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Abstract—Network slicing in fog radio access networks (F-
RANs) is recognized as a cost-efficient solution to support future
diverse use cases. However, with the number of user equip-
ments (UEs) fast increasing, the centralized resource allocation
architecture for network slicing can put heavy burdens on the
global radio resource manager (GRRM), and meanwhile slice
customization is not easy to achieve. To overcome the two issues,
a hierarchical radio resource allocation architecture is proposed
in this paper, where the GRRM is responsible for allocating
subchannels to local radio resource managers (LRRMs) in slices,
which then allocate the assigned resources to their UEs. Under
this architecture, a hierarchical resource allocation problem is
formulated, and the problem is further modeled as a Stakelberg
game with the GRRM as the leader and LRRMs as followers,
considering the hierarchy between the GRRM and LRRMs.
Due to the NP-hardness of the followers’ problems, a process
based on exhaustive search is first proposed to achieve the
Stackelberg equilibrium (SE). Nevertheless, when the network
scale is large, achieving SE within limited decision making
time is impractical for game players. Facing this challenge, the
GRRM and LRRMs are seen as bounded rational players, and
low complexity algorithms are developed to help them achieve
local optimal solutions that lead to a weak version of SE.
Simulation results show that there exists a tradeoff between the
performance of slices, and the low complexity algorithms achieve
close performance to that of exhaustive search and outperform
other baselines significantly.

Index Terms—Fog radio access networks (F-RANs), network
slicing, radio resource allocation, Stackelberg game

I. INTRODUCTION

To better satisfy future communication demands, fog radio

access networks (F-RANs) are proposed to achieve high spec-

tral efficiency, energy efficiency and low latency by fully uti-

lizing the signal processing, resource management and storage

capabilities of edge devices [1]. In F-RANs, a user equipment
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(UE) can operate in different communication modes, including

the centralized cloud-RAN mode and the fog access point

(FAP) mode. Up to now, some interesting studies have been

conducted on F-RANs, in terms of performance analysis [2],

radio resource allocation [3], the joint design of cloud and

edge processing [4], and so on.

On the other hand, as an emerging concept, network slicing

is attracting more and more attentions, and is expected to be

an efficient and flexible solution to support diverse application

scenarios with different requirements. With network slicing, a

physical network can be divided into multiple virtual networks,

each of which is formed by a set of network functions and

resources. When network slicing is conducted in an end-to-

end manner, the RAN part of a network slice is referred to

as a RAN slice, whose performance is dependent on resource

allocation. In current works addressing resource allocation for

RAN slicing, a critical aspect is to achieve slice isolation

between RAN slices [5], and two different ways are often

adopted to achieve this goal. The first one is allocating non-

overlapping resources to different slices [7]–[13], while the

second one is ensuring the minimum performance of each slice

[14]. By isolation, any change in one slice will have no impact

or at least a little impact on the performance of other slices.

Owing to the fog computing, cloud computing and heteroge-

nous networking, F-RANs have great potentials in meeting

diverse demands. For example, FAPs that are equipped with

edge caches can be utilized to support the scenario where low

latency is preferred, while the cloud RAN, which benefits

from centralized signal processing and resource allocation

[6], can be utilized in the scenario where high data rate is

desired. Hence, in this paper, network slicing in F-RANs is

considered, and resource allocation between two slices with

different performance metrics is studied. Specifically, the aim

of one slice is to minimize the content download latency, and

the aim of the other one is to provide high data rate guarantee

with minimal transmission power consumption. To alleviate

the burdens on the global radio resource manager (GRRM)

and achieve slice customization, a hierarchical radio resource

allocation architecture is introduced, where the GRRM is

responsible for allocating resources to each slice, and then the

local radio resource manager (LRRM) in each slice allocates

the assigned resources to its UEs. Under this architecture, a

hierarchical resource allocation problem is formulated, which

contains coupled subproblems, and the problem is further

modeled as a Stackelberg game to produce a stable resource

allocation outcome from which neither the GRRM nor the

LRRM in each slice has incentive to deviate (i.e., to achieve

the Stackelberg equilibrium (SE)).
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A. Related Work and Challenges

Recently, some efforts have been made in resource allo-

cation for network slicing in wireless networks. In [9], all

the transmitters, including a base station (BS) and device-

to-device (D2D) transmitters, are sliced by a hypervisor to

serve users. Considering the imperfect channel state informa-

tion (CSI) observed by the hypervisor, the joint transmitter

association, subchannel allocation and caching optimization

is formulated as a discrete stochastic optimization problem

aiming at maximizing the network utility, which is efficiently

solved with discrete stochastic approximation. In [10], a mo-

bile virtual network operator (MVNO) rents physical resources

from multiple infrastructure providers (InPs) and divides these

resources into multiple slices, each of which is composed of

a BS and a subcarrier chunk. In [14], a downlink orthogonal

frequency division multiple access based wireless network is

considered, where multiple slices with multiple users coexist.

To maximize the network sum rate, a joint BS assignment, sub-

carrier allocation and power allocation problem is investigated,

where the impact of interference between slices is limited by

guaranteeing the minimum user sum rate of each slice. To

deal with this non-convex mixed-integer problem, successive

convex approximation and complementary geometric program-

ming are applied.

Although the proposed approaches in [9], [10], [14] can

achieve good performance, allocating resources directly to all

the users can put heavy burdens on the central controller,

especially when the number of users is large. Meanwhile, by

such centralized resource allocation, the customization of each

slice, which means each slice can individually decide how

to allocate available resources, cannot be easily achieved. To

overcome these two issues, a hierarchical resource allocation

architecture is adopted in [8], [13], where the resources are

firstly allocated to each slice by a central controller, and

then each slice allocates the assigned resources to its own

users. Specifically, in [8], the resource allocation among slices

is formulated as a hierarchical auction game, where slice

isolation is achieved by allocating non-overlapping resources

to slices. In the upper layer, the InP, acting as the seller

as well as the auctioneer, divides the owned resources into

multiple bundles, each of which includes subchannels, power

and antennas, and each MVNO acts as a buyer who submits a

bid for each resource bundle. In the lower layer, each MVNO

acts as a seller with users acting as buyers. Similar to [8], an

auction game is used to model the resource allocation to slices,

where slices have the incentive to bid truthfully to compete for

resource blocks.

In [15], the authors summarize two cases of using slices.

The first one is called Quality of Service Slicing, which

is to support different services by creating dedicated slices,

while the other is termed Infrastructure Sharing Slicing, which

focuses on infrastructure sharing among multi-tenants. Unfor-

tunately, the works [8], [13], together with [9]–[12], [14], all

fail to explicitly consider the first case, which is envisioned as

a key characteristic of the fifth generation mobile network. In

addition, in works [8], [10]–[14], network slicing is done in the

RANs that cannot well support diverse scenarios. For example,

the cellular networks with massive antennas considered in [8],

[11] can well support hot spot areas, but the download latency

can be large since the contents requested by the users need to

be fetched from a remote content server. Therefore, network

slicing in more advanced RANs should be investigated. To

this end, network slicing is done in a downlink F-RAN in this

paper. Specifically, one slice is a traditional C-RAN to provide

high data rate, and the other slice is composed of FAPs with

edge caching capabilities to provide low download latency.

Under a hierarchical resource allocation architecture, resource

allocation among slices is modeled as a Stackelberg game with

the GRRM as the leader and LRRMs as followers, in which

the GRRM first allocates a set of subchannels to each LRRM

and then each LRMM decides the resource allocation within

its slice.

Previously, game theory has been widely applied to resource

allocation problems in heterogenous networks [16]–[27]. In

[16]–[19], coalitional game is adopted to model the cooper-

ative behavior among BSs or users that have equal position,

but this kind of game is not suitable for our problem, since

there is hierarchy between the GRRM and LRRMs in terms

of decision making. In [20]–[23], authors utilize Stackelberg

game to design pricing schemes to control inter-tier interfer-

ence between the leader/leaders and the follower/followers,

which is not the focus of this paper. While in [24], [25],

the leader, which is the macro BS in [24] and the relay

node in [25], only cares about its own resource allocation.

However, in our considered network slicing scenario, the

leader, which is the GRRM, needs to optimize the resource

allocation to each follower. In [26], the cloud as the leader

directly allocates a set of serving nodes to each user, and the

leader in [27], which is a cognitive BS, directly allocates the

spectrum bought from primary networks to each user served

by a femto BS. On the contrary, in our work, the GRRM as

the leader does not allocate resources to each user directly.

Instead, to meet the requirement of slice customization, the

GRRM first decides the resource allocation between slices,

and then the resource allocation to each user is optimized by

the LRRM in each slice. In addition, different from [20]–[27].

where the follower is a BS or a user, each follower in our

problem is a resource manager of a slice consisting of multiple

BSs and multiple users, and the strategy of each follower is

the resource allocation for the whole slice. This unavoidably

makes deriving the optimal strategy of each follower and

SE more challenging. Particularly, the problem related to one

LRRM is a mixed-integer nonlinear programming that is NP-

hard [28], [29] and the problem associated with the other

LRRM is a non-convex problem with 0-1 variables that is

also NP-hard [30].

B. Contributions and Organization

This paper proposes a Stakelberg game based approach to

radio resource allocation for network slicing in a downlink F-

RAN to address the challenges incurred by slice customization

and heterogenous slice performance requirements, which can

achieve a stable allocation result. In the considered scenario,

there exist two slices, namely slice s1 and s2. Specifically,
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slice s1 aims to provide guaranteed high data rates with

minimal transmission power consumption by centralized signal

processing and resource allocation in the cloud, while slice s2
takes advantage of the edge caching capabilities of FAPs to

minimize the content download latency. The main contribu-

tions of the paper are:

• To alleviate the burdens on the GRRM and achieve slice

customization, a hierarchical radio resource allocation

architecture is employed for network slicing in F-RANs.

The GRRM is responsible for allocating radio resources

to each slice, and then the LRRM in each slice allocates

the assigned resources to its UEs. Under this architecture,

a hierarchical resource allocation problem is formulated

containing coupled subproblems, each of which relates

to the GRRM or an LRRM. The objectives of LRRM 1

in slice s1 and LRRM 2 in slice s2 are to provide high

data rate with minimal transmission power consumption

and to minimize the download latency, respectively, while

the GRRM aims to optimize the performance of slice s1
meanwhile guaranteeing the performance of slice s2.

• Considering the hierarchical decision making between the

GRRM and LRRMs and the coupling of their strategies,

the problem is further modeled as a Stakelberg game,

where the GRRM serves as the leader and the two

LRRMs are taken as followers. Moreover, the stable state

of the game, i.e., SE, is defined, and the existence as well

as the uniqueness of the equilibrium are analyzed.

• Different from the Stackelberg game formulated in pre-

vious works where the follower is a BS or a user, each

follower in our work is a resource manager of a slice

consisting of multiple BSs and multiple users, which

makes deriving the optimal strategy of each follower very

challenging. Particularly, the problem related to LRRM

1 is an MINLP and the problem associated with LRRM

2 is a non-convex problem with 0-1 variables. Moreover,

the strategy of the leader is discrete. Faced with the two

issues, a process based on exhaustive search is introduced

to achieve SE when the players are completely rational,

and meanwhile low complexity algorithms are proposed

as well for the case where the GRRM and LRRMs

are bounded rational. Furthermore, the complexity and

optimality of all the proposals are rigorously analyzed

and simulation is conducted to demonstrate their effec-

tiveness.

The remainder of this paper is organized as follows. Section

II describes the downlink F-RAN with two slices. Section

III formulates the related optimization problem, and Sec-

tion IV presents a Stackelberg game based approach to find

SE. Section V develops low complexity resource allocation

algorithms for bounded rational GRRM and LRRMs, and

simulation results are presented in Section VI, followed by

the conclusions in Section VII.

II. SYSTEM MODEL

In this section, the model of a downlink F-RAN is firstly

provided. We then present the models for the two slices.

Slice s1

Fronthaul

Centralized signal 

processing and resource 

allocation

Information 

exchange

Slice s2

GRRM

RRH 1
UE 1 Cache

FAP 1

RRH 2

RRH 3

RRH 4
RRH 5

UE 2

FAP 2

FAP 3

FAP 4

UE 1

UE 2

UE 3

UE 4

LRRM 2

LRRM 1

Fig. 1. Network slicing in a downlink F-RAN with a hierarchical resource
allocation architecture.

A. Network Slicing in a Downlink F-RAN

The downlink F-RAN shown in Fig. 1 consists of one

cloud, multiple remote radio heads (RRHs), multiple FAPs

and multiple D2D transmitters. The F-RAN is divided into

two slices, s1 and s2, which intend to provide high data

rate guarantee and low download latency, respectively. Note

that high data rate can be achieved by taking advantage of

centralized signal processing and resource allocation in the

cloud, while content downloading latency can be reduced

by utilizing the caching capabilities of FAPs. Hence, slice

s1 is allocated with a cloud and K RRHs whose set is

denoted by K = {1, 2, ...,K}, with each RRH equipped

with N antennas. Slice s2 is allocated with L single-antenna

FAPs, whose set is denoted as L = {1, 2, ..., L}. It should

be highlighted that although flexible slice configuration is

supported by network slicing, infrastructure configuration is

usually done over a large time scale [31], which should take

the slice performance metrics and the budget of customers

into account, while subchannel allocation is performed over a

smaller time scale to adapt to the radio environment. In this

paper, subchannel allocation for network slicing is studied,

assuming that the infrastructure configuration of slices is

fixed and cooperative transmission is only applied in slice s1.

Denote the set of UEs with single antenna served by slice s1
and s2 as Ms1 = {1, 2, ...,Ms1} and Ms2 = {1, 2, ...,Ms2},
respectively. The set of available subchannels in the system

is denoted by D = {1, 2, ..., D}, and each of them is with

bandwidth B.

To alleviate the burden on the GRRM and achieve slice

customization, a hierarchical radio resource allocation ar-

chitecture is adopted, which consists of a GRRM and two

LRRMs. Specifically, the GRRM is responsible for allocating

subchannels to slices based on only the performance feedback

from LRRMs and some coarse information about slices, while

the LRRM in each slice is responsible for allocating the

assigned resources to its UEs. Under this setting, the resource

allocation solution space of the GRRM is greatly reduced,

which does not depend on the network scale in each slice.

In addition, the GRRM does not need to gather global CSI

and each LRRM can determine its own resource allocation

strategy. In the following, the LRRM in slice s1 and the LRRM

in slice s2 are named as LRRM 1 and LRRM 2, respectively.

For the sake of slice isolation, the GRRM allocates slice s1
and s2 with disjoint sets of subchannels denoted by Ds1 and
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Ds2, respectively. Note that the GRRM and LRRMs can be

implemented in software running on computing platforms. For

example, LRRM 1 can be located in the powerful servers

in the cloud, while LRRM 2 can be deployed at an FAP

with high edge computing capability and backhaul links of

good quality that help collect system information from other

connected FAPs. Finally, the GRRM can be run in the slice

orchestration entity defined in [32].

B. The Slice s1 Model

In slice s1, each UE is assumed to be allocated with a

subchannel, and each subchannel can be reused by multiple

UEs. For UE ms1,j ∈Ms1, its received signal is written as

cms1,j ,d =
∑

k∈Kms1,j

hH
ms1,j ,k,d

vms1,j ,k,dxms1,j
+

∑

ms1,i∈Ms1,i6=j,
∑

k

wms1,i,k,d>0

∑

k∈Kms1,i

hH
ms1,j ,k,d

vms1,i,k,dxms1,i

+ zms1,j ,d,
(1)

where xms1,i
is the message of UE ms1,i, wms1,i,k,d is a

0-1 indicator which equals to 1 when RRH k serves UE

ms1,i over subchannel d, Kms1,i
is the set of RRHs satisfying

wms1,i,k,d = 1, i.e., the set of RRHs serving UE ms1,i.
∑

k

wms1,i,k,d > 0 means that UE ms1,i is allocated with

subchannel d. Furthermore, hms1,j ,k,d
is the channel vector

between RRH k and UE ms1,j on subchannel d, vms1,j ,k,d is

the precoding vector of RRH k for UE ms1,j , and zms1,j ,d is

the noise which follows the distribution of CN
(

0, σ2
)

. Then

the data rate of UE ms1,j is calculated by equation (2).

C. The Slice s2 Model

For slice s2, it is assumed that each UE is allocated with one

subchannel, but each subchannel can be reused by multiple

UEs accessing different FAPs. Suppose that each UE ms2,j

in slice s2 randomly requests a content fms2,j
, and each

FAP selects popular contents to cache. If desired contents are

cached at associated FAPs, UEs will be served locally avoiding

the latency induced by fetching contents from the cloud. For

UE ms2,j , when it is served by an FAP l over subchannel d,

its received signal is written as

cms2,j ,l,d = plhms2,j ,l,dxms2,j

+
∑

ms2,i∈MS2,d,i6=j

√

plms2,i
hms2,j ,lms2,i

,dxms2,i
+ zms2,j ,d,

(3)

where pl is the transmit power of FAP l on each subchannel,

which is assumed to be a constant value, hms2,j ,l,d is the

channel gain between UE ms2,j and FAP l over subchannel

d, and lms2,i
denotes the FAP serving UE ms2,i. Hence, the

data rate of UE ms2,j is given by

Rms2,j ,l,d =

B log











1 +
pl
∣

∣hms2,j ,l,d

∣

∣

2

σ2 +
∑

ms2,i∈MS2,d,i6=j

plms2,i

∣

∣

∣hms2,j ,lms2,i
,d

∣

∣

∣

2











.

(4)

By involving a 0-1 indicator yms2,j ,l,d, which equals to 1 if

and only if UE ms2,j is served by FAP l over subchannel d,

the data rate of UE ms2,j can be expressed as

Rms2,j

(

Ds2,
{

yms2,j ,l,d

})

=
∑

d∈Ds2

∑

l∈L

yms2,j ,l,dRms2,j ,l,d.

(5)

Then, the content download latency of UE ms2,j is given

by

tms2,j

(

Ds2,
{

yms2,j ,l,d

})

=







sms2,j

Rms2,j

, when fms2,j
is cached at FAP l serving UE ms2,j ,

sms2,j

Rms2,j

+ βms2,j
, otherwise,

(6)

where sms2,j
is the size of the content requested by UE ms2,j ,

and βms2,j
is the latency needed for an FAP to download the

requested file from the cloud via a fronthaul link.

III. PROBLEM FORMULATION

In this section, under the hierarchical radio resource alloca-

tion architecture, a radio resource allocation problem contain-

ing three subproblems is formulated, each of which relates to

the GRRM or an LRRM.

A. Problem Formulation for LRRM 1

By centralized signal processing and radio resource alloca-

tion in the cloud, the aim of slice s1 is to provide high data rate

guarantee with minimum transmission power consumption.

The optimization problem for LRRM 1 is formulated as

follows:

min
{wms1,j ,k,d},{vms1,j ,k,d}

U1

(a1)

[

∑

k

wms1,j ,k,d

]

[

∑

d′ 6=d

∑

k

wms1,j ,k,d′

]

= 0,∀ms1,j , ∀d,

(a2)
∑

d

∑

k

wms1,j ,k,d > 0,∀ms1,j ,

(a3) Rms1,j

(

Ds1,
{

wms1,j ,k,d

}

,
{

vms1,j ,k,d

})

≥ Rms1,j ,min,
∀ms1,j ,
(a4)

∑

ms1,j

∑

d∈Ds1

wms1,j ,k,d ≤ ok, ∀k,

(a5)
∑

ms1,j

∑

d∈Ds1

wms1,j ,k,d

∥

∥vms1,j ,k,d

∥

∥

2

2
≤ pmax,

(7)

where U1 =
∑

k

∑

ms1,j

∑

d∈Ds1

wms1,j ,k,d

∥

∥vms1,j ,k,d

∥

∥

2

2
. The first

constraint states that once UE ms1,j is allocated with sub-

channel d, it will not be allocated with other subchannels.

The second constraint ensures that each UE must be allocated

with at least one subchannel, which, together with the first

constraint, jointly states that each UE is allocated with one
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Rms1,j

(

Ds1,
{

wms1,j ,k,d

}

,
{

vms1,j ,k,d

})

=

∑

d∈Ds1,
∑

k

wms1,j ,k,d>0

B log



















1 +

∣

∣

∣

∣

∣

∑

k∈Kms1,j

hH
ms1,j ,k,d

vms1,j ,k,d

∣

∣

∣

∣

∣

2

∑

ms1,i∈Ms1,i6=j,
∑

k

wms1,i,k,d>0

∣

∣

∣

∣

∣

∑

k∈Kms1,i

hH
ms1,j ,k,d

vms1,i,k,d

∣

∣

∣

∣

∣

2

+ σ2



















.
(2)

subchannel. The third constraint is to provide high data rate

guarantee. The fourth constraint is the fronthaul capacity

constraint, which is enforced by limiting the maximal number

of UEs that can be supported by a fronthaul link [33]. The

last constraint is the transmit power constraint per RRH.

B. Problem Formulation for LRRM 2

Aiming to minimize the content download latency, the

optimization problem for LRRM 2 is given by

min
{yms2,j ,l,d}

U2 = 1
Ms2

∑

ms2,j

tms2,j

(

Ds2,
{

yms2,j ,l,d

})

(b1)
∑

d∈Ds2

∑

l

yms2,j ,l,d = 1,∀ms2,j ,

(b2)
∑

ms2,j

yms2,j ,l,d ≤ 1,∀1 ≤ l ≤ L, ∀d ∈ Ds2,

(b3)
∑

d∈Ds2

∑

ms2,j

yms2,j ,l,d ≤ q, ∀1 ≤ l ≤ L.

(8)

The first constraint requires that each UE can be allocated

with only one FAP and one subchannel. The second constraint

guarantees that the UEs served by an FAP occupy orthogonal

subchannels, and the third constraint together with constraint

(b2) states that each FAP can serve at most q UEs due to

the total transmission power constraints. Note that the second

constraint implicity indicates that the maximal number of

UEs that can be served by an FAP is also limited by the

number of available subchannels of slice s2, i.e., |Ds2|, and

tms2,j
is affected by the content placement according to (6).

Denote the set of contents potentially requested by UEs as

F = {1, 2, ..., F} and define a content placement matrix Ω

with the size of L × F where its element Ωl,f represents

whether FAP l caches content f . In addition, the contents in F
follow a certain popularity distribution like Zipf distribution,

and the cache size of each FAP is Γ. Finally, performance

metric in (8) can be calculated when contents have been

cached at each FAP by caching the most popular Γ contents,

and optimizing radio resource under fixed content placement

is reasonable, since content placement is generally adjusted on

a large time scale [31].

C. Problem Formulation for the GRRM

As a global controller, the GRRM should take into account

the performance of both slices. However, since the perfor-

mance goals of the two slices can have conflict, minimizing

both of them may not be realistic sometimes. Therefore, it is

assumed that the GRRM aims to minimize the transmit power

consumption of slice s1, while guaranteeing the download

latency performance of slice s2. The optimization problem

is formulated as follows:

min
Ds1,Ds2

U0 =

{

U1, if U2 ≤ Tmax

Kpmax, otherwise
(c1) Ds1 ∪ Ds2 = D,
(c2) Ds1 ∩ Ds2 = φ,
(c3) ⌈Ms2

L
⌉ ≤ |Ds2| ≤Ms2.

(9)

The first constraint means the GRRM will allocate all the

available subchannels to the two slices. The second constraint

is used to avoid the interference between slices and hence

slice isolation is guaranteed. The third constraint is to ensure

that there is enough number of subchannels for the UEs in

slice s2 considering the different degrees of subchannel reuse,

where ⌈⌉ represents the ceiling function. Moreover, Tmax is

the maximal tolerable latency of slice s2.

In the definition of the GRRM utility, the utility value is set

to the maximal transmission power consumption of slice s1 as

a punishment when the performance requirement of slice s2 is

not met, which facilitates the GRRM to take the performances

of both slices into account. Note that in the applications of

game theory to wireless networks, the utilities of players are

not always completely conflicting. For example, the utilities

of players in a non-cooperative game can be identical and

correspond to the global performance [34], and the cloud, as

the leader in the concerned Stackelberg game in [27], intends

to maximize the sum rate of all the users that are followers.

Hence, the utility selection of the GRRM in our paper is

reasonable.

At the end of this section, we highlight the difficulties of

our work compared to literatures studying resource allocation

in multi-tier heterogenous networks (HetNets), and note that

each slice in our work can be seen as a tier in a HetNet. In

[35], a distributed power adjustment algorithm is designed,

and power allocation for a multi-tier network is also studied

in [36]. However, the optimization of user-BS association

and subchannel allocation is not considered in [35] and [36],

which needs to be addressed in our work for both tiers. In

[37], the bias factor of each tier for user association and the

proportion of spectrum allocated to each tier are optimized

based on stochastic geometry analysis. Nevertheless, stochastic

geometry analysis can not help us to get exact resource

allocation of each tier and each user based on instantaneous

CSI. In [38] and [39], resource is directly allocated to each

user. In our work, in addition to allocating resource to each

user, which is performed by LRRMs, we also have to address

the resource allocation between the considered two tiers,

which has significant impacts on the user resource allocation
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result. In [40], bandwidth resource allocation refers to that

each wireless service provider needs to decide the amount of

bandwidth allocated to each tier of the heterogenous network

it owns. However, the optimization of resource allocation to

each user within each tier is lacked, which needs to be handled

by LRRMs in this paper via solving an NP-hard resource

allocation problem for each tier.

IV. A STACKELBERG GAME APPROACH

In this section, the formulated resource allocation problem

is modeled as a Stackelberg game, and the existence and

uniqueness of the SE are analyzed. In addition, a method based

on exhaustive search is proposed to identify the existence of

SE and find SE (if SE exists) at the same time.

A. Stackelberg Game Formulation

The resource allocation problem formulated in the previous

section is a hierarchical optimization problem, where the

GRRM optimization problem is the upper level problem while

the LRRM optimization problems are lower level problems.

The upper level problem and lower level problems are tightly

coupled. Note that under the hierarchical resource allocation

architecture, the GRRM holds a strong position and each

LRRM can only react to its allocation result. Hence, inspired

by [41], the resource allocation problem is thereby naturally

formulated as a Stackelberg game taking the GRRM as the

leader and LRRMs as followers, where the equilibrium state

of the game, i.e., SE, can be adopted as the resource allocation

outcome from which neither the GRRM nor the LRRM in each

slice is willing to deviate for improved utility.

The strategy of the GRRM with utility U0 is the resource

allocation among the two slices, i.e., Ds1 and Ds2, which can

be further denoted by a 1×D subchannel allocation vector d

whose elements are 0-1 variables. Specifically, di = 1 means

subchannel i is allocated to LRRM 1, and di = 0 means

subchannel i is allocated to LRRM 2. The strategy of LRRM

1 with utility U1 is the resource allocation among the UEs in

slice s1, i.e.,
{

wms1,j ,k,d

}

and
{

vms1,j ,k,d

}

.
{

wms1,j ,k,d

}

can

be further denoted by a 1×Ms1K |Ds1| vector w, where each

element relates to a wms1,j ,k,d. The strategy of LRRM 2 with

utility U2 is the resource allocation among the UEs in slice s2,

i.e.,
{

yms2,j ,l,d

}

, which is further denoted by a 1×Ms2L |Ds2|
vector y, where each element relates to a yms2,j ,l,d.

After clarifying the strategies and utilities of the players, the

stable state of the formulated game is given by the following

definition that follows reference [41].

Definition 1: The strategy d∗ is an SE strategy for the

leader, i.e., the GRRM, if

U0

(

d∗,
{

w∗,
{

v∗
ms1,j ,k,d

}}

d∗

,y∗
d∗

)

=min
d

U0

(

d,
{

w∗,
{

v∗
ms1,j ,k,d

}}

d

,y∗
d

)

,
(10)

where
{

w∗,
{

v∗
ms1,j ,k,d

}}

d

and y∗
d

are the optimal strate-

gies of slice s1 and s2 reacting to the leader’s strategy

d, respectively. If there is such a d∗, d∗, together with
{

w∗,
{

v∗
ms1,j ,k,d

}}

d∗

and y∗
d∗ , constitutes an SE solution

to our considered hierarchical resource allocation game.

Although taking SE as the resource allocation outcome can

inevitably result in the inefficiency. However, more efficient

algorithms like a fully centralized approach, which can further

improve the utilities of all the players, may lose several

benefits, such as reducing the computation burden on the

GRRM, avoiding the collection of CSI within each slice and

easier intra-slice customization.

Next, the existence and uniqueness of the equilibrium are

presented in the following theorem.

Theorem 1: If there exists a resource allocation strategy

d of the GRRM, under which the constraints in (7), (8) and

(9) hold at the same time, the Stackelberg game must have at

least one SE.

Proof: When there does not exist a resource allocation

strategy d of the GRRM under which the constraints in (7),

(8) and (9) are satisfied simultaneously, there is no feasible d

at all and hence no SE exists. On the contrary, we can always

find a feasible d satisfying (10) in Definition 1, and hence SE

must exist. To identify the existence of SE and find SE (if

SE exists) at the same time, Algorithm 1 is presented in the

next subsection. Specifically, at the beginning of Algorithm 1,

the GRRM first generates a set D′ of d meeting (c1), (c2)

and (c3) in (9). If D′ is empty, Algorithm 1 terminates and

there is no SE solution. If D′ is non-empty, the GRRM starts

to try each d in D′. Once receiving a GRRM’s strategy d,

each LRRM feeds back its optimal utility value to the GRRM

if its problem under d is feasible. Otherwise, each LRRM

feeds back a signaling indicating problem infeasibility. After

receiving feebacks from both LRRMs, the GRRM adds current

d to a set Q and records its achieved utility U0 (d) only if both

LRRMs feed back their utility values. The process continues

until all the d in D′ have been searched. Finally, if Q is empty,

there is no SE solution. Otherwise, the SE strategy is derived

as

d∗ = argmin
d∈Q

U∗
0 (d) , (11)

which, together with the corresponding optimal strategies of

both LRRMs under d∗, constitutes the SE of the game.

However, the uniqueness of the SE is not guaranteed, since

LRRM 1 not necessarily allocates all the assigned subchannels

to its UEs and hence it is possible for two different subchannel

allocation vectors d1 and d2 to lead to the same U0. When

there exist multiple SEs, the SE with the best performance

for LRRM 2 is selected to improve the efficiency of resource

allocation.

B. The Solution of the Game

In the Stackelberg game, rational followers react optimally

to the strategy of the leader. Here, finding the optimal strate-

gies of LRRM 1 and 2 are equivalent to solving problem

(7) and (8) optimally under a given d, respectively. In the

following, we first analyze problem (7) of LRRM 1.

When a w satisfying (a1), (a2) and (a4) is given, prob-

lem (7) can be simplified to the following precoding design
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problem:

min
{

vms1,j ,k,dms1,j

}

∑

ms1,j∈Ms1

∑

k

∥

∥

∥
vms1,j ,k,dms1,j

∥

∥

∥

2

2

(d1)Rms1,j
≥ Rms1,j ,min, ∀ms1,j ,

(d2)
∑

ms1,j

∥

∥

∥vms1,j ,k,dms1,j

∥

∥

∥

2

2
≤ pmax, ∀k,

(d3)vms1,j ,k,dms1,j
= 0, if wms1,j ,k,dms1,j

= 0,

(12)

where dms1,j
denotes the subchannel allocated to UE ms1,j ,

and constraint (d3) states that if UE ms1,j is not associated

with RRH k, the corresponding precoding vector is set to a

zero vector. Note that constraint (d1) can be transformed into

a convex second order cone constraint by rotating the phase

of vms1,j ,k,dms1,j
, which will not influence the objective and

the constraints. Then, problem (12) can be further rewritten as

min
{

vms1,j ,k,dms1,j

}

∑

ms1,j∈Ms1

∑

k

∥

∥

∥
vms1,j ,k,dms1,j

∥

∥

∥

2

2

(e1)

√

∑

ms1,i,dms1,i
=dms1,j

∣

∣

∣hH
ms1,j ,dms1,j

vms1,i

∣

∣

∣

2

+ σ2

≤
√

1 + 1
γms1,j

Re
{

hH
ms1,j ,dms1,j

vms1,j

}

, ∀ms1,j ,

(e2) Im
{

hH
ms1,j ,dms1,j

vms1,j

}

= 0,∀ms1,j ,

(e3)
∑

ms1,j

∥

∥

∥vms1,j ,k,dms1,j

∥

∥

∥

2

2
≤ pmax, ∀k,

(e4)vms1,j ,k,dms1,j
= 0, if wms1,j ,k,dms1,j

= 0,
(13)

where γms1,j
= 2

Rms1,j ,min

B − 1 is the minimum requirement

of the signal to interference plus noise ratio (SINR) of UE

ms1,j , hms1,j ,dms1,j
is the channel vector from all the RRHs

to UE ms1,j on subchannel dms1,j
, and vms1,j

is the network

wide precoding vector of UE ms1,j .

The above problem is convex that can be efficiently solved

by CVX. Then, the optimal strategy of LRRM 1 under a given

d can be got by an exhaustive search as follows. First, generate

all the possible w that meet constraints (a1), (a2) and (a4).

Second, calculate the optimal power consumption by solving

problem (13) for each w. Then, the w leading to the minimum

power consumption, together with the corresponding optimal

precoding vector
{

vms1,j ,k,dms1,j

}

, constitutes the optimal

strategy of LRRM 1. As for LRRM 2, since its problem is

an integer programming, its optimal strategy is achieved by

an exhaustive search as well.

Based on the above analysis, the algorithm presented in

Algorithm 1 is introduced to find the SE of the formulated

game. In Algorithm 1, the GRRM needs only some coarse

information such as the number of UEs in slice s2 and the

performance feedbacks from the two LRRMs to search for its

optimal strategy, which avoids the collection of global CSI.

Meanwhile, the number of its possible resource allocation

strategies does not depend on the network scale of each slice.

Nevertheless, the algorithm possesses high complexity, espe-

cially for both LRRMs. For example, the exhaustive search

complexity under a given d for LRRM 1 is O
(

2|Ds1|Ms1K
)

,

which is related to the number of the allocated subchannels

Algorithm 1 Algorithm based on exhaustive search to identify

the existence of SE and find SE (if SE exists)

1: Stage 1:

The GRRM generates all possible d satisfying (c1), (c2)

and (c3) in (9), whose set is denoted by D′, and initializes

an empty set Q.

If D′ is empty, Algorithm 1 terminates and there is no SE

solution. Otherwise, go to Stage 2.

2: Stage 2:

For each subchannel allocation strategy d ∈ D′

1) The GRRM distributes strategy d to both LRRMs, and

each LRRM reacts optimally based on exhaustive search.

2) If the corresponding problem is infeasible for the

LRRM, the LRRM feeds back a signalling indicating

problem infeasibility to the GRRM. Otherwise, the LRRM

feeds back the value of its optimal utility to the GRRM.

3) When the utility values of both LRRMs are received,

the GRRM adds the current d to Q and records its

achieved utility denoted by U0 (d).
End For

3: Stage 3:

If Q is nonempty, d∗ = argmind∈Q U0 (d), and d∗,

together with the corresponding optimal strategies of both

LRRMs, constitutes the SE of the game. If there are

multiple SE strategies for the GRRM, the SE strategy

leading to the minimum download latency of slice s2 is

selected as the system operation point.

and the number of the UEs and RRHs of slice s1. Hence, if the

network scale is large, it may be unrealistic for the LRRMs to

get their optimal strategy within limited decision making time.

Considering this fact, it is reasonable to regard the GRRM and

LRRMs as players with bounded rationality that aim to find

satisfactory solutions instead of optimal ones. We will develop

low complexity algorithms based on this setting in Section V.

V. LOW COMPLEXITY ALGORITHM DESIGN FOR GAME

PLAYERS

In this section, low complexity algorithms are developed

for both the GRRM and LRRMs to help them achieve local

optimal solutions when they behave as players with bounded

rationality who intend to find satisfactory solutions within

limited time for decision making.

A. Low Complexity Algorithm Design for LRRM 1

From problem (7), it can be seen that the main complex-

ity lies in the optimization of wms1,j ,k,d representing RRH

association and subchannel allocation. Note that subchannel

allocation is actually equivalent to identifying the subchannel

sharing relationship among UEs, which can be considered

from a coalitional game perspective. Specifically, each sub-

channel can correspond to a coalition, and the UE joining

a certain coalition occupies the corresponding subchannel.

A low complexity and effective approach to form a stable

coalitional structure is to make UEs traverse coalitions based

on the transfer order [42], and the definition of the order
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depends on the system optimization objective. Since LRRM

1 aims at minimizing system transmit power consumption, it

is assumed that a UE transfers from a coalition to another

coalition if and only if the overall power consumption strictly

decreases.

When the subchannel allocation is fixed, the remaining task

is to design a low complexity scheme to jointly optimize the

UE-RRH association and precoding. To facilitate theoretical

analysis, we define a UE-RRH association matrix E whose

(j, k)-th element ems1,j ,k is a 0-1 variable, which equals

to 1 if UE ms1,j associates with RRH k and equals to

0 otherwise. Then, the problem of LRRM 1 under fixed

subchannel allocation is given by

min
{

vms1,j ,k,dms1,j

}

{ems1,j ,k}

∑

ms1,j∈Ms1

∑

k

∥

∥

∥
vms1,j ,k,dms1,j

∥

∥

∥

2

2

(f1)

√

∑

ms1,i,dms1,i
=dms1,j

∣

∣

∣hH
ms1,j ,dms1,j

vms1,i

∣

∣

∣

2

+ σ2

≤
√

1 + 1
γms1,j

Re
{

hH
ms1,j ,dms1,j

vms1,j

}

, ∀ms1,j ,

(f2) Im
{

hH
ms1,j ,dms1,j

vms1,j

}

= 0,∀ms1,j ,

(f3)
∑

ms1,j

∥

∥

∥vms1,j ,k,dms1,j

∥

∥

∥

2

2
≤ pmax, ∀k,

(f4)
∑

ms1,j

ems1,j ,k ≤ ok, ∀k,

(f5)vms1,j ,k,dms1,j
= 0, if ems1,j ,k = 0,

(f6) ems1,j ,k ∈ {0, 1} .
(14)

To develop low complexity design for RRH association

and precoding, we first analyze the characteristic of problem

(14). Specifically, define the feasible set of precoding for

problem (14) under association matrix E as VE, and the

corresponding optimal power consumption is denoted by u∗
E

.

If an element ems1,j ,k = 1 in E is set to 0 and the new

association matrix is denoted as E−, we have VE− ⊆ VE and

hence u∗
E
≤ u∗

E− . This means more active UE-RRH links

can contribute to a better slice performance, which motivates

us to introduce Algorithm 2 to have as many active links as

possible meanwhile keeping the feasibility of constraint (f4)

of problem (14). The whole algorithm is mainly composed of

two parts. The first part starts with activating all UE-RRH links

and gradually drops off weak links to satisfy fronthaul capacity

constraints including Stage 1-Stage 4, while the second part,

including Stage 5-Stage 6, tries to reactivate links dropped

off in the first part. The metric to identify weak links, which

is called contribution index in the following, is given by

βms1,j ,k=

∣

∣

∣hH
ms1,j ,k,dms1,j

vms1,j ,k,dms1,j

∣

∣

∣

2

∣

∣

∣

∣

∑

k′∈K

hH
ms1,j ,k′,dms1,j

vms1,j ,k′,dms1,j

∣

∣

∣

∣

2 , (15)

which shows the contribution of RRH k on the received

signal strength of UE ms1,j . It should be highlighted that

problem (14) is reduced to problem (13) under fixed UE-

RRH association. Therefore, under a fixed association matrix

meeting fronthaul capacity constraints (f4) in (14), checking

the feasibility of problem (14) is equivalent to checking the

feasibility of problem (13). In other words, problem (14)

is feasible if and only if the association matrix satisfies

fronthaul capacity constraints and meanwhile problem (13)

is also feasible under this association matrix. Based on this

finding, Stage 3 in Algorithm 2 is designed, which checks

both the violation of fronthaul capacity constraints and the

feasibility of problem (13).

Note that the number of possible UE-RRH links checked

in Algorithm 2 is at most 2Ms1K. Since each check

may include a precoding optimization whose complexity is

O
(

(KMs1)
3.5

N3.5
)

, the total complexity of Algorithm 2

is O
(

(KMs1)
4.5

N3.5
)

. After the algorithm terminates, the

RRH association outcome is a local optimal solution to prob-

lem (14), and rigorous proof is as follows.

Theorem 2: The final outcome achieved by Algorithm 2

is a local optimal solution to problem (14) in the sense that

activating or inactivating any RRH-UE link can not further

improve the slice performance while keeping all the constraints

satisfied.

Proof: Denote the final association matrix output by

Algorithm 2 as E which must be feasible to problem (14). As

discussed above, inactivating a link in E can not contribute to a

lower transmit power consumption due to a smaller feasible set

of precoding for problem (13). Next, we prove that activating

a link in E can not further improve slice performance as well.

First, if E is a matrix with all elements equal to 1, it is obvious

that no link can be activated, and hence E must be local

optimal.

Then, we discuss the case where there exists at least one

zero element in E. Assume that there exists another association

matrix E+ that is got based on E by activating a UE-RRH link

(ms1,j , k) that has been dropped off, and meanwhile meets the

fronthaul capacity constraints for all RRHs. Define the set of

active links in association matrix E as SEactive, and then we

have SEactive ⊂ S
E

+

active. According to Algorithm 2, the UE-

RRH link (ms1,j , k) must be checked in Stage 5, and we

denote the corresponding association matrix as E′. From the

algorithm, it can be known that E′ does not satisfy fronthaul

capacity constraints for all RRHs, because the UE-RRH link

(ms1,j , k) will be activated in E otherwise. But on the other

hand, since SE
′

active ⊆ S
E

active and SEactive ⊂ S
E

+

active, we have

SE
′

active ⊂ S
E

+

active, and hence SE
′

active must satisfy all the fron-

thaul constraints as well, which makes a contradiction. Thus,

activating any inactive link in E must lead to an association

matrix violating fronthaul capacity constraints. Finally, we can

conclude that the outcome achieved by Algorithm 2 must be

local optimal.

Finally, an iterative algorithm based on coalitional game

with transfer order is proposed for LRRM 1, which is

described in Algorithm 3. Since the numbers of available

subchannels and UEs are both limited, the possible subchannel

allocation results are limited, and thus the number of possible

coalitional structures is limited. Note that each successful

transfer guarantees that the transmit power of slice s1 strictly

decreases, which leads to a totally new coalitional struc-

ture. Therefore, the algorithm finally converges after a finite

number of iterations. Moreover, according to the algorithm,

its convergence indicates a stable solution to the subchannel
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Algorithm 2 Resource allocation under pre-determined sub-

channel allocation for LRRM 1

1: Stage 1:

LRRM 1 initializes a UE-RRH association matrix

E with all the elements equal to 1 and a set

S1= {(ms1,j , k) |ms1,j ∈Ms1, k ∈ K}. Then, solve

problem (13) and check the fronthaul capacity constraint

for each RRH under the association matrix E.

• If problem (13) is infeasible, it can be concluded that

no feasible RRH association exists for problem (14).

• If problem (13) is feasible and meanwhile the fron-

thaul capacity constraints are all met, then E together

with the optimal precoding is output as the final

solution.

• If problem (13) is feasible but fronthaul capacity

constraints for certain RRHs are violated, LRRM 1

calculates (15) for each UE-RRH link, and go to

Stage 2.

2: Stage 2:

Find (ms1,j′ , k
′) = arg min

(ms1,j ,k)∈S1

βms1,j ,k, and then

set the (j′, k′)-th element in E to 0. In addition, let S1 ←
S1/ {(ms1,j′ , k

′)}.
3: Stage 3:

Solve problem (13) and check fronthaul capacity con-

straints.

If problem (13) is infeasible, reset the value of the (j′, k′)-
th element in E to 1. Then go to Stage 4.

Else if problem (13) is feasible but the fronthaul capacity

constraints are unsatisfied for some RRHs, update contri-

bution index for each UE-RRH link in the set S1. Then

go to Stage 4.

Else if problem (13) is feasible and meanwhile fronthaul

capacity constraints hold for all RRHs, initialize a set

S2 =
{

(ms1,j , k) |ems1,j ,k = 0
}

and go to Stage 5.

4: Stage 4:

If S1 = φ, the algorithm terminates and no feasible

solution is obtained.

Else if go back to Stage 2.

5: Stage 5:

Select a UE-RRH link (ms1,j′ , k
′) in S2, and S2 ←

S2/ {(ms1,j′ , k
′)}. Set the value of the (j′, k′)-th element

in E to 1.

If fronthaul capacity constraints do not hold for all RRHs

with current E, reset the value of the (j′, k′)-th element

in E to 0.

6: Stage 6:

If S2 = φ, the algorithm terminates.

Else if go back to Stage 5.

allocation in the sense that the system transmit power can-

not be strictly decreased by changing any UE’s subchannel

allocation unilaterally. Considering Theorem 2, the resource

allocation outcome resulting from Algorithm 3 can be claimed

to be local optimal. Specifically, keeping RRH association

and precoding fixed, changing any UE’s subchannel allocation

can not improve the slice performance, while activating or

Algorithm 3 Resource allocation algorithm based on transfer

order for LRRM 1

1: Stage 1:

LRRM 1 initializes a coalitional structure Πini =
{

π1, π2, ..., π|Ds1|

}

with πd ⊆Ms1, π1∪π2 · · ·∪π|Ds1| =
Ms1, and πd ∩ πd′ = φ, ∀d 6= d′. Denote the index

of the coalition to which UE ms1,j belongs as dms1,j
∈

{1, 2, ..., |Ds1|}. Compute U1 (Πini) by solving the RRH

association and precoding optimization problem (14) using

Algorithm 2.

2: Stage 2:

For j = 1 : Ms1

For d = 1 : |Ds1|
If d 6= dms1,j

Πcurrent = Πini/
{

πd, πdms1,j

}

∪
{

πd ∪ {ms1,j} , πdms1,j
/ {ms1,j}

}

. Compute

U1 (Πcurrent) using Algorithm 2.

If U1 (Πini) > U1 (Πcurrent) (transfer condition)

Πini ← Πcurrent and dms1,j
← d.

End If

End If

End For

End For

3: Stage 3:

Repeat Stage 2 until the coalitional structure Πini con-

verges.

dropping off any UE-RRH link can not improve the slice

performance as well when keeping the subchannel allocation

fixed. Finally, the total complexity for the above algorithm in

each iteration is O
(

|Ds1|Ms1
5.5K4.5N3.5

)

.

B. Low Complexity Algorithm Design for LRRM 2

The optimization problem (8) of LRRM 2 is actually a

matching problem between UEs and resources, which mo-

tivates the adoption of matching theory to develop a low

complexity algorithm. According to the constraints in (8),

each UE can be allocated with only one subchannel-FAP

pair and each subchannel-FAP pair can serve only one UE.

Hence, a one-to-one matching problem between UEs and

subchannel-FAP pairs can be formulated. Define the set of all

the subchannel-FAP pairs as A with |A| = |Ds2|L. Then, the

concerned matching problem is formally defined as follows.

Definition 2: A matching µ is a one-to-one mapping

between UEs and subchannel-FAP pairs satisfying

1.If µ (ms2,j) = a, then µ (a) = ms2,j , ∀ms2,j ∈ Ms2 and

∀a ∈ A, and vice versa.

2.|µ (ms2,j)| = 1,∀ms2,j ∈Ms2.

3.|µ (a)| ≤ 1,∀a ∈ A.

The first condition states that a matching establishes a

mutual relationship between the elements in two different sets.

The second condition requires that each UE must be mapped

to a subchannel-FAP pair, otherwise the average download la-

tency will be infinite. The third condition guarantees that each

subchannel-FAP pair can serve at most one UE. Moreover, the
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download latency of each UE calculated by (6) depends on not

only its own matching to subchannel-FAP pairs but also the

matching between other UEs and subchannel-FAP pairs, which

causes externality of the formulated matching problem. Hence,

the classic deferred acceptance algorithm cannot be applied

[45]. Meanwhile, there is no guarantee on the existence of a

pair-wise stable matching [46]. Therefore, the concept of swap

matching is incorporated to effectively tackle the matching

problem, whose definition is given as follows.

Definition 3: Assume that under matching µ,

µ (ms2,j) = a and µ (ms2,j′) = a′. Then, µa,a′

ms2,j ,ms2,j′
=

µ/ {(ms2,j , a) , (ms2,j′ , a
′)} ∪ {(ms2,j , a

′) , (ms2,j′ , a)} is a

swap matching.

It should be highlighted that one of the UEs involved in

the swap can be a dummy UE, which means that no UE is

served by the subchannel-FAP pair it matches with, and a

UE can be mapped to this pair directly. However, considering

that an FAP can serve only finite number of UEs, there is a

special case for the definition of swap matching. Specifically,

suppose that a UE ms2,j with µ (ms2,j) = a intends to swap

to a subchannel-FAP pair a′ not occupied by any UE, and the

FAP in pair a′ does not associate with UE ms2,j currently.

If the quota of the FAP has been full, i.e., the constraint (b3)

in problem (8) takes equality, to keep the feasibility of the

resource allocation solution, a UE ms2,j′′ served by the FAP

should be switched to the subchannel-FAP pair a when UE

ms2,j swaps to subchannel-FAP pair a′.

Since the LRRM aims to minimize the average download

latency of UEs, the swap condition is defined as follows.

Definition 4: (Swap Condition) Denote the subchannels

included in subchannel-FAP pair a and a′ by da and da′ ,

respectively, and define Dswap = {da} ∪ {da′}. Then, a swap

matching µa,a′

ms2,j ,ms2,j′
is preferred by LRRM 2 to the current

matching µ if

∑

ms2,j ,dµ(ms2,j)
∈Dswap

tms2,j

(

µa,a′

ms2,j ,ms2,j′

)

<
∑

ms2,j ,dµ(ms2,j)
∈Dswap

tms2,j
(µ).

(16)

Note that the download latency for UE ms2,j is expressed

as a function of the current matching due to the existence of

externality. For the special case of swap matching discussed

before, denote the subchannel allocated to UE ms2,j′′ by da′′ ,

and then the set of subchannels related to the swap is now

given by Dswap = {da} ∪ {da′} ∪ {da′′}.
Based on the above definitions, a low complexity resource

allocation algorithm for LRRM 2 is presented in Algorithm

4. From the swap condition, it can be seen that each swap

operation leads to a strict decrease of the system average

download latency, and hence a completely new matching will

be generated after each swap. Because of the limited number

of all possible UE-resource matchings, the algorithm will con-

verge to a final matching after finite iterations. Moreover, the

convergence of the matching means a local optimal resource

allocation outcome in the sense that any swap will not improve

the latency performance of slice s2. The complexity of the

Algorithm 4 Resource allocation algorithm based on swap

matching for LRRM 2

1: Stage 1:

LRRM 2 generates the set of all possible subchannel-FAP

pairs A and initializes a feasible UE-resource matching

µ satisfying constraints in problem (8). Denote the i-th
subchannel-FAP pair in set A as ai.

2: Stage 2:

For j = 1 : Ms2

For i = 1 : |A|
If µ (ms2,j) 6= ai

Check whether µa,ai

ms2,j ,µ(ai)
is preferred according to

the swap condition. Especially, when UE ms2,j is not

associated with the FAP included in subchannel-FAP pair

ai not matched to any UE, and meanwhile the quota of

the FAP has been achieved, one of the q UEs served

by the FAP should be swaped to the subchannel-FAP

pair currently matched to UE ms2,j to keep a feasible

matching.

If Swap condition holds

µ← µa,ai

ms2,j ,µ(ai)
.

End If

End If

End For

End For

3: Stage 3:

Repeat Stage 2 until the UE-resource matching µ con-

verges.

algorithm for each iteration is O (Ms2 |Ds2|Lq), where q is

the maximal number of UEs that can be served by an FAP.

C. Low Complexity Algorithm Design for the GRRM

In this subsection, a low complexity algorithm will be

developed for the GRRM to avoid the exhaustive complexity,

and hence good scalability can be achieved when the number

of subchannels is very large. Specifically, a concept similar

to swap matching adopted in the above subsection is first

formally defined as follows.

Definition 5: (Resource Swap Operation) Define the first

kind of swap operations of the GRRM as Ds1/ {ds1}∪ {ds2}
and Ds2/ {ds2}∪{ds1}, where ds1 ∈ Ds1 and ds2 ∈ Ds2, and

define the second kind of swap operations of the GRRM as

Ds1∪{ds2} with Ds2/ {ds2} or Ds2∪{ds1} with Ds1/ {ds1}.
Then, the following condition is given to identify whether

to execute swap operations.

Definition 6: (Swap Operation Condition) A swap oper-

ation is performed if and only if the utility of the GRRM U0

is strictly decreased.

Based on these definitions, our proposed low complexity

resource allocation scheme for the GRRM is elaborated in

Algorithm 5. According to the swap operation condition, each

update of subchannel allocation between slices means a strict

improvement on the utility of the GRRM U0. Since radio

resources are limited, there is a lower bound of U0. Hence,

after finite subchannel allocation updates, Algorithm 5 will
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Algorithm 5 Resource allocation algorithm based on swap

operations for the GRRM

1: Stage 1:

Initially, the GRRM allocates one subchannel to slice s2,

while the remaining subchannels are allocated to slice

s1. After being informed about the resource allocation

result, LRRM 1 and LRRM 2 perform local resource

optimization, and then report slice performances to the

GRRM, based on which the GRRM identifies its initial

utility U0 according to (9).

2: Stage 2:

For subchannel d = 1 : D:

For slice i = s1 : s2:

For subchannel di ∈ Di:

The GRRM tries the first kind of swap operations

involving subchannel d and di, and notifies the LRRMs

of slices about the subchannel allocation.

LRRM 1 and LRRM 2 do resource optimization, and

then feed back slice performances to the GRRM.

If the swap operation condition holds:

Update subchannel allocation between slices and go

back to the second For loop.

End If

End for

If no update of subchannel allocation between slices

occurs:

Try the second kind of swap operations, and notify the

LRRMs of slices about the subchannel allocation.

LRRM 1 and LRRM 2 do resource optimization, and

then feed back slice performances to the GRRM.

If the swap operation condition holds:

Update subchannel allocation between slices and go

back to the second For loop.

End If

End If

End For

End For

3: Stage 3:

Repeat Stage 2 until the subchannel allocation between

slices converges.

converge to a final resource allocation strategy. In addition, the

strategy is local optimal in the sense that no swap operations

can further improve the utility of the GRRM. The complexity

of the algorithm in each iteration is O
(

D2
)

, showing a good

scalability when the number of subchannels is large. Note that

Algorithm 5 can be adopted to allocate any type of resources

between two slices with any performance metrics. For exam-

ple, each subchannel in this algorithm can be replaced by a

resource bundle including radio resources, caching resources

and computing resources. Moreover, once the GRRM reaches

its local optimal strategy by Algorithm 5, it has no incentive

to change the strategy according to the assumption of bounded

rationality. Then, after each LRRM plays its local optimal

strategy given the strategy of the GRRM, a weak version of

SE is reached following the definition of SE.
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Fig. 2. Simulation scenario.
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Fig. 3. The utility evolution of the GRRM.

VI. SIMULATION RESULTS AND ANALYSIS

In all the simulations, the bandwidth of each subchannel is

180kHz, and the channel coefficient of each link is composed

of path loss and fast fading. The pathloss model is d−2

with d being the distance between the two nodes in the

same link. The fast fading is modeled as an independent

complex Gaussian random variable distributed as CN (0, 1).
The maximal transmit power of each RRH is 1.5 W, and the

number of antennas in each RRH is 2. The noise power is

set to 10−13 W, and the SINR requirement of UEs in slice s1
is taken as 5 dB. The transmit power of each FAP over each

subchannel is 125 mW, and each FAP can serve at most 5

UEs. In addition, it is assumed that the files requested by UEs

in slice s2 are available at the caches of all FAPs with the

size of each file set to 10Mbits. Considering the randomness

of user content requests, the assumption for 100% cache hit

rate under a specific realization of user content requests is rea-

sonable. However, note that our proposed resource allocation

algorithms for slice s2 can fit into any cache hit situations.

A. Achieving SE via Exhaustive Search

The simulation scenario in this part consists of two F-

RAN slices shown in Fig. 2, where the axis unit is in

meters. Meanwhile, we suggest that five subchannels are to be

allocated by the GRRM, and each fronthaul link can support

at most two UEs. Note that the reason for adopting such a

small scale topology in Fig. 2 is to facilitate the calculation

of SE by exhaustive search.
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Figs. 3-5 show the evolution of the utilities of the GRRM,

LRRM 1 and LRRM 2 during the GRRM searches for its

best strategy, and the total number of interactions between the

GRRM and LRRMs is 25, since the number of subchannel

allocation strategies of the GRRM satisfying the constraints

(c1)-(c3) in (9) is 25. Each interaction includes the broadcast of

the GRRM’s strategy to LRRMs, the resource optimization of

LRRMs under that given strategy, their performance feedback

to the GRRM, and the decision of the GRRM on whether

to record the current strategy or not. Moreover, if a sub-

channel allocation strategy becomes infeasible to any player’s

optimization problem, the utility of the GRRM is set to 4.5.

From Figs. 3-5, it can be seen that more subchannel allocation

strategies become infeasible when the latency requirement of

slice s2 becomes more stringent. Meanwhile, the SE points

under Tmax = 3s and Tmax = 7s are marked by ellipses with

solid line and dashed line, respectively, and it can be found

from Fig. 4 that more transmission power is consumed by the

slice s1 when Tmax = 3s, which demonstrates a performance

tradeoff between the two slices. Specifically, this is because

the GRRM has to allocate more subchannels to the LRRM 2

to satisfy its more stringent performance requirement. Hence,

there are fewer subchannels available for LRRM 1, leading to

more severe multi-user interference.

B. The Effectiveness of The Low Complexity Algorithms for

LRRMs

In this subsection, we compare the performance of the low

complexity resource allocation schemes developed for LRRMs
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with exhaustive search and other low complexity baselines.

Specifically, two heuristic resource allocation schemes are

adopted in our simulation study:

• Static clustering and round-robin based subchannel al-

location (SCRR): This scheme is adopted as the baseline

for Algorithm 3. Specifically, following the Algorithm 3

in [44], the RRH cluster for each UE is first formed, and

then each UE is allocated with a subchannel in a round-

robin like fashion. After RRH association and subchannel

allocation are determined, a precoding design problem

with the same form of problem (13) will be solved with

CVX.

• Deferred acceptance based node association and round-

robin based subchannel allocation (DARR): This

scheme is adopted as the baseline for Algorithm 4.

Specifically, UEs associate with FAPs in slice s2 based

on received signal strength, and then each node allocates

each UE with a subchannel leading to the highest SINR

for this UE in a round-robin like manner.

Moreover, the simulation scenario is enlarged on the basis of

that in Fig. 2, where slice s1 has 4 UEs while slice s2 has 6

UEs.

Fig. 7 evaluates the performance of the proposed transfer

order based resource allocation algorithm for LRRM 1, i.e.,

Algorithm 3, where the number of subchannels is set to 3, and

the capacity of each fronthaul link is set to 3. From Fig. 7, it

can seen that the transmit power consumption of slice s1 after

each trial is not increased, which is guaranteed by the transfer
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Fig. 9. The performance of the swap operations based resource allocation
algorithm for the GRRM.

order. In addition, a huge gap between the performance of the

proposed scheme and that of SCRR is observed, and this is

because the static clustering and round-robin like subchan-

nel allocation in SCRR do not well handle the multi-user

interference. At last, the high complexity exhaustive search

method can only decrease the transmit power consumption by

no more than 10%, showing the competitive performance of

our proposal.

Fig. 8 illustrates the performance of the proposed swap

matching based resource allocation algorithm for LRRM 2,

i.e., Algorithm 4, where the number of subchannels is set

to 3. First, it can be found that the performance of slice

s2 is continuously improved with swap operations going on.

Moreover, it is observed that the algorithm can deliver a

near optimal solution that leads to just about 5% average

download latency increase compared with the optimal solution.

Meanwhile, the improvement of our proposed scheme relative

to the performance of DARR is significant.

C. The Effectiveness of The Low Complexity Algorithm for the

GRRM

To verify the effectiveness of the low complexity proposal

for the GRRM, a larger scale network on the basis of Fig. 6 is

considered, where there are 13 UEs in slice s2 with each FAP

capable of serving at most 5 UEs, and the GRRM needs to

decide the allocation of 11 subchannels. The whole resource

allocation procedure follows Algorithm 5, where each LRRM
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acts as a player with bounded rationality who derives a local

optimal strategy using the developed low complexity resource

allocation algorithm given the strategy of the GRRM. From

Fig. 9, we can see that the proposal can achieve near optimal

performance under different latency performance requirements

of slice s2 but with much lower computation complexity than

exhaustive search. In addition, a performance tradeoff between

slices is observed similar to that in Subsection A.

To very the optimality and check the convergence time of

Algorithm 5 under a large scale setting, the scenario in Fig.

10 is considered, where slice 1 has 8 RRHs while slice 2 has

9 FAPs. Meanwhile, there are 25 UEs in slice s1 uniformly

distributed in a circle with the radius of 200m, whose center

is the origin, and there are also 25 UEs in slice s2 uniformly

distributed within a circle with the radius being 100m and

taking the origin as the center. To accommodate the large

number of UEs, fronthaul capacity of each RRH is set to 8.
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Fig. 11 compares the performance of Algorithm 5 with

exhaustive search under different number of subchannels, and

note that the utility of the GRRM is set to the maximal total

transmit power of RRHs, which is 12 here, if the latency

performance of slice s2 is not met. First, it can seen that our

proposed swap based inter-slice resource allocation algorithm

can reach near optimal performance. Second, when the number

of subchannels increases, the utility of the GRRM is improved.

This is because more subchannels provide more opportunity

to satisfy the latency requirement of slice s2, and meanwhile

more subchannels can be allocated to slice s1, which can

reduce interference and thus enables slice s1 to deliver high

data rate with lower transmit power consumption. Third, the

utility of the GRRM is also improved when the latency

requirement of slice s2 is less stringent. This is because

less stringent latency requirement of slice s2 makes more

subchannels available to slice s1. Moreover, the execution

time of Algorithm 5 is demonstrated in Fig. 12, and the time

has excluded the decision-making time of LRRMs. When

the number of subchannels exceeds 15, more subchannels

lead to longer execution time due to more possible inter-

slice subchannel allocation strategies. Moreover, when the

number of subchannels exceeds 15, less stringent performance

requirement of slice s2 causes a larger execution time under

fixed number of subchannels, since more inter-slice allocation

strategies, which can meet the latency requirement of slice s2,

exist.

VII. CONCLUSIONS

In this paper, radio resource allocation between two network

slices with heterogenous performance metrics in fog radio

access networks has been investigated. Under a hierarchical

radio resource allocation architecture, the resource allocation

problem has been modeled as a Stackelberg game, where

the GRRM with a strong position acts as the leader and the

LRRMs of slices act as followers. In addition, the game has

been proved to possess at least one Stackelberg equilibrium

(SE) under certain conditions. Since the problems of followers

are NP-hard and the strategy of the leader is discrete, deriving

SE solution is very challenging. To deal with this problem,

a method based on exhaustive search has been proposed to

help the GRRM and LRRMs achieve the SE interactively.

Moreover, inspired by game-theoretic algorithms, low com-

plexity resource allocation schemes have been developed for

both the GRRM and LRRMs when they behave as players with

bounded rationality. Furthermore, the optimality and complex-

ity of our proposals are all rigorously analyzed. Simulation

study has demonstrated that there is a tradeoff between the

performance of slices, and the low complexity algorithms can

achieve highly competitive solutions.

At last, it should be noted that our proposals for the GRRM

can be used to allocate any resource bundles between slices by

substituting subchannels with resource bundles in Algorithm

1 and Algorithm 5. In the future, it is interesting to study

hierarchical resource allocation for more than two slices with

heterogenous performance metrics. Meanwhile, when LRRMs

cheat the GRRM in terms of their achieved performance, the

GRRM may not find the real optimal or local optimal strategy,

which means SE may not be achieved. Faced with this issue,

it is essential to explore incentive mechanism design to make

LRRMs report their performance truthfully.
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