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1. Introduction

In this paper graphs are finite and are permitted to have loops and parallel edges. 

A graph is a minor of another if the first can be obtained from a subgraph of the second 

by contracting edges. The cornerstone of the Graph Minors project of Robertson and 

Seymour is the following excluded minor theorem. (The missing definitions are as in [15]

and are given at the end of this section.)

Theorem 1.1 ([15, Theorem (1.3)]). Let L be a graph. Then there exist integers κ, ρ, ξ > 0

such that every graph G with no L-minor can be constructed by clique-sums, starting from 

graphs that are an ≤ ξ-extension of an outgrowth by ≤ κ ρ-rings of a graph that can be 

drawn in a surface in which L cannot be drawn.

In this paper we are concerned with excluding topological minors. The first such 

theorem was obtained by Grohe and Marx.

Theorem 1.2 ([3, Corollary 4.4]). For every graph H there exist integers ξ, κ, ρ, g, D such 

that every graph G with no H-subdivision can be constructed by clique-sums, starting from 

graphs that are an ≤ ξ-extension of either

(a) a graph of maximum degree at most D, or

(b) an outgrowth by ≤ κ ρ-rings of a graph that can be drawn in a surface of genus at 

most g.

Thus the second outcome includes graphs drawn on surfaces in which H can be drawn. 

Dvořák [2, Theorem 3] strengthened the result by restricting the graphs in (b) to those 

that can be drawn in a surface Σ in which H can possibly be drawn, but only “in a way 

in which H cannot be drawn in Σ”. We omit the precise statement of Dvořák’s theorem, 

because it requires a large amount of definitions that we otherwise do not need. Instead, 

let us remark that the meaning of “the way in which H cannot be drawn in Σ” has to 

do with the function mf, defined as follows.

Let H be a graph and Σ a surface in which H can be embedded. We define mf(H, Σ)

as the minimum of |S|, over all embeddings of H in Σ and all sets S of regions of the 

embedded graph such that every vertex of H of degree at least four is incident with a 

region in S. When H cannot be embedded in Σ, we define mf(H, Σ) to be infinity.

Our objective is to strengthen the theorems of Grohe and Marx, and Dvořák by 

reducing the value of the constant D to the maximum degree of H, which is best possible. 

(We will prove that this value D cannot be replaced by any number smaller than the 

maximum degree of H in Section 7.) However, we are not able to extend the theorems 

verbatim; our theorem gives a structure relative to a tangle, as follows. (Tangles, vortices 

and segregations are defined in Section 2.)
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Theorem 1.3. Let d ≥ 4 and h > 0 be integers. Then there exist integers θ, κ, ρ, ξ, g ≥ 0

such that the following holds. If H is a graph of maximum degree d on h vertices, and a 

graph G does not admit an H-subdivision, then for every tangle T in G of order at least 

θ there exists a set Z ⊆ V (G) with |Z| ≤ ξ such that either

1. for every vertex v ∈ V (G) − Z there exists (A, B) ∈ T − Z of order at most d − 1

such that v ∈ V (A) − V (B), or

2. there exists a (T − Z)-central segregation S = S1 ∪ S2 of G − Z with |S2| ≤ κ such 

that S has a proper arrangement in some surface Σ of genus at most g, every society 

(S1, Ω1) in S1 satisfies |Ω1| ≤ 3, every society (S2, Ω2) in S2 is a ρ-vortex, and either

(a) H cannot be drawn in Σ, or

(b) H can be drawn in Σ and mf(H, Σ) ≥ 2, and there exists S ′
2 ⊆ S2 with |S ′

2| ≤

mf(H, Σ) − 1 such that for every vertex v ∈ V (G) − Z either v ∈ V (S) − Ω̄ for 

some (S, Ω) ∈ S ′
2 or there exists (A, B) ∈ T − Z of order at most d − 1 such that 

v ∈ V (A) − V (B).

In fact, we will prove a stronger statement (Theorem 6.8) that provides the structure 

information for graphs with no H-subdivision with branch vertices prescribed and im-

mediately implies Theorem 1.3. In addition, Theorem 1.3 has the following immediate 

corollary.

Corollary 1.4. Let d ≥ 4 and h > 0 be integers. Then there exist θ and ξ such that for 

every graph H of order h and of maximum degree d that can be drawn in the plane such 

that every vertex of degree at least four is incident with the infinite region, and for every 

graph G, either G admits an H-subdivision, or for every tangle T of order at least θ

in G, there exists Z ⊆ V (G) with |Z| ≤ ξ such that for every vertex v ∈ V (G) − Z there 

exists (A, B) ∈ T − Z of order at most d − 1 such that v ∈ V (A) − V (B).

Proof. Let d ≥ 4 and h be given, let θ and ξ be as in Theorem 1.3, and let H be as in the 

statement of the corollary. Then mf(H, Σ) = 1 for every surface Σ, and hence the second 

outcome of Theorem 1.3 cannot hold. Thus the first outcome holds, as desired. �

Corollary 1.4 will be used in a forthcoming series of papers to prove the following 

theorem, conjectured by Robertson. In the application it will be important that the 

order of the separation in Corollary 1.4 is at most d − 1.

Theorem 1.5 ([6]). Let k ≥ 1 be an integer, let R denote the graph obtained from a path 

of length k by replacing each edge by a pair of parallel edges, and let G1, G2, . . . be an 

infinite sequence of graphs such that none of them has an R-subdivision. Then there exist 

integers i, j such that 1 ≤ i < j and Gj has a Gi-subdivision.
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Let us now introduce the missing definitions. Given a subset X of the vertex-set V (G)

of a graph G, the subgraph of G induced by X is denoted by G[X]. We say that a graph 

G is the clique-sum of graphs G1, G2 if there exist V1 = {v1,1, ..., v1,|V1|} ⊆ V (G1), V2 =

{v2,1, v2,2, ..., v2,|V2|} ⊆ V (G2) with |V1| = |V2| such that G1[V1] and G2[V2] are complete 

graphs, and G can be obtained from G1 ∪ G2 by identifying v1,i and v2,i for each i and 

deleting a subset of edges with both ends in V1 ∪ V2. A graph G′ is a ≤ r-extension of a 

graph G if G can be obtained from G′ by deleting at most r vertices of G. A graph G is 

an r-ring with perimeter t1, ..., tn if t1, ..., tn ∈ V (G) are distinct and there is a sequence 

X1, ..., Xn of subsets of V (G) such that

• X1 ∪ ... ∪ Xn = V (G), and every edge of G has both ends in some Xi,

• ti ∈ Xi for 1 ≤ i ≤ n,

• Xi ∩ Xk ⊆ Xj for 1 ≤ i ≤ j ≤ k ≤ n,

• |Xi| ≤ r for 1 ≤ i ≤ n.

Let G0 be a graph drawn in a surface Σ, and let Δ1, ..., Δd ⊆ Σ be pairwise disjoint 

closed disks, each meeting the drawing only in vertices of G0, and each containing no 

vertices of G0 in its interior. For 1 ≤ i ≤ d, let the vertices of G0 in the boundary of Δi be 

t1, ..., tn say, in order, and choose an r-ring Gi with perimeter t1, ..., tn meeting G0 just 

in t1, ..., tn and disjoint from every other Gj; and let G be the union of G0, G1, ..., Gd. 

We call such a graph G an outgrowth by d r-rings of G0.

The paper is organized as follows. In Section 2 we review the notions of tangles and 

graph minors. In Section 3 we prove an Erdős–Pósa-type result for “spiders”, trees with 

one vertex of degree d and all other vertices of degree one or two. In Section 4 we prove 

a lemma that will allow us to find a large well-behaved family of spiders, given a huge 

number of spiders. In Section 5 we review some theorems related to graphs embedded on 

a surface, and prove some other lemmas. In Section 6 we prove a structure theorem for 

excluding subdivisions of a fixed graph with branch vertices prescribed (Theorem 6.8), 

which immediately implies Theorem 1.3. In Section 7 we prove that the order of the 

separations mentioned in the first conclusion of Theorem 1.3 cannot be decreased, and 

the constants D mentioned in the first conclusion of Theorem 1.2 and the first conclusion 

of [2, Theorem 3] cannot be improved to be a number less than the constant d − 1 in the 

first conclusion of Theorem 1.3.

2. Tangles and minors

In this section, we review some theorems about tangles and graph minors.

A separation of a graph G is a pair (A, B) of subgraphs with A ∪ B = G and E(A ∩

B) = ∅, and the order of (A, B) is |V (A) ∩ V (B)|. A tangle T in G of order θ is a set of 

separations of G, each of order less than θ such that
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(T1) for every separation (A, B) of G of order less than θ, either (A, B) ∈ T or 

(B, A) ∈ T ;

(T2) if (A1, B1), (A2, B2), (A3, B3) ∈ T , then A1 ∪ A2 ∪ A3 	= G;

(T3) if (A, B) ∈ T , then V (A) 	= V (G).

The notion of tangle was first defined by Roberson and Seymour in [10]. (T1), (T2) 

and (T3) are called the first, second and third tangle axiom, respectively. In addition, 

we say that G contains T in this case. Furthermore, for Z ⊆ V (G) with |Z| < θ, we 

define T − Z to be the set of all separations (A′, B′) of G − Z of order less than θ − |Z|

such that there exists (A, B) ∈ T with Z ⊆ V (A ∩ B), A′ = A − Z and B′ = B − Z. It 

is proved in [10, Theorem 8.5] that T − Z is a tangle in G − Z of order θ − Z.

Given a graph H, an H-minor of a graph G is a map α with domain V (H) ∪ E(H)

such that the following hold.

• α(h) is a nonempty connected subgraph of G, for every h ∈ V (H).

• If h1 and h2 are different vertices of H, then α(h1) and α(h2) are disjoint.

• For each edge e of H,

– if e is not a loop, α(e) is an edge of G with one end in α(h1) and one end in α(h2), 

where h1, h2 are the ends of e;

– if e is a loop, then α(e) ∈ E(G) − E(α(h1)) and every end of α(e) is in α(h1), 

where h1 is the end of e.

• If e1, e2 are two different edges of H, then α(e1) 	= α(e2).

We say that G contains an H-minor if such a function α exists. For every h ∈ V (H), 

α(h) is called a branch set of α. A tangle T in G controls an H-minor α if α is an H-minor 

such that there does not exist (A, B) ∈ T of order less than |V (H)| and h ∈ V (H) such 

that V (α(h)) ⊆ V (A).

The following theorem offers a way to obtain a tangle in a graph from a minor.

Theorem 2.1 ([10, Theorem (6.1)]). Let G and H be graphs. Let T ′ be a tangle in H of 

order θ ≥ 2. If G admits an H-minor α, and T is the set of separations (A, B) of G of 

order less than θ such that there exists (A′, B′) ∈ T ′ with α(E(A′)) = E(A) ∩ α(E(H)), 

then T is a tangle in G of order θ.

The tangle T in Theorem 2.1 is called the tangle induced by T ′. We say that T ′ is 

conformal with a tangle T ′′ in G if T ⊆ T ′′.

A society is a pair (S, Ω), where S is a graph and Ω is a cyclic permutation of a subset 

Ω̄ of V (S). Let ρ be a nonnegative integer. A society (S, Ω) is a ρ-vortex if for all distinct 

u, v ∈ Ω̄, there do not exist ρ + 1 mutually disjoint paths of S between I ∪ {u} and 

J ∪ {v}, where I is the set of vertices in Ω̄ after u and before v in Ω, and J is the set of 

vertices in Ω̄ after v and before u in Ω.

A segregation of a graph G is a set S of societies such that the following hold.
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• S is a subgraph of G for every (S, Ω) ∈ S, and 
⋃

{S : (S, Ω) ∈ S} = G.

• For every distinct (S, Ω) and (S′, Ω′) ∈ S, V (S ∩ S′) ⊆ Ω̄ ∩ Ω
′

and E(S ∩ S′) = ∅.

We write V (S) =
⋃

{Ω̄ : (S, Ω) ∈ S}. If T is a tangle in G, a segregation S of G is 

T -central if for every (S, Ω) ∈ S, there is no (A, B) ∈ T of order at most half of the 

order of T with B ⊆ S. Note that our definition of a T -central segregation is different 

from the one in [15], but every segregation that is T -central in the sense of [15] is 

T -central in the sense of this paper.

A surface is a nonnull compact connected 2-manifold without boundary. Let Σ be a 

surface and S = {(S1, Ω1), ..., (Sk, Ωk)} a segregation of G. For every subset Δ of Σ, we 

denote the closure of Δ by Δ̄, and the boundary of Δ by ∂Δ. An arrangement of S in 

Σ is a function α with domain S ∪ V (S), such that the following hold.

• For 1 ≤ i ≤ k, α(Si, Ωi) is a closed disk Δi ⊆ Σ, and α(x) ∈ ∂Δi for each x ∈ Ωi.

• For 1 ≤ i ≤ k, if x ∈ Δi ∩ Δj , then x = α(v) for some v ∈ Ωi ∩ Ωj .

• For all distinct x, y ∈ V (S), α(x) 	= α(y).

• For 1 ≤ i ≤ k, Ωi is mapped by α to a natural order of α(Ωi) determined by ∂Δi.

An arrangement is proper if Δi ∩ Δj = ∅ for all 1 ≤ i < j ≤ k such that |Ωi|, |Ωj | > 3.

Given a graph H, an H-subdivision is a pair of functions (πV , πE) such that the 

following hold.

• πV : V (H) → V (G) is an injective function.

• πE maps loops of H to cycles in G and maps other edges of H to paths in G such 

that πE(e) contains πV (v), and πE(e′) has ends πV (x) and πV (y) for every loop e

with end v and every edge e′ ∈ E(H) with distinct ends x and y.

• If f1, f2 are two different edges in H, then πE(f1) ∩πE(f2) ⊆ πV (X), where X is the 

set of common ends of f1 and f2.

We say that G admits an H-subdivision if such a pair of functions (πV , πE) exists. The 

vertices in the image of πV are called the branch vertices of (πV , πE).

3. Finding disjoint spiders

First, we introduce a lemma proved by Robertson and Seymour [13].

Lemma 3.1 ([13, Theorem (5.4)]). Let G be a graph, and let Z be a subset of V (G) with 

|Z| = ξ. Let k ≥ � 3
2ξ�, and let α be a Kk-minor in G. If there is no separation (A, B)

of G of order less than |Z| such that Z ⊆ V (A) and A ∩ α(h) = ∅ for some h ∈ V (Kk), 

then for every partition (Z1, ..., Zn) of Z into non-empty subsets, there are n connected 

graphs T1, ..., Tn of G, mutually disjoint and V (Ti) ∩ Z = Zi for 1 ≤ i ≤ n.
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A d-spider with head v is a tree such that every vertex other than v in the tree has 

degree at most 2, and the degree of v is d. A leaf is a vertex of degree one. Let G be a 

graph, and let S, Y be subsets of V (G). A d-spider from S to Y is a d-spider with head 

v ∈ S whose leaves are in Y .

Let G be a graph and T a tangle in G. We say that a subset X of V (G) is free if there 

exists no (A, B) ∈ T of order less than |X| such that X ⊆ V (A).

Lemma 3.2. Let G be a graph and H be a graph on h vertices of maximum degree at 

most d. Let t ≥ �3hd
2 �. Let T be a tangle of order at least hd in G that controls a 

Kt-minor. If there exist pairwise disjoint sets X1, X2, ..., Xh such that for 1 ≤ i ≤ h the 

set Xi consists of a vertex vi of G and d − 1 of its neighbors and 
⋃h

i=1 Xi is free with 

respect to T , then G has an H-subdivision with branch vertices v1, v2, ..., vh.

Proof. Let Z =
⋃h

i=1 Xi, and let α be a Kt-minor controlled by T . Suppose that there 

exists a separation (A, B) of G of order less than |Z| such that Z ⊆ V (A) and A ∩α(v) = ∅

for some v ∈ V (Kt). By the first tangle axiom, either (A, B) ∈ T or (B, A) ∈ T . Since 

Z is free, (B, A) ∈ T . But it is a contradiction since t ≥ hd and T controls α. Therefore, 

there does not exist a separation (A, B) of G of order less than |Z| such that Z ⊆ V (A)

and A ∩ α(v) = ∅ for some v ∈ V (Kt).

Denote V (H) by {u1, u2, ..., uh} and E(H) by {e1, e2, ..., e|E(H)|}. Since the maximum 

degree of H is at most d, there exist Z0 ⊆ Z and a partition (Z1, Z2, ..., Z|E(H)|) of Z −

Z0 such that for every 1 ≤ 	 ≤ |E(H)|, Z� consists of two distinct vertices where 

one is in Xi and one is in Xj , where the ends of e� are ui and uj . By Lemma 3.1, 

there exist |E(H)| pairwise disjoint paths in G − Z0 connecting the two vertices of 

each part of (Z1, Z2, ..., Z|E(H)|). This creates a subdivision of H with branch vertices 

v1, v2, ..., vh. �

Theorem 3.3 ([8, Theorem 3.3]). Let G be a graph and T a tangle in G of order θ. Let 

{Xj ⊆ V (G) : j ∈ J} be a family of subsets of V (G) indexed by J . Let d, k be integers 

with θ ≥ (k + d)d+1 + d. If |Xj | = d for every j ∈ J , then there exists a set J ′ ⊆ J

satisfying the following.

1. For distinct elements j, j′ of J ′, Xj and Xj′ are disjoint.

2.
⋃

j∈J ′ Xj is free.

3. If |
⋃

j∈J ′ Xj | < k, then there exists a set Z with 
⋃

j∈J ′ Xj ⊆ Z and |Z| ≤ (k + d)d+1

satisfying that for all j ∈ J , either Xj ∩ Z 	= ∅, or Xj is not free in T − Z.

Theorem 3.4. Let h and d be positive integers. Let G be a graph, and let S be a subset 

of vertices of degree at least d − 1 in G. Let T be a tangle in G of order θ. If θ ≥

(hd + 1)d+1 + d, then either
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1. there exist h vertices v1, v2, ..., vh ∈ S and h pairwise disjoint subsets X1, X2, ..., Xh

of V (G), where Xi consists of vi and d − 1 neighbors of vi for each 1 ≤ i ≤ h, such 

that 
⋃h

i=1 Xi is free in T , or

2. there exists a set C ⊆ V (G) with |C| ≤ (hd + 1)d+1 such that for every v ∈ S − C, 

there exists (A, B) ∈ T − C of order less than d such that v ∈ V (A) − V (B).

Proof. Let {Xj : j ∈ J} be the collection of the d-element subsets consisting of one 

vertex vj in S and d − 1 of its neighbors. Applying Theorem 3.3 by further taking 

k = (h − 1)d + 1, we know there exists J ′ ⊆ J such that Xj ∩ Xj′ = ∅ for every distinct 

j, j′ in J ′, and 
⋃

j∈J ′ Xj is free. Furthermore, if |
⋃

j∈J ′ Xj | ≤ (h − 1)d, there exists a set 

C with 
⋃

j∈J ′ Xj ⊆ C ⊆ V (G) and |C| ≤ (hd + 1)d+1 satisfying that for all j ∈ J , either 

Xj ∩ C 	= ∅, or Xj is not free in T − C.

Observe that if |
⋃

j∈J ′ Xj | > (h − 1)d, then |J ′| ≥ h and the first statement holds. So 

we assume that |
⋃

j∈J ′ Xj | ≤ (h − 1)d, and we shall prove that the second statement of 

this theorem holds. Let v ∈ S − C. Suppose that there does not exist (A, B) ∈ T − C of 

order less than d such that v ∈ V (A) − V (B). In particular, v has at least d neighbors 

in G − C. Let U be the collection of those Xj that are disjoint from C and consist of v

and d − 1 neighbors of v. For every member Xj of U , we define the rank of Xj to be the 

minimum order of a separation (A, B) ∈ T − C such that Xj ⊆ V (A). As no member 

of U is free, the rank of each member of U is at most d − 1. Let r be the maximum rank 

of any member of U , and let X be a member of U of rank r. Let (A, B) ∈ T − C of 

order r such that X ⊆ V (A), and subject to that, |V (B) − V (A)| is as small as possible. 

By the assumption, v ∈ V (A) ∩ V (B) and r ≤ d − 1. On the other hand, there exist r

disjoint paths in G −C from X −{v} to V (B), as v is adjacent to all vertices in X −{v}. 

We denote these r disjoint paths by P1, P2, ..., Pr, and denote the end of Pi in X − {v}

by ui for 1 ≤ i ≤ r. As v ∈ V (A) ∩ V (B) and |V (A) ∩ V (B)| = r, v ∈ V (Pi) for some 

1 ≤ i ≤ r. Without loss of generality, we may assume that v ∈ V (Pr). In addition, v is 

adjacent to a vertex u in V (B) − V (A), otherwise, the rank of X is smaller than r. As 

(X − {ur}) ∪ {u} is a member of U , its rank is at most r. Let (A′, B′) ∈ T − C be a 

separation of order at most r such that (X − {ur}) ∪ {u} ⊆ V (A′). X ⊆ V (A ∪ A′) and 

u ∈ (V (B) −V (A)) − (V (B ∩B′) −V (A ∪A′)), so the order of (A ∪A′, B ∩B′) is at least 

r +1 by the choice of (A, B). It implies that the order of (A ∩A′, B ∪B′) is at most r −1. 

Notice that v ∈ V (A′) ∩ V (B′) by the assumption, so ((A ∩ A′) − {v}, (B ∪ B′) − {v})

is a separation of G − (C ∪ {v}) of order less than r − 1. But P1, P2, ..., Pr−1 are r − 1

disjoint paths from V (A ∩A′) −{v} to V (B ∪B′) −{v} in G − (C ∪{v}), a contradiction. 

This proves the second statement. �

We need the following variation of Theorem 3.4. A version for edge-disjoint spiders 

was proved in [7] and [8, Theorem 3.1].

Theorem 3.5. Let G be a graph, and let X, Y be disjoint subsets of V (G). Let h, d be 

nonnegative integers. Then either there exist h disjoint d-spiders from X to Y , or there 
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exists C ⊆ V (G) with |C| ≤ 3
2 (hd + 1)d+1 + d

2 + 1 such that every d-spider from X to Y

intersects C.

Proof. Note that for every subset C of Y such that |Y − C| ≤ d − 1, every d-spider from 

X to Y intersects C. So we may assume that |Y | ≥ 3
2 ((hd + 1)d+1 + d), otherwise we are 

done. Let G′ be the graph obtained from G by adding edges such that Y is a clique in 

G′[Y ]. As every complete graph on k vertices contains a tangle of order �2k/3�, G′[Y ]

contains a tangle of order (hd + 1)d+1 + d. And G′[Y ] is a minor of G′, so G′ contains 

a tangle T of order (hd + 1)d+1 + d induced by a tangle of the same order in G′[Y ]

by Theorem 2.1 such that Y ⊆ V (B) for every (A, B) ∈ T . Let {Xj : j ∈ J} be the 

collection of d-element subsets of V (G) such that every Xj consists of one vertex x in X

and d − 1 neighbors of x. By Theorem 3.3, there exists J ′ ⊆ J such that Xj ∩ Xj′ = ∅

for every distinct j, j′ in J ′, and 
⋃

j∈J ′ Xj is free. Furthermore, if |
⋃

j∈J ′ Xj | ≤ (h − 1)d, 

there exists C ⊆ V (G) with |C| ≤ (hd + 1)d+1 satisfying that for all j ∈ J , either 

Xj ∩ C 	= ∅, or Xj is not free in T − C.

First, assume that |
⋃

j∈J ′ Xj | > (h − 1)d, so |J ′| ≥ h. Let {1, 2, ..., h} ⊆ J ′, and for 

1 ≤ j ≤ h, let xj be a vertex in Xj ∩ X adjacent to all other vertices in Xj. Suppose 

that there do not exist dh disjoint paths from 
⋃h

j=1 Xj to Y in G′. Then there exists a 

separation (A, B) of G′ of order less than dh such that 
⋃h

j=1 Xj ⊆ V (A) and Y ⊆ V (B). 

Since Y ⊆ V (B), we know that (A, B) ∈ T . But it implies that 
⋃h

j=1 Xj is not free, 

a contradiction. Hence, there exist dh disjoint paths from 
⋃h

j=1 Xj to Y in G′. That is, 

there exist h disjoint d-spiders from {xj : 1 ≤ j ≤ h} to Y in G′. We are done in this 

case since every d-spider from X to Y in G′ contains a d-spider from X to Y in G as a 

subgraph.

So we may assume that |
⋃

j∈J ′ Xj | ≤ (h −1)d, there exists C ⊆ V (G) with 
⋃

j∈J ′ Xj ⊆

C and |C| ≤ (hd + 1)d+1 satisfying that for all j ∈ J , either Xj ∩ C 	= ∅, or Xj is not 

free in T − C. Let v ∈ X − C, and let D be a d-spider from v to Y in G. Note that D is 

also a d-spider from v to Y in G′. Suppose that D is disjoint from C. So V (D) contains 

some Xj such that v ∈ Xj and Xj ∩ C = ∅. Since Xj is not free in T − C, there exists 

(A, B) ∈ T − C of order less than d such that Xj ⊆ V (A) and Y − C ⊆ V (B). It is 

a contradiction since there exist d disjoint paths in D from V (A) to V (B). This proves 

that D intersects C. �

4. Taming spiders

A surface is a compact 2-manifold. An O-arc is a subset homeomorphic to a circle, 

and a line is a subset homeomorphic to [0, 1]. Let Σ be a surface. A drawing Γ in Σ is 

a pair (U, V ), where V ⊆ U ⊆ Σ, U is closed, V is finite, U − V has only finitely many 

arc-wise connected components, called edges, and for every edge e, either ē is a line whose 

set of ends are ē ∩ V , or ē is an O-arc and |ē ∩ V | = 1. The components of Σ − U are 

called regions. The members of V are called vertices. For a drawing Γ = (U, V ), we write 

U = U(Γ), V = V (Γ), and E(Γ), R(Γ) are defined to be the set of edges and the set of 



10 C.-H. Liu, R. Thomas / Journal of Combinatorial Theory, Series B 134 (2019) 1–35

regions, respectively. If v is a vertex of a drawing Γ and e is an edge or a region of Γ, we 

say that e is incident with v if v is contained in the closure of e. Note that the incidence 

relation between V (Γ) and E(Γ) defines a graph, and we say that Γ is a drawing of G

in Σ if G is defined by this incidence relation. In this case, we say that G is embeddable

in Σ, or G can be drawn in Σ.

We say that (S, Ω, Ω0) is a neighborhood if S is a graph and Ω, Ω0 are cyclic permu-

tations with Ω̄, Ω0 ⊆ V (S). A neighborhood (S, Ω, Ω0) is rural if S has a drawing Γ in 

the plane and there are disks Δ0 ⊆ Δ such that

• Γ uses no point outside Δ and none in the interior of Δ0, and

• Ω̄ are the vertices in Γ ∩ ∂Δ, and Ω0 are the vertices in Γ ∩ Δ0, and

• the cyclic permutations of Ω̄ and Ω0 coincide with the natural cyclic order on Δ

and Δ0.

In this case, we say that (Γ, Δ, Δ0) is a presentation of (S, Ω, Ω0). For a fixed presentation 

(Γ, Δ, Δ0) of a neighborhood (S, Ω, Ω0) and an integer s ≥ 0, an s-nest for (Γ, Δ, Δ0)

is a sequence (C1, C2, ..., Cs) of pairwise disjoint cycles of S such that Δ0 ⊆ Δ1 ⊆ ... ⊆

Δs ⊆ Δ, where Δi is the closed disk in the plane bounded by Ci in the drawing Γ.

If (S, Ω, Ω0) is a neighborhood and (S0, Ω0) is a society, then (S ∪ S0, Ω) is a society 

and we call this society the composition of the society (S0, Ω0) with the neighborhood 

(S, Ω, Ω0). A society (S, Ω) is s-nested if it is the composition of a society with a rural 

neighborhood that has an s-nest for some presentation of it.

A subgraph F ⊆ S for a rural neighborhood (S, Ω, Ω0) with presentation (Γ, Δ, Δ0) is 

perpendicular to an s-nest (C1, C2, ..., Cs) for (Γ, Δ, Δ0) if for every component P of F

• P is a path with one end in Ω̄ and the other in Ω0, and

• P ∩ Ci is a path for all i = 1, 2, ..., s.

We shall use the following theorem, which was proved in [4], to prove the main theorem 

of this section. We present a simplified restatement of it.

Theorem 4.1 ([4, Theorem 10.5]). For every three positive integers s, k ≥ 3, c, there exists 

an integer s′(s, k, c) such that for every s′-nested society (S, Ω) that is a composition of 

a society (S0, Ω0) with a rural neighborhood with an s′-nest, and for every union of c

pairwise disjoint k-spiders F0 from V (S0) − Ω0 to Ω̄, where every vertex in V (F0) ∩ Ω̄

is a leaf in F0, there exists a union of c pairwise disjoint k-spiders F in (S, Ω) from the 

set of the heads of F0 to the set of leaves of F0 such that (S, Ω) can be expressed as a 

composition of some society with a rural neighborhood (S′, Ω, Ω′) that has a presentation 

with an s-nest (C1, C2, ..., Cs) such that S′ ∩ F is perpendicular to (C1, C2, ..., Cs).

Given a cyclic ordering Ω on a set Ω̄, an interval of Ω is a subset I of Ω̄ such that the 

elements of I are consecutive elements in Ω.
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A tree-decomposition of a graph G is a pair (T, X ), where T is a tree and X is a 

collection {Xt : t ∈ V (G)} of subsets of V (G), such that the following hold.

•
⋃

t∈V (T ) Xt = V (G).

• For each edge e of G, there exists t ∈ V (T ) such that Xt contains the ends of e.

• For each vertex v of G, the subgraph of T induced by {t : v ∈ Xt} is connected.

The width of (T, X ) is max{|Xt| −1 : t ∈ V (T )}. The adhesion of (T, X ) is max{|Xt∩Xt′ | :

tt′ ∈ E(T )}. For each t ∈ V (T ), the torso at t is the graph L obtained from the subgraph 

of G induced by Xt by adding edges such that for each neighbor t′ of t in T , Xt ∩ Xt′

is a clique in L. When the tree T is a path, we say (T, X ) is a path-decomposition. The 

tree-width of G is the minimum width of a tree-decomposition of G.

Now, we are ready to prove the main theorem of this section.

Theorem 4.2. For every positive integers d ≥ 3, ρ, k and s, there exist integers s′ =

s′(k, d, s, ρ) and k′ = k′(k, ρ) such that for every s′-nested society (S, Ω) that is a compo-

sition of a ρ-vortex (S0, Ω0) with a rural neighborhood that has an s′-nest, and for every 

k′ pairwise disjoint d-spiders D1, D2, ..., Dk′ from V (S0) −Ω0 to Ω̄ such that every vertex 

of Di ∩ Ω̄ is a leaf of Di, there exist k pairwise disjoint d-spiders D′
1, D′

2, ..., D′
k from 

V (S0) to Ω̄ such that the following hold.

1. (S, Ω) can be expressed as a composition of a society (S′
0, Ω′) with a rural neighborhood 

(S′, Ω, Ω′) that has a presentation with an s-nest (C1, C2, ..., Cs) such that D′
i ∩ S′ is 

perpendicular to (C1, C2, ..., Cs) for every 1 ≤ i ≤ k.

2. For every 1 ≤ i ≤ k, the head of D′
i is the head of Di′ for some 1 ≤ i′ ≤ k′.

3. For every 1 ≤ i ≤ k, every leaf of D′
i is a leaf of D1 ∪ D2 ∪ ... ∪ Dk′ .

4. For every 1 ≤ i ≤ k, there exists an interval Ii of Ω containing all leaves of D′
i such 

that Ii is disjoint from Ij for every j 	= i.

Proof. Let s′(k, d, s, ρ) = s′
4.1(s, d, (12ρ +7)k) and k′(k, ρ) = (12ρ +7)k, where s′

4.1 is the 

function s′ mentioned in Theorem 4.1. By Theorem 4.1, there exist (12ρ + 7)k pairwise 

disjoint d-spiders D′
1, D′

2, ..., D′
k′ from the set of the heads of D1, D2, ..., Dk′ to the union 

of the set of leaves of D1, D2, ..., Dk′ such that (S, Ω) can be expressed as a composition 

of some society with a rural neighborhood (S′, Ω, Ω′) that has a presentation with an 

s-nest (C1, C2, ..., Cs) such that D′
i ∩ S′ is perpendicular to (C1, C2, ..., Cs) for every 

1 ≤ i ≤ k′.

Let Ω0 = {v1, v2, ..., v|Ω0|} in order. Since the head of each D′
i is contained in V (S0) −

Ω0, each component of D′
i − (V (S0) − Ω0) is a path. For each 1 ≤ i ≤ k′, let Wi be the 

subset of [|Ω0|] such that for each j ∈ Wi, some component of D′
i −(V (S0) −Ω0) is a path 

from a leaf of D′
i to vj , and let ai = min Wi and bi = max Wi. For each 1 ≤ i ≤ k′, define 

	i and ri to be the leaves of D′
i such that there exists a path in S − (V (S0) − Ω0) ∩ D′

i

from 	i to vai
and from ri to vbi

, respectively; define Ii to be the interval of Ω with 
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ends 	i and ri containing all leaves of D′
i. Then it is sufficient to prove that there exist 

1 ≤ i1 < i2 < ... < ik ≤ k′ such that Ii1
, Ii2

, ..., Iik
are pairwise disjoint.

Since (S0, Ω0) is a ρ-vortex, by Theorem 8.1 in [9], there exists a path-decomposition 

(t1t2...t|Ω0|, X ) of S0, where X = (Xti
: 1 ≤ i ≤ |Ω0|), such that |Xti

∩ Xtj
| ≤ ρ for 

every 1 ≤ i < j ≤ |Ω0| and vi ∈ Xti
for every 1 ≤ i ≤ |Ω0|. And we define X0 = ∅ and 

X|Ω0|+1 = ∅. Furthermore, for each 1 ≤ i ≤ k′, let Qi be the path in D′
i from ri to 	i, Li

be the path in D′
i from 	i to vai

, and Ri be the path in D′
i from ri to vbi

. We say that 

Ii is naughty if Qi − ((S0 − Ω0) ∪ V (Li) ∪ V (Ri)) contains a path from vc to vc′ , where 

1 ≤ c < ai < bi < c′ ≤ |Ω0| such that Qi passes through 	i, vc, vc′ , ri in the order listed; 

otherwise we say Ii is nice.

Claim 1. If Ii ∩ Ij 	= ∅ for some i 	= j, and either both Ii, Ij are naughty or both Ii, Ij are 

nice, then there exists a ∈ [|Ω|] such that Xa ∩ Xa+1 ∩ V (D′
i) 	= ∅ 	= Xa ∩ Xa+1 ∩ V (D′

j).

Proof of Claim 1. Since V (D′
i) ∩ V (D′

j) = ∅, we may assume that bi < bj by symmetry. 

Since Ii ∩ Ij 	= ∅, aj < bi < bj . Since (S, Ω) is a composition of (S0, Ω0) with a rural 

neighborhood, and V (D′
i) ∩ V (D′

j) = ∅, the vertices 	j , ri, rj appear in Ω in the order 

listed. Note that Qi passes through vbi
, a vertex in V (S0) − Ω0, and vai

in the order 

listed. So V (Qi) ∩Xtbi
∩(Xtbi−1

∪Xtbi+1
) 	= ∅. Similarly, V (Qi) ∩Xtai

∩(Xtai−1
∪Xtai+1

), 

V (Qj) ∩ Xtaj
∩ (Xtaj −1

∪ Xtaj +1
) and V (Qj) ∩ Xtbj

∩ (Xtbj −1
∪ Xtbj +1

) are non-empty 

sets. If V (Qi) ∩ Xtbj −1
∩ Xtbj

	= ∅ 	= V (Qi) ∩ Xtbj
∩ Xtbj +1

, then we are done by 

choosing a = bj − 1 or a = bj . So we may assume that V (Qi) ∩ Xtbj −1
∩ Xtbj

= ∅ or 

V (Qi) ∩ Xtbj
∩ Xtbj +1

= ∅.

Let Yr be one of Xtbj −1
∩ Xtbj

and Xtbj
∩ Xtbj +1

such that V (Qi) ∩ Yr is empty. 

Similarly, there exists Y� ∈ {Xtaj −1
∩ Xtaj

, Xtaj
∩ Xtaj +1

} such that V (Qi) ∩ Y� = ∅; 

otherwise we are done by taking a = aj − 1 or a = aj . Hence V (Lj) ∪ V (Rj) ∪ Y� ∪ Yr is 

disjoint from V (D′
i). So aj < ai < bi < bj and Ii is nice.

If V (D′
i) ∩ Xtbi−1

∩ Xtbi
= ∅, then vai

and the neighbor of vbi
in Qi − V (Ri)

belong to different components of S − (V (Ri) ∪ (Xtbi−1
∩ Xtbi

) ∪ V (Rj) ∪ Yr), but 

Qi − (V (Ri) ∪ (Xtbi−1
∩ Xtbi

) ∪ V (Rj) ∪ Yr) contains a path passing through these 

two vertices, a contradiction. So V (D′
i) ∩ Xtbi−1

∩ Xtbi
	= ∅. Since Ii is nice, Ij is nice. If 

V (D′
j) ∩Xtbi−1

∩Xtbi
= ∅, then since Ij is nice, 	j and rj belong to different components 

of D′
j − (Xtbi−1

∪ Xtbi
), but Qj − (Xtbi−1

∪ Xtbi
) contains a path passing through these 

two vertices, a contradiction. Therefore, V (D′
j) ∩Xtbi−1

∩Xtbi
	= ∅. This proves the claim 

by taking a = bi − 1. �

Suppose that there do not exist such k pairwise disjoint intervals among I1, I2, ..., Ik′ . 

Let H be the intersection graph of I1, I2, ..., Ik′ . Then H does not contain an independent 

set of size k. We claim that H contains a clique with size at least 12ρ + 7. Let u1, u2

be consecutive vertices in Ω. If there are at least 12ρ + 7 members of {I1, I2, ..., Ik′}

containing both u1, u2, then these 12ρ + 7 members form a clique in H. So we may 

assume that there exist at most 12ρ + 6 members of {I1, I2, ..., Ik′} containing both 
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u1, u2. Let H ′ be the intersection graph of the members of {I1, I2, ..., Ik′} not containing 

both u1, u2. Then H ′ is an interval graph on at least k′ − 12ρ − 6 vertices, and H ′ is 

an induced subgraph of H. Since H has no independent set of size k, H ′ does not have 

an independent set of size k. Since interval graphs are prefect, H ′ (and hence H) has a 

clique with size at least (k′ − 12ρ − 6)/(k − 1) ≥ 12ρ + 7.

Therefore, there exist 12ρ +7 pairwise intersecting members of {I1, I2, ..., Ik′}. So there 

exist 6ρ + 4 pairwise intersecting members of {I1, I2, ..., Ik′} such that either all of them 

are naughty or all of them are nice. Let G be the graph obtained from S by adding edges 

such that vertices in Xi ∩ Xi+1 are pairwise adjacent in G, for every 1 ≤ i ≤ |Ω0| − 1. 

Since there exist 6ρ +4 pairwise intersecting members of {I1, I2, ..., Ik′} where either all of 

them are naughty or all of them are nice, Claim 1 implies that G contains a K6ρ+4-minor, 

where each branch set is D′
i for some i. Without loss of generality, we may assume that 

the branch sets of the K6ρ+4-minor are D′
1, D′

2, ..., D′
6ρ+4.

Let G′ be the graph obtained from G by the following operations.

• Deleting vertices not in D′
1 ∪ D′

2 ∪ ... ∪ D′
6ρ+4.

• Contracting each path in D′
i − E(S0) from Ω0 to Ω internally disjoint from V (S0)

into a vertex for every 1 ≤ i ≤ 6ρ + 4.

• For every 1 ≤ i ≤ 6ρ + 4 and for each path in D′
i − E(S0) from Ω0 to Ω0 internally 

disjoint from V (S0), contracting all edges incident with at least one internal vertex 

of this path into an edge.

• Repeatedly contracting edges of D′
i[Xtj

] having an end not in {vj} ∪((Xtj−1
∪Xtj+1

) ∩

Xtj
) until each remaining edge has ends in {vj} ∪ ((Xtj−1

∪ Xtj+1
) ∩ Xtj

) for every 

1 ≤ i ≤ 6ρ + 4 and 1 ≤ j ≤ |Ω0|.

Note that G′ contains a K6ρ+4-minor, so the tree-width of G′ is at least 6ρ + 3. Observe 

that V (G′) ⊆ V (S0). Furthermore, G′ can be written as G0 ∪G1 such that V (G0 ∩G1) =

V (G0) ⊆ Ω0, and G0 is an outerplanar graph that can be drawn in the plane such that 

the vertices of V (G0 ∩ G1) are in the boundary of a region in order, and G1 has a 

path-decomposition of width at most 2ρ such that each bag is a subset of {vj} ∪ (Xtj
∩

(Xtj−1
∪Xtj+1

)) (for some j) and contains a vertex in V (G0∩G1) in order. By Lemma 8.1 

in [1], G′ has tree-width less than 6ρ + 3, a contradiction. This proves the theorem. �

5. Theorems on surfaces

In this section, we recall some results about graphs embedded in surfaces.

Let Σ be a surface and let Γ be a drawing in Σ. The sets {v}, for v ∈ V (Γ), the edges 

and regions of Γ are called the atoms of Γ. A subdrawing Γ′ of Γ is a drawing satisfying 

V (Γ′) ⊆ V (Γ) and E(Γ′) ⊆ E(Γ); we write Γ′ ⊆ Γ if Γ′ is a subdrawing of Γ. A drawing 

is 2-cell if every region is an open disk.

Let Γ be a 2-cell drawing in a surface Σ. We say that a drawing K in Σ is a radial 

drawing of Γ if it satisfies the following conditions.
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• U(Γ) ∩ U(K) = V (Γ) ⊆ V (K).

• Each region r of Γ contains a unique vertex of K.

• K is a drawing of a bipartite graph, and (V (Γ), V (K) − V (Γ)) is a bipartition of it.

• For every v ∈ V (Γ), the edges of K ∪ Γ incident with v belong alternately to Γ and 

to K (in their cyclic order around v).

Let Σ be a surface, and let Γ be a drawing in Σ. A subset Z of Σ is Γ-normal if 

Z ∩U(Γ) ⊆ V (Γ). If Σ is not a sphere, we say that Γ is θ-representative if |F ∩V (Γ)| ≥ θ

for every non-null-homotopic Γ-normal O-arc F in Σ. If Δ ⊆ Σ is a closed set such that 

either ē ⊆ Δ or e ∩ Δ = ∅ for each e ∈ E(Γ), then we define Γ ∩ Δ to be the drawing 

(U(Γ) ∩ Δ, V (Γ) ∩ Δ).

Let Σ be a surface, and let Γ be a drawing of a graph G in Σ. A tangle in Γ and a 

separation of Γ are a tangle in G and a separation of G, respectively. A tangle T in Γ

of order θ is said to be respectful (towards Σ) if Σ is connected and for every Γ-normal 

O-arc F in Σ with |F ∩ V (Γ)| < θ, there is a closed disk Δ ⊆ Σ with ∂Δ = F such that 

(Γ ∩ Δ, Γ ∩ Σ − Δ) ∈ T . It is clear that Δ has to be unique, and we write Δ = ins(F ); 

the function ins is called the inside function of T . Assume that Γ is 2-cell, and let K be 

a radial drawing of Γ. If W is a closed walk of K, we define K|W to be the subdrawing 

of K formed by the vertices and the edges in W . If the length of W is less than 2θ, 

then we define ins(W ) to be the union of U(K|W ) and ins(C), taken over all cycles C

of K|W . For every two atoms a, b of K, define a function mT (a, b) as follows:

• if a = b, then mT (a, b) = 0;

• if a 	= b and a, b ⊆ ins(W ) for some closed walk W of K of length less than 2θ, then 

mT (a, b) = min 1
2 |E(W )|, taking over all such closed walks W ;

• otherwise, mT (a, b) = θ.

Note that K is bipartite, so mT is integral. In addition, for every atom c of Γ, we define 

a(c) to be an atom of K such that

• a(c) = c if c ⊆ V (Γ);

• a(c) is the region of K including c if c is an edge of Γ;

• a(c) = {v}, where v is the vertex of K in c, if c is a region of Γ.

For every atoms b, c of Γ, we define mT (b, c) = mT (a(b), a(c)). If X, Y are sets of atoms 

of G, then we define mT (X, Y ) = min{mT (x, y) : x ∈ X, y ∈ Y }. When one of X and Y , 

say Y , has size one, then we denote mT (X, Y ) by mT (X, y), where y is the unique 

element of Y .

The following is a consequence of Theorem 9.1 of [11].

Theorem 5.1. Let Σ be a surface, and let Γ be a 2-cell drawing of a graph in Σ. If T is 

a respectful tangle in Γ, then mT is a metric on the atoms of Γ.
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The following theorem is useful.

Theorem 5.2 ([12, Theorem (1.1)]). Let Σ be a surface, and let Γ be a 2-cell drawing 

of a graph in Σ with E(Γ) 	= ∅. Let T be a respectful tangle of order θ in Γ, and let 

K be a radial drawing of Γ. Let (A, B) be a separation of Γ of order less than θ. Then 

(A, B) ∈ T if and only if for every edge e of A, there exists a cycle C of K with 

V (C) ∩ V (Γ) ⊆ V (A) ∩ V (B) and with e ⊆ ins(C).

Theorem 5.3. Let Σ be a surface, and let Γ be a 2-cell drawing of a graph in Σ with 

E(Γ) 	= ∅. Let T be a respectful tangle of order θ in Γ. Then the following hold.

1. If x ∈ V (Γ) and (A, B) ∈ T is a separation of Γ such that x ∈ V (A) − V (B) and 

there exists a path P in A from x to a vertex y ∈ V (A) internally disjoint from V (B), 

then mT (x, y) ≤ |V (A) ∩ V (B)|.

2. If X ⊆ V (Γ) and (A, B) ∈ T is a separation of Γ of order less than |X| such that 

X ⊆ V (A), subject to this, A is minimal, then mT (X, y) ≤ |V (A) ∩ V (B)| for every 

y ∈ V (A).

Proof. We first prove Statement 1. Let x and (A, B) be a vertex and a separation men-

tioned in the statement of Conclusion 1. Let y ∈ V (A) be a vertex different from x. Let 

P be a path in A from x to y internally disjoint from V (B). Let e be the edge in P

incident with x. By Theorem 5.2, there exists a cycle C of the radial drawing K of Γ

with V (C) ∩ V (Γ) ⊆ V (A) ∩ V (B) and with e ⊆ ins(C). So x ∈ ins(C). If y /∈ ins(C), 

then C intersects P at an internal vertex of P . However, V (C) ∩ V (Γ) ⊆ V (A) ∩ V (B). 

This implies that some internal vertex of P is in V (A) ∩ V (B), a contradiction. Hence, 

y ∈ ins(C). Therefore, mT (x, y) ≤ |V (A) ∩ V (B)|.

Now we prove Statement 2. Let X and (A, B) be a set and a separation mentioned in 

the statement of Conclusion 2. Since |V (A ∩ B)| < |X| and X ⊆ V (A), X − V (B) 	= ∅. 

Since A is minimal, every component of A − V (A ∩ B) intersects X − V (B), and each 

vertex in V (A ∩ B) is either in X or adjacent to some vertex in V (A) − V (B). So for 

every y ∈ V (A), either y ∈ X, or there exists a path in A from a vertex xy ∈ X − V (B)

to y internally disjoint from V (B). If y ∈ X, then mT (X, y) = 0; otherwise, mT (xy, y) ≤

|V (A ∩ B)| by Statement 1. Hence mT (X, y) ≤ |V (A ∩ B)| for every y ∈ V (A). �

Theorem 5.4 ([11, Theorem (8.12)], [12, Theorem (1.2)]). Let T be a respectful tangle 

of order θ, where θ ≥ 2, in a 2-cell drawing Γ in a connected surface Σ. If c is an atom 

in Γ, then there exists an edge e of Γ such that mT (c, e) = θ.

Let Γ be a 2-cell drawing in a surface Σ, and let T be a respectful tangle of order θ

in Γ. Let x be an atom of Γ. A λ-zone around x is an open disk Δ in Σ with x ⊆ Δ, 

such that ∂Δ is an O-arc, ∂Δ ⊆ U(Γ), mT (x, y) ≤ λ for every atom y of Γ with y ⊆ Δ̄, 

and if x ∈ E(Γ), then λ ≥ 2. A λ-zone is a λ-zone around some atom.
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Let Δ be a λ-zone. Note that U(Γ) ∩ ∂Δ is a cycle, and the drawing Γ′ = Γ ∩ (Σ − Δ)

is 2-cell in Σ. We say that Γ′ is the drawing obtained from Γ by clearing Δ. We say that 

T ′ is a tangle of order θ − 4λ − 2 obtained by clearing Δ if T ′ is a tangle in Γ′ of order 

θ − 4λ − 2, and

• T ′ is respectful with a metric mT ′ , and

• T ′ is conformal with T , and

• if x, y are atoms of Γ and x′, y′ are atoms of Γ′ with x ⊆ x′ and y ⊆ y′, then 

mT (x, y) ≥ mT ′(x′, y′) ≥ mT (x, y) − 4λ − 2.

Theorem 5.5 ([12, Theorem (7.10)]). Let Δ be a λ-zone. If θ ≥ 4λ + 3, then there exists 

a unique respectful tangle of order θ − 4λ − 2 obtained by clearing Δ.

Theorem 5.6 ([14, Theorem (9.2)]). Let Γ be a 2-cell drawing in a surface Σ, and let 

T be a respectful tangle in Γ of order θ. Let x be an atom of Γ, and λ an integer with 

2 ≤ λ ≤ θ − 4. Then there exists a (λ + 3)-zone Δ around x such that x′ ⊆ Δ for every 

atom x′ of Γ with mT (x, x′) ≤ λ.

Lemma 5.7. Let Γ be a 2-cell drawing in a surface, z an atom, and T a respectful tangle 

in Γ of order θ. Let λ be a nonnegative integer, and let C be the cycle of the boundary 

of a λ-zone around z. If θ ≥ λ + 8, then there exists a (λ + 7)-zone Λ around z such that 

the cycle bounding Λ is disjoint from C, and Λ contains the λ-zone bounded by C.

Proof. For every atom x of Γ, let Λx be a 4-zone around x containing all atoms y with 

mT (x, y) ≤ 1, and let Δx be the closure of Λx, and let Cx be the boundary cycle of Δx. 

For every v ∈ V (C), since every region incident with v has distance 1 from v, v is an 

interior point of Δv. Let Δ = Δ′ ∪
⋃

v∈V (C) Δv, where Δ′ is the open disk with the 

boundary C. So V (C) are interior points of Δ. By the triangle-inequality, for every 

v ∈ V (C) and for every vertex u in Δv, mT (z, u) ≤ λ + 4. Therefore, there exists a 

(λ + 7)-zone Λ around z that contains Δ by Theorem 5.6. Since any vertex in C is an 

interior point of Δ, it is an interior point of Λ, so C is disjoint from the cycle that 

bounds Λ. �

Let Γ be a 2-cell drawing in a surface having a respectful tangle T . Let Λ be a λ-zone 

(with respect to mT ) around some atom of Γ for some nonnegative integer λ. For every 

v ∈ V (Γ) ∩ ∂Λ, a loose component with respect to (Λ, v, T ) is a component L of Γ − v

such that some vertex of L is adjacent to v, and there exists no separation (A, B) ∈ T

with V (A ∩ B) = {v} and V (B) = V (L) ∪ {v}; we call v the attachment of L. A loose 

component with respect to (Λ, T ) is a loose component with respect to (Λ, v, T ) for some 

v ∈ V (Γ) ∩ ∂Λ.

Lemma 5.8. Let Γ be a 2-cell drawing in a surface, z an atom, and T a respectful tangle 

in Γ of order θ. Let λ be a nonnegative integer, and let Λ be a λ-zone around z. If 
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θ ≥ 4λ + 31, then there exists a (λ + 7)-zone Λ′ around z containing Λ such that the 

following hold.

1. ∂Λ′ is obtained from ∂Λ by adding pairwise disjoint paths in Γ, where each of them 

has both ends in ∂Λ and for each of its internal vertices v, every edge incident in Γ

with v is either contained in Λ′ or incident with a vertex in a loose component with 

respect to (Λ′, v, T ).

2. The drawing Γ′ obtained from Γ by clearing Λ′, deleting E(Γ) ∩ ∂Λ′ and all loose 

components with respect to (Λ′, T ) and deleting all resulting isolated vertices is 2-cell 

and has a respectful tangle T ′ of order at least θ − (4λ + 30) conformal with T such 

that mT (x′, y′) ≥ mT ′(x, y) ≥ mT (x′, y′) − (4λ + 30) for every two atoms x, y of Γ′, 

where x′, y′ are atoms of Γ with x′ ⊆ x and y′ ⊆ y.

Proof. By Lemma 5.7, there exists a (λ +7)-zone Λ0 such that Λ0 ⊇ Λ and ∂Λ0 ∩∂Λ = ∅. 

Let Γ0 be the drawing obtained from Γ by clearing Λ0. Then Γ0 has a respectful tangle 

T0 of order at least θ − (4λ + 30) obtained from T by clearing Λ0 conformal with T , and 

Γ0 is 2-cell.

Let Γ1 be the drawing obtained from Γ by clearing Λ and deleting E(Γ) ∩ ∂Λ and 

isolated vertices. Since Γ0 is a subgraph of Γ1, Γ1 contains a respectful tangle T1 of order 

at least θ − (4λ + 30) conformal with T . We may assume that Γ1 is not 2-cell; otherwise 

we are done by choosing Λ′ = Λ.

Since θ − (4λ + 30) ≥ 1, there exists a component of Γ1, say Q1, such that (Γ1 −

V (Q1), Q1) ∈ T1. Since Γ0 is 2-cell, Γ0 is connected. So V (Γ0) ⊆ V (Q1). Hence, every 

component of Γ1 − V (Q1) is contained in Λ0.

Let Q be a component of Γ1 −V (Q1) with |V (Q) ∩∂Λ| ≥ 2. Hence there exists a path 

PQ in Q on at least two vertices with ends contained in ∂Λ. We choose PQ such that 

the closed set, denoted by ΔQ, bounded by ∂Λ ∪ PQ with interior disjoint from V (Q1)

is maximal.

Define Λ′ to be the open disk whose closure is Λ ∪
⋃

Q′ ΔQ′ , where the union is over 

all components Q′ of Γ1 − V (Q1) with |V (Q′) ∩ ∂Λ| ≥ 2. Hence ∂Λ′ is obtained from ∂Λ

by adding 
⋃

Q′ PQ′ , where the union is over some components Q′ of Γ1 −V (Q1). Clearly, 

Λ′ is bounded by a cycle C ′ in Γ. Note that those PQ′ are pairwise disjoint, and for every 

internal vertex v of some PQ′ , every edge incident in Γ with v is either contained in Λ′

or incident with a vertex in a loose component with respect to (Λ′, v, T ). Furthermore, 

the drawing Γ′ obtained from Γ by clearing Λ′ and deleting E(C ′), all loose components 

with respect to (Λ′, T ) and all isolated vertices is Q1. Since ∂Λ ∩ ∂Λ0 = ∅, every region 

of Q1 is either a region of Γ or a subset of Λ0. Since Q1 is connected, Q1 and hence Γ′

is 2-cell. Since Γ0 is a subgraph of Γ′, there exists a respectful tangle T ′ in Γ′ of order 

at least θ − (4λ + 30) conformal with T , and mT (x′, y′) ≥ mT ′(x, y) ≥ mT0
(x′′, y′′) ≥

mT (x′, y′) − (4λ + 30) for all atoms x, y of Γ′, where x′, y′ are atoms of Γ and x′′, y′′ are 

atoms of Γ0 with x′ ⊆ x ⊆ x′′ and y′ ⊆ y ⊆ y′′. Since Λ′ ⊆ Λ0, Λ′ is a (λ + 7)-zone. This 

proves the lemma. �
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Let Σ be a connected surface, and let Δ1, ..., Δt be pairwise disjoint closed disks 

in Σ. Let Γ be a drawing in Σ such that U(Γ) ∩ Δi = V (Γ) ∩ ∂Δi for 1 ≤ i ≤ t. Let 

Z =
⋃t

i=1 V (Γ) ∩∂Δi. We say that a partition (Z1, Z2, ..., Zp) of Z satisfies the topological 

feasibility condition if there exist pairwise disjoint disks D1, D2, ..., Dp in Σ such that 

Dj ∩ (
⋃t

i=1 Δi) = Zj for 1 ≤ j ≤ p.

Theorem 5.9 ([12, Theorem (3.2)]). For every connected surface Σ and all integers t ≥ 0

and z ≥ 0, there exists a positive integer θ ≥ 1 such that the following is true. Let 

Δ1, ..., Δt be pairwise disjoint closed disks in Σ, and let Γ be a 2-cell drawing in Σ such 

that U(Γ) ∩Δi = V (Γ) ∩∂Δi for 1 ≤ i ≤ t. Let |Z| ≤ z, where Z =
⋃t

i=1(V (Γ) ∩∂Δi), and 

let (Z1, Z2, ..., Zp) be a partition of Z satisfying the topological feasibility condition. Let 

T be a respectful tangle of order at least θ in Γ with metric mT such that mT (ri, rj) ≥ θ

for 1 ≤ i < j ≤ t, where ri is the region of Γ meeting Δi for 1 ≤ i ≤ t, and V (Γ) ∩∂Δi is 

free for 1 ≤ i ≤ t. Then there are mutually disjoint connected subdrawings Γ1, Γ2, ..., Γp

of Γ with V (Γj) ∩ Z = Zj for 1 ≤ j ≤ p.

6. Excluding a subdivision of a fixed graph

Let G be a graph and T a tangle in G. Given an integer k, a vertex v of G is said 

to be k-free (with respect to T ) if there is no (A, B) ∈ T of order less than k such that 

v ∈ V (A) − V (B).

Let S = S1 ∪ S2 be a segregation of S with S1 ∩ S2 = ∅ such that |Ω| ≤ 3 for every 

(S, Ω) ∈ S1. The skeleton of a proper arrangement α of S in Σ (with respect to (S1, S2)) 

is the drawing Γ = (U, V ) in Σ with V (Γ) = {α(v) : v ∈ V (S)} such that U(Γ) consists 

of the boundary of α(S, Ω) for each (S, Ω) ∈ S1 with |Ω̄| = 3, and a line in the boundary 

α(S′, Ω′) with ends Ω′ for each (S′, Ω′) ∈ S1 with |Ω′| = 2. Note that we do not add any 

edges into the skeleton for (S, Ω) with |Ω̄| ≤ 1 or (S, Ω) ∈ S2. Furthermore, the skeleton 

of α is unique up to the choice of the line in α(S′, Ω′) for each (S′, Ω′) ∈ S with |Ω′| = 2, 

and the choices of those lines do not affect whether the skeleton is a 2-cell drawing or 

not.

Lemma 6.1. Let t, ρ, θ be nonnegative integers. Let G be a graph. Let S = S1 ∪ S2 with 

S1 ∩ S2 = ∅ be a segregation of G such that |Ω| ≤ 3 for every (S, Ω) ∈ S1. Let α be a 

proper arrangement of S with respect to (S1, S2) of G in a surface Σ. Let (S, Ω) ∈ S be 

a ρ-vortex. Let G′ be the skeleton of α. Let T ′ be a respectful tangle in G′ of order θ. If 

G′ is 2-cell and θ ≥ 4t + 59, then there exists a cycle C such that the following hold.

1. C bounds a (t + 14)-zone Λ in G′ around some vertex in Ω̄.

2. Λ contains every atom x of G′ with mT ′(x, y) ≤ t for some y ∈ Ω̄.

3. The closure of Λ contains α(S, Ω).

4. Let S′ be the union of S′′ over all societies (S′′, Ω′′) ∈ S with

• either α(S′′, Ω′′) ⊆ Λ, or



C.-H. Liu, R. Thomas / Journal of Combinatorial Theory, Series B 134 (2019) 1–35 19

• |Ω′′| = 2 and α(S′′, Ω′′) ∩ E(C) 	= ∅, or

• Ω′′ contained in the union of some loose component with respect to (Λ, T ′) and its 

attachment, or

• |Ω′′| = 1 and Ω′′ ⊆ V (C).

Let Ω′ = V (C) − {x ∈ V (C): every edge of G′ incident with x is either contained 

in Λ or incident in G′ with a vertex in a loose component with respect to (Λ, T ′)}, 

and let Ω′ be a cyclic ordering consistent with the cyclic ordering of C. If every 

(S′′, Ω′′) ∈ S2 with α(S′′, Ω′′) ⊆ Λ is a ρS′′-vortex for some nonnegative integer ρS′′ , 

then (S′, Ω′) is a (ρ + t + 8 +
∑

S′′ ρS′′)-vortex, where the sum is over all societies 

(S′′, Ω′′) ∈ S2 − {(S, Ω)} with α(S′′, Ω′′) ⊆ Λ.

5. Let S∗
1 = S1 −{(S′′, Ω′′) ∈ S1 : S′′ ⊆ S′} and S∗

2 = (S2 −{(S′′, Ω′′) ∈ S2 : S′′ ⊆ S′}) ∪

{(S′, Ω′)}. If mT ′(x, y) ≥ 3 for every atom x ⊆ ∂Λ and y ∈ V (Ω′′) with (S′′, Ω′′) ∈

S∗
2 − {(S′, Ω′)}, then S∗ is a segregation, and there exists a proper arrangement α∗

of S∗
1 ∪ S∗

2 with respect to (S∗
1 , S∗

2 ) such that the skeleton G∗ of α∗

• is obtained from G′ by clearing Λ and deleting some edges in E(C) and all loose 

components with respect to (Λ, T ′) and deleting all resulting isolated vertices,

• is 2-cell, and

• has a respectful tangle T ∗ conformal with T ′ of order at least θ − 4t − 58 such that 

mT ′(x′, y′) ≥ mT ∗(x, y) ≥ mT ′(x′, y′) − 4t − 58 for all atoms x, y of G∗, where 

x′, y′ are atoms of G′ with x′ ⊆ x and y′ ⊆ y.

Proof. Let y be a vertex in Ω̄. By Theorem 5.6, there exists a (t +5)-zone Λ′ around y in 

G′ such that x ∈ Λ′ for every atom x of G′ with mT ′(x, y) ≤ t + 2. Since mT ′(y′, y′′) ≤ 2

for every two vertices y′, y′′ in Ω̄, x ∈ Λ′ for every atom x of G′ with mT ′(x, z) ≤ t for 

some z ∈ Ω̄. Let H be the drawing obtained from G′ by deleting every atom x ∈ V (G′)

with mT ′(x, y) ≤ t + 2. It follows from [11, Theorem (8.10)] that H has a region f

homeomorphic to an open disk that contains α(S, Ω) and all deleted vertices.

In the rest of the proof, we fix a radial drawing of G′.

Claim 1. For every vertex v of H incident with f , there exists a closed walk 	v of length 

at most 2t + 8 in the radial drawing of G′ with {v, y} ⊆ ins(	v) ⊆ f̄ ⊆ Λ′ such that v is 

adjacent to only one vertex in 	v and V (	v) ∩ V (H) = {v}.

Proof of Claim 1. Since v is incident with f , there exists a path P ⊆ f̄ of length two in 

the radial drawing of G′ containing v and a vertex v′ of G′ − V (H) internally disjoint 

from V (H). As mT ′(v′, y) ≤ t + 2, there exists a closed walk Wv′ of length at most 

2t + 4 in the radial drawing of G′ such that {v′, y} ⊆ ins(Wv′). Note that v ∈ V (H), so 

mT ′(v, y) > t + 2 and {v} � ins(Wv′). Hence, there exists a closed walk 	v of length at 

most 2t +8 in Wv′ ∪P with {v, y} ⊆ ins(	v) and such that v is adjacent to only one vertex 

in 	v. Note that mT ′(u, y) ≤ t + 2 for every u ∈ V (Wv′) ∩ V (G), so ins(Wv′) ⊆ f̄ . Hence 

ins(	v) ⊆ f̄ . Since Λ′ contains all atoms u of G′ with mT ′(u, y) ≤ t + 2, f̄ ⊆ Λ′. �
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By Claim 1, mT ′(y, v) ≤ t + 4 for every vertex v incident with f . So there exists a 

(t + 7)-zone Λ′′ containing all vertices incident with f . Hence f ⊆ Λ′′. By Lemma 5.4, 

there exists an edge y′ of G′ such that mT ′(y, y′) = θ > t + 8. So y′ /∈ Λ′′. Each cycle 

Y contained in the boundary of f bounds an open disk ΔY disjoint from y′. Let C0 be 

the cycle contained in the boundary of f such that ΔC0
is maximal among all cycles Y

contained in the boundary of f . Then f ⊆ ΔC0
and hence ΔC0

contains α(S, Ω) and all 

atoms x with mT ′(x, y) ≤ t + 2. Since ΔC0
⊆ Λ′′, C0 bounds a (t + 7)-zone.

Let S′
0 be the union of S′′ over all societies (S′′, Ω′′) ∈ S with α(S′′, Ω′′) contained in 

the closure of the disk bounded by C0 disjoint from y′. We call such a society (S′′, Ω′′)

an inner vortex. Let Ω′
0 be the cyclic ordering of C0. Since (S, Ω) is a ρ-vortex, for every 

two intervals I, J that partition Ω̄, there exists XI,J ⊆ V (S) with |XI,J | ≤ ρ such that 

there exists no path in S − XI,J from I − XI,J to J − XI,J . Similarly, since (S′′, Ω′′)

is a ρS′′-vortex for every (S′′, Ω′′) ∈ S2 − {(S, Ω)}, for every two intervals I, J that 

partition Ω′′, there exists XS′′

I,J ⊆ V (S) with |XS′′

I,J | ≤ ρS′′ such that there exists no path 

in S′′ − XS′′

I,J from I − XS′′

I,J to J − XS′′

I,J .

Claim 2. (S′
0, Ω′

0) is a (ρ +t +6 +
∑

ρS′′)-vortex, where the sum is over all inner vortices.

Proof of Claim 2. Let I ′, J ′ be two intervals that partition Ω′, let u, v be the first vertex 

in I ′, J ′, respectively, under the ordering Ω′, and let 	∗
u and 	∗

v be a closed walk 	u and 

a closed walk 	v mentioned in Claim 1, respectively.

Note that for each path Q in 	∗
u∪	∗

v and for each vertex w ∈ V (Q) corresponding to the 

region containing α(S′′, Ω′′) for some inner vortex (S′′, Ω′′) or vortex (S′′, Ω′′) = (S, Ω), 

the edges in Q incident with w define a partition of Ω′′ into two intervals I ′′, J ′′, and we 

denote XS′′

I′′,J ′′ by XS′′

w,Q.

Assume that there exists a path Q in 	∗
u ∪ 	∗

v from u to v on at most 2t + 11 vertices. 

Let X ′′ = (V (Q) ∩ V (G′)) ∪
⋃

w∈V (Q)−V (G′)

⋃
S′′ XS′′

w,Q, where the last union is over all 

(S′′, Ω′′) such that either (S′′, Ω′′) = (S, Ω) or (S′′, Ω′′) is an inner vortex with α(S′′, Ω′′)

corresponding to w. Then there exists no path in S′
0 −X ′′ from I ′ −X ′′ to J ′ −X ′′. Note 

that |X ′′| ≤ � 2t+11
2 � + ρ +

∑
S′′ ρS′′ , where the sum is over all inner vortices (S′′, Ω′′). 

Therefore, (S′
0, Ω′

0) is a (ρ + t + 6 +
∑

S′′ ρS′′)-vortex, where the sum is over all inner 

vortices (S′′, Ω′′).

So we may assume that there does not exist a path Q in 	∗
u ∪ 	∗

v from u to v on at 

most 2t + 11 vertices. In particular, 	∗
u is disjoint from 	∗

v. So one of 	∗
u and 	∗

v does not 

contain y. By symmetry, we may assume that 	∗
u does not contain y. Since {y} ⊆ ins(	∗

u), 

	∗
u contains a cycle Cu such that Cu bounds an open disk Δu ⊆ ins(	∗

u) containing {y}. 

Since Δu ⊆ f̄ ⊆ Λ′, {v} is not contained in the closure of Δu, for if it did, then, since v

belongs to the boundary of f , it would belong to the boundary of Δu, contrary to the 

fact that 	∗
u and 	∗

v are disjoint. Since 	∗
u is disjoint from 	∗

v, 	∗
v is disjoint from the closure 

of Δu. In particular, y /∈ V (	∗
v). Hence 	∗

v contains a cycle Cv such that Cv bounds an 

open disk Δv ⊆ ins(	∗
v) containing {y} ∪ Δu. Since Δv ⊆ f̄ ⊆ Λ′, {u} is not contained 

in the closure of Δv, for if it did, then, since u belongs to the boundary of f , it would 
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belong to the boundary of Δv, contrary to the fact that 	∗
u and 	∗

v are disjoint. Since 

	∗
u intersects the closure of Δv and the complement of the closure of Δv, 	∗

u intersects 

Cv ⊆ 	∗
v, a contradiction. This proves the claim. �

By Lemma 5.8, there exists a (t + 14)-zone Λ′ containing the (t + 7)-zone bounded 

by C0 satisfying the conclusion of Lemma 5.8. Define C to be the cycle bounding Λ′. So 

Conclusions 1–3 hold.

Let (S′, Ω′) be the society mentioned in Conclusion 4. To prove Conclusion 4, it suffices 

to prove the following claim.

Claim 3. If (S′
0, Ω′

0) is a p-vortex for some nonnegative integer p, then (S′, Ω′) is a 

(p + 2)-vortex.

Proof of Claim 3. Suppose that (S′, Ω′) is not a (p +2)-vortex. So there exist a partition 

I, J of Ω′ into cyclic intervals and p + 3 disjoint paths P1, ..., Pp+3 in S′ from I to J . 

By the definition of Ω′, we know Ω′ ⊆ Ω′
0. Let I ′ be the minimal cyclic interval in Ω′

0

containing I, and let J ′ be the cyclic interval such that I ′ ∪ J ′ = Ω′
0. Note that the ends 

of I and I ′ are the same. By changing the indices, we may assume that P1, P2, ..., Pp+1

do not intersect the ends of I ′. So for each i with 1 ≤ i ≤ p +1, some subpath Qi of Pi in 

S′
0 is from I ′ to J ′. This contradicts that (S′

0, Ω′
0) is a p-vortex and proves the claim. �

Then Conclusion 4 follows from Claims 2 and 3.

Define S∗
1 and S∗

2 as mentioned in Conclusion 5. Now we assume that mT ′(x, y) ≥ 3 for 

every x ⊆ ∂Λ and y ∈ Ω′′ with (S′′, Ω′′) ∈ S∗
2 − {(S′, Ω′)}. Hence every loose component 

with respect to (Λ, T ′) does not intersect Ω′′ for every (S′′, Ω′′) ∈ S∗
2 − {(S′, Ω′)}. So 

S∗ = S∗
1 ∪S∗

2 is a segregation of G. Then it is clear that there exists a proper arrangement 

α∗ of S∗ with respect to (S∗
1 , S∗

2 ) such that the skeleton G∗ of α∗ can be obtained from 

G′ by deleting some edges in E(C) and all loose components with respect to (Λ, T ′), 

and deleting all resulting isolated vertices. Conclusion 2 of Lemma 5.8 implies that G∗

is 2-cell. Furthermore, Conclusion 2 of Lemma 5.8 implies that there exists a respectful 

tangle T ∗ in G∗ conformal with T ′ of order at least θ − (4(t + 7) + 30) = θ − 4t − 58 such 

that mT ′(x′, y′) ≥ mT ∗(x, y) ≥ mT ′(x′, y′) − (4t + 58) for all atoms x, y of G∗, where 

x′, y′ are atoms of G′ with x′ ⊆ x and y′ ⊆ y. This proves Conclusion 5. �

Lemma 6.2. Let d ≥ 3, and let κ, h, h1, h2, ..., hκ, ρ, θ′′ be nonnegative integers. Then 

there exist integers θ0(d, h, ρ, κ, θ′′), β(d, h, ρ) and f(d, h, ρ, κ) such that the following 

holds. Suppose that

1. G is a graph and T is a tangle in G, and

2. τ is a proper arrangement of a T -central segregation S of G with respect to (S1, S2)

in a surface Σ, and

3. G′ is the skeleton of τ , G′ is 2-cell and is a minor of G, and T ′ is a respectful tangle 

in G′ of order θ, for some θ ≥ θ0, such that T ′ is conformal with T , and
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4. let X ⊆ V (G) and let (S1, Ω1), ..., (Sκ, Ωκ) be societies in S, where each (Si, Ωi) is a 

ρ-vortex such that V (Si) ∩X contains at least one d-free vertex with respect to T , such 

that for every 1 ≤ i < j ≤ κ, and for every x ∈ Ωi and y ∈ Ωj, mT ′(x, y) ≥ 2f + 1, 

and

5. mT ′(x, y) ≥ f + 1, for every x ∈ Ωi with 1 ≤ i ≤ κ, and for every y ∈ Ω̄ with 

(S, Ω) ∈ S − {(Si, Ωi)} and |Ω̄| > 3, and

6. hi ≤ h for 1 ≤ i ≤ κ.

Then there exist Z1, Z2, ..., Zκ ⊆ V (G), a subdrawing G′′ of G′ and a tangle T ′′ in G′′

obtained from G′ and T ′ by clearing at most κ f -zones Λ1, ..., Λκ such that T ′′ −
⋃κ

i=1 Zi

has order at least θ′′ and is conformal with T ′, and for every i ∈ {1, 2, ..., κ}, either

1. hi ≥ 2, Λi = ∅ and |Zi| ≤ β such that every vertex in (V (Si) − Zi) ∩ X is not d-free 

with respect to T −
⋃κ

i=1 Zi, or

2. Zi = ∅, and Λi is an f -zone in G′ around a vertex in Ωi with the boundary cycle Yi, 

and there exist hi subsets Ai,1, Ai,2, ..., Ai,hi
of Yi such that the following hold.

(a) V (Si) ⊆ Λi.

(b) Each Ai,j has size d and 
⋃hi

j=1 Ai,j is free in G′′ with respect to T ′′ −
⋃κ

i=1 Zi.

(c) For each 1 ≤ j ≤ hi, there exists a minimum interval Ij of Yi containing Ai,j

such that Ij′ ∩ Ij′′ = ∅ for every 1 ≤ j′ < j′′ ≤ hi.

(d) There exist vi,1, vi,2, ..., vi,hi
∈ Λi ∩ X such that there are hi disjoint d-spiders in 

G contained in Λi ∪
⋃hi

j=1 Ai,j, where the j-th spider is from vi,j to Ai,j.

Proof. Define k′ to be the value k′(h, ρ) mentioned in Theorem 4.2, and let β(d, h, ρ) =

2(k′d + 1)d+1. Define s′ = s′
4.2(h, d, 4hd + 2κβ + 3, ρ) + 2hd + κβ, where s′

4.2 is the 

value s′ mentioned in Theorem 4.2. Let f(d, h, ρ, κ) = 19 + 10s′ and θ0(d, h, ρ, κ, θ′′) =

θ′′ + κ(4f + β + 2). Let i ∈ {1, 2, ..., κ} be fixed. For simplicity, we denote (Si, Ωi) by 

(S, Ω), and let vS be a vertex in Ω̄.

We may assume that κ ≥ 1 and h ≥ 1, for otherwise this lemma is obvious. In 

particular, θ0 ≥ 6. By Theorem 5.6, there exists a 5-zone Λ′
S,0 in G′ around vS such that 

Λ′
S,0 contains all atoms y of G′ with mT ′(vS , y) ≤ 2. Note that every vertex in Ω̄ has 

distance at most 2 from vS with respect to the metric mT ′ , so Λ′
S,0 contains τ(S, Ω). Let 

ΛS,0 be a 19-zone in G′ around vS such that ΛS,0 satisfies Lemma 6.1 and contains Λ′
S,0. 

Let (GS,0, ΩS,0) be the society (S′, Ω′) mentioned in Lemma 6.1 by taking Λ to be ΛS,0. 

Note that Lemma 6.1 ensures that (GS,0, ΩS,0) is a (ρ + 13)-vortex.

For 1 ≤ j ≤ s′, let ΛS,j be a (19 + 10j)-zone around vS such that ΛS,j contains every 

vertex x of G′′ with mT ′(x, vS) ≤ 19 + 10(j − 1) and ∂ΛS,j ∩ ∂ΛS,j−1 = ∅. Note that 

the existence of ΛS,j follows from Lemmas 5.6 and 5.7. Let CS,j be the boundary cycle 

of ΛS,j for 1 ≤ j ≤ s′. Let ΛS = ΛS,s′ . Let GS be the union of S′ over all societies (S′, Ω′)

with τ(S′, Ω′) contained in the closure of ΛS , and let ΩS be the cyclic ordering on the 
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boundary cycle of ΛS . So (GS , ΩS) is a composition of a (ρ +13)-vortex (GS,0, ΩS,0) with 

a rural neighborhood which has a presentation with an s′-nest (CS,1, CS,2, ..., CS,s′).

Let h′
i = k′ if hi 	= 1, and h′

i = 1 if hi = 1. Let XS be the set of d-free vertices 

in V (S) ∩ X with respect to T . Note that XS 	= ∅ by assumption. By Theorem 3.5, 

either there exist h′
i disjoint d-spiders from XS to ΩS , or there exists WS ⊆ V (GS) with 

|WS | ≤ 2(h′
id + 1)d+1 ≤ β such that every d-spider from XS to ΩS intersects WS .

We first assume that hi > 1 and the set WS mentioned above exists. Then for every 

vertex v ∈ XS − WS , there exists a separation (A, B) of GS − WS of order less than 

d such that v ∈ V (A) − V (B) and ΩS − WS ⊆ V (B). So there exists a separation 

(A′, B′) of G − WS with V (A ∩ B) = V (A′ ∩ B′) such that V (A′) = V (A) and V (B′) =

V (B) ∪ (V (G) − V (GS)). Note that (A′, B′) ∈ T − WS ; otherwise since T ′ is conformal 

with T , there exists a separation (B′′, A′′) ∈ T ′ − WS , where V (A′′) = V (A′) ∩ V (G′)

and V (B′′) = V (B′) ∩ V (G′), but A′′ is contained in a (19 + 10s′)-zone around vS in G′, 

a contradiction. So every vertex in XS − WS is not d-free in T − WS . Hence every vertex 

in (V (S) − WS) ∩ X is not d-free in T − WS . In other words, the first statement of this 

theorem holds by taking Λi = ∅ and Zi = WS .

When hi = 1, the former case holds by Menger’s Theorem and the fact that V (S) ∩X

contains a d-free vertex. Therefore, we may assume that there exist h′
i disjoint d-spiders 

from XS to ΩS .

Define Zi to be the empty set. Let Di,1, Di,2, ..., Di,h′

i
be disjoint d-spiders from XSi

to 

ΩSi
. Apply Theorem 4.2 by taking (S, Ω) = (GSi

, ΩSi
), (S0, Ω0) = (Si, Ωi) and Dj = Di,j

for 1 ≤ j ≤ h′
i. There exist pairwise disjoint d-spiders D′

i,1, D′
i,2, ..., D′

i,hi
from XSi

to 

V (CSi,s′), a (4hd +2κβ +3)-nest (NSi,1, ..., NSi,4hd+2κβ+3) and intervals Ii,1, Ii,2, ..., Ii,hi

of CSi,s′ satisfying the conclusions of Theorem 4.2. For every 1 ≤ j ≤ hi, since each 

D′
i,j is perpendicular to (NSi,1, ..., NSi,4hd+2κβ+3), there exists a set Ai,j of hid vertices 

in D′
i,j ∩ V (NSi,1) such that there exist hid disjoint paths from Ai,j to V (CSi,s′), but 

there exists no path from the head of D′
i,j to V (NSi,1) in D′

i,j − Ai,j . Note that NSi,1

is contained in the disk bounded by CSi,s′ which bounds an f -zone, so NSi,1 is the 

boundary of an f -zone. Define Λi to be the f -zone bounded by NSi,1. Define G′′ to be 

the drawing and T ′′ to be the tangle obtained from G′ and T ′, respectively, by clearing 
⋃κ

i=1 Λi. Note that T ′′ −
⋃κ

i=1 Zi has order θ − κβ − κ(4f + 2) ≥ θ′′ and is conformal 

with T ′ −
⋃κ

i=1 Zi. On the other hand, by planarity, for every 1 ≤ j ≤ hi, there exists 

an interval Ji,j of NSi,1 containing Ai,j , such that Ji,j ∩ Ji,j′ = ∅ for every j′ 	= j.

To prove this lemma, it is sufficient to show that 
⋃hi

j=1 Ai,j is free with respect to 

T ′′−
⋃κ

j=1 Zj . Suppose that 
⋃hi

j=1 Ai,j is not free with respect to T ′′−
⋃κ

j=1 Zj for some i, 

then there exists (A′, B′) ∈ T ′′ −
⋃κ

j=1 Zj with order less than dhi such that 
⋃hi

j=1 Ai,j ⊆

V (A′). Let (A, B) ∈ T ′′ with V (A) = V (A′) ∪
⋃κ

j=1 Zj and V (B) = V (B′) ∪
⋃κ

j=1 Zj . 

We assume that A is as small as possible, so mT ′′(
⋃hi

j=1 Ai,j , u) < dh + κβ for every 

u ∈ V (A) by Theorem 5.3.

We claim that ΩSi
⊆ V (B) − V (A). Suppose to the contrary that there exists u ∈

ΩSi
∩ V (A). So there exists a closed walk W of a radial drawing of G′′ with length less 
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than 2dhi +2κβ and {u, v} ⊆ ins(W ) for some vertex v ∈
⋃hi

j=1 Ai,j . Since {v} ⊆ ins(W ), 

if W contains the vertex of a radial drawing of G′′ corresponding to the region bounded 

by NS�,1 for any 	 	= i, then W ∩ V (Ns�,j) 	= ∅ for every 2 ≤ j ≤ 4hd + 2κβ + 2, so 

|W | ≥ 4hd + 2κβ + 1, a contradiction. So W does not contain the vertex of a radial 

drawing of G′′ corresponding to the region bounded by NS�,1 for any 	 	= i. Similarly, 

since {u} ⊆ ins(W ), if W contains the vertex of a radial drawing of G′′ corresponding to 

the region bounded by NSi,1, then W ∩ V (Nsi,j) 	= ∅ for every 2 ≤ j ≤ 4hd + 2κβ + 2, 

a contradiction. So W does not contain the vertex of a radial drawing of G′′ corresponding 

to the region bounded by NSi,1. Therefore, W is a closed walk in a radial drawing of G′. 

This implies that mT ′(u, v) < dhi + κβ. So u is a vertex in CSi,s′ contained in the disk 

bounded by CSi,dh+κβ containing CSi,1, a contradiction.

Therefore, ΩSi
⊆ V (B′) − V (A′). However, there exist dhi disjoint paths in G′′ from 

⋃hi

j=1 Ai,j to ΩSi
, a contradiction. So 

⋃hi

j=1 Ai,j is free with respect to T ′′ −
⋃κ

j=1 Zj for 

every i. This proves the lemma. �

Lemma 6.3. Let d ≥ 3, h be positive integers, and let Σ be a surface. Then there exist in-

tegers θ(d, h, Σ), φ(d, h, Σ) such that if G is a 2-cell drawing in Σ, T is a respectful tangle 

in G of order at least θ, and G contains h d-free vertices v1, v2, ..., vh with mT (vi, vj) > φ

for 1 ≤ i < j ≤ h, then G admits an H-subdivision with branch vertices v1, v2, ..., vh, for 

every graph H of order h and of maximum degree at most d embeddable in Σ.

Proof. Let H be a graph of order h and of maximum degree at most d embeddable 

in Σ. Let θ5.9 be the positive integer θ mentioned in Theorem 5.9 by taking t = h

and z = dh. Note that ({vi}, {vi}) is a 0-vortex for every i. For 1 ≤ i ≤ h, let Λi

be the 12-zone around vi of G mentioned in Lemma 6.1 such that Λi contains vi and 

all its neighbors, and let Si be the subgraph of G contained in the closure of Λi, and 

let Ωi = ∂Λi ∩ V (G) with the cyclic order defined by the boundary cycle of Λi. So 

(Si, Ωi) is a 24-vortex by Lemma 6.1. Let θ′ = θ6.2(d, 1, 24, h, θ5.9), β = β6.2(d, 1, 24)

and f = f6.2(d, 1, 24, κ), where θ6.2, β6.2 and f6.2 are the numbers θ0, β, f mentioned in 

Lemma 6.2. Define θ = θ′ + h(4f + 2) + 2f + 1 and φ = θ5.9 + h(4f + 2) + 2f + 1.

Applying Lemma 6.2 by taking κ = h, hi = 1 for 1 ≤ i ≤ h, ρ = 24, θ′′ = θ5.9, and 

S the segregation consisting of (S1, Ω1), (S2, Ω2), ..., (Sh, Ωh) and the societies in which 

each of them consists of exactly one edge that is not in 
⋃h

i=1 Si, we obtain the desired 

subgraph G′′ with a respectful tangle T ′′, and Ai,1 for 1 ≤ i ≤ h, such that every Ai,1

is free with respect to T ′′, as mentioned in the conclusion of Lemma 6.2. Then for every 

x ∈ Ai,1 and y ∈ Aj,1 for some i 	= j, we have that mT ′′(x, y) ≥ θ5.9 by Theorem 5.5.

For 1 ≤ i ≤ h, let Δi be a closed disk in Σ contained in the closure of Λi such that 

Δi ∩ G′′ = Ai,1. Since H can be embedded in Σ, we can partition 
⋃h

i=1 Ai,1 and apply 

Theorem 5.9 to obtain a linear forest so that an H-subdivision in G can be obtained by 

concatenating these linear forests and h disjoint d-spiders D1, D2, ..., Dh, where each Di

is from vi to Ai,1 contained in Si. We obtain an H-subdivision in G with branch vertices 

v1, v2, ..., vh. �
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Lemma 6.4. Let ρ be an integer, G a graph, T a tangle in G of order at least 2ρ + 2, and 

S a segregation of G. If (S, Ω) ∈ S is a ρ-vortex and there exists no (A, B) ∈ T of order 

at most 2ρ + 1 such that B ⊆ S, then there exists no (A′, B′) ∈ T of order at most the 

half of the order of T such that B′ ⊆ S.

Proof. Suppose that there exists (A, B) ∈ T of order at most the half of the order of T

such that B ⊆ S. Let Ω̄ = v1, v2, ..., vn in order, where n = |Ω̄|. We may assume that 

every vi is adjacent to a vertex in G − V (S), for otherwise we may remove it from Ω̄. 

As (S, Ω) is a ρ-vortex, by Theorem 8.1 in [9], there exists a path-decomposition (P, X )

of S of adhesion at most ρ such that the i-th bag Xi of (P, X ) contains vi for every 

1 ≤ i ≤ n. For every subgraph H of S, we define (AH , BH) to be the separation of G

with minimum order such that AH = H. In particular, for 1 ≤ i ≤ n, (AS[Xi], BS[Xi])

has order at most 2ρ + 1, so (AS[Xi], BS[Xi]) ∈ T . For 1 ≤ i ≤ n, define (Ai, Bi) =

(A ∪ AS[
⋃

i
j=1

Xj ], B ∩ BS[
⋃

i
j=1

Xj ]). Note that if vj ∈ V (B) for some j, then vj ∈ V (A)

since B ⊆ S and vj is adjacent to a vertex in G − V (S). So the order of (Ai, Bi) is at 

most |V (A) ∩ V (B)| + |V (AS[
⋃

i
j=1

Xj ]) ∩ V (BS[
⋃

i
j=1

Xj ]) ∩ (V (B) − V (A))| ≤ |V (A) ∩

V (B)| + |(
⋃i

j=1 Xj) ∩ (
⋃n

j=i+1 Xj)| ≤ |V (A) ∩ V (B)| + ρ. Since the order of (A, B) is at 

most the half of the order of T , and the order of T is greater than 2ρ, either (Ai, Bi) ∈ T

or (Bi, Ai) ∈ T by the first tangle axiom. Let (A0, B0) = (A, B). We shall prove that 

(Ai, Bi) ∈ T for 0 ≤ i ≤ n by induction on i.

When i = 0, (A0, B0) = (A, B) ∈ T . Assume that (Ai, Bi) ∈ T for some i. Sup-

pose that (Bi+1, Ai+1) ∈ T . But (Ai, Bi), (AS[Xi+1], BS[Xi+1]) ∈ T , and Bi+1 ∪ Ai ∪

S[Xi+1] = G, a contradiction. This proves that (Ai, Bi) ∈ T for every 0 ≤ i ≤ n.

Furthermore, (An, Bn) = (A ∪ S, B ∩ BS). Recall that V (B ∩ BS) ⊆ V (B) ∩ Ω̄ ⊆

V (A) ∩ V (B), so |V (Bn)| ≤ |V (A) ∩ V (B)|. Since (Bn, G − E(Bn)) has order less than 

the order of T , (Bn, G − E(Bn)) ∈ T by the first and third tangle axioms. However, 

An ∪ Bn = G, contradicting the second tangle axiom. This completes the proof. �

Lemma 6.5. For a positive nondecreasing function φ and integers ρ, λ, κ, k, θ∗, d with 

d ≥ 4, there exist integers θ, ρ∗ such that the following is true. Assume that G is a graph, 

X is a subset of V (G), T is a tangle in G, and S = S1 ∪ S2 is a T -central segregation 

that has a proper arrangement τ in a surface Σ such that the following hold.

1. For every (S, Ω) ∈ S1, |Ω̄| ≤ 3, and for every x ∈ Ω̄, there exist |Ω̄| − 1 paths in S

from x to Ω̄ − {x} intersecting only in {x}.

2. |S2| ≤ κ.

3. (S, Ω) is a ρ-vortex for every (S, Ω) ∈ S2.

4. The skeleton G′ of S is a minor of G, is 2-cell embedded in Σ and has a respectful 

tangle T ′ of order at least θ conformal with T .

5. There exist k λ-zones Λ1, Λ2, ..., Λk in G′ around some vertices of G′ with respect to 

the metric mT ′ such that every d-free vertex of G′ with respect to T ′ contained in X

is contained in 
⋃k

i=1 Λi.
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Then there exist a T -central segregation S∗ = S∗
1 ∪ S∗

2 of G and a proper arrangement 

τ∗ of S∗ with respect to (S∗
1 , S∗

2 ) in Σ such that the following hold.

1. S∗
1 ⊆ S1; in particular, |Ω̄| ≤ 3 for every (S, Ω) ∈ S∗

1 .

2. |S∗
2 | ≤ κ + k and 

⋃
(S,Ω)∈S2

S ∪
⋃

(S′,Ω′)∈S,α(S′,Ω′)⊆
⋃

k
i=1

Λi
S′ ⊆

⋃
(S,Ω)∈S∗

2
S.

3. There exists an integer ρ′ with ρ′ ≤ ρ∗ such that (S, Ω) is a ρ′-vortex for every 

(S, Ω) ∈ S∗
2 .

4. The skeleton G∗ of τ∗ is a minor of G, is 2-cell embedded in Σ and has a respectful 

tangle T ∗ of order at least θ∗ + φ(ρ∗) + 2ρ∗ conformal with T .

5. There is no d-free vertex of G∗ with respect to mT ∗ contained in X.

6. mT ∗(x, y) ≥ φ(ρ′) for every atoms x, y of G∗ with x ∈ Sx, y ∈ Sy for different 

members (Sx, Ωx), (Sy, Ωy) ∈ S∗
2 .

Proof. Note that each society that consists of a single vertex is a 0-vortex. For each i, 

applying Lemma 6.1 by taking (S, Ω) = ({vi}, {vi}), where vi is a vertex of G′ such that 

Λi is a λ-zone around vi (we will choose θ to be greater than 4λ + 59 so that Lemma 6.1

is applicable), we can find a (λ + 14)-zone Λ′
i containing Λi such that the society (S′, Ω′)

mentioned in Lemma 6.1 by taking Λ = Λi is a (λ + 8 + κρ)-vortex. Therefore, we can 

replace Λi by Λ′
i so that we may assume that every Λi is a λ′-zone and the subgraph 

of G inside the disk Λi is a λ′-vortex (S, Ω), where λ′ = λ + 14 + κρ. Similarly, for 

each (S, Ω) ∈ S2, there exists a 16-zone ΛS containing the disk τ(S, Ω), and the society 

(S′, Ω′) mentioned in Lemma 6.1 by taking Λ = ΛS is a (κρ + 10)-vortex.

Let C = {Λi, ΛS : 1 ≤ i ≤ k, (S, Ω) ∈ S2}, and let λC be the minimum t such that 

every member of C is a t-zone. For each member Λ of C, let (SΛ, ΩΛ) be the (S′, Ω′)

mentioned in Lemma 6.1 by taking Λ = Λ. Let MC be the minimum such that (SΛ, ΩΛ)

are MC-vortices for all members Λ of C. Let ρ0 = MC and λ0 = λC . Note that |C| ≤ k+κ, 

ρ0 ≤ max{λ′, κρ + 10}, and λ0 ≤ max{λ′, 16}. For i ≥ 1, let ti = φ(ρi−1) + (4λi−1 +

58)(k+κ) +2, λi = ti +14 and ρi = (k+κ −i +1)ρi−1 +ti +8. Then we consecutively test 

whether there exist two atoms of G′ in different members of C with distance less than 

φ(MC) + (4λC + 58)|C| under the metric mT ′ , and if such two nearby vortices exist, then 

we do the following. Find the (tk+κ+1−|C| + 14)-zone Λ mentioned in the conclusion of 

Lemma 6.1 containing these two nearby members of C, remove these two members from 

C and add Λ into C, and update MC and λC . Since |C| decreases in each step, this process 

will terminate within κ + k steps. Furthermore, during the process, λC ≤ λk+κ−|C| and 

MC ≤ ρk+κ−|C|. Therefore, when the process terminates, each member Λ of C is a λC-zone 

in G′ with λC ≤ λk+κ and defines an MC-vortex (SΛ, ΩΛ) with MC ≤ ρk+κ, and the 

distance between any two members of C is at least φ(MC) +(4λC +58)|C| under the metric 

mT ′ . Let ρ∗ = ρk+κ and λ∗ = λk+κ. We define θ = θ∗ +φ(ρ∗) +2ρ∗+1 +(4λ∗+58)(κ +k).

Define S∗
1 = S1 −{(S′′, Ω′′) ∈ S1 : S′′ ⊆

⋃
Λ∈C SΛ} and S∗

2 = {(SΛ, ΩΛ) : Λ ∈ C}. Then 

Conclusions 1–3 hold. Since atoms belonging to different members of S∗
2 have distance 

at least 3 + (|C| − 1)(4λC + 58), there exists a proper arrangement τ∗ of S∗ such that 

the skeleton of τ∗ with respect to (S∗
1 , S∗

2 ) is 2-cell and has a respectful tangle T ∗ of 
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order at least θ∗ + φ(ρ∗) + 2ρ∗ by repeatedly applying Lemma 6.1 |C| times. Note that 

G∗ is a subgraph of G′ and hence is a minor of G. So Conclusion 4 holds. Since G∗ is 

a subgraph of G′, Conclusion 5 holds. For any x ∈ Sx, y ∈ Sy for different members 

(Sx, Ωx), (Sy, Ωy) ∈ S∗
2 , let Λ∗

x, Λ∗
y be the zones Λ∗ containing Sx and Sy, respectively, 

then mT ∗(x, y) ≥ mT ′(x, y) − |C|(4λC + 58) ≥ φ(ρ∗). This proves Conclusion 6.

It remains to prove that S∗ is a T -central segregation of G. Since T ′ has order at 

least θ and is conformal with T , the order of T is at least θ. Since S∗
1 ⊆ S1 and S is 

T -central, by Lemma 6.4, it is sufficient to show that there is no (A, B) ∈ T of order at 

most 2ρ∗ + 1 such that B ⊆ S for some (S, Ω) ∈ S∗
2 . Suppose that such (A, B) exists. 

Since B ⊆ S, V (B ∩ G∗) consists of a subset of V (A) ∩ V (B) and some vertices of 

degree at most two in G∗. Let β be the G∗-minor of G witnessing that T ∗ is conformal 

with T . Since T ∗ has order at least ρ∗ + 1, there exists a separation (A′, B′) ∈ T ∗ such 

that β(E(A′)) = E(A) ∩ β(E(G∗)), and subject to this, |V (B′)| is minimum. Note that 

every vertex in V (B′) − V (A′) has degree at most two in G∗. So if V (B′) − V (A′) 	= ∅, 

then one can move a path in B′ with at least one internal vertex in V (B′) − V (A′) into 

A′, contradicting the minimality of |V (B′)|. So V (B′) ⊆ V (A) ∩ V (B) contains at most 

2ρ∗ + 1 vertices. This implies that (G∗ − E(B′), B′) ∈ T ∗ by the second tangle axiom, 

contradicting the third tangle axiom. Hence S∗ is T -central. �

A segregation S of G is maximal if there exists no segregation S ′ such that {(S, Ω) ∈

S : |Ω̄| > 3} = {(S′, Ω′) ∈ S ′ : |Ω′| > 3} and for every (S, Ω) ∈ S with 2 ≤ |Ω̄| ≤ 3, 

there exists (S′, Ω′) ∈ S ′ with |Ω′| ≤ 3 such that S′ ⊆ S, and the containment is strict 

for at least one society. Note that if a segregation S of G is maximal, then G contains 

the skeleton of S as a minor, and for every (S, Ω) ∈ S with |Ω̄| ≤ 3 and x ∈ Ω̄, there 

exist |Ω̄| − 1 paths in S from x to Ω̄ − {x} intersecting only in {x}. Consequently, if 

H is a triangle-free graph and the skeleton of a maximal segregation S of G admits an 

H-subdivision, then G admits an H-subdivision.

The following theorem is proved in [2] and is a stronger form of the structure theorem 

for excluding minors in [15]. (We remark that our definition of maximal segregations is 

slightly different from the one in [2]. But our alternative is required, for otherwise the 

skeleton mentioned in Theorem 6.6 might not be 2-cell and the metric mT ′ might not 

be defined. And the proof of Theorem 6.6 in [2] works under this setting.)

Theorem 6.6 ([2, Theorem 7]). For every graph L, there exists an integer κ such that 

for any nondecreasing positive function φ, there exist integers θ, ξ, ρ with the following 

property. Let T be a tangle of order at least θ in a graph G controlling no L-minor of G. 

Then there exist Z ⊆ V (G) with size at most ξ and a maximal (T −Z)-central segregation 

S = S1 ∪ S2 of G − Z properly arranged by an arrangement α in a surface Σ in which 

L cannot be drawn, where every (S, Ω) ∈ S1 has the property that |Ω̄| ≤ 3, and |S2| ≤ κ

and there exists p ≤ ρ such that every member in S2 is a p-vortex. Furthermore, the 

skeleton G′ of α with respect to (S1, S2) is 2-cell embedded in Σ with a respectful tangle 
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T ′ of order at least φ(p) conformal with T − Z, and if x and y are two vertices in G′

incident with two different members in S2, then mT ′(x, y) ≥ φ(p).

Let us recall that the function mf was defined prior to Theorem 1.3. A graph H has 

a nice embedding in Σ if H can be 2-cell embedded in Σ and it has a set F of regions 

such that every vertex of H of degree at least 4 is incident with exactly one region in F , 

and |F | = mf(H, Σ).

Lemma 6.7 ([2, Lemma 12]). Let H be a graph of maximum degree d that can be embedded 

in a surface Σ. Then there exists a triangle-free graph H ′ of maximum degree d admitting 

an H-subdivision such that mf(H ′, Σ) = mf(H, Σ) and H ′ has a nice embedding in Σ.

Recall that a vertex v in a graph G is d-free with respect to a tangle T in G if there 

does not exist a separation (A, B) ∈ T of order less than d such that v ∈ V (A) − V (B). 

Now, we are ready to prove Theorem 6.8, which is the main theorem of this paper. Note 

that Theorem 1.3 immediately follows if we take X = V (G) in Theorem 6.8.

Theorem 6.8. Let d, h be positive integers. Then there exist θ, κ, ρ, ξ, g ≥ 0 satisfying the 

following properties. If d ≥ 4, H is a graph of maximum degree at most d on h vertices, 

G is a graph, and X is a subset of V (G) such that G does not admit an H-subdivision 

whose branch vertices corresponding to vertices of degree at least four in H are contained 

in X, then for every tangle T in G of order at least θ, there exists Z ⊆ V (G) with |Z| ≤ ξ

such that either

1. no vertex in V (G − Z) ∩ X is d-free with respect to T − Z, or

2. there exist a (T − Z)-central segregation S = S1 ∪ S2 of G − Z with |S2| ≤ κ, having 

a proper arrangement in some surface Σ of genus at most g such that every society 

(S1, Ω1) in S1 satisfies that |Ω1| ≤ 3, and every society (S2, Ω2) in S2 is a ρ-vortex, 

and satisfies the following property: either

(a) H cannot be drawn in Σ, or

(b) H can be drawn in Σ and mf(H, Σ) ≥ 2, and there exists S ′
2 ⊆ S2 with |S ′

2| ≤

mf(H, Σ) −1 such that every d-free vertex in V (G −Z) ∩X with respect to T −Z

is in S − Ω̄ for some (S, Ω) ∈ S ′
2.

Furthermore, if T controls a K� 3
2

dh�-minor and G does not admit an H-subdivision with 

branch vertices contained in X, then the first conclusion always holds even when d ≤ 3.

Proof. Note that there are only finitely many graphs of maximum degree at most d

on h vertices, and there are only finitely many surfaces in which H can be drawn but 

K� 3
2

dh� cannot. So there exists h∗ such that for every graph H on h vertices of maximum 

degree at most d and surface in which H can be drawn but K� 3
2

dh� cannot, the graph 

H ′ mentioned in Lemma 6.7 can be chosen such that it has at most h∗ vertices.
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We define the following.

• Let κ6.6 be the number κ mentioned in Theorem 6.6 by taking L = K� 3
2

dh�.

• Let θ6.2, β6.2, f6.2 be the functions θ0, β, f mentioned in Lemma 6.2, respectively.

• Let φ′ be the maximum of φ6.3(d, h∗, Σ) among all surfaces Σ in which K� 3
2

dh� cannot 

be drawn, where φ6.3 is the number φ mentioned in Lemma 6.3.

• Let θ5.9 be the maximum of θ mentioned in Theorem 5.9 by taking all surfaces in 

which K� 3
2

dh� cannot be drawn, t = (d + 2)h∗ and z = dh∗.

• Let φ∗(x) = θ6.2(d, h∗, x, 2κ6.6+h∗, (dh∗+h∗+1)(θ5.9+1)) +2f6.2(d, h∗, x, 2κ6.6+h∗) +

(2κ6.6 +h∗)(6β6.2(d, h∗, x) +4f6.2(d, h∗, x, 2κ6.6 +h∗) +2) +2(dh∗ +h∗ +1)(θ5.9 +6).

• Let θ′
6.5(x) be the function θ obtained by applying Lemma 6.5 by taking φ = φ∗, 

ρ = x, λ = d + φ′ + 11, κ = κ6.6, k = h∗ + κ6.6, θ∗ = θ6.2(d, h∗, x, 2κ6.6 + h∗, (dh∗ +

h∗ + 1)(θ5.9 + 1)) and d = d.

• Let θ6.3 be the maximum of θ(d, h∗, Σ) mentioned in Lemma 6.3 among all surfaces 

Σ in which K� 3
2

dh� cannot be drawn.

• Let θ6.6, ξ6.6, ρ6.6 be the numbers θ, ξ, ρ mentioned in Theorem 6.6, respectively, by 

taking L = K� 3
2

dh� and further taking φ(x) = θ′
6.5(x) + θ6.3.

• Let θ6.5 and ρ6.5 be the numbers θ and ρ∗ obtained by applying Lemma 6.5 by taking 

φ = φ∗, ρ = ρ6.6, λ = d +φ′ +11, κ = κ6.6, k = h∗ +κ6.6, θ∗ = θ6.2(d, h∗, ρ6.6, 2κ6.6 +

h∗, (dh∗ + h∗ + 1)(θ5.9 + 1)) and d = d.

• Let θ3.4 = (hd)d+1 + d.

Now we are ready to define the numbers for the conclusion of this theorem.

• Let ξ = max{ξ6.6 + (2κ6.6 + h∗)β6.2(d, h∗, ρ6.5), (hd + 1)d+1}.

• Let θ = θ6.5 + θ6.3 + θ6.6 + ξ + d + ρ6.6 + ρ6.5.

• Let κ = κ6.6 + h∗.

• Let ρ = ρ6.6 + ρ6.5.

• Let g be the maximum genus of a surface in which K� 3
2

dh	 cannot be drawn.

Let T be a tangle of order at least θ in G, and assume that G has no H-subdivision 

with branch vertices contained in X. We may assume that X contains at least h vertices 

of degree at least d in G, otherwise the first statement holds by letting Z be the set 

of vertices in X of degree at least d. We first assume that T controls a K� 3
2

dh�-minor. 

By Lemma 3.2 and Theorem 3.4, since G does not admit an H-subdivision with branch 

vertices contained in X, there exists a set of vertices Z of G with |Z| ≤ ξ such that 

for every vertex v ∈ V (G − Z) ∩ X of degree at least d in G, there exists a separation 

(Av, Bv) ∈ T −Z of G −Z of order at most d −1 such that v ∈ V (Av) −V (Bv). Therefore, 

the first statement holds.

So we may assume that T does not control a K� 3
2

dh�-minor. To prove this theorem, 

we may assume that G does not contain an H-subdivision whose branch vertices corre-

sponding to vertices of degree at least four in H are contained in X.
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By Theorem 6.6, there exist a surface Σ in which K� 3
2

dh� cannot be drawn, Z ⊆ V (G)

with |Z| ≤ ξ6.6, a number p with p ≤ ρ6.6, and a maximal (T − Z)-central segregation 

S = S1 ∪ S2 of G − Z with |S2| ≤ κ6.6, having a proper arrangement τ in Σ such that 

every society (S, Ω) in S1 satisfies that |Ω̄| ≤ 3, and every society in S2 is a p-vortex, 

and the skeleton G′ of S is 2-cell embedded in Σ and has a respectful tangle T ′ of order 

at least θ′
6.5(p) + θ6.3 conformal with T − Z, and if x, y are two vertices in G′ incident 

with two different members in S2, then mT ′(x, y) ≥ θ′
6.5(p). If H cannot be drawn in Σ, 

then Statement 2(a) holds, so we may assume that H can be drawn in Σ.

In addition, we may assume that V (G −Z) ∩X contains d-free vertices with respect to 

T −Z, for otherwise Statement 1 holds. Note that every vertex in 
⋃

(S,Ω)∈S1
V (S) −V (G′)

is not d-free with respect to T − Z since d ≥ 4. If v is in V ((G − Z) ∩ G′) but is not 

d-free with respect to T ′, then there exists a separation (A′, B′) ∈ T ′ of order less than 

d such that v ∈ V (A′) − V (B′). We choose (A′, B′) such that A′ is as small as possible. 

Note mT ′(v, x) < d for every x ∈ V (A′) by Theorem 5.3. Suppose that there is no vertex 

x ∈ Ω with (S, Ω) ∈ S2 and mT ′(v, x) < d. Then there exists (A, B) ∈ T − Z of order 

less than d such that V (A) =
⋃

(S,Ω)∈S,Ω⊆V (A′) V (S) and V (A) ∩V (B) = V (A′) ∩V (B′). 

So v is not d-free with respect to T − Z. Therefore, if v is a vertex in (G − Z) ∩ G′ that 

is d-free with respect to T − Z but not d-free with respect to T ′, then mT ′(v, x) < d for 

some x ∈ V (S) with (S, Ω) ∈ S2. By Theorem 5.6 and Lemma 5.7, for every (S, Ω) ∈ S2, 

there exists a (d + 11)-zone ΛS with respect to T ′ around a vertex in Ω̄ containing every 

atom y with mT ′(x, y) ≤ d + 1 for one such x. Thus every vertex of (G − Z) ∩ G′ that 

is d-free with respect to T − Z but not d-free with respect to T ′ is in 
⋃

(S,Ω)∈S2
ΛS .

Let H ′ be a graph that has a nice embedding mentioned in Lemma 6.7 such that 

|V (H ′)| ≤ h∗. By Lemma 6.3, V (G′) ∩ X does not contain |V (H ′)| d-free vertices with 

respect to T ′ such that every pair of them has distance at least φ′ under the metric 

mT ′ , for otherwise G contains an H-subdivision with branch vertices contained in X. 

So by Theorem 5.6 and Lemma 5.7, there exist integer k with 0 ≤ k ≤ h∗, d-free 

vertices v1, v2, ..., vk of G′ with respect to T ′, and (φ′ + 10)-zones Λ1, Λ2, ..., Λk around 

v1, v2, ..., vk, respectively, such that every d-free vertex in V (G′) ∩ X with respect to T ′

is in 
⋃k

i=1 Λi. Then every d-free vertex in V (G −Z) ∩X with respect to T −Z is a vertex 

of G′ ∪
⋃

(S,Ω)∈S2
S, and it is in 

⋃k
i=1 Λi ∪

⋃
(S,Ω)∈S2

ΛS .

Then let S∗ = S∗
1 ∪S∗

2 , ρ′, T ∗ and G∗ be the S∗, ρ′, T ∗ and G∗, respectively, mentioned 

in the conclusion of Lemma 6.5 by taking φ = φ∗, ρ = p, λ = d + φ′ + 11, κ = κ6.6, 

k = h∗+κ6.6, θ∗ = θ6.2(d, h∗, ρ6.5, 2κ6.6+h∗, (dh∗+h∗+1)(θ5.9+1)) and d = d, and further 

taking G = G −Z, T = T −Z, S = S, τ = τ , Σ = Σ, and G′ to be the skeleton of S. Note 

that |S∗
2 | ≤ 2κ6.6 + h∗, and the order of T ∗ is at least θ6.2(d, h∗, ρ6.5, 2κ6.6 + h∗, (dh∗ +

h∗ + 1)(θ5.9 + 1)) + φ∗(ρ6.5) + 2ρ6.5 ≥ θ6.2(d, h∗, ρ6.5, 2κ6.6 + h∗, (dh∗ + h∗ + 1)(θ5.9 + 1)).

Let κ′ be the number of members of S∗
2 containing d-free vertices with respect to T −Z

belonging to X. Note that κ′ ≤ |S∗
2 | ≤ 2κ6.6 + h∗. Let Z1, Z2, ..., Zκ′ , Λ1, Λ2, ..., Λκ′ be 

the sets obtained by applying Lemma 6.2 by taking κ = κ′, hi = h∗ for every i, ρ = ρ′, 

θ′′ = (dh∗ +h∗ +1)(θ5.9 +1), G = G −Z, G′ = G∗ and (S1, Ω1), (S2, Ω2), ..., (Sκ′ , Ωκ′) as 

the vortices in S∗
2 containing d-free vertices with respect to T −Z belonging to X. Define 
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S∗
2

′ ⊆ S∗
2 to consist of the members in which Λi 	= ∅. We define Z ′ to be Z ∪

⋃
1≤i≤κ′ Zi. 

Note that |Z ′| ≤ ξ.

We may assume that there exist d-free vertices of V (G −Z ′) ∩X with respect to T −Z ′; 

otherwise Statement 1 holds. So |S∗
2

′| ≥ 1. In addition, we may assume that mf(H, Σ) ≥ 1

since otherwise H contains no vertex of degree at least four, and hence G has no H minor 

and Statement 2(a) holds by Theorem 6.6. If mf(H, Σ) ≥ 2 and |S∗
2

′| ≤ mf(H, Σ) − 1, 

then Statement 2(b) holds. So we may assume that |S∗
2

′| ≥ mf(H, Σ) ≥ 1 and that 

Λi 	= ∅ for i = 1, 2, ..., |S∗
2

′|.

Let G′′ be the drawing and T ′′ the tangle in G′′ conformal with T ∗ mentioned in 

the conclusion of Lemma 6.2. For 1 ≤ i ≤ |S∗
2

′| and 1 ≤ j ≤ h∗, let Yi and Ai,j be 

the cycles and sets mentioned in Conclusion 2 of Lemma 6.2, respectively. So for every 

1 ≤ i < i′ ≤ |S∗
2

′|, j, j′ ∈ {1, 2, ..., h∗}, x ∈ Ai,j , y ∈ Ai′,j′ , we have that mT ′′(x, y) ≥

mT ∗(x, y) − (2κ6.6 + h∗)(4f6.2(d, h∗, ρ′, 2κ6.6 + h∗) + 2).

Note that for such x, y, we know mT ∗(x, y) ≥ φ∗(ρ′) − 2f6.2(d, h∗, ρ′, 2κ6.6 + h∗), 

since each x, y is within distance at most f6.2(d, h∗, ρ′, 2κ6.6 + h∗) (with respect to mT ∗) 

away from a member of S∗
2

′, and the distance (with respect to mT ∗) between those two 

members is at least φ∗(ρ′). Therefore, for every 1 ≤ i < i′ ≤ |S∗
2

′|, j, j′ ∈ {1, 2, ..., h∗}, 

x ∈ Ai,j , y ∈ Ai′,j′ , we have that mT ′′(x, y) ≥ φ∗(ρ′) −2f6.2(d, h∗, ρ′, 2κ6.6+h∗) −(2κ6.6+

h∗)(4f6.2(d, h∗, ρ′, 2κ6.6 + h∗) + 2) ≥ 2(dh∗ + h∗ + 1)(θ5.9 + 6).

Let x ∈ A1,1. By Lemma 5.4, there exists an edge e∗ of G′′ with mT ′′(e∗, x) ≥

(dh∗ + h∗ + 1)(θ5.9 + 6). As in the proof of Theorem 4.3 in [12], there exist non-loop 

edges e1, e2, ..., edh∗+h∗ of G′′ such that (θ5.9 + 6)i ≤ mT ′′(x, ei) ≤ (θ5.9 + 6)i + 3 for 

1 ≤ i ≤ dh∗ + h∗, and the set of the ends of each ei is free for each 1 ≤ i ≤ dh∗ + h∗. 

Therefore, mT ′′(ei, ej) ≥ θ5.9 +3 for every 1 ≤ i < j ≤ dh∗+h∗. Note that mT ′′(x, y) ≤ 2

for y ∈
⋃h∗

j=1 A1,j and mT ′′(x, y) ≥ 2(dh∗ + h∗ + 1)(θ5.9 + 6) for y ∈
⋃|S∗

2
′|

i=2

⋃h∗

j=1 Ai,j . 

Hence, mT ′′(y, e�) ≥ θ5.9 + 1 for every y ∈
⋃|S∗

2
′|

i=1

⋃h∗

j=1 Ai,j and 1 ≤ 	 ≤ dh∗ + h∗. For 

1 ≤ i ≤ |S∗
2

′|, define Δi to be a disk in Σ contained in Λi such that Δi ∩G′′ =
⋃h∗

j=1 Ai,j . 

For 1 ≤ i ≤ dh∗ +h∗, define Δ|S∗

2
′|+i to be a disk in Σ such that Δi ∩G′′ is the set of the 

ends of ei. Let W =
⋃mf(H′,Σ)

i=1

⋃h∗

j=1 Ai,j ∪
⋃|E(H′)|+|V (H′)|

i=1 {ai, bi}, where ai, bi are the 

ends of ei. By Theorem 5.9, for any positive integer p and any partition (W1, ..., Wp) of W

satisfying the topological feasibility condition, there exist pairwise disjoint connected 

subdrawings Γ1, ..., Γp of G′′ with V (Γj) ∩ W = Wj for every 1 ≤ j ≤ p.

Since H ′ has a nice embedding in Σ, we can embed H ′ into Σ such that the vertices 

of degree at least four of H ′ are incident with mf(H ′, Σ) regions. Then there exists a 

partition (Wz : z ∈ V (H ′) ∪ E(H ′)) (with possible empty part) of a subset of W such 

that the following hold.

• Fix an nice embedding of H ′ in Σ, a set of mf(H ′, Σ) faces incident with all vertices 

of degree at least four in H ′, an injection ι1 that maps each of those mf(H ′, Σ) faces 

to a member of S∗
2

′, a set of h∗ disjoint d-spiders mentioned in Conclusion 2(d) in 

Lemma 6.2 for each member of S∗
2

′, and an injection ι2 that maps each vertex u
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of H ′ of degree at least four in H ′ to a d-spider in the set for ι1(f), where f is the 

face among those mf(H ′, Σ) faces incident with u.

• There exist an injection ι3 from E(H ′) to {et : 1 ≤ t ≤ dh∗}, and an injection ι4

that maps each vertex-edge incidence pair (v, e) of H ′ to an end of ι3(e), where every 

loop contributes two vertex-edge incidence pairs.

• For each vertex v of H ′ of degree at most three, Wv = {ι4((v, e)) : e is an edge of H ′

incident with v}.

• For each edge e of H ′ incident with both ends, say u, v, of degree at least four, where 

u, v are not necessarily distinct, We is a set of size two consisting of one leaf of ι2(u)

and one leaf of ι2(v).

• For each edge e of H ′ incident with one vertex, say u, of degree at most three and one 

vertex, say v, of degree at least four, We consists of ι3((u, e)) and one leaf of ι2(v).

• Wz = ∅ if z is a vertex of H ′ of degree at least four or z is an edge of H ′ not incident 

with any vertex of degree at least four.

• (Wz : z ∈ V (H ′) ∪ E(H ′)) satisfies the topological feasibility condition.

Since the partition (Wz : z ∈ V (H ′) ∪ E(H ′)) satisfies the topological feasibility con-

dition, by Theorem 5.9, there exist pairwise disjoint connected subdrawings (Γz : z ∈

V (H ′) ∪E(H ′)) of G′′ with V (Γz) ∩W = Wz for every z ∈ V (H ′) ∪E(H ′). Observe that 

the union of the image of ι2 and 
⋃

z∈V (H′)∪E(H′) Γz ∪
⋃dh∗

i=1 ei contains an H ′-subdivision 

(πV , πE) such that its every branch vertex corresponding to a vertex of degree at least 

four in H ′ is contained in X.

Finally, we shall obtain a contradiction by showing that G admits an H-subdivision 

whose branch vertices corresponding to vertices of degree at least four in H are contained 

in X. Recall that S∗ is maximal, so for every (S, Ω) ∈ S∗
1 and for every a ∈ Ω̄, there exist 

|Ω̄| − 1 paths in S from a to Ω̄ − {a} intersecting in a and otherwise disjoint. Since H ′ is 

triangle-free, one edge of the triangle in G′′ formed by Ω̄ is not contained in the image 

of πE for any (S, Ω) ∈ S∗
1 with |Ω̄| = 3. Therefore, G admits an H-subdivision whose 

branch vertices corresponding to vertices of degree at least four in H are contained in X. 

This completes the proof. �

7. Remarks about optimality

In this section we shall prove that the order of the separations mentioned in the 

first conclusion of Theorem 1.3 cannot be improved, and the value D mentioned in 

Theorem 1.2 and [2, Theorem 3] cannot be replaced by any number smaller than the 

number d − 1 mentioned in the first conclusion of Theorem 1.3.

Let θ be a positive integer. A 2θ × 2θ-wall is the graph W with V (W ) = {(i, j) : 1 ≤

i ≤ 2θ, 1 ≤ j ≤ 2θ} and E(W ) = {(i, j)(i, j + 1) : 1 ≤ i ≤ 2θ, 1 ≤ j ≤ 2θ − 1} ∪ {(2k −

1, j)(2k, j) : 1 ≤ k ≤ θ, 1 ≤ j ≤ 2θ, j is odd} ∪ {(2k, j)(2k + 1, j) : 1 ≤ j ≤ θ − 1, 1 ≤ j ≤

2θ, j is even}. For each 1 ≤ i ≤ 2θ, the i-th row is the subgraph induced by the vertices 

{(i, j) : 1 ≤ j ≤ 2θ}.
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We fix d to be a positive integer with d ≥ 4 in the rest of this section. Let r be a 

positive integer. Let Y be the collection of all (d − 1)-element subsets of the edge-set of 

the 2r ×2r-wall. Define Gr to be a graph obtained from the 2r ×2r-wall by the following 

procedure.

• Subdividing each edge |Y | times.

• For each member y of Y , add a vertex vy. Let VY = {vy : y ∈ Y }.

• For each y ∈ Y and e ∈ y, add an edge between vy and a vertex obtained by 

subdividing e in a way that every vertex not in VY has degree at most three in Gr.

Note that Gr has maximum degree d −1, so Gr does not contain any graph with maximum 

degree at least d as a subdivision.

Theorem 7.1. For all positive integers d, θ, κ, ρ, ξ, g, there exist a positive integer r and 

a tangle T in Gr of order at least θ such that the following hold.

1. For every Z ⊆ V (Gr) with |Z| ≤ ξ, there exists a vertex v ∈ VY − Z such that there 

exists no separation (A, B) ∈ T − Z of order at most d − 2 with v ∈ V (A) − V (B).

2. For every Z ⊆ V (Gr) with |Z| ≤ ξ, there exists no (T − Z)-central segregation 

S = S1 ∪ S2 of Gr − Z with |S2| ≤ κ such that S can be properly arranged in some 

surface Σ with genus at most g, every (S1, Ω1) ∈ S1 satisfies |Ω1| ≤ 3, and every 

(S2, Ω2) ∈ S2 is a ρ-vortex.

3. Gr cannot be constructed by clique-sums, starting with graphs that are an ≤

ξ-extension of either a graph of maximum degree at most d − 2, or an out-growth 

by ≤ κ ρ-rings of a graph that can be drawn in a surface of genus at most g.

Proof. We may assume d ≥ 2; otherwise the first conclusion holds. Let r be a fixed 

positive integer. We shall prove that every sufficiently large r satisfies the conclusion of 

this theorem.

Define T to be the collection of all separations (A, B) of Gr of order less than � 2r
3 �

such that B contains all vertices in some row of the 2r × 2r-wall. It is straightforward to 

verify that T is a tangle of order � 2r
3 �. We choose r to be a number with � 2r

3 � > θ, then 

T is a tangle in Gr of order at least θ.

There exists a positive integer k such that if T controls a Kk-minor, then there exist 

no Z ⊆ V (Gr) with |Z| ≤ ξ and a (T − Z)-central segregation S = S1 ∪ S2 of Gr − Z

with |S2| ≤ κ such that S can be properly arranged in a surface of genus at most g, 

every (S1, Ω1) ∈ S1 satisfies |Ω1| ≤ 3, and every (S2, Ω2) ∈ S2 is a ρ-vortex. It is not 

hard to show that there exists an integer rk such that if r ≥ rk, then Gr contains a 

Kk-minor such that each branch set intersects every row of the 2r × 2r-wall in Gr. That 

is, if r ≥ rk, then T controls a Kk-minor. We choose r ≥ rk, so the second conclusion of 

this theorem holds.
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Choose r ≥ d2ξ+122d2

. Now we prove the first conclusion of this theorem. Let Z ⊆

V (G) with |Z| ≤ ξ. Then Gr − Z contains a subgraph R which is a subdivision of G22d2
d

and only the edges contained in the subdivided wall are subdivided. Let v be a vertex 

of V (R) ∩ VY such that there exists a row of the subdivided wall in G22d2
d such that all 

neighbors of v are vertices obtained by subdividing edges of that row. Then for any row 

of the subdivided wall in G22d2
d, there exist d − 1 disjoint paths in the subdivided wall 

from the neighbors of v to that row. So if (A, B) ∈ T − Z with v ∈ V (A) − V (B), then 

the order of (A, B) is at least d − 1. This proves the first conclusion of this theorem.

Finally, we prove the third conclusion of this theorem. Suppose that Gr can be con-

structed by clique-sums starting from graphs mentioned in the third conclusion. Then 

Gr has a tree-decomposition (T, X ) such that each torso is a graph involved in the clique-

sum. For each node t of the tree, let Xt be the bag at t. Since the clique size of each graph 

involved in the clique-sum is bounded, the adhesion of (T, X ) is bounded. We choose r

to be larger than the adhesion of (T, X ). For each edge tt′ of the tree T , let Tt and Tt′ be 

the components of T − tt′ containing t and t′, respectively. Then there exists a separa-

tion (Att′ , Btt′) of Gr such that V (Att′) =
⋃

t′′∈V (Tt) Xt′′ and V (Btt′) =
⋃

t′′∈V (Tt′ ) Xt′′ . 

Since the order of T is larger than the adhesion of (T, X ), either (Att′ , Btt′) ∈ T or 

(Btt′ , Att′) ∈ T . We orient the edge tt′ from t to t′ if (Att′ , Btt′) ∈ T . Then there exists a 

node t∗ of T with out-degree zero. Let L be the torso at t∗. Since T controls a Kk-minor, 

L is a ≤ ξ-extension of a graph of maximum degree at most d − 2. Let Z ⊆ V (L) with 

|Z| ≤ ξ such that L − Z has maximum degree at most d − 2.

Note that Gr − Z contains a subgraph R which is a subdivision of G22d2
d and only 

the edges contained in the subdivided wall are subdivided. And there exists a vertex v

of V (R) ∩ VY such that there exists a row of the subdivided wall in G22d2
d such that all 

neighbors of v are vertices obtained by subdividing edges of that row.

Since L − Z has maximum degree at most d − 2, |Xt∗ ∩ Xt − Z| ≤ d − 2 for every 

neighbor t of t∗. Since there exists no separation (A, B) ∈ T −Z of order at most d −2 with 

v ∈ V (A) −V (B), v ∈ Xt∗ . But since v has degree d −1 in Gr −Z, v belongs to Xt∗ ∩Xc

for some neighbor c of t∗. Let c1, c2, ..., c� be the neighbors of t∗ such that v is adjacent 

in Gr to some vertex in (
⋃�

i=1

⋃
t∈Tci

Xt) − Xt∗ , where Tci
is the component of T − t∗ci

containing ci. Since v has degree d − 1 in Gr, 	 ≤ d − 1. Let (A′, B′) be a separation 

of Gr such that V (A′) = Z ∪
⋃�

i=1

⋃
t∈V (Tci

) Xt and V (B′) = Z ∪
⋃

t∈V (T )−
⋃

�
i=1

V (Tci
) Xt. 

Note that the order of (A′, B′) is at most ξ + d	 ≤ ξ + d2 < � 2r
3 �. So (A′, B′) ∈ T . Let 

(A∗, B∗) ∈ T − Z be a separation of Gr − Z with V (A∗) = V (A′) − Z and V (B∗) =

V (B′) − Z. Since the order of (A∗, B∗) is at most d2, R ∩ B∗ contains a subgraph L′

isomorphic to a subdivision of Gd, where only the edges contained in the subdivided wall 

are subdivided. So there exists a row of the subdivided wall in L′ contained in B∗. Note 

that there are d − 1 disjoint paths P1, P2, ..., Pd−1 in Gr − Z from the neighbors of v

to that row, where each neighbor of v in Gr − Z is contained in some Pi. Let p be the 

number of neighbors of v in Gr − Z contained in V (A∗) − V (B∗), and we may assume 

that P1, P2, ..., Pp contain such neighbors. So for each i with 1 ≤ i ≤ p, Pi intersects 

V (A∗ ∩ B∗). Hence p ≤ |V (A∗ ∩ B∗) − {v}|. By the definition of a torso, v is adjacent 
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in L to every vertex in V (A∗ ∩ B∗) − {v}. Therefore, the degree of v in L is at least the 

degree of v in Gr − Z, which is d − 1, a contradiction. This proves the theorem. �
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