
SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE AND COGNITIVE

COMPUTING FOR COMMUNICATION AND NETWORK

Received December 30, 2018, accepted January 7, 2019, date of publication January 11, 2019, date of current version February 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2892046

TCP-Drinc: Smart Congestion Control Based
on Deep Reinforcement Learning

KEFAN XIAO, (Student Member, IEEE), SHIWEN MAO , (Fellow, IEEE),
AND JITENDRA K. TUGNAIT, (Life Fellow, IEEE)
Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849-5201, USA

Corresponding author: Shiwen Mao (smao@ieee.org)

This work was supported in part by NSF under Grant CNS-1702957, and in part by the Wireless Engineering Research and Education

Center (WEREC), Auburn University, Auburn, AL, USA.

ABSTRACT As wired/wireless networks become more and more complex, the fundamental assumptions

made by many existing TCP variants may not hold true anymore. In this paper, we develop a model-

free, smart congestion control algorithm based on deep reinforcement learning, which has a high potential

in dealing with the complex and dynamic network environment. We present TCP-Deep ReInforcement

learNing-based Congestion control (Drinc) which learns from past experience in the form of a set of

measured features to decide how to adjust the congestion window size. We present the TCP-Drinc design

and validate its performance with extensive ns-3 simulations and comparison with five benchmark schemes.

INDEX TERMS Congestion control, deep convolutional neural network (DCNN), deep reinforcement

learning (DRL), long short term memory (LSTM), machine learning.

I. INTRODUCTION

The unprecedented growth of network traffic, in particular,

mobile network traffic, has greatly stressed today’s Internet.

Although the capacities of wired and wireless links have

been continuously increased, the gap between user demand

and what the Internet can offer is actually getting wider.

Furthermore, many emerging applications not only require

high throughput and reliability, but also low delay. Although

the brute-force approach of deploying wired and wireless

links with a higher capacity helps to mitigate the problem,

a more viable approach is to revisit the higher layer protocol

design, to make more efficient use of the increased physical

layer link capacity.

Congestion control is the most important networking func-

tion of the transport layer, which ensures reliable delivery of

application data. However, the design of a congestion control

protocol is highly challenging. First, the transport network is

an extremely complex and large-scale network of queues. The

TCP end host itself consists of various interconnected queues

in the kernel. When the TCP flow gets into the Internet,

it traverses various queues at routers/switches along the end-

to-end path, each shared by cross-traffic (e.g., other TCP

flows and UDP traffic) and served with some scheduling

discipline. Significant efforts are still needed to gain good

understanding of such a complex network to develop the

queueing network theory that can guide the design of a con-

gestion control protocol. Second, if following the end-to-end

principle, agents at end hosts have to probe the network state

and make independent decisions without coordination. The

detected network state is usually error-prone and delayed, and

the effect of an action is also delayed and depends on the

actions of other competing hosts. Third, if to involve routers,

the algorithm must be extremely simple (e.g., stateless) to

ensure scalability, since the router may handle a huge amount

of flows. Finally, as more wireless devices are connected,

the lossy and capacity-varying wireless links also pose great

challenges to congestion control design.

Many effective congestion control protocols have been

developed in the past three decades since the pioneering

work [1] (see Section II). However, many existing schemes

are based on some fundamental assumptions. For example,

early generation of TCP variants assume that all losses are

due to buffer overflow, and use loss as indicator of conges-

tion. Since such assumption does not hold true in wireless

networks, many heuristics have been proposed for TCP over

wireless to distinguish the losses due to congestion from that

incurred by link errors. Moreover, many existing schemes

assume a single bottleneck link in the end-to-end path, and

the wireless last hop (if there is one) is always the bottle-

neck. Given the high capacity wireless links and the complex

11892
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

network topology/traffic conditions we have today [2], such

assumptions are less likely to be true. The bottleneck could be

at either the wired or wireless segment, it could move around,

and there could be more than one bottlenecks. Finally, when

there is a wireless last hop, some existingwork [3] assumes no

competition among the flows at the base station (BS), which,

as shown in [4], may not be true due to coupled wireless

transmission scheduling at the BS.

In this paper, we aim to develop a smart congestion con-

trol algorithm that does not rely on the above assumptions.

Motivated by the recent success of applying machine learn-

ing to wireless networking problems [5], and based on our

experience of applying deep learning (DR) and deep rein-

forcement learning (DRL) to 5G mmWave networks [6],

edge computing and caching [7]–[9], and RF sensing and

indoor localization [10]–[12], we propose to develop amodel-

free, smart congestion control algorithm based on DRL. The

original methods that treat the network as a white box have

been shown to have many limitations. To this end, machine

learning, in particular, DRL, has a high potential in dealing

with the complex network and traffic conditions by learning

from past experience and extracting useful features. A DRL

based approach also relieves the burden on training data,

and has the unique advantage of being adaptive to varying

network conditions.

In particular, we present TCP-Drinc, acronym for Deep

reinforcement learning based congestion control. TCP-Drinc

is a DRL based agent that is executed at the sender side. The

agent estimates features such as congestion window differ-

ence, round trip time (RTT), the minimum RTT over RTT

ratio, the difference between RTT and the minimumRTT, and

the inter-arrival time of ACKs, and stores historical data in an

experience buffer. Then the agent uses a deep convolutional

neural network (DCNN) concatenated with a long short term

memory (LSTM) network to learn from historical data and

select the next action to adjust the congestion window size.

The contributions of this work are summarized as follows.

1) To the best of our knowledge, this is the first work that

applies DRL to tackle the congestion control problem.

Specifically, we propose a DRL based framework on

(i) how to build an experience buffer to deal with the

delayed environment, where an action will take effect

after a delay and feedbacks are also delayed, (ii) how

to handle the multi-agent competition problem, and

(iii) how to design and compute the key components

including states, action, and reward. We believe this

framework could help to boost the future research on

smart congestion control protocols.

2) The proposed TCP-Drinc framework also offers

effective solutions to several long-existing problems

in congestion control: delayed environment, partial

observable information, and measurement variations.

We apply DCNN as a filter to extract stable features

from the rich but noisy measurements, instead of using

EWMA as a coarse filter as in previous works. More-

over, the LSTM is utilized to handle the autocorrelation

TABLE 1. Notation.

within the time-series introduced by delay and partial

information that an agent senses.

3) We develop a realistic implementation of TCP-Drinc

on the ns-3 [13] and TensorFlow [14] platforms. The

DRL agent is developed with TensorFlow and the train-

ing and inference interfaces are built in ns-3 using

TensorFlow C++. We conduct an extensive simulation

study with TCP-Drinc and compare with five represen-

tative benchmark schemes, including both loss based

and latency based TCP variants. TCP-Drinc achieves

superior performance in throughput and RTT in all

the simulations, and exhibits high adaptiveness and

robustness under dynamic network environments.

The remainder of this paper is organized as follows.

We first review related work in Section II and discuss pre-

liminaries of DRL in Section III. The system model and

problem statement are presented in Section IV. The proposed

TCP-Drinc design is presented in Section V, and validated

with ns-3 simulations in Section VI. We conclude this paper

in Section VII. The math notation is summarized in Table 1.

II. RELATED WORK

Congestion control is a fundamental networking problem,

which has drawn extensive attention and has been studied

over the past three decades. In this section, we review the

VOLUME 7, 2019 11893

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

key related work and recent progress, as classified into three

categories: end-to-end, router based, and smart schemes.

A. END-TO-END SCHEMES

This class of work can be further classified into loss-

based or delay-based schemes. TCP Reno [15], TCP

Tahoe [1] and TCP NewReno [16] are early protocols that

are loss-based. TCP Vegas is the first delay-based pro-

tocol. Currently, most computer operation systems adopt

TCP Cubic [17] or Compound TCP [18], which are mainly

designed to deal with large capacity RTT products.

These protocols are originally designed for the wired

Internet. However, recent measurements in 3G and 4G LTE

networks reveals fast variation of channel capacity [3].

In addition, Zaki et al. [4] show that bursty scheduling and

competing traffic will also influence the RTT and capacity

utilization. The authors then propose new end-to-end proto-

cols that observe packet arrival times to infer the uncertain

network dynamics (i.e., Sprout [3]) and utilize delaymeasure-

ments (i.e., Verus [4]) to cope with these challenges.

Another recent progress on congestion control is in the

paradigm of data center networks. Compared with general

networks, the link capacity in data center networks is usually

larger (e.g, Gigbits or 10s of Gigbits) and stable, and the

latency ismuch smaller (e.g., inµs), while ACK is not sent for

every packet. The Data Center TCP (DCTCP) [19] exploits

ECN feedback from switches. Performance-oriented Con-

gestion Control (PCC) proposes to continuously observe the

connection between its actions and experienced performance,

and to adopt actions that lead to good performance [20].

Jiang et al. [21] leverage sliding mode control theory to ana-

lyze and address the stability issue of quantized congestion

notification (QCN) in data center Ethernet networks.

B. ROUTER BASED SCHEMES

This class of work involves switches or routers in the

congestion control process. Explicit Congestion Notifica-

tion (ECN) [22] is introduced as a substitution of loss as

a congestion signal. In Active Queue Management (AQM)

schemes, such as RED [23], CoDel [24], andMAQ [25], [26],

routers mark or drop packets on incipient congestion. These

approaches require modification of routers and intermediate

devices, which may not be practical or may not scale up to

large number of TCP flows.

C. SMART SCHEMES

With the recent success of machine learning/deep learning on

image recognition, video analytics, and natural language pro-

cessing, there is strong interest in applying machine learning

to solving networking problems [5]. The results in [27] and

[28] provide interesting insights into machine generated con-

gestion protocols. However, these learning algorithms require

offline training based on prior knowledge of the network

and can only be adopted for limited situations. Xu et al. [29]

propose an algorithm based on DRL to deal with the traffic

engineering problem at intermediate nodes in the network

FIGURE 1. Reinforcement learning for congestion control.

layer. Li et al. [30] incorporate Q-learning into congestion

control design and present QTCP. It is based on limited

feature scales (discretized states) and uses Kanerva Coding,

instead of a deep neural network, for Q-function approxima-

tion. The authors show considerable gains achieved by QTCP

over the classical TCP NewReno scheme.

III. PRELIMINARIES OF DRL

The general reinforcement learning consists of two entities:

agent and environment, as shown in Fig. 1. The interactions

between the two entities constantly influence the environment

and trains the agent. Usually DRL is applied to solve Markov

decision problems (MDP). During each episode, the agent

receives a state tensor st , takes an action at based on policy

π (st), and receives a scalar valued reward r(st , at). There

may be a delay τ1 before action at starts to influence the

environment, and there may also be a delay τ2 for reward

r(st , at) to be received by the agent. Such delays are neglected

in many DRL designs. However, for congestion control, such

delays play an important role on the stability of the system as

will be demonstrated later in this paper.

The value function V (st , at) can be represented as the

discounted, accumulated reward, which is given by

Rt =

T
∑

i=t

γ i−t · r(si, ai), (1)

where γ ∈ [0, 1] is the discount factor and T is the end of the

episode. With Bellman-Ford equation, we rewrite (1) as

Rt = r(st , at) + γ · Rt+1. (2)

In general settings, policy π (a|st) or π (st) generates the

target action by mapping the state space to the action space:

S → A, stochastically or deterministically. For example,

we can model the output action as a probability distribution

over a discrete action space p(a), while the action to be taken

could be either sampled with this distribution or the one

11894 VOLUME 7, 2019

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

with the largest probability. It is natural to use neural net-

works (NN) to approximate such policy and value functions.

However, the approximation could be unstable, due to the

strong correlation between sequential samples. In addition,

the nonstationary target values could further degrade the

stability. Therefore the shallow NN has a limited ability to

extract important features.

DRL algorithms, first introduced in [31], are based on

a similar structure but incorporate a deep neural network

(DNN) to learn the value function and/or the policy function.

The raw sensory data is treated as state st and input to the

DNN. The DNN is utilized to approximate the Q-function

Q(st , at), termed Deep Q-Network (DQN), which calculates

the optimal value for each possible action for given state st .

The Q value function Qπ (st , at) for given policy π is defined

as

Qπ (st , at) = E [Rt |st , at], (3)

where Rt is given in (1). The equation can be unrolled as

Qπ (st , at) = Est+1

[

rt + γQπ (st+1, at+1)|st , at
]

. (4)

Let ω represent the weights of the DQN. Supposing

Q(st , at , ω) ≈ Qπ (st , at), we can define a loss function as

J (ω) = E

[

(rt + γQ(st+1, at+1, ω) − Q(st , at , ω))
2
]

. (5)

The sum of the first two terms on the right-hand-side is

defined as the target value, i.e., yt = rt + γQ(st+1, at+1, ω).

To address the instability problem of the training process,

Mnih et al. [31] proposed two strategies: experience replay

and target networks. First, the history of transitional states

and actions is stored in a buffer as experience. The DQN is

trained with mini batches of data that are sampled randomly

from the experience buffer, so as to break the correlation

between sequential data samples. In fact, mini-batches are

randomly drawn from the experience buffer in order to apply

stochastic gradient decent (SGD) to further reduce the corre-

lation. Second, an additional target network is introduced to

calculate the target value yt = rt +γ ·Q(st+1, at+1, ω
′) in the

training process, whose weights ω
′ are updated periodically

with the running weights. The target value will become stable

after certain amount of steps in the training process.

IV. SYSTEM MODEL AND PROBLEM STATEMENT

A. NETWORK ARCHITECTURE

In this paper, a very general setting of congestion control is

considered, as shown in Fig. 2, where is a set of remote hosts

serving a set of mobile users (in fact, the last hop could also be

wired). Each end-to-end path, from a remote host to a mobile

user, consists of multiple hops. The remote hosts apply a

congestion window (cWnd) based protocol. The two features

of the general setting are: competitions among different flows

at bottleneck links and potentially multiple bottlenecks along

the end-to-end path.

Most prior works assume that the last wireless hop is

the single bottleneck. Under this assumption, the round-trip

FIGURE 2. System architecture for TCP over wireless.

time (RTT) of a user, τRTT (t) = τp + τq(t), where τp is the

propagation delay and τq(t) is the queuing delay, seems to be

independent to other users, since the BS usually maintains

separate queues for different users. However, even in this

case, the multiple flows at the BS are still coupled due to

the transmission scheduling algorithm used at the BS [4].

Furthermore, the flows may still compete with each other for

transmission resources and buffer storage along the multihop

path if they share a common link.

The general problem of congestion control should be

treated as a delayed, distributed decision-making problem.

Each sender needs to decide its own cWnd (or, sending

rate). We focus on cWnd in this paper since it can be

implicitly translated into sending rate according to the TCP

clocking phenomenon [32]. The ‘‘delayed’’ feature means

that the action that a sender takes will influence the bot-

tleneck queue after a forward propagation delay; and the

receiver feedback about the network condition is usually

received by the sender an RTT later. If the global infor-

mation of each user’s strategy, network topology, and traf-

fic condition were available, one could have made perfect

decisions. But the global information is usually unavailable

and the users do not cooperate on congestion control, which

entails ‘‘distributed’’ decision making. Although these fea-

tures have been considered in prior work, e.g., modeling TCP

throughput as delayed differential equations [32], they all

pose great challenges to a DRL based congestion control

design.

B. PARTIALLY OBSERVABLE INFORMATION

In congestion control, the information each sender can

acquire is partial and delayed. The measured RTT can only

tell the total delay, but lacks details on the delay on each hop,

on forward and backward directions, and on propagation and

queueing components. One popular approach is to approx-

imate propagation delay by the minimal RTT. In addition,

the acquisition of RTT and the effect of action are both

delayed. Therefore, congestion control is actually a partially

observable Markov decision process (POMDP).

VOLUME 7, 2019 11895

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

The problem is to develop a sender algorithm that explores

the network environment and adjusts the congestion win-

dow to reliably transport data. This process is conducted

by many other senders as well due to shared networking

resources. Therefore, the environment one sender senses is

also affected by other users’ actions and is constantly chang-

ing. In this paper, we propose an integrated solution to deal

with such ‘‘multi-agent’’ feature of the congestion control

problem.

For the POMDP problem, it helps to utilize historical data

to exploit the momentum and correlation in the process.

However, utilizing historical data is non-trivial due to the

associated time and space complexity. In machine learning,

a promising solution is the recurrent neural network (RNN),

which is effective for capturing the temporal, dynamic behav-

ior in a time series.

C. BASIC ASSUMPTIONS

To make the design general, we do not assume the system

is Markovian. Many TCP variants, such as [17] and [33],

make control decisions based only on the current state, since

the basic assumption is the next state only depends on the

current state, no matter what congestion signal they use (i.e.,

delay or loss). In a recent work [27], the exponential average

over historical delay is utilized. This is an intuitive solution to

the problem of congestion control because the current state is

delayed and partially observable. As discussed, the sending

rate depends on the state of one RTT before, while the states

of queues and latency depend on the state one propagation

delay ago. In short, the Markovian assumption may be too

simplistic and it will be helpful to exploit historical informa-

tion for better decision making.

In real network environments, received signals are usually

noisy, which can be mitigated by adopting an exponential

window moving average to acquire the stable information.

In this paper, we utilize a DCNN as an automatically tuned

filter to extract stable information. To make the model math-

ematically tractable, the amount of previous states to be

considered is limited to a window size of M .

We make no assumption on how the users compete for

resources. The information that senders could acquire is very

limited in practice. Many existing algorithms are based on

certain assumptions of network conditions. For example,

Sprout [3] assumes that the only dynamic component of delay

is queuing delay, and more important, it is self-inflicted,

meaning that it is solely determined by its sending rate and

channel capacity. This assumption may be strong since the

traffic flows are coupled by the transmission scheduling at the

BS, and cross-traffic may also affect the queueing delay when

queues and transmission capacity are shared in the wired

hops. A practical scheme should not require the sender to

know if the physical network is wired or wireless, how many

bottlenecks are out there, and what scheduling algorithms are

used at each hop. Therefore, it is better to make no extra

assumptions on the physical network. We thus assume the

information a sender could acquire is its own sending rate,

congestion window cWnd, measured RTT, and interarrival

times of received ACKs.

D. NETWORK MODEL

The traffic model adopted in this paper is based on TCP

clocking [32]; the sending rate can be implicitly determined

by the congestion window cWnd and RTT. CWnd is the

maximum amount of TCP segments the sender can inject

into the network without ACK. The network and receiver can

control the sending pace by delaying or withholding ACKs.

The benefit of focusing on cWnd is the reduced control action

dimension.

To simplify notation, we omit the subscript i for sender i

in the following presentation. Let the sender cWnd be w(t).

Recall the RTT is τRTT (t) = τp + τq(t), where τp is the prop-

agation delay, and τq(t) is the total queuing delay incurred

at one or more bottleneck links along the end-to-end path.

The τp can be approximated by the minimum RTT within a

time window. The instantaneous sending rate, x(t), and its

relationship with cWnd w(t), is given by [32]
∫ t

t−τRTT (t)

x(ι)dι = w(t). (6)

Differentiating (6) and rearranging terms, we have [32]

x(t) =
x(t − τRTT (t̃))

1 + τ̇RTT (t − τRTT (t̃))
+ ẇ(t), (7)

where t̃ = t − τRTT (t). Notice that the instantaneous sending

rate at time t depends on not only the sending rate one

RTT ago, but also the derivative of the window size and the

derivative of RTT at one RTT ago.

Therefore, the congestion control process can be viewed

as a ‘‘combined’’ sparse reward process. Combined means

it is not a complete sparse process, since the current action

can still be rewarded, while the previous actions would also

influence the current reward. Moreover, the window size w(t)

is an integer, and the influence of increasing or decreasing

w(t) will be delayed until w(t) packets are received.

E. UTILITY FUNCTION

We next define a utility function for training and evaluation

of the proposed algorithm. For resource allocation/traffic

engineering, the α-fairness function is widely adopted [27].

In this model, the utility function is defined as

Uα(ι) =







log(ι), if α = 1

ι1−α

1 − α
, otherwise,

(8)

where parameter α determines different types of fairness. For

example, if α → ∞, maximizing the sum utility becomes

a max-min problem. If α = 1, maximizing the sum utility

ensures proportional fairness. In FAST TCP [34], Wei et al.

adopt this utility function and prove the fairness of the pro-

posed congestion control algorithm.

In this paper, the goal is to trade-off between throughput

and latency. For high throughput, the sending rate should

11896 VOLUME 7, 2019

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

be set high to prevent the bottleneck queue from being

nonempty, so that the bottleneck capacity can be fully uti-

lized. On the other hand, for low latency, the sending rate

should be set low to ensure low occupancy level at the

bottleneck queue, so the queueing delay will be low. We

adopt the following utility function to trade-off the two design

goals [27]

U (x(t), τRTT (t)) = Uα(x(t)) − βUα(τRTT (t)). (9)

where coefficient β indicates the relative importance of

throughput and latency.

The goal of the congestion control algorithm is to optimize

the expectation of (9) by properly setting the congestion

window cWnd.

V. TCP-DRINC DESIGN

A. APPROACH FOR MULTI-AGENT COMPETITION

As discussed, we are dealing with a multi-agent competition

problem. At a bottleneck link, multiple flows compete for

network resources such as buffer and capacity. In addition,

the exploration strategy of other users could be sensed as

dynamics of the environment, which could lead to misin-

formed state feedback and result in an unstable training

process and poor performance. We tackle this problem by

integrating three methods: (i) feature selection, (ii) clipped

rewards, and (iii) a modified training process.

Feature selection is presented in Section V-B. By hand-

picking the features that are indicative of system state, we can

deal with abnormal system dynamics caused by other users’

unknown strategies. Reward clipping can reduce the reward

variation in different environments and increase the learning

stability, which is discussed in detail in Section V-D.

For training, we combine the suggestions from [35]–[37]

to have: (i) a relatively small experience replay buffer, and

(ii) concurrent experience replay trajectories (CERTs) for

sampling training data. The first method can mitigate the

non-stationary nature of the local experience sensed by an

agent. The normal experience replay buffer size is multiples

of 10K. In this work, we set the buffer size to 1600, meaning

the algorithm only keeps the most recent 1600 samples. For

CERTs, each agent takes the same samples for training. To

ensure this, the only synchronization needed is to assign the

same random seed to each agent at the beginning of training.

It requires no synchronization of the agents afterward, while

guaranteeing independent operation of each agent.

B. FEATURE ENGINEERING

During a TCP session, the sender acquires the follow-

ing information: (i) congestion window size, (ii) RTT, and

(iii) inter-arrival time of ACKs. It is necessary to pre-process

the sensed data. The benefits are two-fold: accelerating the

training process and better explanation of the model. Accord-

ing to (6) and (7), the current sending rate is determined by the

cWnd difference and the sending rate one RTT ago. There-

fore, cWnd difference, 1w, as measured by the difference in

two consecutive time slots, and RTT τRTT should be collected

as features.

In the transport process, the minimum RTT within a time

window provides an estimation of the propagation delay.

The reason why not using the minimum RTT of the entire

transmission process, is to take into account the possibility of

route changes. Let τ̂p denote the minimum RTT. When cWnd

is smaller than the product of capacity and τ̂p, the measured

RTT will always converge to τ̂p. Thus the minimum RTT τ̂p
should also be treated as state information. In TCP-Drinc,

we take the ratio vRTT = τ̂p/τRTT as a feature, which is

indicative of the relative portions of propagation delay in

the RTT. Furthermore, the difference between RTT and the

minimum RTT, i.e., δRTT = τRTT − τ̂p, is an estimate of

the overall queuing delay and is indicative of the network

congestion level. To track the minimum RTT, the estimation

will be updated at 10 RTT intervals. The last feature we pick

is the inter-arrival time of ACKs, denoted by τACK , which is

indicative of the goodput of the network.

C. DEFINITIONS OF STATES AND ACTIONS

We next define the state and action space of TCP-Drinc. The

non-Markovian nature of the problem makes it necessary to

take history into consideration. As discussed, we consider the

following features of a TCP connection: (i) cWnd difference

1w, (ii) RTT τRTT , (iii) the minimum RTT over RTT ratio

vRTT , (iv) the difference between RTT and the minimum

RTT δRTT , and (v) the inter-arrival time of ACKs τACK . The

algorithm runs in slotted time (e.g., 10 ms per time slot).

In each time slot t , we measure the above features and record

them as state of the time slot st . If there is no events (e.g.,

no ACK received or cWnd changed) in a time slot t , we have

st = st−1. We then take the combination of the states of M

consecutive past time slots as one system state, in the form of

a 2nd-order tensor, which is denoted as S and given by

S = [s0, s1, ..., sM−1], (10)

where st = [1w(t), τRTT (t), vRTT (t), δRTT (t), τACK (t)].

The action space consists of five actions on adjusting

cWnd. In order to trade-off between agility and robustness

through the process, we adopt actions w = w±1 as exponen-

tially increase/decrease, and actions w = w ± 1
w
as linearly

increase/decrease of w. The exponentially increase/decrease

actions allow the agent to quickly adapt to fast variations

of the environment. The linearly increase/decrease actions

enhance robustness when the agent decides to doodle around

a proper operating point. Moreover, the no change action

should also be included. The action space is thus defined as

A = {w = w± 1; w = w±
1

w
; no change}. (11)

D. REWARD CALCULATION

Reward design is also challenging for DRL based congestion

control. The RTT measurements at the sender side is usually

noisy. Factors such as the bursty sending process, varying

VOLUME 7, 2019 11897

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

processing times at the devices along the path, and recov-

ery from packet losses in the physical layer all contribute

to measurement noise. However, it is important to acquire

accurate RTT measurements since a misinformed RTT might

result in wrong reward to the agent’s action, and affect the

convergence of the training process. In this paper, we adopt

a low-pass filter with a fixed window size, i.e., exponential

window moving average (EWMA), for RTT measurements,

which removes frequent, small latency jitters.

Goodput is measured by counting the ACKs received

within a time window. A benefit of this method is we

directly calculate the goodput, while random packet losses

are excluded. The measured goodput usually varies over time

due to factors such as bursty sending process and random

distribution in intermediate queues, as well as packet losses

caused by link errors or congestion.We also take EWMAwith

one RTT window size to process the measured goodput.

Recall that the action of a sender will take effect after one

RTT, and the impact on future goodput is exponentially dis-

counted. The overall impact of an action on future goodput,

denoted as z(t), can be estimated as

z(t) =

∞
∑

ι=t

ẑ(ι)(1 − η)ηι−t , (12)

where η < 1 is the decay rate of the action’s influence in the

future, and ẑ(t) is the measured goodput at time t . In order to

make the calculation tractable in time and storage, we cut off

time to have a horizon of L. The approximation of z(t) for an

L-horizon is

z(t) =

t+L−1
∑

ι=t

ẑ(ι) ·
(1 − η)

1 − ηL+1
· ηι−t (13)

For fairness, we compute the utility function as

U (z(t), τRTT (t)) = Uα(z(t)) − βUα(τRTT (t)). (14)

In the context of Q-learning, Q-value denotes the expectation

of reward. If we only adopt the utility (14) in the reward

function, the agent may keeps on choosing the same action,

which returns a positive utility value but does not converge

to the optimal operating point. Therefore, we define reward

function as the utility difference, given by

r(t) = U (t + τRTT (t̃)) − U (t), (15)

where t̃ is one RTT after t .

Furthermore, for different network environments (e.g., dif-

ferent bottleneck link capacities and propagation delays),

the reward calculated using (15) may have a large range of

variation. In order to make the TCP-Drinc design more gen-

eral and adaptable to various network environments, we clip

the reward value to the range [−1, 1].With clipping, although

the training process could be relatively longer in some cases,

the chance of convergence of the training process could be

greatly improved (i.e., by avoiding large oscillations) and the

same TCP-Drinc design can be applied to varying network

environments, as will be shown in our simulation results.

FIGURE 3. The proposed TCP-Drinc system architecture.

E. EXPERIENCE BUFFER FORMATION

The TCP-Drinc design is presented in Fig. 3, which takes the

specifically designed structure of training samples to implic-

itly learn and predict the future. As shown in Fig. 1, it takes

τ1(t) for an action to take effect on the bottleneck queue(s).

Thus the action that actually works should be as(t − τ1(t)).

Moreover, ACKs carry system state feedback with delay

τ2(t). Thus the currently sensed state s(t) is actually the

system state ss(t − τ2(t)). To deal with such delays, we look

into the future for τ1(t) + τ2(t) to predict the system state

based on the current state and action, and then choose the

next action. However, such prediction is challenging since (i)

the delays τ1(t) and τ2(t) are stochastic; (ii) the predictions

are usually noisy and error-prone; and (iii) the computation

could be intensive due to the high dimension of the system.

In this paper, we introduce a new strategy to address this

problem. First of all, we use a buffer to store the running

dynamics history in th form of three-tuples {s(t), a(t), r(t)}.

Every time when a new tuple {s(t), a(t), r(t)} is inserted,

we look backward in the buffer to find the older tuple that

was saved one RTT before. Then we combine these two

tuples to obtain a complete training sample as a four-tuple

{s(t − τRTT (t)), a(t − τRTT (t)), s(t), r(t − τRTT (t))}. This

sample is then stored in the experience buffer to be used in

the training process. This way, the DQN can better learn the

reward based on current and future states.

F. TCP-DRINC AGENT DESIGN

With definitions of space and action, reward calculation, and

experience buffer design, we are now ready to present the

agent design, which is based on a DCNN as shown in Fig. 4.

The agent takes the five features of 64 consecutive time slots

as input and choose the next action from the action space.

In prior works such as [27], the EWMA is utilized to

process the noisy state information. However, this method

11898 VOLUME 7, 2019

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

FIGURE 4. Design of the proposed DCNN (in the figure, ‘‘C.’’ represents the convolutional layer, ‘‘S.’’ represents the down sampling (pooling)
layer, ‘‘FC’’ means fully connected).

suffers from the long tail effect when used as a filter, and

it could miss the rich information in feedback. In this paper,

we proposed a new approach to fully utilize the rich feedback

information by adopting a DCNN.We use the combined state

of M consecutive time slots including and before the current

time t and divide them in to frames as inputs. For instance,

we set M = 64 and obtain 5 frames. Each frame has a size

8×8 and consists of data on one of the five features, as shown

in Fig. 4. With the convolutional layers and pooling layer,

the more stable, higher level features can be abstracted from

the raw state information.

Furthermore, the non-Markovian nature of the problem

should also be accounted for, as well as the action-taking-

effect delay τ1 and feedback delay τ2 (see Fig. 1). A promis-

ing approach is to incorporate an LSTM to handle the cor-

relation in the time series [38]. Through back-propagation

through time (BPTT), this structure exploits memory to

extract system features. As in Fig. 4, the LSTM layer is placed

after the DCNN extracts the stable features. Hausknecht and

Stone [38] proposed two training methods: Bootstrapped

Sequential Updates and Bootstrapped Random Updates. The

former executes the training by randomly selecting an episode

and then starting from the beginning of the episode. The latter,

however, picks a random timestep in an episode and proceeds

for a fixed amount of timesteps. In this paper, we adopt the

Bootstrapped Random Updates method to train the DQN by

combining with experience replay.

In Fig. 4, the fully connected layer is used to compute the

Q-value for each action. We adopt the Exponential Linear

Unit (ELU) activation function, defined as

ELU (ι) =

{

ι, ι > 0

λ · (eι − 1), ι ≤ 0,
(16)

instead of Rectified Linear Units (ReLU). Since we have to

deal with negative rewards, it is beneficial not to kill the nodes

with negative outputs. In the last layer, which is to output the

Q-value for actions, no activation function is used.

VI. SIMULATION STUDY

A. SIMULATION SETUP

In this paper, the DCNN is implemented with Tensor-

Flow [14]. The training is executed at a reasonable speed on

a PC with an I5-8600k CPU and Nvidia GeForce 1060 3GB

GPU. The dropout layer is applied with a 0.2 dropout proba-

bility to provide both regularization and ensemble effect. The

LSTM layer with 64 units is applied after the DCNN layers.

One fully connected layer is used with activation function

ELU . The output layer is a linear combination of the previous

output with five outputs, one for each action. The control

action is applied every 10 ms. If there is no ACK received

during a time slot, we simply copy the previous state. The

agentmeasures RTT using timestamps in receivedACKs. The

minimum RTT is updated every 10 RTTs.

In the simulations, we assume there are N remote hosts

that serve N wired or wireless users. Each remote host runs

a DRL agent independently, i.e., the DRL agents do not

share/exchange information. The simulation is based on the

classical dumbbell topology with two routers in the middle,

between the remote hosts and users (see Fig. 2).

For fair and comprehensive performance comparison,

we choose the following five benchmark schemes from

existing representative algorithms, including: (i) TCP-

NewReno [16], (ii) TCP-Cubic [17], (iii) TCP-Hybla [39],

(iv) TCP-Vegas [40], and (v) TCP-Illinois [41]. We will

mainly focus on their performance on throughput and RTT

in this study.

B. TRAINING PROCESS

The training process consists of two phases: pre-training and

distributed training. In pre-training, we train each agent for

Npre episodes with the same setup except that only one user

is served to build the baseline behavior for the agent. Then

in distributed training, the competition strategy of each agent

will be trained independently for Ndis episodes.

1) PRE-TRAINING

In this simulation, we have Npre = 20. The bottleneck

capacity is 10 Mbps and the propagation delay is 80 ms.

Each training episode lasts for 500 s. Fig. 5 shows the cWnd

and RTT traces in the 10th training episode. It can be seen

that the learning process consists of three phases: the explo-

ration probability linear annealing phase, the convergence

phase, and the phase of randomly learning of other options.

In Fig. 5(a), before the vertical red line is the exploration

probability annealing process, which involves a large prob-

ability of random choice of actions. With the exploration

probability decreased to 0.1, which is the end of the first

VOLUME 7, 2019 11899

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

FIGURE 5. The cWnd and RTT traces of pre-training with a single agent
obtained in the 10th training episode. (a) cWnd dynamics. (b) RTT
dynamics.

phase, the agent can adjust the action to converge to the

perfect operating condition, i.e., the cWnd that can fully

utilize the bottleneck link capacity without introducing extra

queuing delay (the horizontal red dashed line in Fig. 5(a)).

Then with a 0.1 probability, the agent will randomly deviate

from the perfect operating point to explore the state space.

This process will be repeated to train the agent with different

network conditions.

2) DISTRIBUTED TRAINING

After pre-training, we copy themodel to five different senders

(i.e., there are N = 5 hosts serving 5 wired users), and

let them run the training process independently. We set the

random seed to 17 for all the senders. The basic environment

setting is the same and the distributed training runs for Ndis =

100 episodes. In Fig. 6, the average throughput and RTT in

the distributed training process are presented. We can see that

as the distributed training proceeds, the average throughput

is increasing in general. And the average RTT eventually

converges toward the minimum RTT of 80 ms.

FIGURE 6. The throughput and RTT dynamics of distribute training of five
agents. (a) Average throughput. (b) Average RTT.

C. CONGESTION CONTROL PERFORMANCE

In this section, we present our experimental results with

different network parameters to test the performance of

TCP-Drinc, specifically, over situations that deviate from that

TCP-Drinc was originally trained. As in Section VI-B, TCP-

Drinc is trained with five TCP sessions with 10 Mbps bot-

tleneck capacity and 80 ms propagation delay. The following

three testing cases are simulated in this section.

1) Case I: four users; the propagation delay is varied in

the range [60, 240] ms; and the bottleneck bandwidth is

10 Mbps;

2) Case II: the number of users is varied in the range [3, 9];

the propagation delay is 80 ms; and the bottleneck

bandwidth is 8 Mbps;

3) Case III: four users; the propagation delay is 100 ms;

the bottleneck bandwidth is varied within [5, 20]Mbps.

The bottleneck buffer size is set to 100 packets. Each packet

consists of a 1000-Byte payload plus a 40-Byte header.

11900 VOLUME 7, 2019

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

FIGURE 7. Throughput and RTT statistics for increased propagation delay
(Case I). (a) Average throughput. (b) Average RTT.

As shown in Figs. 7, 8, and 9, the well-trained

TCP-Drinc model achieves a promising performance under

all the scenarios. In Fig. 7, we present the throughput and RTT

for increased propagation delay. We can see that all the RTTs

increase with propagation delay, while the throughput is rel-

atively stable (except for TCP-Vegas). TCP-Drinc achieves

the highest throughput and the second smallest RTT for

the entire range of propagation delay. Although TCP-Vegas

achieves a lower RTT than TCP-Drinc, its throughput is the

lowest, indicating that the low RTT is achieved by keeping

the sending rate low and the bottleneck buffer almost empty

(i.e., sacrificing the utilization of the bottleneck link capac-

ity). Unlike the several loss based protocols, TCP Vegas is a

latency based scheme that linearly adjusts its cWnd according

to the difference between the current RTT and the minimum

RTT. It is effective in keeping RTT low, but is sensitive to

network condition changes and suffers from relatively low

throughput.

In Fig. 8, the throughput and RTT are presented for

increased number of users. We can see the capacity for

FIGURE 8. Throughput and RTT statistics for increased number of users
(Case II). (a) Average throughput. (b) Average RTT.

each user decreases with increased number of users. Again,

TCP-Drinc achieves the highest throughput and the second

lowest RTT. TCP-Vegas outperforms TCP-Drinc with a lower

RTT, but at the cost of a low throughput. Fig. 9 presents

the throughput and RTT achieved under different bottleneck

capacity. For increased bottleneck capacity, the throughput

increases and the RTT decreases as expected (except for TCP

Vegas). Again, TCP-Drinc achieves the highest throughput

and the second lowest RTT for the entire range of bottleneck

capacity. TCP Vegas can always achieve the lowest RTT, but

at the cost of low throughput. TCP-Drinc achieves a com-

parable throughput as loss based protocols (i.e., TCP-Cubic

or TCP-NewReno), but only introduces a 20% higher RTT

than TCP-Vegas. This is because the TCP-Drinc algorithm

can always find the operation point that is close to the perfect

operating point. We also find that the performance of TCP-

Drinc is the best when the network parameters are close to

the training scenarios.

We next examine the performance of the schemes under

dynamic network settings. In particular, the simulation is

VOLUME 7, 2019 11901

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

TABLE 2. Jain’s Fairness Index Achieved by the Congestion Control Schemes.

FIGURE 9. Throughput and RTT statistics for increased bottleneck
capacity (Case III). (a) Average throughput. (b) Average RTT.

executed 100 times, each lasts for 500s. The number of users

is 5. The bottleneck capacity is varied at a frequency of 10 Hz;

each capacity is randomly drawn from a uniform distribution

in [5, 15] Mbps. The propagation delay is also varied at a

10 Hz frequency and each value is randomly drawn from

a uniform distribution in [0.06, 0.16]s. In Fig. 10, we plot

the combined RTT (x-axis) and throughput (y-axis) results

in the form of of 95% confidence intervals. That is, we are

95% sure that the throughput and RTT combination of each

scheme are located within the corresponding oval area. We

find that TCP-Drinc achieves a comparable throughput per-

formance with the loss based protocols, e.g., TCP-Cubic and

FIGURE 10. Throughput and RTT of the TCP variants under randomly
varied network parameters. Each oval area represents the 95%
confidence interval.

TCP-NewReno. Furthermore, TCP-Drinc achieves a much

lower RTT performance than the loss based protocols, e.g.,

at least 46% lower than TCP-NewReno and 65% lower than

TCP-Cubic. Furthermore, TCP-Drinc achieves an over 100%

throughput gain than TCP-Vegas at the cost of a only 15%

higher RTT.

To study the fairness performance of the algorithms,

we evaluate the Jain’s index they achieve in the simulation.

The average fairness index and the corresponding 95% con-

fidence intervals are presented in Table 2. TCP-Vegas and

TCP-Illinois achieve the best fairness performance among all

the algorithms. TCP-Drinc can still achieve a considerably

high fairness index (only 1.9% lower than the best). Note that

the best fairness performance of TCP Vegas is achieved at

the cost of a much poorer throughput performance. It is also

worth noting that the 95% confidence interval of TCP-Drinc

is the smallest among all the schemes, which is indicative of

its robustness under varying network conditions.

Finally, we evaluate the TCP variants with a mobile net-

work scenario. The same network setting is used, except the

last hop is now an LTE network with five mobile users. The

users move in a disk area of 800m radius, following a random

walk mobility model with 1 m/s speed. The LTE network is

simulated using the built-in LTE model in ns-3 [13]. The LTE

BS uses a deep and separate queue for each user. Therefore,

we do not consider TCP-NewReno in this simulation, since it

will introduce a very large RTT under this setting. The wired

part has the same configuration as in previous simulations.

The simulation results are presented in Fig. 11. The proposed

11902 VOLUME 7, 2019

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

FIGURE 11. Throughput and delay results for the dumbbell topology with
five mobile users served by an LTE network.

algorithm still performs well in the wireless network setting.

Its throughput is comparable to the two loss based protocols,

with a greatly reduced RTT. Its throughput is much higher

than TCP Vegas while the RTT is only slightly higher.

VII. CONCLUSIONS

In this paper, we developed a framework for model-free,

smart congestion control based on DRL. The proposed

scheme does not require accurate models for network,

scheduling, and network traffic flows; it also does not require

training data, and is robust to varying network conditions.

The detailed design of the proposed TCP-Drinc scheme was

presented and the trade-offs were discussed. Extensive sim-

ulations with ns-3 were conducted to validate its superior

performance over five benchmark algorithms.

REFERENCES

[1] V. Jacobson, ‘‘Congestion avoidance and control,’’ ACM SIGCOMMCom-

put. Commun. Rev., vol. 18, no. 4, pp. 314–329, 1988.

[2] Y. Zhao, B. Zhang, C. Li, and C. Chen, ‘‘ON/OFF traffic shaping in the

Internet:Motivation, challenges, and solutions,’’ IEEENetw., vol. 31, no. 2,

pp. 48–57, Mar./Apr. 2017.

[3] K. Winstein, A. Sivaraman, and H. Balakrishnan, ‘‘Stochastic forecasts

achieve high throughput and low delay over cellular networks,’’ in Proc.

USENIX NSDI, Lombard, IL, USA, Apr. 2013, pp. 459–471.

[4] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg, ‘‘Adaptive

congestion control for unpredictable cellular networks,’’ ACM SIGCOMM

Comput. Commun. Rev., vol. 45, no. 4, pp. 509–522, Oct. 2015.

[5] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao. (Sep. 2018). ‘‘Applica-

tion of machine learning in wireless networks: Key techniques and open

issues.’’ [Online]. Available: https://arxiv.org/abs/1809.08707

[6] M. Feng and S. Mao, ‘‘Dealing with limited backhaul capacity in mil-

limeter wave systems: A deep reinforcement learning approach,’’ IEEE

Commun., to be published.

[7] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, ‘‘Optimized

computation offloading performance in virtual edge computing systems

via deep reinforcement learning,’’ IEEE Internet Things J., to be published.

[Online]. Available: https://ieeexplore.ieee.org/document/8493155

[8] Y. Sun, M. Peng, and S. Mao, ‘‘Deep reinforcement learning based

mode selection and resource management for green fog radio access

networks,’’ IEEE Internet Things J., to be published. [Online]. Available:

https://ieeexplore.ieee.org/document/8468000

[9] Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi, ‘‘Learn to cache:

Machine learning for network edge caching in the big data era,’’ IEEE

Wireless Commun., vol. 25, no. 3, pp. 28–35, Jun. 2018.

[10] X. Wang, X. Wang, and S. Mao, ‘‘RF sensing in the Internet of Things:

A general deep learning framework,’’ IEEE Commun., vol. 56, no. 9,

pp. 62–69, Sep. 2018.

[11] X. Wang, L. Gao, S. Mao, and S. Pandey, ‘‘CSI-based fingerprinting for

indoor localization: A deep learning approach,’’ IEEE Trans. Veh. Technol.,

vol. 66, no. 1, pp. 763–776, Jan. 2017.

[12] W. Wang, X. Wang, and S. Mao, ‘‘Deep convolutional neural

networks for indoor localization with CSI images,’’ IEEE

Trans. Netw. Sci. Eng., to be published. [Online]. Available:

https://ieeexplore.ieee.org/document/8468057

[13] G. F. Riley and T. R. Henderson, ‘‘The ns-3 network simulator,’’ inModel-

ing and Tools for Network Simulation, K. Wehrle, M. Günes, and J. Gross,

Eds. Berlin, Germany: Springer, 2010, pp. 15–34.

[14] M. Abadi et al., ‘‘Tensorflow: A system for large-scale machine learning,’’

in Proc. USENIX OSDI, Savannah, GA, USA, Nov. 2016, pp. 265–283.

[15] D. R. Cox, ‘‘Long-range dependence: A review,’’ in Statistics: An

Appraisal, H. A. David and H. T. David, Eds. Ames, IA, USA: Iowa State

Univ. Press, 1984, pp. 55–74.

[16] S. Floyd, A. Gurtov, and T. Henderson, The NewReno Modification to

TCP’s Fast Recovery Algorithm, document RFC 3782, IETF, Apr. 2004.

[17] S. Ha, I. Rhee, and L. Xu, ‘‘CUBIC: A new TCP-friendly high-speed TCP

variant,’’ ACM SIGOPS Operat. Syst. Rev., vol. 42, no. 5, pp. 64–74, 2008.

[18] K. Tan, J. Song, Q. Zhang, andM. Sridharan, ‘‘A compound TCP approach

for high-speed and long distance networks,’’ in Proc. IEEE INFOCOM,

Barcelona, Spain, Apr. 2006, pp. 1–12.

[19] M. Alizadeh et al., ‘‘Data center TCP (DCTCP),’’ in Proc. ACM SIG-

COMM, New Delhi, India, Aug./Sep. 2010, pp. 63–74.

[20] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, ‘‘PCC: Re-

architecting congestion control for consistent high performance,’’ in Proc.

USENIX NSDI, Oakland, CA, USA, May 2015, pp. 395–408.

[21] W. Jiang, F. Ren, R. Shu, Y. Wu, and C. Lin, ‘‘Sliding mode congestion

control for data center Ethernet networks,’’ IEEE Trans. Comput., vol. 64,

no. 9, pp. 2675–2690, Sep. 2015.

[22] S. Floyd, ‘‘TCP and explicit congestion notification,’’ ACM SIGCOMM

Comput. Commun. Rev., vol. 24, no. 5, pp. 8–23, Oct. 1994.

[23] S. Floyd and V. Jacobson, ‘‘Random early detection gateways for

congestion avoidance,’’ IEEE/ACM Trans. Netw., vol. 1, no. 4,

pp. 397–413, Aug. 1993.

[24] K. Nichols and V. Jacobson, ‘‘Controlling queue delay,’’ Commun. ACM,

vol. 55, no. 7, pp. 42–50, Jul. 2012.

[25] K. Xiao, S. Mao, and J. K. Tugnait, ‘‘Congestion control for infrastructure-

based CRNs: A multiple model predictive control approach,’’ in Proc.

IEEE GLOBECOM, Washington, DC, USA, Dec. 2016, pp. 1–6.

[26] K. Xiao, S. Mao, and J. K. Tugnait, ‘‘MAQ: A multiple model predictive

congestion control scheme for cognitive radio networks,’’ IEEE Trans.

Wireless Commun., vol. 16, no. 4, pp. 2614–2626, Apr. 2017.

[27] K. Winstein and H. Balakrishnan, ‘‘TCP ex machina: Computer-generated

congestion control,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 43,

no. 4, pp. 123–134, 2013.

[28] A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan, ‘‘An exper-

imental study of the learnability of congestion control,’’ in Proc. ACM

SIGCOMM, Chicago, IL, USA, Aug. 2014, pp. 479–490.

[29] Z. Xu et al. (Jan. 2018). ‘‘Experience-driven networking: A deep

reinforcement learning based approach.’’ [Online]. Available: https://

arxiv.org/abs/1801.05757

[30] W. Li, F. Zhou, K. R. Chowdhury, and W. M. Meleis, ‘‘QTCP:

Adaptive congestion control with reinforcement learning,’’ IEEE

Trans. Netw. Sci. Eng., to be published. [Online]. Available:

https://ieeexplore.ieee.org/document/8357943

[31] V. Mnih et al., ‘‘Human-level control through deep reinforcement learn-

ing,’’ Nature, vol. 518, pp. 529–533, Feb. 2015.

[32] K. Jacobsson, L. L. H. Andrew, A. Tang, K. H. Johansson,

H. Hjalmarsson, and S. H. Low, ‘‘ACK-clocking dynamics: Modelling

the interaction between windows and the network,’’ in Proc. IEEE

INFOCOM, Phoenix, AZ, USA, Apr. 2008, pp. 2146–2152.

[33] C. Jin, D. X. Wei, and S. H. Low, ‘‘FAST TCP: Motivation, architec-

ture, algorithms, performance,’’ in Proc. IEEE INFOCOM, Hong Kong,

Mar. 2004, pp. 2490–2501.

[34] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, ‘‘Fast TCP: Motivation,

architecture, algorithms, performance,’’ IEEE/ACM Trans. Netw., vol. 14,

no. 6, pp. 1246–1259, Dec. 2006.

VOLUME 7, 2019 11903

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

[35] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson. (2016).

‘‘Learning to communicate to solve riddles with deep distributed recurrent

Q-networks.’’ [Online]. Available: https://arxiv.org/abs/1602.02672

[36] J. Foerster et al. (2017). ‘‘Stabilising experience replay for deep

multi-agent reinforcement learning.’’ [Online]. Available: https://

arxiv.org/abs/1702.08887

[37] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian. (2017). ‘‘Deep

decentralized multi-task multi-agent reinforcement learning under partial

observability.’’ [Online]. Available: https://arxiv.org/abs/1703.06182

[38] M. Hausknecht and P. Stone. ‘‘Deep recurrent Q-learning for partially

observable MDPs.’’ [Online]. Available: https://arxiv.org/abs/1507.06527

[39] C. Caini and R. Firrincieli, ‘‘TCP hybla: A TCP enhancement for het-

erogeneous networks,’’ Int. J. Satellite Commun. Netw., vol. 22, no. 5,

pp. 547–566, Sep./Oct. 2004.

[40] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, ‘‘TCP Vegas: New

techniques for congestion detection and avoidance,’’ in Proc. SIGCOMM,

London, U.K., Aug./Sep. 1994, pp. 24–35.

[41] S. Liu, T. Başar, and R. Srikant, ‘‘TCP-Illinois: A loss-and delay-based

congestion control algorithm for high-speed networks,’’ Perform. Eval.,

vol. 65, no. 6, pp. 417–440, 2008.

KEFAN XIAO (S’14) received the B.E. degree in

electronic engineering from Xi’an Jiaotong Uni-

versity, Xi’an, China, in 2011, the M.S. degree in

electronic engineering from Shanghai Jiao Tong

University, Shanghai, China, in 2014, and the

Ph.D. degree in electrical and computer engineer-

ing from Auburn University, Auburn, AL, USA,

in 2018. He is currently a Software Engineer

with Google, Inc. His research interests include

TCP congestion control, video streaming, and

transmissions.

SHIWEN MAO (S’99–M’04–SM’09–F’19)

received the Ph.D. degree in electrical and com-

puter engineering from Polytechnic University

(now New York University), Brooklyn, NY, USA.

He is currently the Samuel Ginn Distinguished

Professor with the Department of Electrical and

Computer Engineering, and the Director of the

Wireless Engineering Research and Education

Center, Auburn University, Auburn, AL, USA.

His research interests include wireless net-

works, multimedia communications, and smart grid. He is a Distinguished

Speaker of the IEEE Vehicular Technology Society. He is on the Editorial

Board of the IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING,

the IEEE TRANSACTIONS ON MOBILE COMPUTING, the IEEE TRANSACTIONS ON

MULTIMEDIA, the IEEE INTERNET OF THINGS JOURNAL, the IEEE WIRELESS

NETWORKING LETTERS, the IEEE MULTIMEDIA, and ACM GetMobile.

He is a Fellow of the IEEE. He received the NSF CAREER

Award, in 2010, the 2013 IEEE ComSoc MMTC Outstanding Leadership

Award, the 2015 IEEE ComSoc TC-CSR Distinguished Service Award,

the 2017 IEEE ComSoc ITC Outstanding Service Award, and the Auburn

University Creative Research & Scholarship Award, in 2018. He was a co-

recipient of the 2004 IEEE Communications Society Leonard G. Abraham

Prize in the Field of Communications Systems, IEEE ICC 2013, IEEE

WCNC 2015, the Best Paper Awards from IEEE GLOBECOM 2015and

2016, the Best DemoAward from IEEESECON2017, and the IEEEComSoc

MMTC Best Conference Paper Award in 2018.

JITENDRA K. TUGNAIT (M’79–SM’93–F’94–

LF’16) received the B.Sc. degree (Hons.) in elec-

tronics and electrical communication engineering

from the Punjab Engineering College, Chandi-

garh, India, in 1971, the M.S. and E.E. degrees

from Syracuse University, Syracuse, NY, USA,

and the Ph.D. degree from theUniversity of Illinois

at Urbana–Champaign, in 1973, 1974, and 1978,

respectively, all in electrical engineering.

From 1978 to 1982, he was an Assistant Profes-

sor of electrical and computer engineering with the University of Iowa, Iowa,

IA, USA. Hewas with the Long Range Research Division, Exxon Production

Research Company, Houston, TX, USA, from 1982 to 1989. He joined the

Department of Electrical and Computer Engineering, Auburn University,

Auburn, AL, USA, in 1989, as a Professor, where he currently holds the title

of James B. Davis Professor. His current research interests include statistical

signal processing, wireless communications, and multiple target tracking.

Dr. Tugnait is a past Associate Editor of the IEEE TRANSACTIONS ON

AUTOMATIC CONTROL, the IEEE TRANSACTIONS ON SIGNAL PROCESSING, the IEEE

SIGNAL PROCESSING LETTERS, and the IEEE TRANSACTIONS ON WIRELESS

COMMUNICATIONS, and a past Senior Area Editor of the IEEE TRANSACTIONS ON

SIGNAL, and a past Senior Editor of IEEEWIRELESS COMMUNICATIONS LETTERS.

11904 VOLUME 7, 2019

