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Abstract—Network slicing in fog radio access networks (F-
RANS) is recognized as a cost-efficient solution to support future
diverse use cases. However, with the number of user equip-
ments (UEs) fast increasing, the centralized resource allocation
architecture for network slicing can put heavy burdens on the
global radio resource manager (GRRM), and meanwhile slice
customization is not easy to achieve. To overcome the two issues,
a hierarchical radio resource allocation architecture is proposed
in this paper, where the GRRM is responsible for allocating
subchannels to local radio resource managers (LRRMs) in slices,
which then allocate the assigned resources to their UEs. Under
this architecture, a hierarchical resource allocation problem is
formulated, and the problem is further modeled as a Stakelberg
game with the GRRM as the leader and LRRMs as followers,
considering the hierarchy between the GRRM and LRRMs.
Due to the NP-hardness of the followers’ problems, a process
based on exhaustive search is first proposed to achieve the
Stackelberg equilibrium (SE). Nevertheless, when the network
scale is large, achieving SE within limited decision making
time is impractical for game players. Facing this challenge, the
GRRM and LRRMs are seen as bounded rational players, and
low complexity algorithms are developed to help them achieve
local optimal solutions that lead to a weak version of SE.
Simulation results show that there exists a tradeoff between the
performance of slices, and the low complexity algorithms achieve
close performance to that of exhaustive search and outperform
other baselines significantly.

Index Terms—Fog radio access networks (F-RANSs), network
slicing, radio resource allocation, Stackelberg game

I. INTRODUCTION

To better satisfy future communication demands, fog radio
access networks (F-RANs) are proposed to achieve high spec-
tral efficiency, energy efficiency and low latency by fully uti-
lizing the signal processing, resource management and storage
capabilities of edge devices [1]. In F-RANS, a user equipment
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(UE) can operate in different communication modes, including
the centralized cloud-RAN mode and the fog access point
(FAP) mode. Up to now, some interesting studies have been
conducted on F-RANS, in terms of performance analysis [2],
radio resource allocation [3], the joint design of cloud and
edge processing [4], and so on.

On the other hand, as an emerging concept, network slicing
is attracting more and more attentions, and is expected to be
an efficient and flexible solution to support diverse application
scenarios with different requirements. With network slicing, a
physical network can be divided into multiple virtual networks,
each of which is formed by a set of network functions and
resources. When network slicing is conducted in an end-to-
end manner, the RAN part of a network slice is referred to
as a RAN slice, whose performance is dependent on resource
allocation. In current works addressing resource allocation for
RAN slicing, a critical aspect is to achieve slice isolation
between RAN slices [5], and two different ways are often
adopted to achieve this goal. The first one is allocating non-
overlapping resources to different slices [7]-[13], while the
second one is ensuring the minimum performance of each slice
[14]. By isolation, any change in one slice will have no impact
or at least a little impact on the performance of other slices.

Owing to the fog computing, cloud computing and heteroge-
nous networking, F-RANs have great potentials in meeting
diverse demands. For example, FAPs that are equipped with
edge caches can be utilized to support the scenario where low
latency is preferred, while the cloud RAN, which benefits
from centralized signal processing and resource allocation
[6], can be utilized in the scenario where high data rate is
desired. Hence, in this paper, network slicing in F-RANSs is
considered, and resource allocation between two slices with
different performance metrics is studied. Specifically, the aim
of one slice is to minimize the content download latency, and
the aim of the other one is to provide high data rate guarantee
with minimal transmission power consumption. To alleviate
the burdens on the global radio resource manager (GRRM)
and achieve slice customization, a hierarchical radio resource
allocation architecture is introduced, where the GRRM is
responsible for allocating resources to each slice, and then the
local radio resource manager (LRRM) in each slice allocates
the assigned resources to its UEs. Under this architecture, a
hierarchical resource allocation problem is formulated, which
contains coupled subproblems, and the problem is further
modeled as a Stackelberg game to produce a stable resource
allocation outcome from which neither the GRRM nor the
LRRM in each slice has incentive to deviate (i.e., to achieve
the Stackelberg equilibrium (SE)).
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A. Related Work and Challenges

Recently, some efforts have been made in resource allo-
cation for network slicing in wireless networks. In [9], all
the transmitters, including a base station (BS) and device-
to-device (D2D) transmitters, are sliced by a hypervisor to
serve users. Considering the imperfect channel state informa-
tion (CSI) observed by the hypervisor, the joint transmitter
association, subchannel allocation and caching optimization
is formulated as a discrete stochastic optimization problem
aiming at maximizing the network utility, which is efficiently
solved with discrete stochastic approximation. In [10], a mo-
bile virtual network operator (MVNO) rents physical resources
from multiple infrastructure providers (InPs) and divides these
resources into multiple slices, each of which is composed of
a BS and a subcarrier chunk. In [14], a downlink orthogonal
frequency division multiple access based wireless network is
considered, where multiple slices with multiple users coexist.
To maximize the network sum rate, a joint BS assignment, sub-
carrier allocation and power allocation problem is investigated,
where the impact of interference between slices is limited by
guaranteeing the minimum user sum rate of each slice. To
deal with this non-convex mixed-integer problem, successive
convex approximation and complementary geometric program-
ming are applied.

Although the proposed approaches in [9], [10], [14] can
achieve good performance, allocating resources directly to all
the users can put heavy burdens on the central controller,
especially when the number of users is large. Meanwhile, by
such centralized resource allocation, the customization of each
slice, which means each slice can individually decide how
to allocate available resources, cannot be easily achieved. To
overcome these two issues, a hierarchical resource allocation
architecture is adopted in [8], [13], where the resources are
firstly allocated to each slice by a central controller, and
then each slice allocates the assigned resources to its own
users. Specifically, in [8], the resource allocation among slices
is formulated as a hierarchical auction game, where slice
isolation is achieved by allocating non-overlapping resources
to slices. In the upper layer, the InP, acting as the seller
as well as the auctioneer, divides the owned resources into
multiple bundles, each of which includes subchannels, power
and antennas, and each MVNO acts as a buyer who submits a
bid for each resource bundle. In the lower layer, each MVNO
acts as a seller with users acting as buyers. Similar to [8], an
auction game is used to model the resource allocation to slices,
where slices have the incentive to bid truthfully to compete for
resource blocks.

In [15], the authors summarize two cases of using slices.
The first one is called Quality of Service Slicing, which
is to support different services by creating dedicated slices,
while the other is termed Infrastructure Sharing Slicing, which
focuses on infrastructure sharing among multi-tenants. Unfor-
tunately, the works [8], [13], together with [9]-[12], [14], all
fail to explicitly consider the first case, which is envisioned as
a key characteristic of the fifth generation mobile network. In
addition, in works [8], [10]-[14], network slicing is done in the
RANS that cannot well support diverse scenarios. For example,

the cellular networks with massive antennas considered in [8],
[11] can well support hot spot areas, but the download latency
can be large since the contents requested by the users need to
be fetched from a remote content server. Therefore, network
slicing in more advanced RANs should be investigated. To
this end, network slicing is done in a downlink F-RAN in this
paper. Specifically, one slice is a traditional C-RAN to provide
high data rate, and the other slice is composed of FAPs with
edge caching capabilities to provide low download latency.
Under a hierarchical resource allocation architecture, resource
allocation among slices is modeled as a Stackelberg game with
the GRRM as the leader and LRRMSs as followers, in which
the GRRM first allocates a set of subchannels to each LRRM
and then each LRMM decides the resource allocation within
its slice.

Previously, game theory has been widely applied to resource
allocation problems in heterogenous networks [16]-[27]. In
[16]-[19], coalitional game is adopted to model the cooper-
ative behavior among BSs or users that have equal position,
but this kind of game is not suitable for our problem, since
there is hierarchy between the GRRM and LRRMs in terms
of decision making. In [20]-[23], authors utilize Stackelberg
game to design pricing schemes to control inter-tier interfer-
ence between the leader/leaders and the follower/followers,
which is not the focus of this paper. While in [24], [25],
the leader, which is the macro BS in [24] and the relay
node in [25], only cares about its own resource allocation.
However, in our considered network slicing scenario, the
leader, which is the GRRM, needs to optimize the resource
allocation to each follower. In [26], the cloud as the leader
directly allocates a set of serving nodes to each user, and the
leader in [27], which is a cognitive BS, directly allocates the
spectrum bought from primary networks to each user served
by a femto BS. On the contrary, in our work, the GRRM as
the leader does not allocate resources to each user directly.
Instead, to meet the requirement of slice customization, the
GRRM first decides the resource allocation between slices,
and then the resource allocation to each user is optimized by
the LRRM in each slice. In addition, different from [20]-[27].
where the follower is a BS or a user, each follower in our
problem is a resource manager of a slice consisting of multiple
BSs and multiple users, and the strategy of each follower is
the resource allocation for the whole slice. This unavoidably
makes deriving the optimal strategy of each follower and
SE more challenging. Particularly, the problem related to one
LRRM is a mixed-integer nonlinear programming that is NP-
hard [28], [29] and the problem associated with the other
LRRM is a non-convex problem with 0-1 variables that is
also NP-hard [30].

B. Contributions and Organization

This paper proposes a Stakelberg game based approach to
radio resource allocation for network slicing in a downlink F-
RAN to address the challenges incurred by slice customization
and heterogenous slice performance requirements, which can
achieve a stable allocation result. In the considered scenario,
there exist two slices, namely slice s1 and s2. Specifically,
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slice s1 aims to provide guaranteed high data rates with
minimal transmission power consumption by centralized signal
processing and resource allocation in the cloud, while slice s2
takes advantage of the edge caching capabilities of FAPs to
minimize the content download latency. The main contribu-
tions of the paper are:

« To alleviate the burdens on the GRRM and achieve slice
customization, a hierarchical radio resource allocation
architecture is employed for network slicing in F-RANS.
The GRRM is responsible for allocating radio resources
to each slice, and then the LRRM in each slice allocates
the assigned resources to its UEs. Under this architecture,
a hierarchical resource allocation problem is formulated
containing coupled subproblems, each of which relates
to the GRRM or an LRRM. The objectives of LRRM 1
in slice s1 and LRRM 2 in slice s2 are to provide high
data rate with minimal transmission power consumption
and to minimize the download latency, respectively, while
the GRRM aims to optimize the performance of slice s1
meanwhile guaranteeing the performance of slice s2.

o Considering the hierarchical decision making between the
GRRM and LRRMs and the coupling of their strategies,
the problem is further modeled as a Stakelberg game,
where the GRRM serves as the leader and the two
LRRMs are taken as followers. Moreover, the stable state
of the game, i.e., SE, is defined, and the existence as well
as the uniqueness of the equilibrium are analyzed.

« Different from the Stackelberg game formulated in pre-
vious works where the follower is a BS or a user, each
follower in our work is a resource manager of a slice
consisting of multiple BSs and multiple users, which
makes deriving the optimal strategy of each follower very
challenging. Particularly, the problem related to LRRM
1 is an MINLP and the problem associated with LRRM
2 is a non-convex problem with 0-1 variables. Moreover,
the strategy of the leader is discrete. Faced with the two
issues, a process based on exhaustive search is introduced
to achieve SE when the players are completely rational,
and meanwhile low complexity algorithms are proposed
as well for the case where the GRRM and LRRMs
are bounded rational. Furthermore, the complexity and
optimality of all the proposals are rigorously analyzed
and simulation is conducted to demonstrate their effec-
tiveness.

The remainder of this paper is organized as follows. Section
IT describes the downlink F-RAN with two slices. Section
III formulates the related optimization problem, and Sec-
tion IV presents a Stackelberg game based approach to find
SE. Section V develops low complexity resource allocation
algorithms for bounded rational GRRM and LRRMs, and
simulation results are presented in Section VI, followed by
the conclusions in Section VIIL.

II. SYSTEM MODEL

In this section, the model of a downlink F-RAN is firstly
provided. We then present the models for the two slices.

(c.) UE2
ol *

FAP2

FAP4 UE4

Slice s1 Slice s2

Fig. 1. Network slicing in a downlink F-RAN with a hierarchical resource
allocation architecture.

A. Network Slicing in a Downlink F-RAN

The downlink F-RAN shown in Fig. 1 consists of one
cloud, multiple remote radio heads (RRHs), multiple FAPs
and multiple D2D transmitters. The F-RAN is divided into
two slices, s1 and s2, which intend to provide high data
rate guarantee and low download latency, respectively. Note
that high data rate can be achieved by taking advantage of
centralized signal processing and resource allocation in the
cloud, while content downloading latency can be reduced
by utilizing the caching capabilities of FAPs. Hence, slice
s1 is allocated with a cloud and K RRHs whose set is
denoted by K = {1,2,..., K}, with each RRH equipped
with N antennas. Slice s2 is allocated with L single-antenna
FAPs, whose set is denoted as £ = {1,2,...,L}. It should
be highlighted that although flexible slice configuration is
supported by network slicing, infrastructure configuration is
usually done over a large time scale [31], which should take
the slice performance metrics and the budget of customers
into account, while subchannel allocation is performed over a
smaller time scale to adapt to the radio environment. In this
paper, subchannel allocation for network slicing is studied,
assuming that the infrastructure configuration of slices is
fixed and cooperative transmission is only applied in slice s1.
Denote the set of UEs with single antenna served by slice sl
and s2 as Mg = {1,2,..., Mg} and My ={1,2,..., M},
respectively. The set of available subchannels in the system
is denoted by D = {1,2,..., D}, and each of them is with
bandwidth B.

To alleviate the burden on the GRRM and achieve slice
customization, a hierarchical radio resource allocation ar-
chitecture is adopted, which consists of a GRRM and two
LRRMs. Specifically, the GRRM is responsible for allocating
subchannels to slices based on only the performance feedback
from LRRMs and some coarse information about slices, while
the LRRM in each slice is responsible for allocating the
assigned resources to its UEs. Under this setting, the resource
allocation solution space of the GRRM is greatly reduced,
which does not depend on the network scale in each slice.
In addition, the GRRM does not need to gather global CSI
and each LRRM can determine its own resource allocation
strategy. In the following, the LRRM in slice s1 and the LRRM
in slice s2 are named as LRRM 1 and LRRM 2, respectively.
For the sake of slice isolation, the GRRM allocates slice sl
and s2 with disjoint sets of subchannels denoted by Ds; and
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Dga, respectively. Note that the GRRM and LRRMs can be
implemented in software running on computing platforms. For
example, LRRM 1 can be located in the powerful servers
in the cloud, while LRRM 2 can be deployed at an FAP
with high edge computing capability and backhaul links of
good quality that help collect system information from other
connected FAPs. Finally, the GRRM can be run in the slice
orchestration entity defined in [32].

B. The Slice s1 Model

In slice s1, each UE is assumed to be allocated with a
subchannel, and each subchannel can be reused by multiple
UEs. For UE mg ; € Mgy, its received signal is written as

H
E hmsl’j,k,dvmsl,jykydxmsl,j +
kEK

>

mMs1 1EM<1117£] Z Wm

Cmgay j,d =

sl,j

a1,ioka>0RERm 4

+ stl,j,da

(D
where x,,,, is the message of UE mg1 i, Wi, ; ka i @
0-1 indicator which equals to 1 when RRH k serves UE
m1,; over subchannel d, IC,y,,, ; is the set of RRHs satisfying
W, ..kd = 1, 1e., the set of RRHs serving UE myq ;.
Zw%nsl,i,k,d >0 means that UE my;; is allocated with

s]{ibchannel d. Furthermore, h,, ., ; is the channel vector
between RRH %k and UE my; ; on subchannel d, Ving . k.d 18
the precoding vector of RRH k for UE my1 ;, and 2y, ;.a is
the noise which follows the distribution of CA/ (0, 5?). Then
the data rate of UE my ; is calculated by equation (2).

C. The Slice s2 Model

For slice s2, it is assumed that each UE is allocated with one
subchannel, but each subchannel can be reused by multiple
UEs accessing different FAPs. Suppose that each UE mys ;
in slice s2 randomly requests a content f, , , and each
FAP selects popular contents to cache. If desired contents are
cached at associated FAPs, UEs will be served locally avoiding
the latency induced by fetching contents from the cloud. For
UE my2, j, when it is served by an FAP [ over subchannel d,
its received signal is written as

= plhm52,j7l;d‘rm52,j

+ E \/plmszihmsz,ﬁlmszi,dmmszi + Zmgs, j,ds

Mms2,i €EMs2,4,i#]
3

where p; is the transmit power of FAP [ on each subchannel,
which is assumed to be a constant value, thQ,j,l,d is the
channel gain between UE my; ; and FAP [ over subchannel
d, and [, , denotes the FAP serving UE myy ;. Hence, the

Cmgsz j,l,d

H
E hmslyj,k,dvmsl,mk,d‘rmsl,i

4
data rate of UE mgo ; is given by
Rms2‘jvlvd -
2
PP, d
Blog | 1+ | Me2.g | 5
o’ + Py, (Pmas by,
M2, €Maga,d,i#] ’ ’
“)

By involving a 0-1 indicator y,,,, , 1,4, which equals to 1 if
and only if UE myy ; is served by FAP [ over subchannel d,
the data rate of UE mgo ; can be expressed as

Rms2,j ( 52 {ymsz il d} Z Zym52 gl

d€Dgs2 IEL

ms2,j ,Ld-

o)
Then, the content download latency of UE my ; is given
by

1259 i (D927 {ymgg gl d})

=220 aphen fom. ,.; 18 cached at FAP | serving UE myy j,
— M2, 4
fm Jrﬂmgz otherwise,
mso

(6)
where s, ; is the size of the content requested by UE mys ;,
and f3,,,, ; is the latency needed for an FAP to download the
requested file from the cloud via a fronthaul link.

III. PROBLEM FORMULATION

In this section, under the hierarchical radio resource alloca-
tion architecture, a radio resource allocation problem contain-
ing three subproblems is formulated, each of which relates to
the GRRM or an LRRM.

A. Problem Formulation for LRRM 1

By centralized signal processing and radio resource alloca-
tion in the cloud, the aim of slice s1 is to provide high data rate
guarantee with minimum transmission power consumption.
The optimization problem for LRRM 1 is formulated as
follows:

min Ui

T o
(al) [Zwmsl,jykad:| Z Zwmﬂ,]‘,k,d’
& d'Zd &

(@2) 220 Wmgy ; kd > 0,Ymg j,

d k
<a3) Rmsl,j (Dsh {wmslyj,hd} ) {vmslyj,k,d}) Z Rmslyj,minv
Vmsl,j,
(a4) Z Z w"lsL]‘,k,(i S Ok,;\v/k7

ms1,5 d€EDg1

<a5) Z Z wmsl,j7k7d |‘Vm51,j7k,dH§ S Pmax;
ms1,5 d€Dg1

= 0, vmsle,Vd,

(7

2

where Uy = > Y. > Wy, kd vasl,j;k;dHQ' The first
k ms1,5 deEDg1

constraint states that once UE my; ; is allocated with sub-

channel d, it will not be allocated with other subchannels.
The second constraint ensures that each UE must be allocated
with at least one subchannel, which, together with the first
constraint, jointly states that each UE is allocated with one
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subchannel. The third constraint is to provide high data rate
guarantee. The fourth constraint is the fronthaul capacity
constraint, which is enforced by limiting the maximal number
of UEs that can be supported by a fronthaul link [33]. The
last constraint is the transmit power constraint per RRH.

B. Problem Formulation for LRRM 2

Aiming to minimize the content download latency, the
optimization problem for LRRM 2 is given by

mln U2 = ]\4152 Z thQ,J (D827 {ymsgyj,l,d})

{ymszj.l,d} Ms2, 4
(bl) Z Zymsz,j,l,d = 17vms2,j>

d€Dso 1 (8)
®2) > Ymaz jold < 1,VI<I< L, Vd € Dy,

Ms2, 5
(03) > > Ymw,ta <qVI<I<L

d€Dgz Ms2,j

The first constraint requires that each UE can be allocated
with only one FAP and one subchannel. The second constraint
guarantees that the UEs served by an FAP occupy orthogonal
subchannels, and the third constraint together with constraint
(b2) states that each FAP can serve at most ¢ UEs due to
the total transmission power constraints. Note that the second
constraint implicity indicates that the maximal number of
UEs that can be served by an FAP is also limited by the
number of available subchannels of slice s2, i.e., |Ds2|, and
tm,,, ; 18 affected by the content placement according to (6).
Denote the set of contents potentially requested by UEs as
F = {1,2,...,F} and define a content placement matrix
with the size of L x F where its element §);  represents
whether FAP [ caches content f. In addition, the contents in F
follow a certain popularity distribution like Zipf distribution,
and the cache size of each FAP is I'. Finally, performance
metric in (8) can be calculated when contents have been
cached at each FAP by caching the most popular I' contents,
and optimizing radio resource under fixed content placement
is reasonable, since content placement is generally adjusted on
a large time scale [31].

C. Problem Formulation for the GRRM

As a global controller, the GRRM should take into account
the performance of both slices. However, since the perfor-
mance goals of the two slices can have conflict, minimizing
both of them may not be realistic sometimes. Therefore, it is
assumed that the GRRM aims to minimize the transmit power
consumption of slice sl, while guaranteeing the download

+ o

2.

H
hmsld,k’dvmsu,k?d
k,a>0 |KELm g ;

sl,i

latency performance of slice s2. The optimization problem
is formulated as follows:

: U17 Zf U2 < Tmax
Dgl,llglsz Uo = { Kpmax, otherwise
(Cl) Ds1 UDg = D7

(02) Dsl N D52 = ¢a

(03) I']V%zw S |D52‘ é M52~

9

The first constraint means the GRRM will allocate all the
available subchannels to the two slices. The second constraint
is used to avoid the interference between slices and hence
slice isolation is guaranteed. The third constraint is to ensure
that there is enough number of subchannels for the UEs in
slice s2 considering the different degrees of subchannel reuse,
where [ represents the ceiling function. Moreover, Tjp,q. is
the maximal tolerable latency of slice s2.

In the definition of the GRRM utility, the utility value is set
to the maximal transmission power consumption of slice sl as
a punishment when the performance requirement of slice s2 is
not met, which facilitates the GRRM to take the performances
of both slices into account. Note that in the applications of
game theory to wireless networks, the utilities of players are
not always completely conflicting. For example, the utilities
of players in a non-cooperative game can be identical and
correspond to the global performance [34], and the cloud, as
the leader in the concerned Stackelberg game in [27], intends
to maximize the sum rate of all the users that are followers.
Hence, the utility selection of the GRRM in our paper is
reasonable.

At the end of this section, we highlight the difficulties of
our work compared to literatures studying resource allocation
in multi-tier heterogenous networks (HetNets), and note that
each slice in our work can be seen as a tier in a HetNet. In
[35], a distributed power adjustment algorithm is designed,
and power allocation for a multi-tier network is also studied
in [36]. However, the optimization of user-BS association
and subchannel allocation is not considered in [35] and [36],
which needs to be addressed in our work for both tiers. In
[37], the bias factor of each tier for user association and the
proportion of spectrum allocated to each tier are optimized
based on stochastic geometry analysis. Nevertheless, stochastic
geometry analysis can not help us to get exact resource
allocation of each tier and each user based on instantaneous
CSI. In [38] and [39], resource is directly allocated to each
user. In our work, in addition to allocating resource to each
user, which is performed by LRRMs, we also have to address
the resource allocation between the considered two tiers,
which has significant impacts on the user resource allocation
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result. In [40], bandwidth resource allocation refers to that
each wireless service provider needs to decide the amount of
bandwidth allocated to each tier of the heterogenous network
it owns. However, the optimization of resource allocation to
each user within each tier is lacked, which needs to be handled
by LRRMs in this paper via solving an NP-hard resource
allocation problem for each tier.

IV. A STACKELBERG GAME APPROACH

In this section, the formulated resource allocation problem
is modeled as a Stackelberg game, and the existence and
uniqueness of the SE are analyzed. In addition, a method based
on exhaustive search is proposed to identify the existence of
SE and find SE (if SE exists) at the same time.

A. Stackelberg Game Formulation

The resource allocation problem formulated in the previous
section is a hierarchical optimization problem, where the
GRRM optimization problem is the upper level problem while
the LRRM optimization problems are lower level problems.
The upper level problem and lower level problems are tightly
coupled. Note that under the hierarchical resource allocation
architecture, the GRRM holds a strong position and each
LRRM can only react to its allocation result. Hence, inspired
by [41], the resource allocation problem is thereby naturally
formulated as a Stackelberg game taking the GRRM as the
leader and LRRMs as followers, where the equilibrium state
of the game, i.e., SE, can be adopted as the resource allocation
outcome from which neither the GRRM nor the LRRM in each
slice is willing to deviate for improved utility.

The strategy of the GRRM with utility Uy is the resource
allocation among the two slices, i.e., D1 and D,o, which can
be further denoted by a 1 x D subchannel allocation vector d
whose elements are 0-1 variables. Specifically, d; = 1 means
subchannel ¢ is allocated to LRRM 1, and d; = 0 means
subchannel i is allocated to LRRM 2. The strategy of LRRM
1 with utility U; is the resource allocation among the UEs in
slice 51, i.e., {Wm,, ;k.a} and {Vin., ; ka}. {Wm,, ,ka} can
be further denoted by a 1 x My; K |Ds1]| vector w, where each
element relates to a wy,,, ; k4. The strategy of LRRM 2 with
utility Us is the resource allocation among the UEs in slice s2,
ie., {ymﬂ’j,l’d}, which is further denoted by a 1 X Mo L | D2
vector y, where each element relates to a Y, ; 1,4-

After clarifying the strategies and utilities of the players, the
stable state of the formulated game is given by the following
definition that follows reference [41].

Definition /: The strategy d* is an SE strategy for the
leader, i.e., the GRRM, if

Uo (d*7 {W*v {v:nsl,j,k,d}}d*7y§*)

:m&n Uy (d, {w*’ {v%sl,j,k7d}}d,y§) ,

where {w*, {ansl_j & d}} and y} are the optimal strate-

(10)

gies of slice sl and s2 reacting to the leader’s strategy
d, reSfectively. If there is such a d*, d*, together with

w* *

* . .
Vi s kend _and yjg., constitutes an SE solution

)

to our considered hierarchical resource allocation game.

Although taking SE as the resource allocation outcome can
inevitably result in the inefficiency. However, more efficient
algorithms like a fully centralized approach, which can further
improve the utilities of all the players, may lose several
benefits, such as reducing the computation burden on the
GRRM, avoiding the collection of CSI within each slice and
easier intra-slice customization.

Next, the existence and uniqueness of the equilibrium are
presented in the following theorem.

Theorem [: If there exists a resource allocation strategy
d of the GRRM, under which the constraints in (7), (8) and
(9) hold at the same time, the Stackelberg game must have at
least one SE.

Proof: When there does not exist a resource allocation
strategy d of the GRRM under which the constraints in (7),
(8) and (9) are satisfied simultaneously, there is no feasible d
at all and hence no SE exists. On the contrary, we can always
find a feasible d satisfying (10) in Definition 1, and hence SE
must exist. To identify the existence of SE and find SE (if
SE exists) at the same time, Algorithm 1 is presented in the
next subsection. Specifically, at the beginning of Algorithm 1,
the GRRM first generates a set D’ of d meeting (cl), (c2)
and (¢3) in (9). If D’ is empty, Algorithm 1 terminates and
there is no SE solution. If D’ is non-empty, the GRRM starts
to try each d in D’. Once receiving a GRRM’s strategy d,
each LRRM feeds back its optimal utility value to the GRRM
if its problem under d is feasible. Otherwise, each LRRM
feeds back a signaling indicating problem infeasibility. After
receiving feebacks from both LRRMs, the GRRM adds current
d to a set Q and records its achieved utility Uy (d) only if both
LRRMs feed back their utility values. The process continues
until all the d in D’ have been searched. Finally, if Q is empty,
there is no SE solution. Otherwise, the SE strategy is derived
as

d* = argmin U (d),
deQ

(1)

which, together with the corresponding optimal strategies of
both LRRMs under d*, constitutes the SE of the game.
However, the uniqueness of the SE is not guaranteed, since
LRRM 1 not necessarily allocates all the assigned subchannels
to its UEs and hence it is possible for two different subchannel
allocation vectors d; and ds to lead to the same Uy. When
there exist multiple SEs, the SE with the best performance
for LRRM 2 is selected to improve the efficiency of resource
allocation. |

B. The Solution of the Game

In the Stackelberg game, rational followers react optimally
to the strategy of the leader. Here, finding the optimal strate-
gies of LRRM 1 and 2 are equivalent to solving problem
(7) and (8) optimally under a given d, respectively. In the
following, we first analyze problem (7) of LRRM 1.

When a w satisfying (al), (a2) and (a4) is given, prob-
lem (7) can be simplified to the following precoding design
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problem:
. 2
min > > ”Vm-?1>.71k’dm'sl j
{V kyd }msl iE€EMs1 k o
mg1 5.k, Mg, j o
(dl) Rmsl,j > Rmsl,jymivamSlvj’ (12)
3 i
M1, j s

yJ

(d3) Vmsl,jvkvdmrsl,j =0, if w"LSlvj’k’d’”'sl-,j =0,

where dmsl,j denotes the subchannel allocated to UE mq j,
and constraint (d3) states that if UE myg ; is not associated
with RRH £k, the corresponding precoding vector is set to a
zero vector. Note that constraint (d1) can be transformed into
a convex second order cone constraint by rotating the phase
of Vi g kudm,, o which will not influence the objective and
the constraints. Then, problem (12) can be further rewritten as

2
min >y ’

{vr,,LsLj,k,dmsl,j } mg1,;EMs1 k

(e1) S bl v

Ms1,iydm g ;=d

Vﬂ’lsl,jykvdwlsl’j 9

2
+ 02

Msl,j

1 H ,
<. /14 — Re {hmsl‘j,dm“’j vmsl7j} ,Vmgr 5,

H —
(e2) Im {hm Cod - Vma = 0,Vms g,
s1,jodmg :
(63) Z ’ v7rbsl,j)k7d7n§1 . S pnlax’Vk7
e A
s,
(64) Vmslyj,k,dmsl J = 07 ,Lf U}’rnsl_j,k,dms1 J = 07
(13)
Rmsle.min . L. .
where v, ; = 2 B — 1 is the minimum requirement

of the signal to interference plus noise ratio (SINR) of UE
Ms1,5> Dy dmyy is the channel vector from all the RRHs
to UE my; ; on subchannel dmsl,_j’ and v,,
wide precoding vector of UE my ;.

The above problem is convex that can be efficiently solved
by CVX. Then, the optimal strategy of LRRM 1 under a given
d can be got by an exhaustive search as follows. First, generate
all the possible w that meet constraints (al), (a2) and (a4).
Second, calculate the optimal power consumption by solving
problem (13) for each w. Then, the w leading to the minimum
power consumption, together with the corresponding optimal
precoding vector Vines g kdim,, }, constitutes the optimal
strategy of LRRM 1. As for LRRM 2, since its problem is
an integer programming, its optimal strategy is achieved by
an exhaustive search as well.

Based on the above analysis, the algorithm presented in
Algorithm 1 is introduced to find the SE of the formulated
game. In Algorithm 1, the GRRM needs only some coarse
information such as the number of UEs in slice s2 and the
performance feedbacks from the two LRRMs to search for its
optimal strategy, which avoids the collection of global CSI.
Meanwhile, the number of its possible resource allocation
strategies does not depend on the network scale of each slice.
Nevertheless, the algorithm possesses high complexity, espe-
cially for both LRRMs. For example, the exhaustive search
complexity under a given d for LRRM 1 is O (2|D51|M51K),
which is related to the number of the allocated subchannels

.1.; 18 the network

Algorithm 1 Algorithm based on exhaustive search to identify
the existence of SE and find SE (if SE exists)

1: Stage 1:
The GRRM generates all possible d satisfying (cl), (c2)
and (c3) in (9), whose set is denoted by D’, and initializes
an empty set Q.
If D’ is empty, Algorithm 1 terminates and there is no SE
solution. Otherwise, go to Stage 2.

2: Stage 2:
For each subchannel allocation strategy d € D’
1) The GRRM distributes strategy d to both LRRMs, and
each LRRM reacts optimally based on exhaustive search.
2) If the corresponding problem is infeasible for the
LRRM, the LRRM feeds back a signalling indicating
problem infeasibility to the GRRM. Otherwise, the LRRM
feeds back the value of its optimal utility to the GRRM.
3) When the utility values of both LRRMs are received,
the GRRM adds the current d to Q and records its
achieved utility denoted by Uy (d).
End For

3: Stage 3:
If Q is nonempty, d* = argmingcg Up(d), and d*,
together with the corresponding optimal strategies of both
LRRMs, constitutes the SE of the game. If there are
multiple SE strategies for the GRRM, the SE strategy
leading to the minimum download latency of slice s2 is
selected as the system operation point.

and the number of the UEs and RRHs of slice s1. Hence, if the
network scale is large, it may be unrealistic for the LRRMs to
get their optimal strategy within limited decision making time.
Considering this fact, it is reasonable to regard the GRRM and
LRRMSs as players with bounded rationality that aim to find
satisfactory solutions instead of optimal ones. We will develop
low complexity algorithms based on this setting in Section V.

V. Low COMPLEXITY ALGORITHM DESIGN FOR GAME
PLAYERS

In this section, low complexity algorithms are developed
for both the GRRM and LRRMs to help them achieve local
optimal solutions when they behave as players with bounded
rationality who intend to find satisfactory solutions within
limited time for decision making.

A. Low Complexity Algorithm Design for LRRM 1

From problem (7), it can be seen that the main complex-
ity lies in the optimization of wiy,,, ; k.4 representing RRH
association and subchannel allocation. Note that subchannel
allocation is actually equivalent to identifying the subchannel
sharing relationship among UEs, which can be considered
from a coalitional game perspective. Specifically, each sub-
channel can correspond to a coalition, and the UE joining
a certain coalition occupies the corresponding subchannel.
A low complexity and effective approach to form a stable
coalitional structure is to make UEs traverse coalitions based
on the transfer order [42], and the definition of the order
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depends on the system optimization objective. Since LRRM
1 aims at minimizing system transmit power consumption, it
is assumed that a UE transfers from a coalition to another
coalition if and only if the overall power consumption strictly
decreases.

When the subchannel allocation is fixed, the remaining task
is to design a low complexity scheme to jointly optimize the
UE-RRH association and precoding. To facilitate theoretical
analysis, we define a UE-RRH association matrix E whose
(J, k)-th element e, , ; x is a 0-1 variable, which equals
to 1 if UE myg;; associates with RRH % and equals to
0 otherwise. Then, the problem of LRRM 1 under fixed
subchannel allocation is given by

2
min X X vasl,-,mdm v
{Vmslm’“vdmsm }{emsl,jyk}ma‘l,jEMsl k ! shillz
2
(/1) DR | O
Mt g s = Mst,jrdmgy ;- Ml
/ 1 H
S 1 + 777151)]‘ Re {hmsl,jadmsld V’mSLJ} 7vm$1vj’
2T {bE o Vi | =0, Yma,
' 2
(f3) Z vashi*k’dmn.g‘ 9 SpmaXqu>
ms1,j
(f4) Z 6771/51‘]',]6 S Oka Vk’
M1,
(f5) Vmsl,jyksdmslyj = 07 Zf emsl,]‘,k) = 07
(f6) Cmgy 5.k € {07 1} .
(14)

To develop low complexity design for RRH association
and precoding, we first analyze the characteristic of problem
(14). Specifically, define the feasible set of precoding for
problem (14) under association matrix E as Vg, and the
corresponding optimal power consumption is denoted by uy.
If an element e, , ;x = 1 in E is set to 0 and the new
association matrix is denoted as E~, we have Vg- C Vg and
hence ug < up_. This means more active UE-RRH links
can contribute to a better slice performance, which motivates
us to introduce Algorithm 2 to have as many active links as
possible meanwhile keeping the feasibility of constraint (f4)
of problem (14). The whole algorithm is mainly composed of
two parts. The first part starts with activating all UE-RRH links
and gradually drops off weak links to satisfy fronthaul capacity
constraints including Stage 1-Stage 4, while the second part,
including Stage 5-Stage 6, tries to reactivate links dropped
off in the first part. The metric to identify weak links, which
is called contribution index in the following, is given by

2
‘ m51vj’k7dmsl,jVmsLch’delJ
ﬂm,ﬂ,j,k: 29 (15)
H
A2 Lt
Kk ms1,5,k s dm gy M1,k dm gy s

which shows the contribution of RRH £k on the received
signal strength of UE my; ;. It should be highlighted that
problem (14) is reduced to problem (13) under fixed UE-
RRH association. Therefore, under a fixed association matrix
meeting fronthaul capacity constraints (f4) in (14), checking
the feasibility of problem (14) is equivalent to checking the
feasibility of problem (13). In other words, problem (14)

is feasible if and only if the association matrix satisfies
fronthaul capacity constraints and meanwhile problem (13)
is also feasible under this association matrix. Based on this
finding, Stage 3 in Algorithm 2 is designed, which checks
both the violation of fronthaul capacity constraints and the
feasibility of problem (13).

Note that the number of possible UE-RRH links checked
in Algorithm 2 is at most 2M K. Since each check
may include a precoding optimization whose complexity is

o ((KM51)3'5N3'5), the total complexity of Algorithm 2

is O (KM81)4'5N3'5). After the algorithm terminates, the
RRH association outcome is a local optimal solution to prob-
lem (14), and rigorous proof is as follows.

Theorem 2: The final outcome achieved by Algorithm 2
is a local optimal solution to problem (14) in the sense that
activating or inactivating any RRH-UE link can not further
improve the slice performance while keeping all the constraints
satisfied.

Proof: Denote the final association matrix output by
Algorithm 2 as E which must be feasible to problem (14). As
discussed above, inactivating a link in E can not contribute to a
lower transmit power consumption due to a smaller feasible set
of precoding for problem (13). Next, we prove that activating
a link in E can not further improve slice performance as well.
First, if E is a matrix with all elements equal to 1, it is obvious
that no link can be activated, and hence E must be local
optimal.

Then, we discuss the case where there exists at least one
zero element in E. Assume that there exists another association
matrix ET that is got based on E by activating a UE-RRH link
(ms1,5, k) that has been dropped off, and meanwhile meets the
fronthaul capacity constraints for all RRHs. Define the set of

active links in association matrix E as SE,; ., and then we
+ . .
have SE,. =~ C SE,. . According to Algorithm 2, the UE-

RRH link (ms1 4, k) must be checked in Stage 5, and we
denote the corresponding association matrix as E’. From the
algorithm, it can be known that E’ does not satisfy fronthaul
capacity constraints for all RRHs, because the UE-RRH link
(ms1,5, k) will be activated in E otherwise. But on the other
hand, since SE,,,. C SE,,. and SE,, . C SE.. . we have
SE. ... C SE.. ., and hence SE,; . must satisfy all the fron-
thaul constraints as well, which makes a contradiction. Thus,
activating any inactive link in E must lead to an association
matrix violating fronthaul capacity constraints. Finally, we can
conclude that the outcome achieved by Algorithm 2 must be
local optimal. |

Finally, an iterative algorithm based on coalitional game
with transfer order is proposed for LRRM 1, which is
described in Algorithm 3. Since the numbers of available
subchannels and UEs are both limited, the possible subchannel
allocation results are limited, and thus the number of possible
coalitional structures is limited. Note that each successful
transfer guarantees that the transmit power of slice sl strictly
decreases, which leads to a totally new coalitional struc-
ture. Therefore, the algorithm finally converges after a finite
number of iterations. Moreover, according to the algorithm,
its convergence indicates a stable solution to the subchannel
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Algorithm 2 Resource allocation under pre-determined sub-
channel allocation for LRRM 1

Algorithm 3 Resource allocation algorithm based on transfer
order for LRRM 1

1: Stage 1:
LRRM 1 initializes a UE-RRH association matrix
E with all the elements equal to 1 and a set
S1= {(mslmk‘) |m517j S Msl,k‘ S ’C} Then, solve

problem (13) and check the fronthaul capacity constraint
for each RRH under the association matrix E.

o If problem (13) is infeasible, it can be concluded that
no feasible RRH association exists for problem (14).

o If problem (13) is feasible and meanwhile the fron-
thaul capacity constraints are all met, then E together
with the optimal precoding is output as the final
solution.

o If problem (13) is feasible but fronthaul capacity
constraints for certain RRHs are violated, LRRM 1
calculates (15) for each UE-RRH link, and go to
Stage 2.

2: Stage 2:
Find (ms1,;, k') min
(ms1,5,k)EST

set the (', k')-th element in E to 0. In addition, let S; <
S/ {(ms1,50, k') }-

3: Stage 3:
Solve problem (13) and check fronthaul capacity con-
straints.
If problem (13) is infeasible, reset the value of the (5, k')-
th element in E to 1. Then go to Stage 4.
Else if problem (13) is feasible but the fronthaul capacity
constraints are unsatisfied for some RRHs, update contri-
bution index for each UE-RRH link in the set S;. Then
go to Stage 4.
Else if problem (13) is feasible and meanwhile fronthaul
capacity constraints hold for all RRHs, initialize a set
Sy = {(ms1,5,k) |em., ;. = 0} and go to Stage 5.

4: Stage 4:
If S = ¢, the algorithm terminates and no feasible
solution is obtained.
Else if go back to Stage 2.

5: Stage 5:
Select a UE-RRH link (mgq j/,k") in S, and Sy <
Sa/{(ms1,:,k")}. Set the value of the (5, k')-th element
in E to 1.
If fronthaul capacity constraints do not hold for all RRHs
with current E, reset the value of the (j', k')-th element
in E to 0.

6: Stage 6:
If Sy = ¢, the algorithm terminates.
Else if go back to Stage 5.

= arg B ks and then

allocation in the sense that the system transmit power can-
not be strictly decreased by changing any UE’s subchannel
allocation unilaterally. Considering Theorem 2, the resource
allocation outcome resulting from Algorithm 3 can be claimed
to be local optimal. Specifically, keeping RRH association
and precoding fixed, changing any UE’s subchannel allocation
can not improve the slice performance, while activating or

1: Stage 1:

LRRM 1 initializes a coalitional structure II;,; =
{71'1, o, ...,mpsl‘} with mg € Mgy, mUmg - -Ump | =
Mg, and 7g Ny = ¢, Vd # d'. Denote the index
of the coalition to which UE my; ; belongs as dnlsl, ; €
{1,2,...,|Ds1|}. Compute Uy (IL;,,;) by solving the RRH
association and precoding optimization problem (14) using
Algorithm 2.

2: Stage 2:
For j=1: Mgy
For d =1: |Dy|
Ifd+#dpn,,

chrrent =

Wini/ {7Td; T, } U

{Wd U {msl,j}77Tdm51,j/{ms17j}}-
Ui (ILeyprent) using Algorithm 2.
If Uy (IL;;) > Us (Heyrrent) (transfer condition)
Hini — chr'rent and dmsl,j +—d.
End If
End If
End For
End For
3: Stage 3:
Repeat Stage 2 until the coalitional structure II;,; con-
verges.

Compute

dropping off any UE-RRH link can not improve the slice
performance as well when keeping the subchannel allocation
fixed. Finally, the total complexity for the above algorithm in
each iteration is O (| D] M315'5K4'5N3'5).

B. Low Complexity Algorithm Design for LRRM 2

The optimization problem (8) of LRRM 2 is actually a
matching problem between UEs and resources, which mo-
tivates the adoption of matching theory to develop a low
complexity algorithm. According to the constraints in (8),
each UE can be allocated with only one subchannel-FAP
pair and each subchannel-FAP pair can serve only one UE.
Hence, a one-to-one matching problem between UEs and
subchannel-FAP pairs can be formulated. Define the set of all
the subchannel-FAP pairs as A with | A| = |Dgs| L. Then, the
concerned matching problem is formally defined as follows.

Definition 2: A matching p is a one-to-one mapping
between UEs and subchannel-FAP pairs satisfying
LIf p(ms2,;) = a, then p(a) = myaj, Ymsaj € Myo and
Va € A, and vice versa.
2.|,u (msg)j)‘ = 1,Vm52,j € Mo,

3. (a)] < 1,Va € A.

The first condition states that a matching establishes a
mutual relationship between the elements in two different sets.
The second condition requires that each UE must be mapped
to a subchannel-FAP pair, otherwise the average download la-
tency will be infinite. The third condition guarantees that each
subchannel-FAP pair can serve at most one UE. Moreover, the
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download latency of each UE calculated by (6) depends on not
only its own matching to subchannel-FAP pairs but also the
matching between other UEs and subchannel-FAP pairs, which
causes externality of the formulated matching problem. Hence,
the classic deferred acceptance algorithm cannot be applied
[45]. Meanwhile, there is no guarantee on the existence of a
pair-wise stable matching [46]. Therefore, the concept of swap
matching is incorporated to effectively tackle the matching
problem, whose definition is given as follows.

Definition 3: Assume that wunder matching p,
p(msa;) = a and p(msa ;) = a’. Then, “%Z;,j,msz‘jz =
1/ {(msz,j,a) (mszjr,a’)} U {(mszj,0") , (msz,j,a)} is a
swap matching.

It should be highlighted that one of the UEs involved in
the swap can be a dummy UE, which means that no UE is
served by the subchannel-FAP pair it matches with, and a
UE can be mapped to this pair directly. However, considering
that an FAP can serve only finite number of UEs, there is a
special case for the definition of swap matching. Specifically,
suppose that a UE mo ; with p1 (ms2 ;) = a intends to swap
to a subchannel-FAP pair a’ not occupied by any UE, and the
FAP in pair o’ does not associate with UE mo ; currently.
If the quota of the FAP has been full, i.e., the constraint (b3)
in problem (8) takes equality, to keep the feasibility of the
resource allocation solution, a UE myy ;- served by the FAP
should be switched to the subchannel-FAP pair a when UE
Ms2,; swaps to subchannel-FAP pair a'.

Since the LRRM aims to minimize the average download
latency of UEs, the swap condition is defined as follows.

Definition 4: (Swap Condition) Denote the subchannels
included in subchannel-FAP pair a and a’ by d, and d,,
respectively, and define Dyyqp = {do} U {dy }. Then, a swap
matching “%Z;,j»msz,j/ is preferred by LRRM 2 to the current
matching p if

>

ms2,j7d”(m

< 2

Ms2,5,

t a,a’

mMs2, 5 /j‘msg_’j,mszj/
EDsway

22,5) EPewar

(16)
Umga, (1)
(s, ) EPowar
Note that the download latency for UE my ; is expressed
as a function of the current matching due to the existence of
externality. For the special case of swap matching discussed
before, denote the subchannel allocated to UE mg j» by dg»,
and then the set of subchannels related to the swap is now
given by Dgyap = {da} U {do } U {dy}.

Based on the above definitions, a low complexity resource
allocation algorithm for LRRM 2 is presented in Algorithm
4. From the swap condition, it can be seen that each swap
operation leads to a strict decrease of the system average
download latency, and hence a completely new matching will
be generated after each swap. Because of the limited number
of all possible UE-resource matchings, the algorithm will con-
verge to a final matching after finite iterations. Moreover, the
convergence of the matching means a local optimal resource
allocation outcome in the sense that any swap will not improve
the latency performance of slice s2. The complexity of the

Algorithm 4 Resource allocation algorithm based on swap
matching for LRRM 2
1: Stage 1:
LRRM 2 generates the set of all possible subchannel-FAP
pairs A and initializes a feasible UE-resource matching
w satisfying constraints in problem (8). Denote the i-th
subchannel-FAP pair in set A as a;.

2: Stage 2:
For j =1: M
For i =1:|A]

If pu(mg2,5) # a;

Check whether ;Lfr;‘:;j’u(ai) is preferred according to
the swap condition. Especially, when UE mgo ; is not
associated with the FAP included in subchannel-FAP pair
a; not matched to any UE, and meanwhile the quota of
the FAP has been achieved, one of the ¢ UEs served
by the FAP should be swaped to the subchannel-FAP
pair currently matched to UE mg2; to keep a feasible
matching.

If Swap condition holds
S P ()
End If

End If
End For
End For
3: Stage 3:
Repeat Stage 2 until the UE-resource matching x con-
verges.

algorithm for each iteration is O (M2 |Ds2| Lq), where ¢ is
the maximal number of UEs that can be served by an FAP.

C. Low Complexity Algorithm Design for the GRRM

In this subsection, a low complexity algorithm will be
developed for the GRRM to avoid the exhaustive complexity,
and hence good scalability can be achieved when the number
of subchannels is very large. Specifically, a concept similar
to swap matching adopted in the above subsection is first
formally defined as follows.

Definition 5: (Resource Swap Operation) Define the first
kind of swap operations of the GRRM as D1/ {ds1} U{ds2}
and Dso/ {ds2}U{ds1 }, where ds1 € Dy and dgo € Dso, and
define the second kind of swap operations of the GRRM as
D1 U {dsg} with Dsz/ {dsg} or DyoU {d,ﬂ} with Dsl/ {d51}~

Then, the following condition is given to identify whether
to execute swap operations.

Definition 6: (Swap Operation Condition) A swap oper-
ation is performed if and only if the utility of the GRRM Uj
is strictly decreased.

Based on these definitions, our proposed low complexity
resource allocation scheme for the GRRM is elaborated in
Algorithm 5. According to the swap operation condition, each
update of subchannel allocation between slices means a strict
improvement on the utility of the GRRM Uj. Since radio
resources are limited, there is a lower bound of Ujy. Hence,
after finite subchannel allocation updates, Algorithm 5 will
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Algorithm 5 Resource allocation algorithm based on swap
operations for the GRRM
1: Stage 1:
Initially, the GRRM allocates one subchannel to slice s2,
while the remaining subchannels are allocated to slice
sl. After being informed about the resource allocation
result, LRRM 1 and LRRM 2 perform local resource
optimization, and then report slice performances to the
GRRM, based on which the GRRM identifies its initial
utility Uy according to (9).
2: Stage 2:
For subchannel d =1 : D:
For slice i = sl : s2:
For subchannel d; € D;:

The GRRM tries the first kind of swap operations
involving subchannel d and d;, and notifies the LRRMs
of slices about the subchannel allocation.

LRRM 1 and LRRM 2 do resource optimization, and
then feed back slice performances to the GRRM.
If the swap operation condition holds:

Update subchannel allocation between slices and go

back to the second For loop.

End If

End for

If no update of subchannel allocation between slices
occurs:

Try the second kind of swap operations, and notify the
LRRMs of slices about the subchannel allocation.

LRRM 1 and LRRM 2 do resource optimization, and
then feed back slice performances to the GRRM.

If the swap operation condition holds:

Update subchannel allocation between slices and go

back to the second For loop.
End If
End If
End For
End For
3: Stage 3:
Repeat Stage 2 until the subchannel allocation between
slices converges.

converge to a final resource allocation strategy. In addition, the
strategy is local optimal in the sense that no swap operations
can further improve the utility of the GRRM. The complexity
of the algorithm in each iteration is O (D2), showing a good
scalability when the number of subchannels is large. Note that
Algorithm 5 can be adopted to allocate any type of resources
between two slices with any performance metrics. For exam-
ple, each subchannel in this algorithm can be replaced by a
resource bundle including radio resources, caching resources
and computing resources. Moreover, once the GRRM reaches
its local optimal strategy by Algorithm 5, it has no incentive
to change the strategy according to the assumption of bounded
rationality. Then, after each LRRM plays its local optimal
strategy given the strategy of the GRRM, a weak version of
SE is reached following the definition of SE.
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Fig. 2. Simulation scenario.
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Fig. 3. The utility evolution of the GRRM.

VI. SIMULATION RESULTS AND ANALYSIS

In all the simulations, the bandwidth of each subchannel is
180kHz, and the channel coefficient of each link is composed
of path loss and fast fading. The pathloss model is d~2
with d being the distance between the two nodes in the
same link. The fast fading is modeled as an independent
complex Gaussian random variable distributed as CA (0, 1).
The maximal transmit power of each RRH is 1.5 W, and the
number of antennas in each RRH is 2. The noise power is
set to 107!3 W, and the SINR requirement of UEs in slice s1
is taken as 5 dB. The transmit power of each FAP over each
subchannel is 125 mW, and each FAP can serve at most 5
UE:s. In addition, it is assumed that the files requested by UEs
in slice s2 are available at the caches of all FAPs with the
size of each file set to 10Mbits. Considering the randomness
of user content requests, the assumption for 100% cache hit
rate under a specific realization of user content requests is rea-
sonable. However, note that our proposed resource allocation
algorithms for slice s2 can fit into any cache hit situations.

A. Achieving SE via Exhaustive Search

The simulation scenario in this part consists of two F-
RAN slices shown in Fig. 2, where the axis unit is in
meters. Meanwhile, we suggest that five subchannels are to be
allocated by the GRRM, and each fronthaul link can support
at most two UEs. Note that the reason for adopting such a
small scale topology in Fig. 2 is to facilitate the calculation
of SE by exhaustive search.
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Figs. 3-5 show the evolution of the utilities of the GRRM,
LRRM 1 and LRRM 2 during the GRRM searches for its
best strategy, and the total number of interactions between the
GRRM and LRRMs is 25, since the number of subchannel
allocation strategies of the GRRM satisfying the constraints
(c1)-(e3) in (9) is 25. Each interaction includes the broadcast of
the GRRM'’s strategy to LRRMs, the resource optimization of
LRRMs under that given strategy, their performance feedback
to the GRRM, and the decision of the GRRM on whether
to record the current strategy or not. Moreover, if a sub-
channel allocation strategy becomes infeasible to any player’s
optimization problem, the utility of the GRRM is set to 4.5.
From Figs. 3-5, it can be seen that more subchannel allocation
strategies become infeasible when the latency requirement of
slice s2 becomes more stringent. Meanwhile, the SE points
under 15,4, = 3s and T}, = 7s are marked by ellipses with
solid line and dashed line, respectively, and it can be found
from Fig. 4 that more transmission power is consumed by the
slice s1 when T},,,, = 3s, which demonstrates a performance
tradeoff between the two slices. Specifically, this is because
the GRRM has to allocate more subchannels to the LRRM 2
to satisfy its more stringent performance requirement. Hence,
there are fewer subchannels available for LRRM 1, leading to
more severe multi-user interference.

B. The Effectiveness of The Low Complexity Algorithms for
LRRMs

In this subsection, we compare the performance of the low
complexity resource allocation schemes developed for LRRMs
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Fig. 6. Simulation scenario.
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Fig. 7. The performance of the transfer order based resource allocation
algorithm for LRRM 1.

with exhaustive search and other low complexity baselines.
Specifically, two heuristic resource allocation schemes are
adopted in our simulation study:

o Static clustering and round-robin based subchannel al-
location (SCRR): This scheme is adopted as the baseline
for Algorithm 3. Specifically, following the Algorithm 3
in [44], the RRH cluster for each UE is first formed, and
then each UE is allocated with a subchannel in a round-
robin like fashion. After RRH association and subchannel
allocation are determined, a precoding design problem
with the same form of problem (13) will be solved with
CVX.

o Deferred acceptance based node association and round-
robin based subchannel allocation (DARR): This
scheme is adopted as the baseline for Algorithm 4.
Specifically, UEs associate with FAPs in slice s2 based
on received signal strength, and then each node allocates
each UE with a subchannel leading to the highest SINR
for this UE in a round-robin like manner.

Moreover, the simulation scenario is enlarged on the basis of
that in Fig. 2, where slice s1 has 4 UEs while slice s2 has 6
UEs.

Fig. 7 evaluates the performance of the proposed transfer
order based resource allocation algorithm for LRRM 1, i.e.,
Algorithm 3, where the number of subchannels is set to 3, and
the capacity of each fronthaul link is set to 3. From Fig. 7, it
can seen that the transmit power consumption of slice s1 after
each trial is not increased, which is guaranteed by the transfer
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Fig. 9. The performance of the swap operations based resource allocation
algorithm for the GRRM.

order. In addition, a huge gap between the performance of the
proposed scheme and that of SCRR is observed, and this is
because the static clustering and round-robin like subchan-
nel allocation in SCRR do not well handle the multi-user
interference. At last, the high complexity exhaustive search
method can only decrease the transmit power consumption by
no more than 10%, showing the competitive performance of
our proposal.

Fig. 8 illustrates the performance of the proposed swap
matching based resource allocation algorithm for LRRM 2,
i.e., Algorithm 4, where the number of subchannels is set
to 3. First, it can be found that the performance of slice
52 is continuously improved with swap operations going on.
Moreover, it is observed that the algorithm can deliver a
near optimal solution that leads to just about 5% average
download latency increase compared with the optimal solution.
Meanwhile, the improvement of our proposed scheme relative
to the performance of DARR is significant.

C. The Effectiveness of The Low Complexity Algorithm for the
GRRM

To verify the effectiveness of the low complexity proposal
for the GRRM, a larger scale network on the basis of Fig. 6 is
considered, where there are 13 UEs in slice s2 with each FAP
capable of serving at most 5 UEs, and the GRRM needs to
decide the allocation of 11 subchannels. The whole resource
allocation procedure follows Algorithm 5, where each LRRM
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Fig. 10. Large scale simulation scenario.
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acts as a player with bounded rationality who derives a local
optimal strategy using the developed low complexity resource
allocation algorithm given the strategy of the GRRM. From
Fig. 9, we can see that the proposal can achieve near optimal
performance under different latency performance requirements
of slice s2 but with much lower computation complexity than
exhaustive search. In addition, a performance tradeoff between
slices is observed similar to that in Subsection A.

To very the optimality and check the convergence time of
Algorithm 5 under a large scale setting, the scenario in Fig.
10 is considered, where slice 1 has 8 RRHs while slice 2 has
9 FAPs. Meanwhile, there are 25 UEs in slice s1 uniformly
distributed in a circle with the radius of 200m, whose center
is the origin, and there are also 25 UEs in slice s2 uniformly
distributed within a circle with the radius being 100m and
taking the origin as the center. To accommodate the large
number of UEs, fronthaul capacity of each RRH is set to 8.

0.45 T T T
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Ts

—+—Swap based algroithm with T =7s
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max

5 10 15 20 25
The Number of Available Subchannels

Fig. 12.  The execution time of Algorithm 5 with the increase of available
subchannels.
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Fig. 11 compares the performance of Algorithm 5 with
exhaustive search under different number of subchannels, and
note that the utility of the GRRM is set to the maximal total
transmit power of RRHs, which is 12 here, if the latency
performance of slice s2 is not met. First, it can seen that our
proposed swap based inter-slice resource allocation algorithm
can reach near optimal performance. Second, when the number
of subchannels increases, the utility of the GRRM is improved.
This is because more subchannels provide more opportunity
to satisfy the latency requirement of slice s2, and meanwhile
more subchannels can be allocated to slice sl1, which can
reduce interference and thus enables slice s1 to deliver high
data rate with lower transmit power consumption. Third, the
utility of the GRRM is also improved when the latency
requirement of slice s2 is less stringent. This is because
less stringent latency requirement of slice s2 makes more
subchannels available to slice s1. Moreover, the execution
time of Algorithm 5 is demonstrated in Fig. 12, and the time
has excluded the decision-making time of LRRMs. When
the number of subchannels exceeds 15, more subchannels
lead to longer execution time due to more possible inter-
slice subchannel allocation strategies. Moreover, when the
number of subchannels exceeds 15, less stringent performance
requirement of slice s2 causes a larger execution time under
fixed number of subchannels, since more inter-slice allocation
strategies, which can meet the latency requirement of slice s2,
exist.

VII. CONCLUSIONS

In this paper, radio resource allocation between two network
slices with heterogenous performance metrics in fog radio
access networks has been investigated. Under a hierarchical
radio resource allocation architecture, the resource allocation
problem has been modeled as a Stackelberg game, where
the GRRM with a strong position acts as the leader and the
LRRMs of slices act as followers. In addition, the game has
been proved to possess at least one Stackelberg equilibrium
(SE) under certain conditions. Since the problems of followers
are NP-hard and the strategy of the leader is discrete, deriving
SE solution is very challenging. To deal with this problem,
a method based on exhaustive search has been proposed to
help the GRRM and LRRMs achieve the SE interactively.
Moreover, inspired by game-theoretic algorithms, low com-
plexity resource allocation schemes have been developed for
both the GRRM and LRRMs when they behave as players with
bounded rationality. Furthermore, the optimality and complex-
ity of our proposals are all rigorously analyzed. Simulation
study has demonstrated that there is a tradeoff between the
performance of slices, and the low complexity algorithms can
achieve highly competitive solutions.

At last, it should be noted that our proposals for the GRRM
can be used to allocate any resource bundles between slices by
substituting subchannels with resource bundles in Algorithm
1 and Algorithm 5. In the future, it is interesting to study
hierarchical resource allocation for more than two slices with
heterogenous performance metrics. Meanwhile, when LRRMs
cheat the GRRM in terms of their achieved performance, the

GRRM may not find the real optimal or local optimal strategy,
which means SE may not be achieved. Faced with this issue,
it is essential to explore incentive mechanism design to make
LRRMs report their performance truthfully.

REFERENCES

[1] M. Peng, S. Yan, K. Zhang, and C. Wang, “Fog computing based radio
access networks: Issues and challenges,” IEEE Netw., vol. 30, no. 4,
pp. 46-53, Jul. 2016.

[2] S. Yan, M. Peng, and W. Wang, “User access mode selection in fog
computing based radio access networks,” in Proceedings of ICC, Kuala
Lumpur, Malaysia, May 2016, pp. 1-6.

[3] H. Xiang, M. Peng, Y. Cheng, and H. Chen, “Joint mode selection and
resource allocation for downlink fog radio access networks supported
D2D,” in Proceedings of QSHINE, Taipei, China, Aug. 2015, pp. 177-
182.

[4] J. Kang, O. Simeone, J. Kang, and S. Shamai, “Joint optimization
of cloud and edge processing for fog radio access networks,” [EEE
Wireless Commun., vol. 15, no. 11, pp. 7621-7632, Nov. 2016.

[5] C. Liang and F. R. Yu, “Wireless network virtualization: A survey, some
research issues and challenges,” IEEE Commun. Surveys & Tutorials,
vol. 17, no. 1, pp. 358-380, FIRST QUARTER 2015.

[6] M. Peng, Y. Sun, X. Li, Z. Mao, and C. Wang, “Recent advances in
cloud radio access networks: System architectures, key techniques, and
open issues,” [EEE Commun. Surveys & Tutorials, vol. 18, no. 3, pp.
2282-2308, THIRD QUARTER 2016.

[71 M. Richart, J. Baliosian, J. Serrat, and J. Gorricho, “Resource slicing in
virtual wireless networks: A survey,” Trans. Netw. and Service Mana.,
vol. 13, no. 3, pp. 462-476, Sep. 2016.

[8] K. Zhu and E. Hossain, “Virtualization of 5G cellular networks as a
hierarchical combinatorial auction,” [EEE Trans. Mobile Comput., vol.
15, no. 10, pp. 2640-2654, Dec. 2015.

[9] K. Wang, H. Li, F. R. Yu, and W. Wei, “Virtual resource allocation in

software-defined information-centric cellular networks with device-to-

device communications and imperfect CSL,” [EEE Trans. Veh. Technol.,

vol. 65, no. 12, pp. 10011-10021, Dec. 2016.

T. LeAnh, N. H. Tran, D. T. Ngo, and C. S. Hong, “Resource allocation

for virtualized wireless networks with backhaul constraints,” I[EEE

Commun. Lett., vol. 21, no. 1, pp. 148-151, Jan. 2017.

V. Jumba, S. Parsaeefard, M. Derakhshani, and T. Le-Ngoc, ‘“Re-

source provisioning in wireless virtualized networks via massive-

MIMO,” IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 237-240,

Jun. 2015.

V. Jumba, S. Parsaeefard, M. Derakhshani, and T. Le-Ngoc, “Dynamic

resource provisioning with stable queue control for wireless virtualized

networks,” in Proceedings of PIMRC, Hongkong, China, Sep. 2015, pp.

1856-1860.

[13] L. Gao, P. Li, Z. Pan, N. Liu, and X. You, “Virtualization framework and

VCG based resource block allocation scheme for LTE virtualization,” in

Proceedings of VTC, Nanjing, China, May 2016, pp. 1-6.

S. Parsaeefard, R. Dawadi, M. Derakhshani, and T. Le-Ngoc, “Joint

user-association and resource-allocation in virtualized wireless net-

works,” IEEE Access, vol. 4, pp. 2738-2750, Apr. 2016.

M. Richart, J. Baliosian, J. Serrat, and J. Gorricho, “Resource slicing

in virtual wireless networks: A survey,” IEEE Trans. Netw. & Serv.

Manag., vol. 13, no. 3, pp. 462-476, Sep. 2016.

B. Ma, M. H. Cheung, V. W. S. Wong, and J. Huang, “Hybrid

overlay/underlay cognitive femtocell networks: A game theoretic ap-

proach,” IEEE Trans. Wireless Commun., vol. 14, no. 6, pp. 3259-3270,

Jun. 2015.

F. Pantisano, M. Bennis, W. Saad, M. Debbah, and M. Latva-aho,

“Interference alignment for cooperative femtocell networks: A game-

theoretic approach,” IEEE Trans. Mobile Comput., vol. 12, no. 11, pp.

2233-2246, Nov. 2013.

M. Ahmed, M. Peng, M. Abana, S. Yan, and C. Wang, “Interference

coordination in heterogeneous small-cell networks: A coalition forma-

tion game approach,” [EEE Syst. J., vol. 12, no. 1, pp. 604-615, Mar.

2018.

Y. Chen, B. Ai, Y. Niu, K. Guan, and Z. Han, “Resource allocation

for device-to-device communications underlaying heterogeneous cellular

networks using coalitional games,” IEEE Trans. Wireless Commun., vol.

17, no. 6, pp. 4163-4176, Jun. 2018.

[10]

(11]

[12]

[14]

[15]

[16]

(171

[18]

[19]

0018-9545 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2019.2896586, IEEE

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

0018-9545 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Vehicular Technology

X. Kang, R. Zhang, and M. Motani, “Price-based resource alloca-
tion for spectrum-sharing femtocell networks: A stackelberg game
approach,” IEEE J. Sel. Areas Commun., vol. 30, no. 3, pp. 538-549,
Apr. 2012.

P. Yuan, Y. Xiao, G. Bi, and Liren Zhang, “Toward cooperation by
carrier aggregation in heterogeneous networks: A hierarchical game
approach,” IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 1670-1683,
Feb. 2017.

S. Bu, F. R. Yu, and H. Yanikomeroglu, “Interference-aware energy-
efficient resource allocation for OFDMA-based heterogeneous networks
with incomplete channel state information,” IEEE Trans. Veh. Technol.,
vol. 64, no. 3, pp. 1036-1050, Mar. 2015.

Y. Wang, X. Wang, and L. Wang, “Low-complexity stackelberg game
approach for energy-efficient resource allocation in heterogeneous net-
works,” IEEE Commun. Lett., vol. 18, no. 11, pp. 2011-2014, Nov.
2014.

S. Guruacharya, D. Niyato, D. I. Kim, and E. Hossain, “Hierarchical
competition for downlink power allocation in OFDMA femtocell net-
works,” IEEE Trans. Wireless Commun., vol. 12, no. 4, pp. 1543-1553,
Apr. 2013.

L. Liang, G. Feng, and Y. Jia, “Game-theoretic hierarchical resource al-
location for heterogeneous relay networks,” IEEE Trans. Veh. Technol.,
vol. 64, no. 4, pp. 1480-1492, Apr. 2015.

R. Xie, F. R. Yu, H. Ji, and Y. Li, “Energy-efficient resource allocation
for heterogeneous cognitive radio networks with femtocells,” [EEE
Trans. Wireless Commun., vol. 11, no. 11, pp. 3910-3920, Nov. 2012.
H. Dai, Y. Huang, J. Wang, and L. Yang, “Resource optimization in
heterogeneous cloud radio access networks,” IEEE Commun. Lett., vol.
22, no. 3, pp. 494-497, Mar. 2018.

M. Peng, Y. Wang, T. Dang, and Z. Yan, “Cost-efficient resource
allocation in cloud radio access networks with heterogeneous fronthaul
expenditures,” [EEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4626-
4638, Jul. 2017.

M. Peng et al., “Heterogeneous cloud radio access networks: A new
perspective for enhancing spectral and energy efficiencies,” [EEE
Wireless Commun., vol. 21, no. 6, pp. 126-135, Dec. 2014.

Y. Sun, M. Peng, and S. Mao, “Deep reinforcement learning
based mode selection and resource management for green fog ra-
dio access networks,” [EEE Internet Things J., Sep. 2018, doi:
10.1109/J10T.2018.2871020, submitted for publication.

J. Tang, R. Wen, T. Q. S. Quek, and M. Peng, “Fully exploiting cloud
computing to achieve a green and flexible C-RAN,” [EEE Commun.
Mag., vol. 55, no. 11, pp. 40-46, Nov. 2017.

H. Xiang, W. Zhou, M. Daneshmand, and M. Peng, “Network slicing
in fog radio access networks: Issues and challenges,” IEEE Commun.
Mag., vol. 55, no. 12, pp. 110-116, Dec. 2017.

Y. Sun, M. Peng, and H. Vincent Poor, “A distributed approach to
improving spectral efficiency in uplink device-to-device enabled cloud
radio access networks,” [EEE Trans. Commun., vol. 66, no. 12, pp.
6511-6526, Dec. 2018.

M. Bennis, S. M. Perlaza, P. Blasco, Z. Han, and H. Vincent Poor,
“Self-organization in small cell networks: A reinforcement learning
approach,” IEEE Trans. Wireless Commun., vol. 12, no. 7, pp. 3202-
3212, Jul. 2013.

K. Senel and M. Akar, “A power allocation algorithm for multi-
tier cellular networks with heterogeneous QoS and imperfect channel
considerations,” [EEE Trans. Wireless Commun., vol. 16, no. 11, pp.
7184-7194, Nov. 2017.

B. Yuksekkaya and C. Toker, “Power and interference regulated water-
filling for multi-tier multi-carrier interference aware uplink,” [EEE
Wireless Commun. Lett., vol. 7, no. 4, pp. 494-497, Aug. 2018.

Y. Lin, W. Bao, W. Yu, and B. Liang, “Optimizing user association and
spectrum allocation in HetNets: A utility perspective,” IEEE J. Sel.
Areas Commun., vol. 33, no. 6, pp. 1025-1039, Jun. 2015.

S. A. R. Naqvi et al., “Energy-aware radio resource management in
D2D-enabled multi-tier HetNets,” [EEE Access, vol. 6, pp. 16610-
16622, Mar. 2018.

S. Ali, A. Ahmad, R. Igbal, S. Saleem, and T. Umer, “Joint RRH-
association, sub-channel assignment and power allocation in multi-tier
5G C-RANSs,” IEEE Access, vol. 6, pp. 34393-34402, Jun. 2018.

C. Xu, M. Sheng, V. S. Varma, T. Q. S. Quek, and J. Li, “Wireless
service provider selection and bandwidth resource allocation in multi-
tier HCNs,” [EEE Trans. Commun., vol. 64, no. 12, pp. 5108-5124,
Dec. 2016.

Z. Han et al.,, “Game theory in wireless and communication net-
works,” Cambridge University Press, 2012.

[42] W. Saad, Z. Han, R. Zheng, M. Debbah, and H. V. Poor, “A college
admissions game for uplink user association in wireless small cell
networks,” in Proceedings of INFOCOM, Toronto, ON, Canada, Apr.
2014, pp. 1096-1104.

[43] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity
by reweighted 1-1 minimization,” Journal of Fourier analysis and
applications, vol. 14, no. 5-6, pp. 877-905, 2008.

[44] B. Dai and W. Yu, “Sparse beamforming and user-centric clustering for
downlink cloud radio access network,” IEEE Access, vol. 2, pp. 1326-
1339, Nov. 2014.

[45] F. Pantisano, M. Bennis, W. Saad, S. Valentin, and M. Debbah, “Match-
ing with externalities for context-aware user-cell association in small
cell networks,” in Proceedings of Globecom Workshops, Atlanta, GA,
USA, Dec. 2013, pp. 4483-4488.

[46] A. E. Roth and M. A. O. Sotomayor, “Two-sided matching: A study
in game-theoretic modeling and analysis,” Cambridge University Press,

Jun. 1992.
Yaohua Sun received the bachelor’s degree (with
first class Hons.) in telecommunications engineering
(with management) from Beijing University of Posts
. and Telecommunications (BUPT), Beijing, China, in
) e 4] 2014. He is a Ph.D. student at the Key Laboratory
oo B of Universal Wireless Communications (Ministry

of Education), BUPT. He has been reviewers for

IEEE Transactions on Communications, Journal on
Selected Areas in Communications, IEEE Communi-
cations Magazine, IEEE Wireless Communications

Magazine, IEEE Wireless Communications Letters,
IEEE Communications Letters and IEEE Internet of Things Journal.

Mugen Peng (M’05, SM’11) received the Ph.D.
degree in communication and information systems
from the Beijing University of Posts and Telecom-
munications (BUPT), Beijing, China, in 2005. After-
ward, he joined BUPT, where he has been a Full Pro-
fessor since 2012. He has authored and coauthored
over 100 refereed IEEE journal papers and over 300
conference proceeding papers. His main research
areas include wireless communication theory, radio
signal processing, cooperative communication, self-
organization networking, heterogeneous networking,
cloud communication, and Internet of Things. Dr. Peng was a recipient of
the 2018 Heinrich Hertz Prize Paper Award, the 2014 IEEE ComSoc AP
Outstanding Young Researcher Award, and the Best Paper Award in the
JCN 2016, IEEE WCNC 2015, etc. He is currently or have been on the
Editorial/Associate Editorial Board of the IEEE Communications Magazine,
IEEE ACCESS and IEEE Internet of Things Journal.




