IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE AND COGNITIVE
COMPUTING FOR COMMUNICATION AND NETWORK

Received December 30, 2018, accepted January 7, 2019, date of publication January 11, 2019, date of current version February 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2892046

TCP-Drinc: Smart Congestion Control Based
on Deep Reinforcement Learning

KEFAN XIAO, (Student Member, IEEE), SHIWEN MAO ", (Fellow, IEEE),

AND JITENDRA K. TUGNAIT, (Life Fellow, IEEE)

Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849-5201, USA

Corresponding author: Shiwen Mao (smao@ieee.org)

This work was supported in part by NSF under Grant CNS-1702957, and in part by the Wireless Engineering Research and Education

Center (WEREC), Auburn University, Auburn, AL, USA.

ABSTRACT As wired/wireless networks become more and more complex, the fundamental assumptions
made by many existing TCP variants may not hold true anymore. In this paper, we develop a model-
free, smart congestion control algorithm based on deep reinforcement learning, which has a high potential
in dealing with the complex and dynamic network environment. We present TCP-Deep Relnforcement
learNing-based Congestion control (Drinc) which learns from past experience in the form of a set of
measured features to decide how to adjust the congestion window size. We present the TCP-Drinc design
and validate its performance with extensive ns-3 simulations and comparison with five benchmark schemes.

INDEX TERMS Congestion control, deep convolutional neural network (DCNN), deep reinforcement
learning (DRL), long short term memory (LSTM), machine learning.

I. INTRODUCTION

The unprecedented growth of network traffic, in particular,
mobile network traffic, has greatly stressed today’s Internet.
Although the capacities of wired and wireless links have
been continuously increased, the gap between user demand
and what the Internet can offer is actually getting wider.
Furthermore, many emerging applications not only require
high throughput and reliability, but also low delay. Although
the brute-force approach of deploying wired and wireless
links with a higher capacity helps to mitigate the problem,
a more viable approach is to revisit the higher layer protocol
design, to make more efficient use of the increased physical
layer link capacity.

Congestion control is the most important networking func-
tion of the transport layer, which ensures reliable delivery of
application data. However, the design of a congestion control
protocol is highly challenging. First, the transport network is
an extremely complex and large-scale network of queues. The
TCP end host itself consists of various interconnected queues
in the kernel. When the TCP flow gets into the Internet,
it traverses various queues at routers/switches along the end-
to-end path, each shared by cross-traffic (e.g., other TCP
flows and UDP traffic) and served with some scheduling
discipline. Significant efforts are still needed to gain good
understanding of such a complex network to develop the

queueing network theory that can guide the design of a con-
gestion control protocol. Second, if following the end-to-end
principle, agents at end hosts have to probe the network state
and make independent decisions without coordination. The
detected network state is usually error-prone and delayed, and
the effect of an action is also delayed and depends on the
actions of other competing hosts. Third, if to involve routers,
the algorithm must be extremely simple (e.g., stateless) to
ensure scalability, since the router may handle a huge amount
of flows. Finally, as more wireless devices are connected,
the lossy and capacity-varying wireless links also pose great
challenges to congestion control design.

Many effective congestion control protocols have been
developed in the past three decades since the pioneering
work [1] (see Section II). However, many existing schemes
are based on some fundamental assumptions. For example,
early generation of TCP variants assume that all losses are
due to buffer overflow, and use loss as indicator of conges-
tion. Since such assumption does not hold true in wireless
networks, many heuristics have been proposed for TCP over
wireless to distinguish the losses due to congestion from that
incurred by link errors. Moreover, many existing schemes
assume a single bottleneck link in the end-to-end path, and
the wireless last hop (if there is one) is always the bottle-
neck. Given the high capacity wireless links and the complex

2169-3536 © 2019 IEEE. Translations and content mining are permitted for academic research only.

11892 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 7, 2019

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

IEEE Access

network topology/traffic conditions we have today [2], such
assumptions are less likely to be true. The bottleneck could be
at either the wired or wireless segment, it could move around,
and there could be more than one bottlenecks. Finally, when
there is a wireless last hop, some existing work [3] assumes no
competition among the flows at the base station (BS), which,
as shown in [4], may not be true due to coupled wireless
transmission scheduling at the BS.

In this paper, we aim to develop a smart congestion con-
trol algorithm that does not rely on the above assumptions.
Motivated by the recent success of applying machine learn-
ing to wireless networking problems [5], and based on our
experience of applying deep learning (DR) and deep rein-
forcement learning (DRL) to 5G mmWave networks [6],
edge computing and caching [7]-[9], and RF sensing and
indoor localization [10]-[12], we propose to develop a model-
free, smart congestion control algorithm based on DRL. The
original methods that treat the network as a white box have
been shown to have many limitations. To this end, machine
learning, in particular, DRL, has a high potential in dealing
with the complex network and traffic conditions by learning
from past experience and extracting useful features. A DRL
based approach also relieves the burden on training data,
and has the unique advantage of being adaptive to varying
network conditions.

In particular, we present TCP-Drine, acronym for Deep
reinforcement learning based congestion control. TCP-Drinc
is a DRL based agent that is executed at the sender side. The
agent estimates features such as congestion window differ-
ence, round trip time (RTT), the minimum RTT over RTT
ratio, the difference between RTT and the minimum RTT, and
the inter-arrival time of ACKSs, and stores historical data in an
experience buffer. Then the agent uses a deep convolutional
neural network (DCNN) concatenated with a long short term
memory (LSTM) network to learn from historical data and
select the next action to adjust the congestion window size.
The contributions of this work are summarized as follows.

1) To the best of our knowledge, this is the first work that
applies DRL to tackle the congestion control problem.
Specifically, we propose a DRL based framework on
(i) how to build an experience buffer to deal with the
delayed environment, where an action will take effect
after a delay and feedbacks are also delayed, (ii) how
to handle the multi-agent competition problem, and
(iii) how to design and compute the key components
including states, action, and reward. We believe this
framework could help to boost the future research on
smart congestion control protocols.

2) The proposed TCP-Drinc framework also offers
effective solutions to several long-existing problems
in congestion control: delayed environment, partial
observable information, and measurement variations.
We apply DCNN as a filter to extract stable features
from the rich but noisy measurements, instead of using
EWMA as a coarse filter as in previous works. More-
over, the LSTM is utilized to handle the autocorrelation

VOLUME 7, 2019

TABLE 1. Notation.

Symbol Description

St the state at time ¢

ay the action at time ¢

r(s¢,at) the reward for given state and action at time ¢
V(s¢,at) the value function

Q™(8t,at) the Q function for discounted accumulated reward
R the discounted accumulated reward at time ¢

w(t) the policy at time ¢

w the weights of the Deep Q-Network (DQN)

J(w) the loss function for weight training

Yt the target value in the loss function

TRTT the round trip time

Tp the minimum RTT

Tp the propagation delay

Tq the queuing delay

T the end of the episode

L the horizon for the impact of an action

Aw the congestion window size difference

VRTT the minimum RTT over RTT ratio

SRTT the difference between RTT and the minimum RTT
TACK the inter-arrival time of ACKs

M the number of time slots in a state

S the state space

A the action space

z(t) the sending rate at time ¢

w(t) the congestion window size at time ¢

z(t) the impact of an action at time ¢ on future goodput
U(+) the utility function

o the discount factor

B8 the weight in the utility function

n the decay rate of an action’s impact on future goodput
Npre the duration of the pre-training process

Nyis the duration of the distributed training process

within the time-series introduced by delay and partial
information that an agent senses.

3) We develop a realistic implementation of TCP-Drinc
on the ns-3 [13] and TensorFlow [14] platforms. The
DRL agent is developed with TensorFlow and the train-
ing and inference interfaces are built in ns-3 using
TensorFlow C++. We conduct an extensive simulation
study with TCP-Drinc and compare with five represen-
tative benchmark schemes, including both loss based
and latency based TCP variants. TCP-Drinc achieves
superior performance in throughput and RTT in all
the simulations, and exhibits high adaptiveness and
robustness under dynamic network environments.

The remainder of this paper is organized as follows.
We first review related work in Section II and discuss pre-
liminaries of DRL in Section IIl. The system model and
problem statement are presented in Section IV. The proposed
TCP-Drinc design is presented in Section V, and validated
with ns-3 simulations in Section VI. We conclude this paper
in Section VII. The math notation is summarized in Table 1.

Il. RELATED WORK

Congestion control is a fundamental networking problem,
which has drawn extensive attention and has been studied
over the past three decades. In this section, we review the

11893

IEEE Access

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

key related work and recent progress, as classified into three
categories: end-to-end, router based, and smart schemes.

A. END-TO-END SCHEMES

This class of work can be further classified into loss-
based or delay-based schemes. TCP Reno [15], TCP
Tahoe [1] and TCP NewReno [16] are early protocols that
are loss-based. TCP Vegas is the first delay-based pro-
tocol. Currently, most computer operation systems adopt
TCP Cubic [17] or Compound TCP [18], which are mainly
designed to deal with large capacity RTT products.

These protocols are originally designed for the wired
Internet. However, recent measurements in 3G and 4G LTE
networks reveals fast variation of channel capacity [3].
In addition, Zaki et al. [4] show that bursty scheduling and
competing traffic will also influence the RTT and capacity
utilization. The authors then propose new end-to-end proto-
cols that observe packet arrival times to infer the uncertain
network dynamics (i.e., Sprout [3]) and utilize delay measure-
ments (i.e., Verus [4]) to cope with these challenges.

Another recent progress on congestion control is in the
paradigm of data center networks. Compared with general
networks, the link capacity in data center networks is usually
larger (e.g, Gigbits or 10s of Gigbits) and stable, and the
latency is much smaller (e.g., in us), while ACK is not sent for
every packet. The Data Center TCP (DCTCP) [19] exploits
ECN feedback from switches. Performance-oriented Con-
gestion Control (PCC) proposes to continuously observe the
connection between its actions and experienced performance,
and to adopt actions that lead to good performance [20].
Jiang et al. [21] leverage sliding mode control theory to ana-
lyze and address the stability issue of quantized congestion
notification (QCN) in data center Ethernet networks.

B. ROUTER BASED SCHEMES

This class of work involves switches or routers in the
congestion control process. Explicit Congestion Notifica-
tion (ECN) [22] is introduced as a substitution of loss as
a congestion signal. In Active Queue Management (AQM)
schemes, such as RED [23], CoDel [24], and MAQ [25], [26],
routers mark or drop packets on incipient congestion. These
approaches require modification of routers and intermediate
devices, which may not be practical or may not scale up to
large number of TCP flows.

C. SMART SCHEMES

With the recent success of machine learning/deep learning on
image recognition, video analytics, and natural language pro-
cessing, there is strong interest in applying machine learning
to solving networking problems [5]. The results in [27] and
[28] provide interesting insights into machine generated con-
gestion protocols. However, these learning algorithms require
offline training based on prior knowledge of the network
and can only be adopted for limited situations. Xu et al. [29]
propose an algorithm based on DRL to deal with the traffic
engineering problem at intermediate nodes in the network

11894

» Delay 7

Take action a(f) based
on policy 7z(?)

(r)
o)

Agent Environment

Reward Feedback
Delay r, [«

__ State Feedback

Delay 73

FIGURE 1. Reinforcement learning for congestion control.

layer. Li et al. [30] incorporate Q-learning into congestion
control design and present QTCP. It is based on limited
feature scales (discretized states) and uses Kanerva Coding,
instead of a deep neural network, for Q-function approxima-
tion. The authors show considerable gains achieved by QTCP
over the classical TCP NewReno scheme.

IIl. PRELIMINARIES OF DRL
The general reinforcement learning consists of two entities:
agent and environment, as shown in Fig. 1. The interactions
between the two entities constantly influence the environment
and trains the agent. Usually DRL is applied to solve Markov
decision problems (MDP). During each episode, the agent
receives a state tensor S;, takes an action a; based on policy
7 (s¢), and receives a scalar valued reward r(s;, a;). There
may be a delay 71 before action a, starts to influence the
environment, and there may also be a delay 7, for reward
r(s¢, as) to be received by the agent. Such delays are neglected
in many DRL designs. However, for congestion control, such
delays play an important role on the stability of the system as
will be demonstrated later in this paper.

The value function V(s;, a;) can be represented as the
discounted, accumulated reward, which is given by

T
R =) "y risia, ey
i=t

where y € [0, 1] is the discount factor and T is the end of the
episode. With Bellman-Ford equation, we rewrite (1) as

Ry =r(ss,a)+ v - Ry 2)

In general settings, policy m(a|s¢) or m(s¢) generates the
target action by mapping the state space to the action space:
S — A, stochastically or deterministically. For example,
we can model the output action as a probability distribution
over a discrete action space p(a), while the action to be taken
could be either sampled with this distribution or the one

VOLUME 7, 2019

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

IEEE Access

with the largest probability. It is natural to use neural net-
works (NN) to approximate such policy and value functions.
However, the approximation could be unstable, due to the
strong correlation between sequential samples. In addition,
the nonstationary target values could further degrade the
stability. Therefore the shallow NN has a limited ability to
extract important features.

DRL algorithms, first introduced in [31], are based on
a similar structure but incorporate a deep neural network
(DNN) to learn the value function and/or the policy function.
The raw sensory data is treated as state s, and input to the
DNN. The DNN is utilized to approximate the Q-function
0(s¢, a;), termed Deep Q-Network (DQN), which calculates
the optimal value for each possible action for given state s;.
The Q value function Q7 (s;, a;) for given policy 7 is defined
as

O (s, a;) = E[Ry|s;, a], 3
where R; is given in (1). The equation can be unrolled as

Q" (s, a)) =By, [+ vy Q" Syt arr)lsr a]. (4

Let @ represent the weights of the DQN. Supposing
o(ss, a;, w) =~ O™ (sy, a;), we can define a loss function as

J@) =E[(7 + 701, 8r1.0) — Qs @) (5)

The sum of the first two terms on the right-hand-side is
defined as the target value, i.e., y; = r; + Yy Q(S¢+1, ar+1, ®).

To address the instability problem of the training process,
Mnih et al. [31] proposed two strategies: experience replay
and target networks. First, the history of transitional states
and actions is stored in a buffer as experience. The DQN is
trained with mini batches of data that are sampled randomly
from the experience buffer, so as to break the correlation
between sequential data samples. In fact, mini-batches are
randomly drawn from the experience buffer in order to apply
stochastic gradient decent (SGD) to further reduce the corre-
lation. Second, an additional target network is introduced to
calculate the target value y, = r, +y - Q(S;+1, 2,41, @) in the
training process, whose weights @’ are updated periodically
with the running weights. The target value will become stable
after certain amount of steps in the training process.

IV. SYSTEM MODEL AND PROBLEM STATEMENT
A. NETWORK ARCHITECTURE
In this paper, a very general setting of congestion control is
considered, as shown in Fig. 2, where is a set of remote hosts
serving a set of mobile users (in fact, the last hop could also be
wired). Each end-to-end path, from a remote host to a mobile
user, consists of multiple hops. The remote hosts apply a
congestion window (cWnd) based protocol. The two features
of the general setting are: competitions among different flows
at bottleneck links and potentially multiple bottlenecks along
the end-to-end path.

Most prior works assume that the last wireless hop is
the single bottleneck. Under this assumption, the round-trip

VOLUME 7, 2019

Mobile users

Remote hosts; | The Internet Base station

FIGURE 2. System architecture for TCP over wireless.

time (RTT) of a user, tgr7(t) = 1) + T4(2), Where 1), is the
propagation delay and t,(t) is the queuing delay, seems to be
independent to other users, since the BS usually maintains
separate queues for different users. However, even in this
case, the multiple flows at the BS are still coupled due to
the transmission scheduling algorithm used at the BS [4].
Furthermore, the flows may still compete with each other for
transmission resources and buffer storage along the multihop
path if they share a common link.

The general problem of congestion control should be
treated as a delayed, distributed decision-making problem.
Each sender needs to decide its own c¢Wnd (or, sending
rate). We focus on cWnd in this paper since it can be
implicitly translated into sending rate according to the TCP
clocking phenomenon [32]. The “delayed” feature means
that the action that a sender takes will influence the bot-
tleneck queue after a forward propagation delay; and the
receiver feedback about the network condition is usually
received by the sender an RTT later. If the global infor-
mation of each user’s strategy, network topology, and traf-
fic condition were available, one could have made perfect
decisions. But the global information is usually unavailable
and the users do not cooperate on congestion control, which
entails “distributed” decision making. Although these fea-
tures have been considered in prior work, e.g., modeling TCP
throughput as delayed differential equations [32], they all
pose great challenges to a DRL based congestion control
design.

B. PARTIALLY OBSERVABLE INFORMATION

In congestion control, the information each sender can
acquire is partial and delayed. The measured RTT can only
tell the total delay, but lacks details on the delay on each hop,
on forward and backward directions, and on propagation and
queueing components. One popular approach is to approx-
imate propagation delay by the minimal RTT. In addition,
the acquisition of RTT and the effect of action are both
delayed. Therefore, congestion control is actually a partially
observable Markov decision process (POMDP).

11895

IEEE Access

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

The problem is to develop a sender algorithm that explores
the network environment and adjusts the congestion win-
dow to reliably transport data. This process is conducted
by many other senders as well due to shared networking
resources. Therefore, the environment one sender senses is
also affected by other users’ actions and is constantly chang-
ing. In this paper, we propose an integrated solution to deal
with such “multi-agent” feature of the congestion control
problem.

For the POMDP problem, it helps to utilize historical data
to exploit the momentum and correlation in the process.
However, utilizing historical data is non-trivial due to the
associated time and space complexity. In machine learning,
a promising solution is the recurrent neural network (RNN),
which is effective for capturing the temporal, dynamic behav-
ior in a time series.

C. BASIC ASSUMPTIONS

To make the design general, we do not assume the system
is Markovian. Many TCP variants, such as [17] and [33],
make control decisions based only on the current state, since
the basic assumption is the next state only depends on the
current state, no matter what congestion signal they use (i.e.,
delay or loss). In a recent work [27], the exponential average
over historical delay is utilized. This is an intuitive solution to
the problem of congestion control because the current state is
delayed and partially observable. As discussed, the sending
rate depends on the state of one RTT before, while the states
of queues and latency depend on the state one propagation
delay ago. In short, the Markovian assumption may be too
simplistic and it will be helpful to exploit historical informa-
tion for better decision making.

In real network environments, received signals are usually
noisy, which can be mitigated by adopting an exponential
window moving average to acquire the stable information.
In this paper, we utilize a DCNN as an automatically tuned
filter to extract stable information. To make the model math-
ematically tractable, the amount of previous states to be
considered is limited to a window size of M.

We make no assumption on how the users compete for
resources. The information that senders could acquire is very
limited in practice. Many existing algorithms are based on
certain assumptions of network conditions. For example,
Sprout [3] assumes that the only dynamic component of delay
is queuing delay, and more important, it is self-inflicted,
meaning that it is solely determined by its sending rate and
channel capacity. This assumption may be strong since the
traffic flows are coupled by the transmission scheduling at the
BS, and cross-traffic may also affect the queueing delay when
queues and transmission capacity are shared in the wired
hops. A practical scheme should not require the sender to
know if the physical network is wired or wireless, how many
bottlenecks are out there, and what scheduling algorithms are
used at each hop. Therefore, it is better to make no extra
assumptions on the physical network. We thus assume the
information a sender could acquire is its own sending rate,

11896

congestion window ¢Wnd, measured RTT, and interarrival
times of received ACKs.

D. NETWORK MODEL

The traffic model adopted in this paper is based on TCP
clocking [32]; the sending rate can be implicitly determined
by the congestion window cWnd and RTT. CWnd is the
maximum amount of TCP segments the sender can inject
into the network without ACK. The network and receiver can
control the sending pace by delaying or withholding ACKs.
The benefit of focusing on cWnd is the reduced control action
dimension.

To simplify notation, we omit the subscript i for sender i
in the following presentation. Let the sender cWnd be w(t).
Recall the RTT is tg77(¢) = 1) + 74(2), Where 1, is the prop-
agation delay, and 7,(¢) is the total queuing delay incurred
at one or more bottleneck links along the end-to-end path.
The 7, can be approximated by the minimum RTT within a
time window. The instantaneous sending rate, x(t), and its
relationship with cWnd w(t), is given by [32]

/l x(\dt = w(t). (6)
t

—TRrrr (1)

Differentiating (6) and rearranging terms, we have [32]

x(t — tryr (1))
1+ trrr (t — trrr (1))

where 7 = t — tgy7(t). Notice that the instantaneous sending
rate at time ¢t depends on not only the sending rate one
RTT ago, but also the derivative of the window size and the
derivative of RTT at one RTT ago.

Therefore, the congestion control process can be viewed
as a ‘“‘combined” sparse reward process. Combined means
it is not a complete sparse process, since the current action
can still be rewarded, while the previous actions would also
influence the current reward. Moreover, the window size w(t)
is an integer, and the influence of increasing or decreasing
w(t) will be delayed until w(¢) packets are received.

x(t) =

+w(t), N

E. UTILITY FUNCTION

We next define a utility function for training and evaluation
of the proposed algorithm. For resource allocation/traffic
engineering, the a-fairness function is widely adopted [27].
In this model, the utility function is defined as

log(r), ifa=1
Us() = 1@ . ®)
, otherwise,
-«

where parameter o determines different types of fairness. For
example, if @ — 00, maximizing the sum utility becomes
a max-min problem. If ¢ = 1, maximizing the sum utility
ensures proportional fairness. In FAST TCP [34], Wei et al.
adopt this utility function and prove the fairness of the pro-
posed congestion control algorithm.

In this paper, the goal is to trade-off between throughput
and latency. For high throughput, the sending rate should

VOLUME 7, 2019

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

IEEE Access

be set high to prevent the bottleneck queue from being
nonempty, so that the bottleneck capacity can be fully uti-
lized. On the other hand, for low latency, the sending rate
should be set low to ensure low occupancy level at the
bottleneck queue, so the queueing delay will be low. We
adopt the following utility function to trade-off the two design
goals [27]

U(x(1), trrr (1)) = Ua(x(1)) — BUa(Tr7T (1)) ©))

where coefficient B indicates the relative importance of
throughput and latency.

The goal of the congestion control algorithm is to optimize
the expectation of (9) by properly setting the congestion
window cWnd.

V. TCP-DRINC DESIGN

A. APPROACH FOR MULTI-AGENT COMPETITION

As discussed, we are dealing with a multi-agent competition
problem. At a bottleneck link, multiple flows compete for
network resources such as buffer and capacity. In addition,
the exploration strategy of other users could be sensed as
dynamics of the environment, which could lead to misin-
formed state feedback and result in an unstable training
process and poor performance. We tackle this problem by
integrating three methods: (i) feature selection, (ii) clipped
rewards, and (iii) a modified training process.

Feature selection is presented in Section V-B. By hand-
picking the features that are indicative of system state, we can
deal with abnormal system dynamics caused by other users’
unknown strategies. Reward clipping can reduce the reward
variation in different environments and increase the learning
stability, which is discussed in detail in Section V-D.

For training, we combine the suggestions from [35]-[37]
to have: (i) a relatively small experience replay buffer, and
(i1) concurrent experience replay trajectories (CERTS) for
sampling training data. The first method can mitigate the
non-stationary nature of the local experience sensed by an
agent. The normal experience replay buffer size is multiples
of 10K. In this work, we set the buffer size to 1600, meaning
the algorithm only keeps the most recent 1600 samples. For
CERTs, each agent takes the same samples for training. To
ensure this, the only synchronization needed is to assign the
same random seed to each agent at the beginning of training.
It requires no synchronization of the agents afterward, while
guaranteeing independent operation of each agent.

B. FEATURE ENGINEERING

During a TCP session, the sender acquires the follow-
ing information: (i) congestion window size, (ii) RTT, and
(iii) inter-arrival time of ACKs. It is necessary to pre-process
the sensed data. The benefits are two-fold: accelerating the
training process and better explanation of the model. Accord-
ing to (6) and (7), the current sending rate is determined by the
cWnd difference and the sending rate one RTT ago. There-
fore, cWnd difference, Aw, as measured by the difference in

VOLUME 7, 2019

two consecutive time slots, and RTT gy should be collected
as features.

In the transport process, the minimum RTT within a time
window provides an estimation of the propagation delay.
The reason why not using the minimum RTT of the entire
transmission process, is to take into account the possibility of
route changes. Let 7, denote the minimum RTT. When cWnd
is smaller than the product of capacity and 7, the measured
RTT will always converge to 7,. Thus the minimum RTT 7,
should also be treated as state information. In TCP-Drinc,
we take the ratio verr = T,/trrr as a feature, which is
indicative of the relative portions of propagation delay in
the RTT. Furthermore, the difference between RTT and the
minimum RTT, i.e., Sgrr = TR — fp, is an estimate of
the overall queuing delay and is indicative of the network
congestion level. To track the minimum RTT, the estimation
will be updated at 10 RTT intervals. The last feature we pick
is the inter-arrival time of ACKs, denoted by t4ck, which is
indicative of the goodput of the network.

C. DEFINITIONS OF STATES AND ACTIONS

We next define the state and action space of TCP-Drinc. The
non-Markovian nature of the problem makes it necessary to
take history into consideration. As discussed, we consider the
following features of a TCP connection: (i) cWnd difference
Aw, (i) RTT g7, (iii) the minimum RTT over RTT ratio
vrrT, (1v) the difference between RTT and the minimum
RTT 8grr, and (v) the inter-arrival time of ACKs t4ck. The
algorithm runs in slotted time (e.g., 10 ms per time slot).
In each time slot ¢, we measure the above features and record
them as state of the time slot s;. If there is no events (e.g.,
no ACK received or cWnd changed) in a time slot 7, we have
S; = S;_1. We then take the combination of the states of M
consecutive past time slots as one system state, in the form of
a 2nd-order tensor, which is denoted as S and given by

S =[s0, 81, .- SM—11], (10)

where s; = [Aw(?), TrrT (1), VRTT (1), SRTT (1), TACK (B)].

The action space consists of five actions on adjusting
cWnd. In order to trade-off between agility and robustness
through the process, we adopt actions w = w= 1 as exponen-
tially increase/decrease, and actions w = w %+ % as linearly
increase/decrease of w. The exponentially increase/decrease
actions allow the agent to quickly adapt to fast variations
of the environment. The linearly increase/decrease actions
enhance robustness when the agent decides to doodle around
a proper operating point. Moreover, the no change action
should also be included. The action space is thus defined as

1
A={w=w=x1, w=w=£ —; nochange}. 11
w

D. REWARD CALCULATION

Reward design is also challenging for DRL based congestion
control. The RTT measurements at the sender side is usually
noisy. Factors such as the bursty sending process, varying

11897

IEEE Access

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

processing times at the devices along the path, and recov-
ery from packet losses in the physical layer all contribute
to measurement noise. However, it is important to acquire
accurate RTT measurements since a misinformed RTT might
result in wrong reward to the agent’s action, and affect the
convergence of the training process. In this paper, we adopt
a low-pass filter with a fixed window size, i.e., exponential
window moving average (EWMA), for RTT measurements,
which removes frequent, small latency jitters.

Goodput is measured by counting the ACKs received
within a time window. A benefit of this method is we
directly calculate the goodput, while random packet losses
are excluded. The measured goodput usually varies over time
due to factors such as bursty sending process and random
distribution in intermediate queues, as well as packet losses
caused by link errors or congestion. We also take EWMA with
one RTT window size to process the measured goodput.

Recall that the action of a sender will take effect after one
RTT, and the impact on future goodput is exponentially dis-
counted. The overall impact of an action on future goodput,
denoted as z(), can be estimated as

o0
a0 =D 20— '™, (12)
1=t
where 1 < 1 is the decay rate of the action’s influence in the
future, and Z(¢) is the measured goodput at time ¢. In order to
make the calculation tractable in time and storage, we cut off
time to have a horizon of L. The approximation of z(¢) for an
L-horizon is

t+L—1 1 — 77)

2(t) = Z z(v) - 1(_—77“_1 ! (13)
=t

For fairness, we compute the utility function as

U(z(t), trrr (1) = Ua(2(1)) — BUa(tRrT (1)) (14)

In the context of Q-learning, Q-value denotes the expectation
of reward. If we only adopt the utility (14) in the reward
function, the agent may keeps on choosing the same action,
which returns a positive utility value but does not converge
to the optimal operating point. Therefore, we define reward
function as the utility difference, given by

r(t) = Ut + grr (1) — U (), 15)

where 7 is one RTT after ¢.

Furthermore, for different network environments (e.g., dif-
ferent bottleneck link capacities and propagation delays),
the reward calculated using (15) may have a large range of
variation. In order to make the TCP-Drinc design more gen-
eral and adaptable to various network environments, we clip
the reward value to the range [—1, 1]. With clipping, although
the training process could be relatively longer in some cases,
the chance of convergence of the training process could be
greatly improved (i.e., by avoiding large oscillations) and the
same TCP-Drinc design can be applied to varying network
environments, as will be shown in our simulation results.

11898

v

| Packets Features |

|States Calculationl Reward Calculatiod

Store in Queue

Value
Experience Replay [State jfl E ot E EI E E E E
l/
One RTT window

0000 v
State _>| DRL Network |
-~

Action +

Reward
New State Control Action |

| Network Environment |

FIGURE 3. The proposed TCP-Drinc system architecture.

E. EXPERIENCE BUFFER FORMATION
The TCP-Drinc design is presented in Fig. 3, which takes the
specifically designed structure of training samples to implic-
itly learn and predict the future. As shown in Fig. 1, it takes
71(¢) for an action to take effect on the bottleneck queue(s).
Thus the action that actually works should be as(t — 71(¢)).
Moreover, ACKs carry system state feedback with delay
72(¢). Thus the currently sensed state s(¢) is actually the
system state s;(r — 72(¢)). To deal with such delays, we look
into the future for 71(¢) + t2(¢) to predict the system state
based on the current state and action, and then choose the
next action. However, such prediction is challenging since (i)
the delays t1(¢) and () are stochastic; (ii) the predictions
are usually noisy and error-prone; and (iii) the computation
could be intensive due to the high dimension of the system.
In this paper, we introduce a new strategy to address this
problem. First of all, we use a buffer to store the running
dynamics history in th form of three-tuples {s(¢), a(t), r(¢)}.
Every time when a new tuple {s(z), a(t), r(¢)} is inserted,
we look backward in the buffer to find the older tuple that
was saved one RTT before. Then we combine these two
tuples to obtain a complete training sample as a four-tuple
{s(t — rrr (1)), a(t — trrr (1)), 8(t), r(t — Trer(2))}. This
sample is then stored in the experience buffer to be used in
the training process. This way, the DQN can better learn the
reward based on current and future states.

F. TCP-DRINC AGENT DESIGN
With definitions of space and action, reward calculation, and
experience buffer design, we are now ready to present the
agent design, which is based on a DCNN as shown in Fig. 4.
The agent takes the five features of 64 consecutive time slots
as input and choose the next action from the action space.

In prior works such as [27], the EWMA is utilized to
process the noisy state information. However, this method

VOLUME 7, 2019

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

IEEE Access

Frame Construction 3x3 C. layer

Features of 64

consecutive [—P>

time slots

5@ 8x8

64@ 6x6

3x3 S. layer Flatten LSTM FC layer Action
Y
- > |:|
64@ 2x2 256x1 64x1 32x1 5x1

FIGURE 4. Design of the proposed DCNN (in the figure, “C." represents the convolutional layer, “S.” represents the down sampling (pooling)

layer, “FC” means fully connected).

suffers from the long tail effect when used as a filter, and
it could miss the rich information in feedback. In this paper,
we proposed a new approach to fully utilize the rich feedback
information by adopting a DCNN. We use the combined state
of M consecutive time slots including and before the current
time ¢ and divide them in to frames as inputs. For instance,
we set M = 64 and obtain 5 frames. Each frame has a size
8 x 8 and consists of data on one of the five features, as shown
in Fig. 4. With the convolutional layers and pooling layer,
the more stable, higher level features can be abstracted from
the raw state information.

Furthermore, the non-Markovian nature of the problem
should also be accounted for, as well as the action-taking-
effect delay 71 and feedback delay t; (see Fig. 1). A promis-
ing approach is to incorporate an LSTM to handle the cor-
relation in the time series [38]. Through back-propagation
through time (BPTT), this structure exploits memory to
extract system features. As in Fig. 4, the LSTM layer is placed
after the DCNN extracts the stable features. Hausknecht and
Stone [38] proposed two training methods: Bootstrapped
Sequential Updates and Bootstrapped Random Updates. The
former executes the training by randomly selecting an episode
and then starting from the beginning of the episode. The latter,
however, picks a random timestep in an episode and proceeds
for a fixed amount of timesteps. In this paper, we adopt the
Bootstrapped Random Updates method to train the DQN by
combining with experience replay.

In Fig. 4, the fully connected layer is used to compute the
Q-value for each action. We adopt the Exponential Linear
Unit (ELU) activation function, defined as

t>0

ELUQW = 1" o

(16)
ho (e — 1),

instead of Rectified Linear Units (ReLU). Since we have to
deal with negative rewards, it is beneficial not to kill the nodes
with negative outputs. In the last layer, which is to output the
Q-value for actions, no activation function is used.

VI. SIMULATION STUDY

A. SIMULATION SETUP

In this paper, the DCNN is implemented with Tensor-
Flow [14]. The training is executed at a reasonable speed on
a PC with an I5-8600k CPU and Nvidia GeForce 1060 3GB

VOLUME 7, 2019

GPU. The dropout layer is applied with a 0.2 dropout proba-
bility to provide both regularization and ensemble effect. The
LSTM layer with 64 units is applied after the DCNN layers.
One fully connected layer is used with activation function
ELU. The output layer is a linear combination of the previous
output with five outputs, one for each action. The control
action is applied every 10 ms. If there is no ACK received
during a time slot, we simply copy the previous state. The
agent measures RTT using timestamps in received ACKs. The
minimum RTT is updated every 10 RTTs.

In the simulations, we assume there are N remote hosts
that serve N wired or wireless users. Each remote host runs
a DRL agent independently, i.e., the DRL agents do not
share/exchange information. The simulation is based on the
classical dumbbell topology with two routers in the middle,
between the remote hosts and users (see Fig. 2).

For fair and comprehensive performance comparison,
we choose the following five benchmark schemes from
existing representative algorithms, including: (i) TCP-
NewReno [16], (ii) TCP-Cubic [17], (iii) TCP-Hybla [39],
(iv) TCP-Vegas [40], and (v) TCP-Illinois [41]. We will
mainly focus on their performance on throughput and RTT
in this study.

B. TRAINING PROCESS

The training process consists of two phases: pre-training and
distributed training. In pre-training, we train each agent for
Npre episodes with the same setup except that only one user
is served to build the baseline behavior for the agent. Then
in distributed training, the competition strategy of each agent
will be trained independently for N episodes.

1) PRE-TRAINING

In this simulation, we have N,, = 20. The bottleneck
capacity is 10 Mbps and the propagation delay is 80 ms.
Each training episode lasts for 500 s. Fig. 5 shows the cWnd
and RTT traces in the 10th training episode. It can be seen
that the learning process consists of three phases: the explo-
ration probability linear annealing phase, the convergence
phase, and the phase of randomly learning of other options.
In Fig. 5(a), before the vertical red line is the exploration
probability annealing process, which involves a large prob-
ability of random choice of actions. With the exploration
probability decreased to 0.1, which is the end of the first

11899

IEEE Access

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

450 P — ‘
exploration probaoiity
400+ linear Ennealing — cWnd |
convergence - = = Perfect Operating Point
350 / |
300 [<B< ><——T‘> |

wn
(=]
T

randomly-learning 1
of other options

(=
=]
T

cWnd (packets)
DN

150
100E
50F
0 1 1 1 1
0 100 200 300 400 500
Time (s)
(@)
0.45 w w ‘
exploration probability RTT
linear annealin .. 1
0.4F) - -
convergence Minimum RTT
0.35r / |
< > e
0.3F N 1
© randomly learning
E 0.25¢ of other options 1
o~
0.2 |
0.15r 1
o1f \.“MIM-.../\/VLN
0.05 1 1 1 1
0 100 200 300 400 500
Time (s)
(b)

FIGURE 5. The cWnd and RTT traces of pre-training with a single agent
obtained in the 10th training episode. (a) cWnd dynamics. (b) RTT
dynamics.

phase, the agent can adjust the action to converge to the
perfect operating condition, i.e., the cWnd that can fully
utilize the bottleneck link capacity without introducing extra
queuing delay (the horizontal red dashed line in Fig. 5(a)).
Then with a 0.1 probability, the agent will randomly deviate
from the perfect operating point to explore the state space.
This process will be repeated to train the agent with different
network conditions.

2) DISTRIBUTED TRAINING

After pre-training, we copy the model to five different senders
(i.e., there are N = 5 hosts serving 5 wired users), and
let them run the training process independently. We set the
random seed to 17 for all the senders. The basic environment
setting is the same and the distributed training runs for Nz =
100 episodes. In Fig. 6, the average throughput and RTT in
the distributed training process are presented. We can see that
as the distributed training proceeds, the average throughput
is increasing in general. And the average RTT eventually
converges toward the minimum RTT of 80 ms.

11900

Average Throughput (Mbps)

0.2¢ i i i i
0 20 40 60 80 100

Training Episode
(@)

0.45 w
0.4

0.35

<
w

Average RTT (s)

0.05 1 1 1 1
0 20 40 60 80 100

Training Episode
(b)

FIGURE 6. The throughput and RTT dynamics of distribute training of five
agents. (a) Average throughput. (b) Average RTT.

C. CONGESTION CONTROL PERFORMANCE

In this section, we present our experimental results with
different network parameters to test the performance of
TCP-Drinc, specifically, over situations that deviate from that
TCP-Drinc was originally trained. As in Section VI-B, TCP-
Drinc is trained with five TCP sessions with 10 Mbps bot-
tleneck capacity and 80 ms propagation delay. The following
three testing cases are simulated in this section.

1) Case I: four users; the propagation delay is varied in
the range [60, 240] ms; and the bottleneck bandwidth is
10 Mbps;

2) Case II: the number of users is varied in the range [3, 9];
the propagation delay is 80 ms; and the bottleneck
bandwidth is 8 Mbps;

3) Case III: four users; the propagation delay is 100 ms;
the bottleneck bandwidth is varied within [5, 20] Mbps.

The bottleneck buffer size is set to 100 packets. Each packet
consists of a 1000-Byte payload plus a 40-Byte header.

VOLUME 7, 2019

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

IEEE Access

3'5 T T T
=¥ - TCP-Cubic
-p— TCP-Hybla
3 TCP-Illinois
A TCP-NewReno
2 25F - % - TCP-Vegas
= TCP-Drinc
=
5 2+ :]
= GO SUU VRN S G S SR A
2 \\ N o N v == ‘9‘——%:—_&-__)
2 150 !
EERE
= \ ,
N /
N 1
1F &0 ,
~ - ,
~ -k ,
0.5¢ . . : Bom ‘ ‘
006 0.08 0.1 0.12 0.14 0.16 0.18 02 022 024
Propagation Delay (s)
(a)
- v = TCP—Cubic
05 | ~P~ TCP-Hybla |
' TCP-Tllinois
- % - TCP-Vegas
0.4 TCP-Drinc B
—~ & TCP-NewReno
\(f/ = U
=Ko
c gk ER
e = K 7“_‘ R e -¥
0.25 R Sty S St - |
‘,““—‘”g’ - g
01f— F=-7+ : |
0 L i i i i i i i
0.06 008 0.1 0.12 0.14 0.16 0.18 02 022 024

Propagation Delay (s)
(b)

FIGURE 7. Throughput and RTT statistics for increased propagation delay
(Case I). (a) Average throughput. (b) Average RTT.

As shown in Figs. 7, 8, and 9, the well-trained
TCP-Drinc model achieves a promising performance under
all the scenarios. In Fig. 7, we present the throughput and RTT
for increased propagation delay. We can see that all the RTTs
increase with propagation delay, while the throughput is rel-
atively stable (except for TCP-Vegas). TCP-Drinc achieves
the highest throughput and the second smallest RTT for
the entire range of propagation delay. Although TCP-Vegas
achieves a lower RTT than TCP-Drinc, its throughput is the
lowest, indicating that the low RTT is achieved by keeping
the sending rate low and the bottleneck buffer almost empty
(i.e., sacrificing the utilization of the bottleneck link capac-
ity). Unlike the several loss based protocols, TCP Vegas is a
latency based scheme that linearly adjusts its cWnd according
to the difference between the current RTT and the minimum
RTT. It is effective in keeping RTT low, but is sensitive to
network condition changes and suffers from relatively low
throughput.

In Fig. 8, the throughput and RTT are presented for
increased number of users. We can see the capacity for

VOLUME 7, 2019

35 :
- ¥ — TCP-Cubic
34 -p—- TCP-Hybla
" TCP-Illinois
—~ ’ A TCP-NewReno
§2-5’ - % - TCP-Vegas 1
= B TCP-Drinc
2 2t N,]
) e
= T,
e Sad
£ L5p e]
2.
l‘i____ﬁ____-v__—_a____*____;_‘:_T
05 i i i i i
3 4 5 6 7 8 9
Number of Users
(@)
0.4 T
- ¥ = TCP-Cubic
0.35+ —D—‘TCP—Hybla 4
TCP-Illinois
03k - A TCP-NewReno |
|| = % - TCP-Vegas
- TCP-Drinc
;O.ZS» 1
H
o~
0.2F
)
—--g----y----Y--- X ---X"77
N T it ety Skl GRS Gt
R m = D= H- - - PP - -
0.1
i, sl s . ol clniinlin. daialii
3 4 5 6 7 8 9
Number of Users
(b)

FIGURE 8. Throughput and RTT statistics for increased number of users
(Case II). (a) Average throughput. (b) Average RTT.

each user decreases with increased number of users. Again,
TCP-Drinc achieves the highest throughput and the second
lowest RTT. TCP-Vegas outperforms TCP-Drinc with a lower
RTT, but at the cost of a low throughput. Fig. 9 presents
the throughput and RTT achieved under different bottleneck
capacity. For increased bottleneck capacity, the throughput
increases and the RTT decreases as expected (except for TCP
Vegas). Again, TCP-Drinc achieves the highest throughput
and the second lowest RTT for the entire range of bottleneck
capacity. TCP Vegas can always achieve the lowest RTT, but
at the cost of low throughput. TCP-Drinc achieves a com-
parable throughput as loss based protocols (i.e., TCP-Cubic
or TCP-NewReno), but only introduces a 20% higher RTT
than TCP-Vegas. This is because the TCP-Drinc algorithm
can always find the operation point that is close to the perfect
operating point. We also find that the performance of TCP-
Drinc is the best when the network parameters are close to
the training scenarios.

We next examine the performance of the schemes under
dynamic network settings. In particular, the simulation is

11901

IEEE Access

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

TABLE 2. Jain’s Fairness Index Achieved by the Congestion Control Schemes.

‘ TCP-Cubic TCP-Hybla TCP-Illinois TCP-NewReno TCP-Vegas TCP-Drinc

Average fairness index 0.7873 0.8025 0.8125 0.7562 0.8214 0.8058

95% Confidence Interval | [0.7005, 0.8741] [0.7008, 0.9042] [0.7114,0.9136] [0.6284,0.8839] [0.7115,0.9313] [0.7233, 0.8882]

Confidence Interval Span 0.1736 0.2034 0.2022 0.2555 0.2198 0.1649

6 T T T 3 T T T T

- ¥ = TCP-Cubic Tcp—Illinois Tcp—Hybla
st -P-TCP-Hybla | Tcp—Drinc
TCP-Illinois 2.5r b

. A TCP-NewReno e ,‘{§
SIS as TP 2
= % - TCP-Vegas =P &
= TCP-Drinc 2 = 2r 7
= o :,/
2.3f Pkt 1 g
2 T 2 15t i
£ ot T 1 =
= T = Tcp—Vegas

i "‘ , Ir / —_— 1

T - = —fF —XF R R o - - R - K- K- X Tcp=NewReno
0 L L L L L L L L L L L L L L 0.5 i i i i i i
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 0.2 0.18 0.16 0.14 0.12 0.1 0.08 0.06
Bottleneck Capacity (Mbps) RTT (s)

(a)

- ¥ — TCP—-Cubic
-p- TCP-Hybla
TCP-Illinois
A TCP-NewReno
- % - TCP-Vegas
o~ TCP-Drinc
~ \Y
£ TE ¥
W
TR A \ : A i
\D‘ P OR
s ~§~ X°x- X% !
By S = 4
4T Ex gy
ot acdcioscropop g ST
7 10 11 12 13 14 15 16 17 18 19 20
Bottleneck Capacity (Mbps)
(b)

FIGURE 9. Throughput and RTT statistics for increased bottleneck
capacity (Case Ill). (a) Average throughput. (b) Average RTT.

executed 100 times, each lasts for 500s. The number of users
is 5. The bottleneck capacity is varied at a frequency of 10 Hz;
each capacity is randomly drawn from a uniform distribution
in [5, 15] Mbps. The propagation delay is also varied at a
10 Hz frequency and each value is randomly drawn from
a uniform distribution in [0.06, 0.16]s. In Fig. 10, we plot
the combined RTT (x-axis) and throughput (y-axis) results
in the form of of 95% confidence intervals. That is, we are
95% sure that the throughput and RTT combination of each
scheme are located within the corresponding oval area. We
find that TCP-Drinc achieves a comparable throughput per-
formance with the loss based protocols, e.g., TCP-Cubic and

11902

FIGURE 10. Throughput and RTT of the TCP variants under randomly
varied network parameters. Each oval area represents the 95%
confidence interval.

TCP-NewReno. Furthermore, TCP-Drinc achieves a much
lower RTT performance than the loss based protocols, e.g.,
at least 46% lower than TCP-NewReno and 65% lower than
TCP-Cubic. Furthermore, TCP-Drinc achieves an over 100%
throughput gain than TCP-Vegas at the cost of a only 15%
higher RTT.

To study the fairness performance of the algorithms,
we evaluate the Jain’s index they achieve in the simulation.
The average fairness index and the corresponding 95% con-
fidence intervals are presented in Table 2. TCP-Vegas and
TCP-Illinois achieve the best fairness performance among all
the algorithms. TCP-Drinc can still achieve a considerably
high fairness index (only 1.9% lower than the best). Note that
the best fairness performance of TCP Vegas is achieved at
the cost of a much poorer throughput performance. It is also
worth noting that the 95% confidence interval of TCP-Drinc
is the smallest among all the schemes, which is indicative of
its robustness under varying network conditions.

Finally, we evaluate the TCP variants with a mobile net-
work scenario. The same network setting is used, except the
last hop is now an LTE network with five mobile users. The
users move in a disk area of 800 m radius, following a random
walk mobility model with 1 m/s speed. The LTE network is
simulated using the built-in LTE model in ns-3 [13]. The LTE
BS uses a deep and separate queue for each user. Therefore,
we do not consider TCP-NewReno in this simulation, since it
will introduce a very large RTT under this setting. The wired
part has the same configuration as in previous simulations.
The simulation results are presented in Fig. 11. The proposed

VOLUME 7, 2019

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

IEEE Access

Throughput (Mbps)

10

TCP-Cubic

TCP;Illmms TCP-Drinc

TCP-Vegas
*
4 L 4

i i i

4 35 3 2.5 2 1.5 1 0.5
RTT (s)

FIGURE 11. Throughput and delay results for the dumbbell topology with
five mobile users served by an LTE network.

algorithm still performs well in the wireless network setting.
Its throughput is comparable to the two loss based protocols,
with a greatly reduced RTT. Its throughput is much higher
than TCP Vegas while the RTT is only slightly higher.

VIL.

CONCLUSIONS

In this paper, we developed a framework for model-free,
smart congestion control based on DRL. The proposed
scheme does not require accurate models for network,
scheduling, and network traffic flows; it also does not require
training data, and is robust to varying network conditions.
The detailed design of the proposed TCP-Drinc scheme was
presented and the trade-offs were discussed. Extensive sim-
ulations with ns-3 were conducted to validate its superior
performance over five benchmark algorithms.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM Com-
put. Commun. Rev., vol. 18, no. 4, pp. 314-329, 1988.

Y. Zhao, B. Zhang, C. Li, and C. Chen, “ON/OFF traffic shaping in the
Internet: Motivation, challenges, and solutions,” JEEE Netw., vol. 31, no. 2,
pp. 48-57, Mar./Apr. 2017.

K. Winstein, A. Sivaraman, and H. Balakrishnan, “Stochastic forecasts
achieve high throughput and low delay over cellular networks,” in Proc.
USENIX NSDI, Lombard, IL, USA, Apr. 2013, pp. 459-471.

Y. Zaki, T. Potsch, J. Chen, L. Subramanian, and C. Gorg, “Adaptive
congestion control for unpredictable cellular networks,” ACM SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 509-522, Oct. 2015.

Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao. (Sep. 2018). “Applica-
tion of machine learning in wireless networks: Key techniques and open
issues.” [Online]. Available: https://arxiv.org/abs/1809.08707

M. Feng and S. Mao, “Dealing with limited backhaul capacity in mil-
limeter wave systems: A deep reinforcement learning approach,” IEEE
Commun., to be published.

X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet Things J., to be published.
[Online]. Available: https://ieeexplore.ieee.org/document/8493155

Y. Sun, M. Peng, and S. Mao, “Deep reinforcement learning based
mode selection and resource management for green fog radio access
networks,” IEEE Internet Things J., to be published. [Online]. Available:
https://ieeexplore.ieee.org/document/8468000

VOLUME 7, 2019

[9]

[10]

(11]

[12]

(13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

(21]

[22]

(23]

(24]

[25]

(26]

(27

(28]

(29]

(30]

(31]

(32]

(33]

(34]

Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi, “Learn to cache:
Machine learning for network edge caching in the big data era,” IEEE
Wireless Commun., vol. 25, no. 3, pp. 28-35, Jun. 2018.

X. Wang, X. Wang, and S. Mao, “RF sensing in the Internet of Things:
A general deep learning framework,” IEEE Commun., vol. 56, no. 9,
pp. 62-69, Sep. 2018.

X. Wang, L. Gao, S. Mao, and S. Pandey, “CSI-based fingerprinting for
indoor localization: A deep learning approach,” IEEE Trans. Veh. Technol.,
vol. 66, no. 1, pp. 763-776, Jan. 2017.
W. Wang, X. Wang, and S. Mao,
networks for indoor localization
Trans. Netw. Sci. Eng., to be published.
https://ieeexplore.ieee.org/document/8468057

G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in Model-
ing and Tools for Network Simulation, K. Wehrle, M. Giines, and J. Gross,
Eds. Berlin, Germany: Springer, 2010, pp. 15-34.

M. Abadi et al., “Tensorflow: A system for large-scale machine learning,”
in Proc. USENIX OSDI, Savannah, GA, USA, Nov. 2016, pp. 265-283.
D. R. Cox, “Long-range dependence: A review,” in Statistics: An
Appraisal, H. A. David and H. T. David, Eds. Ames, IA, USA: Iowa State
Univ. Press, 1984, pp. 55-74.

S. Floyd, A. Gurtov, and T. Henderson, The NewReno Modification to
TCP'’s Fast Recovery Algorithm, document RFC 3782, IETF, Apr. 2004.
S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed TCP
variant,” ACM SIGOPS Operat. Syst. Rev., vol. 42, no. 5, pp. 64-74, 2008.
K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound TCP approach
for high-speed and long distance networks,” in Proc. IEEE INFOCOM,
Barcelona, Spain, Apr. 2006, pp. 1-12.

M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM SIG-
COMM, New Delhi, India, Aug./Sep. 2010, pp. 63-74.

M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, “PCC: Re-
architecting congestion control for consistent high performance,” in Proc.
USENIX NSDI, Oakland, CA, USA, May 2015, pp. 395-408.

W. Jiang, F. Ren, R. Shu, Y. Wu, and C. Lin, “Sliding mode congestion
control for data center Ethernet networks,” IEEE Trans. Comput., vol. 64,
no. 9, pp. 2675-2690, Sep. 2015.

S. Floyd, “TCP and explicit congestion notification,” ACM SIGCOMM
Comput. Commun. Rev., vol. 24, no. 5, pp. 8-23, Oct. 1994.

S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” [EEE/ACM Trans. Netw., vol. 1, no. 4,
pp. 397413, Aug. 1993.

K. Nichols and V. Jacobson, “Controlling queue delay,” Commun. ACM,
vol. 55, no. 7, pp. 42-50, Jul. 2012.

K. Xiao, S. Mao, and J. K. Tugnait, *“Congestion control for infrastructure-
based CRNs: A multiple model predictive control approach,” in Proc.
IEEE GLOBECOM, Washington, DC, USA, Dec. 2016, pp. 1-6.

K. Xiao, S. Mao, and J. K. Tugnait, “MAQ: A multiple model predictive
congestion control scheme for cognitive radio networks,” IEEE Trans.
Wireless Commun., vol. 16, no. 4, pp. 26142626, Apr. 2017.

K. Winstein and H. Balakrishnan, “TCP ex machina: Computer-generated
congestion control,” ACM SIGCOMM Comput. Commun. Rev., vol. 43,
no. 4, pp. 123-134, 2013.

A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan, “An exper-
imental study of the learnability of congestion control,” in Proc. ACM
SIGCOMM, Chicago, IL, USA, Aug. 2014, pp. 479-490.

Z. Xu et al. (Jan. 2018). “Experience-driven networking: A deep
reinforcement learning based approach.” [Online]. Available: https:/
arxiv.org/abs/1801.05757

W. Li, F. Zhou, K. R. Chowdhury, and W. M. Meleis, “QTCP:
Adaptive congestion control with reinforcement learning,” IEEE
Trans. Netw. Sci. Eng., to be published. [Online]. Available:
https://ieeexplore.ieee.org/document/8357943

V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, pp. 529-533, Feb. 2015.

K. Jacobsson, L. L. H. Andrew, A. Tang, K. H. Johansson,
H. Hjalmarsson, and S. H. Low, “ACK-clocking dynamics: Modelling
the interaction between windows and the network,” in Proc. IEEE
INFOCOM, Phoenix, AZ, USA, Apr. 2008, pp. 2146-2152.

C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: Motivation, architec-
ture, algorithms, performance,” in Proc. IEEE INFOCOM, Hong Kong,
Mar. 2004, pp. 2490-2501.

D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “Fast TCP: Motivation,
architecture, algorithms, performance,” IEEE/ACM Trans. Netw., vol. 14,
no. 6, pp. 1246-1259, Dec. 2006.

“Deep convolutional neural
with CSI images,” IEEE
[Online]. Available:

11903

IEEE Access

K. Xiao et al.: TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning

[35] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson. (2016).
“Learning to communicate to solve riddles with deep distributed recurrent
Q-networks.” [Online]. Available: https://arxiv.org/abs/1602.02672

[36] J. Foerster et al. (2017). “Stabilising experience replay for deep
multi-agent reinforcement learning.” [Online]. Available: https://
arxiv.org/abs/1702.08887

[37] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian. (2017). “Deep
decentralized multi-task multi-agent reinforcement learning under partial
observability.” [Online]. Available: https://arxiv.org/abs/1703.06182

[38] M. Hausknecht and P. Stone. “Deep recurrent Q-learning for partially
observable MDPs.” [Online]. Available: https://arxiv.org/abs/1507.06527

[39] C. Caini and R. Firrincieli, “TCP hybla: A TCP enhancement for het-
erogeneous networks,” Int. J. Satellite Commun. Netw., vol. 22, no. 5,
pp. 547-566, Sep./Oct. 2004.

[40] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: New
techniques for congestion detection and avoidance,” in Proc. SIGCOMM,
London, U.K., Aug./Sep. 1994, pp. 24-35.

[41] S. Liu, T. Bakr, and R. Srikant, “TCP-Illinois: A loss-and delay-based
congestion control algorithm for high-speed networks,” Perform. Eval.,
vol. 65, no. 6, pp. 417-440, 2008.

KEFAN XIAO (S’14) received the B.E. degree in
electronic engineering from Xi’an Jiaotong Uni-
versity, Xi’an, China, in 2011, the M.S. degree in
electronic engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2014, and the
Ph.D. degree in electrical and computer engineer-
ing from Auburn University, Auburn, AL, USA,
in 2018. He is currently a Software Engineer
with Google, Inc. His research interests include
TCP congestion control, video streaming, and
transmissions.

SHIWEN MAO (S’99-M’04-SM’09-F’19)
received the Ph.D. degree in electrical and com-
puter engineering from Polytechnic University
(now New York University), Brooklyn, NY, USA.
He is currently the Samuel Ginn Distinguished
Professor with the Department of Electrical and
Computer Engineering, and the Director of the
Wireless Engineering Research and Education
Center, Auburn University, Auburn, AL, USA.
His research interests include wireless net-
works, multimedia communications, and smart grid. He is a Distinguished
Speaker of the IEEE Vehicular Technology Society. He is on the Editorial

11904

Board of the IEEE TransacTioNs ON NETWORK SCIENCE AND ENGINEERING,
the TEEE TrANSACTIONS ON MoOBILE CoMPUTING, the TEEE TRANSACTIONS ON
Murtivepia, the IEEE INTERNET OF THINGS JOURNAL, the IEEE WIRELESS
NETWORKING LETTERS, the IEEE MuttivEDIA, and ACM GetMobile.

He is a Fellow of the IEEE. He received the NSF CAREER
Award, in 2010, the 2013 IEEE ComSoc MMTC Outstanding Leadership
Award, the 2015 IEEE ComSoc TC-CSR Distinguished Service Award,
the 2017 IEEE ComSoc ITC Outstanding Service Award, and the Auburn
University Creative Research & Scholarship Award, in 2018. He was a co-
recipient of the 2004 IEEE Communications Society Leonard G. Abraham
Prize in the Field of Communications Systems, IEEE ICC 2013, IEEE
WCNC 2015, the Best Paper Awards from IEEE GLOBECOM 2015and
2016, the Best Demo Award from IEEE SECON 2017, and the IEEE ComSoc
MMTC Best Conference Paper Award in 2018.

JITENDRA K. TUGNAIT (M’79-SM’93-F’ 94—
LF’16) received the B.Sc. degree (Hons.) in elec-
tronics and electrical communication engineering
from the Punjab Engineering College, Chandi-
garh, India, in 1971, the M.S. and E.E. degrees
from Syracuse University, Syracuse, NY, USA,
and the Ph.D. degree from the University of Illinois
at Urbana—Champaign, in 1973, 1974, and 1978,
respectively, all in electrical engineering.
< From 1978 to 1982, he was an Assistant Profes-
sor of electrical and computer engineering with the University of lowa, Iowa,
IA, USA. He was with the Long Range Research Division, Exxon Production
Research Company, Houston, TX, USA, from 1982 to 1989. He joined the
Department of Electrical and Computer Engineering, Auburn University,
Auburn, AL, USA, in 1989, as a Professor, where he currently holds the title
of James B. Davis Professor. His current research interests include statistical
signal processing, wireless communications, and multiple target tracking.
Dr. Tugnait is a past Associate Editor of the IEEE TRANSACTIONS ON
Avutomartic CoNTROL, the IEEE TRANSACTIONS ON SIGNAL PrROCESSING, the IEEE
SIGNAL ProCESSING LETTERS, and the IEEE TRANSACTIONS ON WIRELESS
CoMMuUNICATIONS, and a past Senior Area Editor of the IEEE TRANSACTIONS ON
SIGNAL, and a past Senior Editor of IEEE WIRELESS COMMUNICATIONS LETTERS.

VOLUME 7, 2019

