,Φ∗(χ′)) ,

Qj+1(χ, (c, e)) = Qj(χ, (c, e)) + αj

(
(1− γ) · u(χ, (c, e)) + γ · max

(c′,e′)
Qj(χ′, (c′, e′))−Qj(χ, (c, e))

)
(11)

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2876279, IEEE Internet of

Things Journal

7

with uk(χ, (c, e)) being the immediate utility related to a

satisfaction category k. We emphasize that the optimal joint

control action in (15) of an agent k across the time horizon

should reflect the optimal control policy implemented by the

MU. In other words, the MU makes an optimal joint control

action decision Φ∗(χ) under a network state χ

Φ∗(χ) = argmax
(c,e)

∑

k∈K

Qk(χ, (c, e)),

to maximize the aggregated Q-function values from all the

agents. We will see in Theorem 1 that the linear Q-function

decomposition technique achieves the optimal solution to

Problem 1.

Theorem 1: The linear Q-function decomposition approach

as in (14) asserts the optimal computation offloading perfor-

mance.

Proof: The proof is given in Appendix C. �

Remark 4: An apparent advantage of the linear Q-function

decomposition technique is that it potentially simplifies the

problem solving. Back to the example above, agent 2 learns

the optimal expected long-term satisfaction measuring the

computation task drops across the time horizon. It’s obvious

that a computation task drop ηj at a decision epoch j depends

only on the task queue state qj(t) (rather than the network state

χj ∈ X) and the performed joint control action (cj , ej) by

the MU.

Recall that the joint control action of each agent should be in

accordance with the optimal control policy of the MU, the Q-

learning rule, which involves off-policy updates, is obviously

not applicable to finding the optimal per-agent state-action Q-

functions. The state-action-reward-state-action (SARSA) algo-

rithm [23], [37], which applies on-policy updates, fosters a

promising alternative, namely, a SARSA-based reinforcement

learning (SARL). Having the observations of the network state

χ = χj , the performed joint control action (c, e) = (cj , ej) by

the MU, the realized per-agent utilities (uk(χ, (c, e)) : k ∈ K)
at a current decision epoch j and the resulting network state

χ′ = χj+1, the joint control action (c′, e′) = (cj+1, ej+1)
selected by the MU at the next epoch j+1, each agent k ∈ K
updates the state-action Q-function on the fly according to

(16), where different from off-policy Q-learning, (c′, e′) is

an actually performed joint control action in the subsequent

network state, rather than the hypothetical one that maximizes

the per-agent state-action Q-function. Theorem 2 ensures that

the SARL algorithm converges.

Theorem 2: The sequence {(Qj
k(χ, (c, e)) : χ ∈ X , (c, e) ∈

Y and k ∈ K) : j ∈ N+} by SARL converges to the optimal

per-agent state-action Q-functions Qk(χ, (c, e)), ∀χ ∈ X ,

∀(c, e) ∈ Y and ∀k ∈ K if and only if the state-action pairs

(χ, (c, e)) ∈ X ×Y are visited infinitely often and the learning

rate αj satisfies:
∑∞

j=1 α
j =∞ and

∑∞
j=1(α

j)2 <∞.

Proof: The proof is given in Appendix D. �

Remark 5: Implementing the derived SARL algorithm,

the size of Q-function faced by each agent remains the

same as the standard Q-learning algorithm. From Remark

4, the linear Q-function decomposition technique provides

the possibility of simplifying the solving of the stochastic

computation offloading problem through introducing multiple

“virtual” agents. Each agent learns the respective expected

long-term satisfaction by exploiting the key network state

information and is hence enabled to use a simpler DQN to

approximate the optimal state-action Q-function.

2) Deep SARSA Reinforcement Learning (Deep-SARL):

Applying the linear Q-function decomposition technique, the

DQN Q(χ, (c, e);θ), which approximates the optimal state-

action Q-function Q(χ, (c, e)), ∀(χ, (c, e)) ∈ X × Y , can be

reexpressed as,

Q(χ, (c, e); θ) =
∑

k∈K

Qk(χ, (c, e);θk),

where θ = (θk : k ∈ K) is a collection of parameters

associated with the DQNs of all agents and Qk(χ, (c, e);θk)
(for k ∈ K) is the per-agent DQN. Accordingly, we derive

a novel deep SARSA reinforcement learning (Deep-SARL)

based stochastic computation offloading algorithm, as depicted

in Fig. 3, where different from the DARLING algorithm, the

parameters θ are learned locally at the agents in an online

iterative way.

Implementing our proposed Deep-SARL algorithm, at each

decision epoch j, the MU updates the experience pool N j

with the most recent N experiences {nj−N+1, · · · ,nj} with

each experience nj = (χj , (cj , ej), (uk(χ
j , (cj , ej)) : k ∈

K),χj+1, (cj+1, ej+1)). To train the DQN parameters, the

MU first randomly samples a mini-batch Ñ j ⊆ N j and then

updates θj = (θj
k : k ∈ K) for all agents at each decision

epoch j to minimize the accumulative loss function, which

is given by (17), where θ
j
− = (θj

k,− : k ∈ K) are the

parameters of the target DQNs of all agents at some previous

decision epoch before epoch j. The gradient for each agent

k ∈ K can be calculated as in (18). We summarize the

online implementation of our proposed Deep-SARL algorithm

for solving the stochastic computation offloading in a MEC

system as in Algorithm 2.

L(DARLING)

(
θj
)
= (12)

E
(χ,(c,e),u(χ,(c,e)),χ′)∈M̃j



(
(1− γ) · u(χ, (c, e)) + γ ·Q

(
χ′, argmax

(c′,e′)

Q
(
χ′, (c′, e′);θj

)
;θj

−

)
−Q

(
χ, (c, e);θj

)
)2



∇θjL(DARLING)

(
θj
)
= (13)

E
(χ,(c,e),u(χ,(c,e)),χ′)∈M̃j




(
(1− γ) · u(χ, (c, e)) + γ ·Q

(
χ′, argmax

(c′,e′)

Q
(
χ′, (c′, e′);θj

)
;θj

−

)
−Q

(
χ, (c, e); θj

)
)
·

∇θjQ
(
χ, (c, e);θj

)




2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2876279, IEEE Internet of

Things Journal

8

⁞

⁞
⁞

⁞
⁞

⁞
⁞

⁞

Fig. 3. Deep SARSA reinforcement learning (Deep-SARL) based stochastic
computation offloading in a mobile-edge computing system.

Algorithm 2 Online Deep-SARL Algorithm for Stochastic

Computation Task Offloading in A MEC System

1: input The DQNs and the target DQNs with two sets θj =
(θj

k : k ∈ K) and θ
j
− = (θj

k,− : k ∈ K) of random

parameters, for j = 1.

2: initialize for j = 1, the replay memory N j with a finite

size of N ∈ N+, the mini-batch Ñ j with a size of Ñ < N
for experience replay, the initial network state χj ∈ X , a

joint control action (cj , ej) ∈ Y randomly with probability

ϵ or (cj , ej) = argmax(c,e)∈Y

∑
k∈K Qk(χ

j , (c, e); θj
k)

with probability 1− ϵ.
3: repeat

4: After performing the selected joint control ac-

tion (cj , ej), the agents realize immediate utilities

(uk(χ
j , (cj , ej)) : k ∈ K).

5: The MU observes the new network state χj+1 ∈
X at the next epoch j + 1, which is taken as an

input to the DQNs of all agents with parameters

θj , and selects a joint control action (cj+1, ej+1) ∈
Y randomly with probability ϵ or (cj+1, ej+1) =
argmax(c,e)∈Y

∑
k∈K Qk(χ

j+1, (c, e);θj
k) with proba-

bility 1− ϵ.
6: The replay memory N j is updated with the most recent

transition nj = (χj , (cj , ej), (uk(χ
j , (cj , ej)) : k ∈

K),χj+1, (cj+1, ej+1)).
7: With a randomly sampled mini-batch of transitions

Ñ j ⊆ N j , all agents update the DQN parameters θj

using the gradient as in (18).

8: The target DQNs are regularly reset by θ
j+1
− = θj , and

otherwise θ
j+1
− = θ

j
−.

9: The decision epoch index is updated by j ← j + 1.

10: until A predefined stopping condition is satisfied.

11: return The parameters θ = (θk : k ∈ K) associated with

the DQNs of all agents.

V. NUMERICAL EXPERIMENTS

In this section, we proceed to evaluate the stochastic com-

putation offloading performance achieved from our derived

online learning algorithms, namely, DARLING and Deep-

SARL.

A. General Setup

Throughout the experiments, we suppose there are B =
6 BSs in the system connecting the MU with the MEC

server. The channel gain states between the MU and the

BSs are from a common finite set {−11.23,−9.37,−7.8,
−6.3,−4.68,−2.08} (dB), the transitions of which happen

across the discrete decision epochs following respective ran-

domly generated matrices. Each energy unit corresponds to

2 · 10−3 Joule, and the number of energy units received from

the wireless environment follows a Poisson arrival process

with average arrival rate λ(e) (in units per epoch). We set K =
5 for the Deep-SARL algorithm, while the u(1)

(
χj , (cj , ej)

)
,

u(2)
(
χj , (cj , ej)

)
, u(3)

(
χj , (cj , ej)

)
, u(4)

(
χj , (cj , ej)

)
and

u(5)
(
χj , (cj , ej)

)
in (6) are chosen to be the exponential

functions. Then,

u1

(
χj , (cj , ej)

)
= ω1 · u

(1)
(
χj , (cj , ej)

)

= ω1 · exp
{
−min

{
dj , δ

}}
,

u2

(
χj , (cj , ej)

)
= ω2 · u

(2)
(
χj , (cj , ej)

)

= ω2 · exp
{
−ηj

}
,

u3

(
χj , (cj , ej)

)
= ω3 · u

(3)
(
χj , (cj , ej)

)

= ω3 · exp
{
−ρj

}
,

u4

(
χj , (cj , ej)

)
= ω4 · u

(4)
(
χj , (cj , ej)

)

= ω4 · exp
{
−φj

}
,

u5

(
χj , (cj , ej)

)
= ω5 · u

(5)
(
χj , (cj , ej)

)

= ω5 · exp
{
−ϕj

}
.

Based on the works [39] and [40], we use a single hidden

layer consisting of 200 neurons5 for the design of a DQN in

DARLING algorithm and select tanh as the activation function

[42] and Adam as the optimizer. The same number of 200

neurons are employed to design the single-layer DQNs of all

agents in Deep-SARL and hence for each DQN of an agent,

there are in total 40 neurons. Both the DARLING and the

Deep-SARL algorithms are experimented in TensorFlow [27].

Other parameter values used in experiments are listed in Table

I.

For the purpose of performance comparisons, we simulate

three baselines as well, namely,

1) Mobile Execution – The MU processes all scheduled

computation task at the mobile device with maximum

possible energy, that is, at each decision epoch j, cj = 0
and

ej =




min

{
qj(e),

⌊(
f
(max)
(CPU)

)3
· τ

⌋}
, if qj(e) > 0;

0, if qj(e) = 0,

5The tradeoff between a time demanding training process and an improve-
ment in performance with a deeper and/or wider neural network is still an
open problem [41].

Qj+1
k (χ, (c, e)) = Qj

k(χ, (c, e)) + αj ·
(
(1− γ) · uk(χ, (c, e)) + γ ·Qj

k(χ
′, (c′, e′))−Qj

k(χ, (c, e))
)

(16)

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2876279, IEEE Internet of

Things Journal

9

TABLE I
PARAMETER VALUES IN EXPERIMENTS.

Parameter Value

Replay memory capacities M , N 5000, 5000

Mini-batch sizes M̃ , Ñ 200, 200

Decision epoch duration δ 5 · 10
−3 second

Channel bandwidth W 0.6 MHz

Noise power I 1.5 · 10
−8 Watt

Input data size µ 10
4 bits

CPU cycles ν 7.375 · 10
6

Maximum CPU-cycle frequency f
(max)
(CPU)

2× 10
9 Hz

Maximum transmit power p
(max)
(tr)

2 Watt

Handover delay ζ 2× 10
−3 second

MEC service price ξ 1

Weights ω1, ω2, ω3, ω4, ω5 3, 9, 5, 2, 1

Maximum task queue length q
(max)
(t)

4 tasks

Maximum energy queue length q
(max)
(e)

4 units

Discount factor γ 0.9

Exploration probability ϵ 0.01

where the allocation of energy units takes into account

the maximum CPU-cycle frequency f
(max)
(CPU) and ⌊·⌋

means the floor function.

2) Server Execution – According to Lemma 2, with max-

imum possible energy units in the energy queue that

satisfy the maximum transmit power constraint, the MU

always selects a BS that achieves the minimum task

execution delay to offload the input data of a scheduled

computation task for MEC server execution.

3) Greedy Execution – At each decision epoch, the MU

decides to execute a computation task at its own mobile

device or offload it to the MEC server for processing

with the aim of minimizing the immediate task execution

delay.

B. Experiment Results

We carry out experiments under various settings to validate

the proposed studies in this paper.

1) Experiment 1 – Convergence performance: Our goal

in this experiment is to validate the convergence property

of our proposed algorithms, namely, DARLING and Deep-

SARL, for stochastic computation offloading in the considered

MEC system. We set the task arrival probability and the

average energy arrival rate to be λ(t) = 0.5 and λ(e) = 0.8
units per epoch, respectively. Without loss of the generality,

we plot the simulated variations in Q
(
χ, (c, e);θj

)
(where

χ = (2, 2, 2, (−6.3,−6.3,−4.68,−7.8,−6.3,−6.3)), (c, e) =

0 0.5 1 1.5 2 2.5 3

Decision Epochs 10
4

0

5

10

15

20

25

L
o
s
s

-2

-1.5

-1

-0.5

0

0.5

1

1.5

S
ta

te
-a

c
ti
o
n
 v

a
lu

e

Fig. 4. Illustration for the convergence property of DARLING and Deep-
SARL.

(2, 4) and j ∈ N+) for the DARLING algorithm as well as the

loss function defined by (17) for the Deep-SARL algorithm

versus the decision epochs in Fig. 4, which reveals that the

convergence behaviours of both DARLING and Deep-SARL

are similar. The two algorithms converge at a reasonable speed,

for which around 1.5× 104 decision epochs are needed.

2) Experiment 2 – Performance under various λ(t): In this

experiment, we try to demonstrate the average computation

offloading performance per epoch in terms of the average

utility, the average task execution delay, the average task

drops, the average task queuing delay, the average task failure

penalty and the average MEC service payment under different

computation task arrival probability settings. We choose for

the average energy unit arrival rate as λ(e) = 1.6 units per

epoch. The results are exhibited in Fig. 5. Fig. 5 (a) illustrates

the average utility performance when the MU implements

DARLING and Deep-SARL. Figs. 5 (b)–(f) illustrate the

average task execution delay, the average task drops, the

average task queuing delay, the average task failure penalty

and the average MEC service payment.

Each plot compares the performance of the DARLING

and the Deep-SARL to the three baseline computation of-

floading schemes. From Fig. 5, it can be observed that both

the proposed schemes achieve a significant gain in average

utility. Similar observations can be made from the curves

in other plots, though the average MEC service payment

per epoch from Deep-SARL is a bit higher than that from

DARLING. This can be explained by the reason that with

the network settings by increasing the task arrival probability

in this experiment, more tasks are scheduled for execution

at the MEC server using the Deep-SARL algorithm. As the

computation task arrival probability increases, the average

utility performances decrease due to the increases in average

L(Deep−SARL)

(
θj
)
= (17)

E(χ,(c,e),(uk(χ,(c,e)):k∈K),χ′,(c′,e′))∈Ñ j

[
∑

k∈K

(
(1− γ) · uk(χ, (c, e)) + γ ·Qk

(
χ′, (c′, e′);θj

k,−

)
−Qk

(
χ, (c, e);θj

k

))2
]

∇
θ
j

k

L(Deep−SARL)

(
θj
)
= (18)

E(χ,(c,e),(uk(χ,(c,e)):k∈K),χ′,(c′,e′))∈Ñ j



(
(1− γ) · uk(χ, (c, e)) + γ ·Qk

(
χ′, (c′, e′);θj

k,−

)
−Qk

(
χ, (c, e);θj

k

))
·

∇
θ
j

k

Qk

(
χ, (c, e);θj

k

)



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2876279, IEEE Internet of

Things Journal

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Task Arrival Probabilities

10

12

14

16

18

20

A
v
e
ra

g
e
 U

ti
lit

ie
s

Mobile Execution

Server Execution

Greedy Execution

DARLING

Deep-SARL

(a) Average utility per epoch.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Task Arrival Probabilities

0

0.5

1

1.5

2

2.5

3

3.5

4

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 D

e
la

y
s

10
-3

Mobile Execution

Server Execution

Greedy Execution

DARLING

Deep-SARL

(b) Average execution delay per epoch.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Task Arrival Probabilities

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v
e
ra

g
e
 T

a
s
k
 D

ro
p
s

Mobile Execution

Server Execution

Greedy Execution

DARLING

Deep-SARL

(c) Average task drops per epoch.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Task Arrival Probabilities

0

0.5

1

1.5

2

2.5

3

3.5

4

A
v
e
ra

g
e
 T

a
s
k
 Q

u
e
u
in

g
 D

e
la

y
s

Mobile Execution

Server Execution

Greedy Execution

DARLING

Deep-SARL

(d) Average task queuing delay per epoch.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Task Arrival Probabilities

0

0.1

0.2

0.3

0.4

0.5

0.6

A
v
e
ra

g
e
 F

a
ilu

re
 P

e
n
a
lt
ie

s

Mobile Execution

Server Execution

Greedy Execution

DARLING

Deep-SARL

(e) Average task failure penalty per epoch.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Task Arrival Probabilities

0

0.5

1

1.5

2

2.5

3

3.5

A
v
e
ra

g
e
 M

E
C

 P
a
y
m

e
n
ts

10
-3

Mobile Execution

Server Execution

Greedy Execution

DARLING

Deep-SARL

(f) Average MEC service payment per epoch.

Fig. 5. Average computation offloading performance versus task arrival probabilities.

task execution delay, average task drops, average task queuing

delay, average task failure penalty and average MEC service

payment. Since there are not enough energy units in the

energy queue during one decision epoch on average, in order

to avoid task drops and task failure penalty, only a portion

of the queued energy units are allocated for processing a

scheduled computation task, hence leading to more queued

tasks, i.e., an increased average task queueing delay. The

utility performance from Deep-SARL outperforms that from

DARLING. This indicates that by combining a deep neural

network and the Q-function decomposition technique, the

original stochastic computation offloading problem becomes

simplified, hence performance improvement can be expected

from approximating the state-action Q-functions of all agents

with the same number of neurons.

3) Experiment 3 – Performance with changing λ(e): We

do the third experiment to simulate the average computa-

tion offloading performance per epoch achieved from the

derived DARLING and Deep-SARL algorithms and other

three baselines versus the average energy unit arrival rates.

The computation task arrival probability in this experiment is

set to be λ(t) = 0.6. The per epoch average utility, average

task execution delay, average task drops, average task queuing

delay, average task failure penalty and average MEC service

payment across the entire learning period are depicted in Fig.

6. We can clearly see from Fig. 6 that as the available energy

units increase, the overall computation offloading performance

improves. However, as the energy unit arrival rate increases,

the average task execution delay, the average task failure

penalty and the average MEC service payment6 first increase

6It’s easy to see that the mobile execution scheme does not use MEC
service, hence no MEC service payment needs to be made.

but then decrease. Compared to ω1, ω4 and ω5, we set larger

values for ω2 and ω3. The priority of minimizing average

task drops and average task queuing delay pushes the MU to

schedule as many computation tasks for execution as possible.

Hence the increasing number of queued energy units provides

more opportunities to execute a computation task during each

decision epoch, and at the same time, increases the possibility

of failing to execute a task. When the average number of

energy units in the energy queue increases to a sufficiently

large value, enough energy units can be allocated to each

scheduled computation task, due to which the task execution

delay, the possibility of task computation failures and the MEC

service payment decrease.

VI. CONCLUSIONS

In this paper, we put our emphasis to investigate the

design of a stochastic computation offloading policy for a

representative MU in an ultra-dense sliced RAN by taking

into account the dynamics generated from the time-varying

channel qualities between the MU and the BSs, energy units

received from the wireless environment as well as compu-

tation task arrivals. The problem of stochastic computation

offloading is formulated as a MDP, for which we propose two

double DQN-based online strategic computation offloading al-

gorithms, namely, DARLING and Deep-SARL. Both learning

algorithms survive the curse of high dimensionality in state

space and need no a priori information of dynamics statistics.

We find from numerical experiments that compared to three

baselines, our derived algorithms can achieve much better

long-term utility performance, which indicates an optimal

tradeoff among the computation task execution delay, the task

drops, the task queuing delay, the task failure penalty and the

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2876279, IEEE Internet of

Things Journal

11

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

Energy Arrival Rates (units/epoch)

10

12

14

16

18

20

A
v
e
ra

g
e
 U

ti
lit

ie
s

Mobile Execution

Server Execution

Greedy Execution

DARLING

Deep-SARL

(a) Average utility per epoch.

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

Energy Arrival Rates (units/epoch)

1

1.5

2

2.5

3

3.5

4

4.5

5

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 D

e
la

y
s

10
-3

Mobile Execution

Server Execution

Greedy Execution

DARLING

Deep-SARL

(b) Average execution delay per epoch.

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

Energy Arrival Rates (units/epoch)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
v
e
ra

g
e
 T

a
s
k
 D

ro
p
s

Mobile Execution

Server Execution

Greedy Execution

DARLING

Deep-SARL

(c) Average task drops per epoch.

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

Energy Arrival Rates (units/epoch)

0

0.5

1

1.5

2

2.5

3

3.5

4

A
v
e
ra

g
e
 T

a
s
k
 Q

u
e
u
in

g
 D

e
la

y
s

Mobile Execution

Server Execution

Greedy Execution

DARLING

Deep-SARL

(d) Average task queuing delay per epoch.

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

Energy Arrival Rates (units/epoch)

0

0.1

0.2

0.3

0.4

0.5

0.6

A
v
e
ra

g
e
 F

a
ilu

re
 P

e
n
a
lt
ie

s

Mobile Execution

Server Execution

Greedy Execution

DARLING

Deep-SARL

(e) Average task failure penalty per epoch.

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1

Energy Arrival Rates (units/epoch)

0

0.5

1

1.5

2

2.5

3

3.5

A
v
e
ra

g
e
 M

E
C

 P
a
y
m

e
n
ts

10
-3

Mobile Execution

Server Execution

Greedy Execution

DARLING

Deep-SARL

(f) Average MEC service payment per epoch.

Fig. 6. Average computation offloading performance versus average energy unit arrival rates.

MEC service payment. Moreover, the Deep-SARL algorithm

outperforms the DARLING algorithm by taking the advantage

of the additive utility function structure.

ACKNOWLEDGEMENTS

This research was supported in part by National Key R&D

Program of China under Grant 2018YFB0803702, National

Natural Science Foundation of China under Grants 61701439

and 61731002, Zhejiang Key Research and Development Plan

under Grant 2018C03056, National Science Foundation under

Grant CNS-1702957, Wireless Engineering Research and En-

gineering Center (WEREC) at Auburn University, JSPS KAK-

ENHI under Grant JP16H02817, and Academy of Finland

under grant 289611.

APPENDIX A: PROOF OF LEMMA 1

With the decisions of computation offloading cj ∈ B and

energy unit allocation ej > 0 at an epoch j, the input data

transmission is independent of the network dynamics. Suppose

there exists a new transmission policy with which the MU

changes its transmission rate from rj,(1) to rj,(2) ̸= rj,(1) at

a certain point during the task input data transmission. We

denote the time durations corresponding to transmission rates

rj,(1) and rj,(2) as d
j,(1)
(tr) and d

j,(2)
(tr) , respectively. Taking into

account the maximum transmit power of the mobile device

(4), it is easy to verify that the following two constraints on

total energy consumption:

min
{
ej ,
(
d
j,(1)
(tr) + d

j,(2)
(tr)

)
·p

(max)
(tr)

}
=

I

gj
cj

·

(
2

rj,(1)

W − 1

)
·d

j,(1)
(tr) +

I

gj
cj

·

(
2

rj,(2)

W − 1

)
·d

j,(2)
(tr) ,

and total transmitted data bits:

rj,(1) · d
j,(1)
(tr) + rj,(2) · d

j,(2)
(tr) = µ,

can be satisfied. On the other hand, the average transmission

rate within a duration of d
j,(1)
(tr) + d

j,(2)
(tr) can be written as

r̄j =

W · log2


1 +

gj
cj

I
·
min

{
ej ,
(
d
j,(1)
(tr) + d

j,(2)
(tr)

)
· p

(max)
(tr)

}

d
j,(1)
(tr) + d

j,(2)
(tr)


 .

Consider using r̄j as the only transmission rate during the

whole period of task input data transmission, we construct

the deduction as in (19), where the inequality originates from

the concavity of a logarithmic function. From (19), we can

find that with a constant transmission rate, more data can

be transmitted within the same transmission period. Hence,

applying a constant rate for the transmission of µ task input

data bits achieves the minimum transmission time, which can

be solved according to (2) and (3). This completes the proof.

APPENDIX B: PROOF OF LEMMA 2

By replacing rj in (2) with (3), we get

log2

(
1 + I−1 · gj

cj
· ej ·

1

dj(tr)

)
=

µ

W
·

1

dj(tr)
. (20)

Alternatively, we take 1/dj(tr) as the solution of (20), which

is an intersection of two lines, namely, ℓ1(x) = log2(1+ gj
cj
·

I−1 · ej · x) and ℓ2(x) = µ
W
· x, for x > 0. From the non-

negativity and the monotonicity of a logarithmic function and a

linear function, it is easy to see that 1/dj(tr) is a monotonically

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2876279, IEEE Internet of

Things Journal

12

increasing function of ej . Thus, dj(tr) is a monotonically

decreasing function of ej .

APPENDIX C: PROOF OF THEOREM 1

For the state-action Q-function of a joint action (c, e) ∈ Y
in a network state χ ∈ X as in (9), we have (21), which

completes the proof.

APPENDIX D: PROOF OF THEOREM 2

Since the per-agent state-action Q-functions are learned

simultaneously, we consider the monolithic updates during the

learning process of the SARL algorithm, namely, the updating

rule in (16) can be then encapsulated as
∑

k∈K

Qj+1
k (χ, (c, e)) =

(
1− αj

)
·
∑

k∈K

Qj
k(χ, (c, e))+ (22)

αj ·

(
(1− γ) ·

∑

k∈K

uk(χ, (c, e)) + γ ·
∑

k∈K

Qj
k(χ

′, (c′, e′))

)
,

where (χ, (c, e)), (χ′, (c′, e′)) ∈ X × Y . We rewrite (22) as
∑

k∈K

Qj+1
k (χ, (c, e))−

∑

k∈K

Qk(χ, (c, e)) = (1− αj)· (23)

(
∑

k∈K

Qj
k(χ, (c, e))−

∑

k∈K

Qk(χ, (c, e))

)
+ αj ·Υj(χ, (c, e)),

where

Υj(χ, (c, e)) = (1− γ) ·
∑

k∈K

uk(χ, (c, e))+

γ · max
(c′′,e′′)

∑

k∈K

Qj
k(χ

′, (c′′, e′′))−
∑

k∈K

Qk(χ, (c, e)))+

γ ·

(
∑

k∈K

Qj
k(χ

′, (c′, e′))− max
(c′′,e′′)

∑

k∈K

Qj
k(χ

′, (c′′, e′′))

)
.

Let Oj = σ({(χz, (cz, ez), (uk(χ
z, (cz, ez)) : k ∈

K)) : z ≤ j}, (Qj
k(χ, (c, e)) : χ ∈ X , (c, e) ∈

Y, k ∈ K)) denote the learning history for the first

j decision epochs. The per-agent state-action Q-functions

are Oj-measurable, thus the (
∑

k∈K Qj+1
k (χ, (c, e)) −∑

k∈K Qk(χ, (c, e))) and the Υj(χ, (c, e)) are both Oj-

measurable. We then arrive at (24), where (a) is due to

the convergence property of a standard Q-learning [22]. We

are left with verifying that ∥E[γ · (
∑

k∈K Qj
k(χ

′, (c′, e′)) −

max(c′′,e′′)
∑

k∈K Qj
k(χ

′, (c′′, e′′)))|Oj]∥∞ converges to zero

with probability 1, which in our considered scenario follows

from: i) an ϵ-greedy strategy is applied in SARL for choosing

joint control actions; ii) the per-agent state-action Q-functions

are upper bounded; and iii) both the network state and the

joint control action spaces are finite. All conditions in [38,

Lemma 1] are satisfied. Therefore, the convergence of the

SARL learning process is ensured.

REFERENCES

[1] “Cisco visual networking index: Global mobile data traffic forecast
update, 2016–2021,” White Paper, Cisco, Feb. 2017.

[2] M. Satyanarayanan, “The emergence of edge computing,” IEEE Com-

put., vol. 50, no. 1, pp. 30–39, Jan. 2017.

[3] K. Gai, M. Qiu, H. Zhao, L. Tao, and Z. Zong, “Dynamic energy-aware
cloudlet-based mobile cloud computing model for green computing,” J.

Netw. Comput. Appl., vol. 59, pp. 46–54, Jun. 2016.

[4] Z. Su, Q. Xu, J. Luo, H. Pu, Y. Peng, and R. Lu, “A secure content
caching scheme for disaster backup in fog computing enabled mobile
social networks,” IEEE Trans. Ind. Informat., vol. 14, no. 10, pp. 4579–
4589, Oct. 2018.

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Q4 2017.

[6] P. Mach and Z. Becvar, “Mobile edge computing: A survey on archi-
tecture and computation offloading,” IEEE Commun. Surveys Tuts., vol.
19, no. 3, pp. 1628–1656, Q3 2017.

[7] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks with
mobile edge computing,” IEEE Trans. Wireless Commun., vol. 16, no.
8, pp. 4924–4938, Aug. 2017.

[8] X. Hu, K.-K. Wong, and K. Yang, “Wireless powered cooperation-
assisted mobile edge computing,” IEEE Trans. Wireless Commun., vol.
17, no. 4, pp. 2375–2388, Apr. 2018.

[9] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,”
IEEE Trans. Wireless Commun., vol. 17, no. 3, pp. 1784–1797, Mar.
2018.

[10] X. Costa-Péerez, J. Swetina, T. Guo, R. Mahindra, and S. Rangarajan,
“Radio access network virtualization for future mobile carrier networks,”
IEEE Commun. Mag., vol. 51, no. 7, pp. 27–35, Jul. 2013.

[11] R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, “NVS: A
substrate for virtualizing wireless resources in cellular networks,”
IEEE/ACM Trans. Netw., vol. 20, no. 5, pp. 1333–1346, Oct. 2012.

[12] X. Chen, Z. Han, H. Zhang, G. Xue, Y. Xiao, and M. Bennis, “Wireless
resource scheduling in virtualized radio access networks using stochastic
learning,” IEEE Trans. Mobile Comput., vol. 17, no. 4, pp. 961–974, Apr.
2018.

[13] P. Zhao, H. Tian, S. Fan, and A. Paulraj, “Information prediction and
dynamic programming based RAN slicing for mobile edge computing,”
IEEE Wireless Commun. Lett., Early Access Article, 2018.

[14] Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, “Resource allocation for
information-centric virtualized heterogeneous networks with in-network
caching and mobile edge computing,” IEEE Trans. Veh. Technol., vol.
66, no. 12, pp. 11339–11351, Dec. 2017.

[15] C. You, K. Huang, H. Chae, and B. H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offoading,” IEEE Trans. Wire-

less Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[16] X. Lyu, H. Tian, W. Ni, Y. Zhang, P. Zhang, and R. P. Liu, “Energy-
efficient admission of delay-sensitive tasks for mobile edge computing,”
IEEE Trans. Commun., Early Access Article, 2018.

[17] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, ‘Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Proc. IEEE

ISIT, Barcelona, Spain, Jul. 2016.

[18] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.

Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, Dec. 2016.

[19] C.-F. Liu, M. Bennis, and H. V. Poor, “Latency and reliability-aware
task offloading and resource allocation for mobile edge computing,” in
Proc. IEEE GLOBECOM WKSHP, Singapore, Dec. 2017.

r̄j ·
(
d
j,(1)
(tr) + d

j,(2)
(tr)

)
= W · log2


1 +

(
2

rj,(1)

W − 1
)
· d

j,(1)
(tr) +

(
2

rj,(2)

W − 1
)
· d

j,(2)
(tr)

d
j,(1)
(tr) + d

j,(2)
(tr)


 ·

(
d
j,(1)
(tr) + d

j,(2)
(tr)

)

≥


rj,(1) ·

d
j,(1)
(tr)

d
j,(1)
(tr) + d

j,(2)
(tr)

+ rj,(2) ·
d
j,(2)
(tr)

d
j,(1)
(tr) + d

j,(2)
(tr)


 ·

(
d
j,(1)
(tr) + d

j,(2)
(tr)

)
= rj,(1) · d

j,(1)
(tr) + rj,(2) · d

j,(2)
(tr) = µ (19)

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2876279, IEEE Internet of

Things Journal

13

[20] Z. Jiang and S. Mao, “Energy delay tradeoff in cloud offloading for
multi-core mobile devices,” IEEE Access, vol. 3, pp. 2306–2316, Nov.
2015.

[21] J. Xu, L. Chen, and S. Ren, “Online learning for offloading and
autoscaling in energy harvesting mobile edge computing,” IEEE Trans.

Cogn. Commun. Netw., vol. 3, no. 3, pp. 361–373, Jul. 2017.
[22] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,

no. 3–4, pp. 279–292, May 1992.
[23] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press, 1998.
[24] M. Abu Alsheikh, D. Niyato, S. Lin, H.-P. Tan, and D. I. Kim, “Fast

adaptation of activity sensing policies in mobile devices,” IEEE Trans.

Veh. Technol., vol. 66, no. 7, pp. 5995–6008, Jul. 2017.
[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb.
2015.

[26] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proc. AAAI, Phoenix, AZ, Feb. 2016.

[27] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S.
Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S.
Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in Proc. OSDI, Savannah, GA, Nov. 2016.

[28] T. D. Burd and R. W. Brodersen, “Processor design for portable
systems,” J. VLSI Signal Process. Syst., vol. 13, no. 2–3, pp. 203–221,
Aug. 1996.

[29] X. Chen, P. Liu, H. Liu, C. Wu, and Y. Ji, “Multipath transmission
scheduling in millimeter wave cloud radio access networks,” in Proc.

IEEE ICC, Kansas City, MO, May 2018.
[30] J. Kwak, O. Choi, S. Chong, and P. Mohapatra, “Processor-network

speed scaling for energy-delay tradeoff in smartphone applications,”
IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1647–1660, Jun. 2016.

[31] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE Trans. Netw., vol.
24, no. 5, pp. 2795–2808, Oct. 2016.

[32] D. Adelman and A. J. Mersereau, “Relaxations of weakly coupled
stochastic dynamic programs,” Oper. Res., vol. 56, no. 3, pp. 712–727,
Jan. 2008.

[33] K. Gai, M. Qiu, Z. Xiong, and M. Liu, “Optimal resource allocation
using reinforcement learning for IoT content-centric services,” Appl. Soft

Comput., vol. 70, pp. 12–21, Sep. 2018.
[34] K. Gai, M. Qiu, M. Liu, H. Zhao, “Smart resource allocation using

reinforcement learning in content-centric cyber-physical systems,” in
Proc. SmartCom, Shenzhen, China, Dec. 2017.

[35] S. Russel and A. L. Zimdars, “Q-decomposition for reinforcement
learning agents,” in Proc. ICML, Washington DC, Aug. 2003.

[36] L.-J. Lin, “Reinforcement learning for robots using neural networks,”
Carnegie Mellon University, 1992.

[37] G. A. Rummery and M. Niranjan. Online Q-learning using connectionist

systems, Tech. Rep. CUED/F-INFENG/TR 166, Cambridge University
Engineering Department, Sep. 1994.

[38] S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvári, “Convergence
results for single-step on-policy reinforcement-learning algorithms,”
Mach. Learn., vol. 38, no. 3, pp. 287–308, Mar. 2000.

[39] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Perfor-
mance optimization in mobile-edge computing via deep reinforcement
learning,” arXiv, Mar. 2018.

[40] K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE CVPR, Las Vegas, NV, Jun. 2016.

[41] C. L. P. Chen and Z. Liu, “Broad learning system: An effective
and efficient incremental learning system without the need for deep
architecture,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 1,
pp. 10–24, Jan. 2018.

[42] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best
multi-stage architecture for object recognition?” in Proc. IEEE ICCV,
Kyoto, Japan, Sep.–Oct. 2009.

Xianfu Chen received his Ph.D. degree in Signal
and Information Processing, from the Department
of Information Science and Electronic Engineering
(ISEE) at Zhejiang University, Hangzhou, China,
in March 2012. Since April 2012, he has been
with the VTT Technical Research Centre of Finland
Ltd, Oulu, Finland, where he is currently a Senior
Scientist. His research interests cover various aspects
of wireless communications and networking, with
emphasis on human-level and artificial intelligence
for resource awareness in next-generation communi-

cation networks. He is an IEEE member.

Q(χ, (c, e)) = EΦ∗


(1− γ) ·

∞∑

j=1

(γ)j−1 · u
(
χj ,

(
cj , ej

))
|χ1 = χ,

(
c1, e1

)
= (c, e)




= EΦ∗


(1− γ) ·

∞∑

j=1

(γ)j−1 ·
∑

k∈K

uk

(
χj ,

(
cj , ej

))
|χ1 = χ,

(
c1, e1

)
= (c, e)




=
∑

k∈K

EΦ∗


(1− γ) ·

∞∑

j=1

(γ)j−1 · uk

(
χj ,

(
cj , ej

))
|χ1 = χ,

(
c1, e1

)
= (c, e)


 =

∑

k∈K

Qk(χ, (c, e)) (21)

∥∥E
[
Υj(χ, (c, e)) |Oj

]∥∥
∞

(24)

≤

∥∥∥∥∥E

[
(1− γ) ·

∑

k∈K

uk(χ, (c, e)) + γ · max
(c′′,e′′)

∑

k∈K

Qj
k(χ

′, (c′′, e′′))−
∑

k∈K

Qk(χ, (c, e))|O
j

]∥∥∥∥∥
∞

+

∥∥∥∥∥E

[
γ ·

(
∑

k∈K

Qj
k(χ

′, (c′, e′))− max
(c′′,e′′)

∑

k∈K

Qj
k(χ

′, (c′′, e′′))

)
|Oj

]∥∥∥∥∥
∞

(a)

≤γ ·

∥∥∥∥∥
∑

k∈K

Qj
k(χ, (c, e))−

∑

k∈K

Qk(χ, (c, e))

∥∥∥∥∥
∞

+

∥∥∥∥∥E

[
γ ·

(
∑

k∈K

Qj
k(χ

′, (c′, e′))− max
(c′′,e′′)

∑

k∈K

Qj
k(χ

′, (c′′, e′′))

)
|Oj

]∥∥∥∥∥
∞

2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2876279, IEEE Internet of

Things Journal

14

Honggang Zhang is a Full Professor with the
College of Information Science and Electronic Engi-
neering, Zhejiang University, Hangzhou, China. He
is an Honorary Visiting Professor at the University
of York, York, UK. He was the International Chair
Professor of Excellence for Université Européenne
de Bretagne (UEB) and Supélec, France. He served
as the Chair of the Technical Committee on Cogni-
tive Networks of the IEEE Communications Society
from 2011 to 2012. He is currently active in the re-
search on green communications and was the leading

Guest Editor of the IEEE COMMUNICATIONS MAGAZINE special issues
on “Green Communications”. He was the co-author and an editor of two books
with the titles of Cognitive Communications Distributed Artificial Intelligence

(DAI), Regulatory Policy and Economics, Implementation (John Wiley &
Sons) and Green Communications: Theoretical Fundamentals, Algorithms and

Applications (CRC Press), respectively. He is an IEEE senior member.

Celimuge Wu received his PhD degree from The U-
niversity of Electro-Communications, Japan in 2010,
where he is currently an associate professor. His
current research interests include vehicular ad hoc
networks, IoT, 5G, and mobile cloud computing.
He is/has been a TPC Co-Chair of Wireless Days
2019, ICT-DM 2018, and a track Co-Chair of many
international conferences including ICCCN 2019,
PIMRC 2016, IEEE ISC2 2017, ISNCC 2017, and
WICON 2016. He is/has been serving as an associate
editor of IEICE Transactions on Communications, a

guest editor of IEEE Transactions on Emerging Topics in Computational Intel-
ligence, IEEE Computational Intelligence Magazine, ACM/Springer MONET,
MDPI Sensors, and Hindawi MIS. He is an IEEE member.

Shiwen Mao received a Ph.D. in electrical and
computer engineering from Polytechnic University,
Brooklyn, NY in 2004. He is the Samuel Ginn
Distinguished Professor and Director of the Wire-
less Engineering Research and Education Center
(WEREC) at Auburn University, Auburn, AL. His
research interests include wireless networks and
multimedia communications. He is a Distinguished
Lecturer of the IEEE Vehicular Technology Soci-
ety in the Class of 2014. He is on the Editorial
Board of IEEE Transactions on Mobile Computing,

IEEE Transactions on Multimedia, IEEE Internet of Things Journal, IEEE
Multimedia, and ACM GetMobile, among others. He received the Auburn
University Creative Research & Scholarship Award in 2018, the 2017 IEEE
ComSoc ITC Outstanding Service Award, the 2015 IEEE ComSoc TC-CSR
Distinguished Service Award, the 2013 IEEE ComSoc MMTC Outstanding
Leadership Award, and the NSF CAREER Award in 2010. He is a co-
recipient of the 2017 Best Conference Paper Award of IEEE ComSoc MMTC,
IEEE SECON 2017 Best Demo Award, the Best Paper Awards from IEEE
GLOBECOM 2016 & 2015, IEEE WCNC 2015, and IEEE ICC 2013, and
the 2004 IEEE Communications Society Leonard G. Abraham Prize in the
Field of Communications Systems. He is an IEEE senior member.

Yusheng Ji received her B.E., M.E., and D.E.
degrees in electrical engineering from the University
of Tokyo. She joined the National Center for Science
Information Systems, Japan (NACSIS) in 1990. Cur-
rently, she is a Professor at the National Institute
of Informatics, Japan (NII), and SOKENDAI (the
Graduate University for Advanced Studies). Her re-
search interests include network architecture, mobile
computing, and network resource management. She
is/has been an Editor of IEEE TVT, Associate Ed-
itor of IEICE Transactions and IPSJ Journal, Guest

Editor-in-Chief, Guest Editor, and Guest Associate Editor of Special Issues
of IEICE Transactions and IPSJ Journal, Symposium Co-chair of IEEE
GLOBECOM 2012, 2014, Track Chair of IEEE VTC 2016 Fall, 2017 Fall,
General Co-Chair of ICT-DM 2018, and a TPC member of IEEE INFOCOM,
ICC, GLOBECOM, WCNC, VTC etc. She is an IEEE senior member.

Mehdi Bennis received his M.Sc. degree in Electri-
cal Engineering jointly from the EPFL, Switzerland
and the Eurecom Institute, France in 2002. From
2002 to 2004, he worked as a research engineer at
IMRA-EUROPE investigating adaptive equalization
algorithms for mobile digital TV. In 2004, he joined
the Centre for Wireless Communications (CWC)
at the University of Oulu, Finland as a research
scientist. In 2008, he was a visiting researcher at the
Alcatel-Lucent chair on flexible radio, SUPELEC.
He obtained his Ph.D. in December 2009 on spec-

trum sharing for future mobile cellular systems. Currently Dr. Bennis is
an Adjunct Professor at the University of Oulu and Academy of Finland
research fellow. His main research interests are in radio resource management,
heterogeneous networks, game theory and machine learning in 5G networks
and beyond. He has co-authored one book and published more than 100
research papers in international conferences, journals and book chapters. He
was the recipient of the prestigious 2015 Fred W. Ellersick Prize from the
IEEE Communications Society and the 2016 Best Tutorial Prize from the
IEEE Communications Society. Dr. Bennis serves as an editor for the IEEE
Transactions on Wireless Communication. He is an IEEE senior member.

