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1. Introduction

In this paper graphs are finite and are permitted to have loops and parallel edges.
A graph is a minor of another if the first can be obtained from a subgraph of the second
by contracting edges. The cornerstone of the Graph Minors project of Robertson and
Seymour is the following excluded minor theorem. (The missing definitions are as in [15]
and are given at the end of this section.)

Theorem 1.1 (15, Theorem (1.3)]). Let L be a graph. Then there exist integers k, p, & > 0
such that every graph G with no L-minor can be constructed by clique-sums, starting from
graphs that are an < &-extension of an outgrowth by < k p-rings of a graph that can be
drawn in a surface in which L cannot be drawn.

In this paper we are concerned with excluding topological minors. The first such
theorem was obtained by Grohe and Marx.

Theorem 1.2 ([3, Corollary 4.4]). For every graph H there exist integers &, k, p, g, D such
that every graph G with no H-subdivision can be constructed by clique-sums, starting from
graphs that are an < -extension of either

(a) a graph of mazimum degree at most D, or
(b) an outgrowth by < k p-rings of a graph that can be drawn in a surface of genus at
most g.

Thus the second outcome includes graphs drawn on surfaces in which H can be drawn.
Dvordk [2, Theorem 3] strengthened the result by restricting the graphs in (b) to those
that can be drawn in a surface ¥ in which H can possibly be drawn, but only “in a way
in which H cannot be drawn in 3”. We omit the precise statement of Dvorak’s theorem,
because it requires a large amount of definitions that we otherwise do not need. Instead,
let us remark that the meaning of “the way in which H cannot be drawn in X” has to
do with the function mf, defined as follows.

Let H be a graph and ¥ a surface in which H can be embedded. We define mf(H, X)
as the minimum of |S|, over all embeddings of H in ¥ and all sets S of regions of the
embedded graph such that every vertex of H of degree at least four is incident with a
region in S. When H cannot be embedded in ¥, we define mf(H, X) to be infinity.

Our objective is to strengthen the theorems of Grohe and Marx, and Dvotrdk by
reducing the value of the constant D to the maximum degree of H, which is best possible.
(We will prove that this value D cannot be replaced by any number smaller than the
maximum degree of H in Section 7.) However, we are not able to extend the theorems
verbatim; our theorem gives a structure relative to a tangle, as follows. (Tangles, vortices
and segregations are defined in Section 2.)
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Theorem 1.3. Let d > 4 and h > 0 be integers. Then there exist integers 0,k,p,£,9 > 0
such that the following holds. If H is a graph of maximum degree d on h vertices, and a
graph G does not admit an H -subdivision, then for every tangle T in G of order at least
0 there exists a set Z C V(G) with |Z| < & such that either

1. for every vertex v € V(G) — Z there exists (A,B) € T — Z of order at most d — 1
such that v € V(A) — V(B), or

2. there exists a (T — Z)-central segregation S = S U Sy of G — Z with |Sa| < k such
that S has a proper arrangement in some surface ¥ of genus at most g, every society
(S1,1) in Sy satisfies |Q1| < 3, every society (So,$s) in Sy is a p-vorter, and either

(a) H cannot be drawn in X, or

(b) H can be drawn in 3 and mf(H,X) > 2, and there exists 8§ C Sa with |Sh| <
mf(H,¥) — 1 such that for every vertex v € V(G) — Z either v € V(S) — Q for
some (S,Q) € S} or there exists (A, B) € T — Z of order at most d — 1 such that
veV(A) -V (B).

In fact, we will prove a stronger statement (Theorem 6.8) that provides the structure
information for graphs with no H-subdivision with branch vertices prescribed and im-
mediately implies Theorem 1.3. In addition, Theorem 1.3 has the following immediate
corollary.

Corollary 1.4. Let d > 4 and h > 0 be integers. Then there exist 8 and & such that for
every graph H of order h and of maximum degree d that can be drawn in the plane such
that every vertex of degree at least four is incident with the infinite region, and for every
graph G, either G admits an H -subdivision, or for every tangle T of order at least 0
in G, there exists Z C V(G) with |Z| < £ such that for every vertex v € V(G) — Z there
exists (A, B) € T — Z of order at most d — 1 such that v € V(A) — V(B).

Proof. Let d > 4 and h be given, let § and &£ be as in Theorem 1.3, and let H be as in the
statement of the corollary. Then mf(H, ) = 1 for every surface ¥, and hence the second
outcome of Theorem 1.3 cannot hold. Thus the first outcome holds, as desired. O

Corollary 1.4 will be used in a forthcoming series of papers to prove the following
theorem, conjectured by Robertson. In the application it will be important that the
order of the separation in Corollary 1.4 is at most d — 1.

Theorem 1.5 ([6]). Let k > 1 be an integer, let R denote the graph obtained from a path
of length k by replacing each edge by a pair of parallel edges, and let G1,G3,... be an
infinite sequence of graphs such that none of them has an R-subdivision. Then there exist
integers i,j such that 1 <1i < j and G; has a G;-subdivision.
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Let us now introduce the missing definitions. Given a subset X of the vertex-set V(G)
of a graph G, the subgraph of G induced by X is denoted by G[X]. We say that a graph
G is the clique-sum of graphs G1, Gy if there exist Vi = {v11,...,v1 v} C V(G1), V2 =
{v2,1,v2,2, ..., 2 13 } € V(G2) with |[Vi| = [Va| such that G1[Vi] and G3[Va] are complete
graphs, and G can be obtained from G; U G2 by identifying v; ; and vy ; for each ¢ and
deleting a subset of edges with both ends in V3 U V5. A graph G’ is a < r-extension of a
graph G if G can be obtained from G’ by deleting at most r vertices of G. A graph G is
an r-ring with perimeter t1, ..., t, if t1,...,t, € V(G) are distinct and there is a sequence
X1, ..., Xp of subsets of V(G) such that

e XjU..UX,=V(G), and every edge of G has both ends in some X;,
o t; € X, forl <i<n,

e X;NXpCXjforl1<i<yj<k<n,

o | X <rforl<i<n.

Let Gy be a graph drawn in a surface X, and let Aq,...,Ay C X be pairwise disjoint
closed disks, each meeting the drawing only in vertices of G, and each containing no
vertices of G in its interior. For 1 < 4 < d, let the vertices of G in the boundary of A; be
t1,...,t, say, in order, and choose an r-ring G; with perimeter ¢4, ..., ¢, meeting Gg just
in t1,...,t, and disjoint from every other G;; and let G' be the union of Gg, Gy, ..., Gq.
We call such a graph G an outgrowth by d r-rings of Gy.

The paper is organized as follows. In Section 2 we review the notions of tangles and
graph minors. In Section 3 we prove an Erdés—Pésa-type result for “spiders”, trees with
one vertex of degree d and all other vertices of degree one or two. In Section 4 we prove
a lemma that will allow us to find a large well-behaved family of spiders, given a huge
number of spiders. In Section 5 we review some theorems related to graphs embedded on
a surface, and prove some other lemmas. In Section 6 we prove a structure theorem for
excluding subdivisions of a fixed graph with branch vertices prescribed (Theorem 6.8),
which immediately implies Theorem 1.3. In Section 7 we prove that the order of the
separations mentioned in the first conclusion of Theorem 1.3 cannot be decreased, and
the constants D mentioned in the first conclusion of Theorem 1.2 and the first conclusion
of [2, Theorem 3] cannot be improved to be a number less than the constant d — 1 in the
first conclusion of Theorem 1.3.

2. Tangles and minors

In this section, we review some theorems about tangles and graph minors.

A separation of a graph G is a pair (A, B) of subgraphs with AUB =G and E(AN
B) =0, and the order of (A, B) is |V(A) NV (B)|. A tangle T in G of order 0 is a set of
separations of GG, each of order less than 6 such that
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(T1) for every separation (A,B) of G of order less than 6, either (A,B) € T or
(B,A)eT;

(T2) if (Al, Bl), (A27 Bg)7 (Ag, B3) S T, then A1 U A2 U A3 }é G,

(T3) if (A,B) € T, then V(A) # V(G).

The notion of tangle was first defined by Roberson and Seymour in [10]. (T1), (T2)
and (T3) are called the first, second and third tangle axiom, respectively. In addition,
we say that G contains T in this case. Furthermore, for Z C V(G) with |Z| < 6, we
define 7 — Z to be the set of all separations (A’, B') of G — Z of order less than § — |Z|
such that there exists (A,B) € T with Z CV(ANB), A =A—Zand B =B-Z. Tt
is proved in [10, Theorem 8.5] that 7 — Z is a tangle in G — Z of order 6 — Z.

Given a graph H, an H-minor of a graph G is a map « with domain V(H) U E(H)
such that the following hold.

e «a(h) is a nonempty connected subgraph of G, for every h € V(H).
o If hy and hy are different vertices of H, then a(hi) and a(hs) are disjoint.
e For each edge e of H,
— if e is not a loop, a(e) is an edge of G with one end in a(h;) and one end in a(hz),
where hy, ho are the ends of e;
— if e is a loop, then a(e) € E(G) — E(a(hy)) and every end of «a(e) is in a(hy),
where hq is the end of e.
o If 1,65 are two different edges of H, then a(e;) # a(eq).

We say that G contains an H-minor if such a function « exists. For every h € V(H),
a(h) is called a branch set of . A tangle T in G controls an H-minor « if o is an H-minor
such that there does not exist (A4, B) € T of order less than |V (H)| and h € V(H) such
that V(a(h)) C V(A).

The following theorem offers a way to obtain a tangle in a graph from a minor.

Theorem 2.1 ([10, Theorem (6.1)]). Let G and H be graphs. Let T’ be a tangle in H of
order § > 2. If G admits an H-minor o, and T is the set of separations (A, B) of G of
order less than 0 such that there exists (A', B") € T' with a(E(A")) = E(A)Na(E(H)),
then T is a tangle in G of order 6.

The tangle 7 in Theorem 2.1 is called the tangle induced by T'. We say that T’ is
conformal with a tangle 7" in Gif T C T".

A society is a pair (S, ), where S is a graph and Q is a cyclic permutation of a subset
Q of V(). Let p be a nonnegative integer. A society (S, Q) is a p-vortez if for all distinct
u,v € Q, there do not exist p + 1 mutually disjoint paths of S between I U {u} and
J U {v}, where I is the set of vertices in Q after u and before v in 2, and J is the set of
vertices in Q after v and before u in .

A segregation of a graph G is a set S of societies such that the following hold.
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e S is a subgraph of G for every (S,Q) € S, and |J{S: (S,Q) € S} =G.
« For every distinct (S,Q) and (S’,Q) €S, V(SNS')CN NQ and E(SNnS") =0.

We write V(S) = U{Q : (S,Q) € S}. If T is a tangle in G, a segregation S of G is
T -central if for every (S,Q) € S, there is no (A, B) € T of order at most half of the
order of 7 with B C S. Note that our definition of a 7 -central segregation is different
from the one in [15], but every segregation that is T-central in the sense of [15] is
T-central in the sense of this paper.

A surface is a nonnull compact connected 2-manifold without boundary. Let X be a
surface and S = {(S1,1), ..., (Sk, Q) } a segregation of G. For every subset A of ¥, we
denote the closure of A by A, and the boundary of A by dA. An arrangement of S in
¥ is a function o with domain S U V(S), such that the following hold.

o For1<i<k, afS;)is a closed disk A; C ¥, and a(x) € A, for each x € Q;.
e For1<i<k, ifzeA;NAj, then z = a(v) for some v € Q; N Q.

e For all distinct z,y € V(S), a(z) # a(y).

e For 1 <i <k, € is mapped by a to a natural order of a(£2;) determined by 0A;.

An arrangement is proper if A; N A; = ( for all 1 < i < j < k such that €], |Q;] > 3.
Given a graph H, an H-subdivision is a pair of functions (my,7g) such that the
following hold.

o my: V(H)— V(G) is an injective function.

e 7r maps loops of H to cycles in G and maps other edges of H to paths in G such
that mg(e) contains 7y (v), and wg(e’) has ends 7y (z) and 7y (y) for every loop e
with end v and every edge ¢/ € E(H) with distinct ends x and y.

o If f1, fo are two different edges in H, then ng(f1) N7wr(f2) C my(X), where X is the
set of common ends of f; and fs.

We say that G admits an H-subdivision if such a pair of functions (my,7g) exists. The
vertices in the image of 7y are called the branch vertices of (wy,7g).

3. Finding disjoint spiders
First, we introduce a lemma proved by Robertson and Seymour [13].

Lemma 3.1 ([13, Theorem (5.4)]). Let G be a graph, and let Z be a subset of V(G) with
|Z| = €. Let k > |3¢], and let o be a Kg-minor in G. If there is no separation (A, B)
of G of order less than |Z| such that Z C V(A) and ANa(h) =0 for some h € V(K}),
then for every partition (Z1, ..., Zy) of Z into non-empty subsets, there are n connected
graphs Ty, ..., Ty, of G, mutually disjoint and V(T;) N Z = Z; for 1 <i <n.
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A d-spider with head v is a tree such that every vertex other than v in the tree has
degree at most 2, and the degree of v is d. A leaf is a vertex of degree one. Let G be a
graph, and let S, Y be subsets of V(G). A d-spider from S toY is a d-spider with head
v € S whose leaves are in Y.

Let G be a graph and T a tangle in G. We say that a subset X of V(G) is free if there
exists no (A4, B) € T of order less than | X| such that X C V(A).

Lemma 3.2. Let G be a graph and H be a graph on h wvertices of maximum degree at
most d. Let t > L‘?’Qﬂj Let T be a tangle of order at least hd in G that controls a
Kyi-minor. If there exist pairwise disjoint sets X1, Xa, ..., Xp such that for 1 <i < h the
set X; consists of a vertexr v; of G and d — 1 of its neighbors and U?:1 X; is free with
respect to T, then G has an H-subdivision with branch vertices vi,va, ..., Up.

Proof. Let Z = U?:1 X;, and let a be a Ky;-minor controlled by 7. Suppose that there
exists a separation (A, B) of G of order less than | Z| such that Z C V(A) and ANa(v) = 0
for some v € V(K;). By the first tangle axiom, either (A, B) € T or (B, A) € T. Since
Z is free, (B, A) € T. But it is a contradiction since ¢ > hd and T controls «. Therefore,
there does not exist a separation (A, B) of G of order less than |Z] such that Z C V(A)
and AN a(v) =0 for some v € V(Ky).

Denote V(H) by {u1, ug, ..., un} and E(H) by {e1, ez, ..., ¢ p(m)| }- Since the maximum
degree of H is at most d, there exist Zg C Z and a partition (Z1, Z, ..., Z|g(m)|) of Z —
Zy such that for every 1 < ¢ < |E(H)|, Z; consists of two distinct vertices where
one is in X; and one is in X;, where the ends of e, are u; and u;. By Lemma 3.1,
there exist |E(H)| pairwise disjoint paths in G — Zy connecting the two vertices of
each part of (Z1, Za, ..., Zg(m)|). This creates a subdivision of H with branch vertices
V1,02, ..., V. O

Theorem 3.3 (/8, Theorem 3.3]). Let G be a graph and T a tangle in G of order 0. Let
{X; CV(Q) : j € J} be a family of subsets of V(G) indexed by J. Let d, k be integers
with 0 > (k + d)' +d. If |X;| = d for every j € J, then there exists a set J' C J
satisfying the following.

1. For distinct elements j,j' of J', X; and X, are disjoint.

2. Ujey Xj is free.

3. If \Uje s Xl <k, then there exists a set Z with J;c; X; € Z and |Z] < (k + d)d+1
satisfying that for all j € J, either X; N Z # 0, or X; is not free in T — Z.

Theorem 3.4. Let h and d be positive integers. Let G be a graph, and let S be a subset
of wvertices of degree at least d — 1 in G. Let T be a tangle in G of order 6. If 6 >
(hd + 1)+ 4 d, then either
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1. there exist h vertices vy,va,...,vn € S and h pairwise disjoint subsets X1, Xo, ..., Xp
of V(G), where X; consists of v; and d — 1 neighbors of v; for each 1 < i < h, such
that U?Zl X; is free in T, or

2. there exists a set C C V(G) with |C| < (hd + 1)4*L such that for every v € S — C,
there exists (A, B) € T — C of order less than d such that v € V(A) — V(B).

Proof. Let {X, : j € J} be the collection of the d-element subsets consisting of one
vertex v; in S and d — 1 of its neighbors. Applying Theorem 3.3 by further taking
k= (h—1)d+ 1, we know there exists J' C J such that X; N X; = () for every distinct
J,j"in J'; and ;¢ 5 X is free. Furthermore, if [, 5, X;| < (h —1)d, there exists a set
C with ;e 5 X; € C CV(G) and |C] < (hd + 1)4+1 satisfying that for all j € J, either
X;NC # 10, or X is not free in T — C.

Observe that if [J;c ;» X;| > (h —1)d, then |J'| > h and the first statement holds. So
we assume that |U;c 5 X;| < (h —1)d, and we shall prove that the second statement of
this theorem holds. Let v € S — C. Suppose that there does not exist (4, B) € T — C of
order less than d such that v € V(A) — V(B). In particular, v has at least d neighbors
in G — C. Let U be the collection of those X; that are disjoint from C and consist of v
and d — 1 neighbors of v. For every member X; of U, we define the rank of X; to be the
minimum order of a separation (A4, B) € T — C such that X; C V(A). As no member
of U is free, the rank of each member of U is at most d — 1. Let r be the maximum rank
of any member of U, and let X be a member of U of rank r. Let (A,B) € T — C of
order r such that X C V(A), and subject to that, |V(B) — V(A)| is as small as possible.
By the assumption, v € V(A) N V(B) and r < d — 1. On the other hand, there exist r
disjoint paths in G — C from X — {v} to V(B), as v is adjacent to all vertices in X — {v}.
We denote these r disjoint paths by Py, Ps, ..., P, and denote the end of P; in X — {v}
by u; for 1 <i<r.Asv e V(A)NV(B) and |[V(A) NV (B)| =r, v € V(F;) for some
1 <4 < r. Without loss of generality, we may assume that v € V(P,). In addition, v is
adjacent to a vertex u in V(B) — V(A), otherwise, the rank of X is smaller than r. As
(X — {u,}) U {u} is a member of U, its rank is at most r. Let (4’,B") € T — C be a
separation of order at most r such that (X — {u,}) U{u} CV(A). X CV(AUA’) and
ue (V(B)=V(A))—(V(BNB')—V(AUA")), so the order of (AUA’, BN B') is at least
r+1 by the choice of (A, B). It implies that the order of (AN A", BUB’) is at most r — 1.
Notice that v € V(A") N V(B’) by the assumption, so (AN A") — {v},(BUB’) — {v})
is a separation of G — (C' U {v}) of order less than r — 1. But Py, Pa,...,P._q are r — 1
disjoint paths from V(ANA’) —{v} to V(BUB')—{v} in G— (CU{v}), a contradiction.
This proves the second statement. O

We need the following variation of Theorem 3.4. A version for edge-disjoint spiders
was proved in [7] and [8, Theorem 3.1].

Theorem 3.5. Let G be a graph, and let X, Y be disjoint subsets of V(G). Let h,d be
nonnegative integers. Then either there exist h disjoint d-spiders from X toY, or there
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exists C C V(G) with |C| < 3(hd 4+ 1)41 + £ + 1 such that every d-spider from X toY
intersects C.

Proof. Note that for every subset C of Y such that |Y — C| < d — 1, every d-spider from
X to Y intersects C. So we may assume that [Y| > 3((hd + 1) +d), otherwise we are
done. Let G’ be the graph obtained from G by adding edges such that Y is a clique in
G'[Y]. As every complete graph on k vertices contains a tangle of order [2k/3], G'[Y]
contains a tangle of order (hd + 1)4! + d. And G'[Y] is a minor of G’, so G’ contains
a tangle T of order (hd + 1)4*! 4+ d induced by a tangle of the same order in G'[Y]
by Theorem 2.1 such that Y C V(B) for every (A,B) € T. Let {X; : j € J} be the
collection of d-element subsets of V(G) such that every X; consists of one vertex = in X
and d — 1 neighbors of z. By Theorem 3.3, there exists J’ C J such that X; N X;» = ()
for every distinct j, 5" in J', and (J;¢ 5o X is free. Furthermore, if [U;c ;» X;| < (h—1)d,
there exists C C V(G) with |C| < (hd + 1)9+! satisfying that for all j € J, either
X;NC #0, or X is not free in 7 — C.

First, assume that |J;c ,» X;[ > (h —1)d, so [J'| > h. Let {1,2,...,h} C J', and for
1< j < h,let z; be a vertex in X; N X adjacent to all other vertices in X;. Suppose
that there do not exist dh disjoint paths from U?Zl X; to Y in G'. Then there exists a
separation (A, B) of G’ of order less than dh such that U?:1 X; CV(A)and Y C V(B).
Since Y C V(B), we know that (A, B) € T. But it implies that U?:1 X; is not free,
a contradiction. Hence, there exist dh disjoint paths from U;L:1 X, toY in G'. That is,
there exist h disjoint d-spiders from {z; : 1 < j < h} to Y in G’. We are done in this
case since every d-spider from X to Y in G’ contains a d-spider from X to Y in G as a
subgraph.

So we may assume that |, ;» X;| < (h—1)d, there exists C' C V(G) with ;¢ X; €
C and |C| < (hd + 1)**! satisfying that for all j € J, either X; N C # 0, or X; is not
free in 7 — C. Let v € X — C, and let D be a d-spider from v to Y in G. Note that D is
also a d-spider from v to Y in G’. Suppose that D is disjoint from C. So V(D) contains
some X; such that v € X; and X; N C = (. Since X; is not free in 7 — C, there exists
(A,B) € T — C of order less than d such that X; C V(A) and Y — C C V(B). It is
a contradiction since there exist d disjoint paths in D from V(A) to V(B). This proves
that D intersects C. O

4. Taming spiders

A surface is a compact 2-manifold. An O-arc is a subset homeomorphic to a circle,
and a line is a subset homeomorphic to [0,1]. Let ¥ be a surface. A drawing T in ¥ is
a pair (U, V), where V C U C %, U is closed, V is finite, U — V has only finitely many
arc-wise connected components, called edges, and for every edge e, either € is a line whose
set of ends are eNV, or € is an O-arc and |e N V| = 1. The components of ¥ — U are
called regions. The members of V are called vertices. For a drawing I' = (U, V'), we write
U=U),V=V({), and E(T'), R(T") are defined to be the set of edges and the set of
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regions, respectively. If v is a vertex of a drawing I" and e is an edge or a region of I, we
say that e is incident with v if v is contained in the closure of e. Note that the incidence
relation between V(I') and E(T") defines a graph, and we say that I' is a drawing of G
in ¥ if G is defined by this incidence relation. In this case, we say that G is embeddable
in ¥, or G can be drawn in X.

We say that (5,9, Qo) is a neighborhood if S is a graph and Q, ) are cyclic permu-
tations with Q, Qg C V(S). A neighborhood (S, €, Q) is rural if S has a drawing I' in
the plane and there are disks Ay C A such that

¢ I uses no point outside A and none in the interior of Ay, and

o Q are the vertices in I' N OA, and Qg are the vertices in I' N Ay, and

« the cyclic permutations of Q and Qg coincide with the natural cyclic order on A
and Ay.

In this case, we say that (I, A, Ag) is a presentation of (S, 2, Q). For a fixed presentation
(T, A, Ag) of a neighborhood (5,2, Q) and an integer s > 0, an s-nest for (', A, Ap)
is a sequence (C1, Cs, ..., Cs) of pairwise disjoint cycles of S such that Ay C Ay C ... C
Ag C A, where A; is the closed disk in the plane bounded by C; in the drawing T'.

If (S, 8, Q) is a neighborhood and (Sp, €2) is a society, then (S U Sy, §2) is a society
and we call this society the composition of the society (Sp, o) with the neighborhood
(S,9,9Q0). A society (S,) is s-nested if it is the composition of a society with a rural
neighborhood that has an s-nest for some presentation of it.

A subgraph F' C S for a rural neighborhood (5,2, Q) with presentation (I', A, Ag) is
perpendicular to an s-nest (C1,Cy, ..., Cs) for (I'; A, Ay) if for every component P of F

o P is a path with one end in © and the other in O, and
e PNC;isapathforalli=12,..,s.

We shall use the following theorem, which was proved in [4], to prove the main theorem
of this section. We present a simplified restatement of it.

Theorem 4.1 ([}, Theorem 10.5]). For every three positive integers s,k > 3, ¢, there exists
an integer s'(s,k, c) such that for every s'-nested society (S,Q) that is a composition of
a society (So, Q) with a rural neighborhood with an s'-nest, and for every union of c
pairwise disjoint k-spiders Fy from V(So) — Qg to Q, where every vertez in V(Fy) N Q
is a leaf in Fy, there exists a union of ¢ pairwise disjoint k-spiders F in (S,Q) from the
set of the heads of Fy to the set of leaves of Fy such that (S,Q) can be expressed as a
composition of some society with a rural neighborhood (S’,, V) that has a presentation
with an s-nest (Cy, Cy, ...,Cy) such that S’ N F is perpendicular to (C1,Ca,...,Cs).

Given a cyclic ordering Q on a set Q, an interval of Q is a subset I of  such that the
elements of I are consecutive elements in 2.
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A tree-decomposition of a graph G is a pair (T, X), where T is a tree and X is a
collection {X; : t € V(G)} of subsets of V(G), such that the following hold.

o Uievim Xt =V(G).
o For each edge e of G, there exists t € V(T') such that X; contains the ends of e.
o For each vertex v of G, the subgraph of T induced by {¢: v € X;} is connected.

The width of (T, X) is max{|X¢|—1: ¢t € V(T)}. The adhesion of (T, X) is max{|X;NXy| :
tt' € E(T)}. For each t € V(T'), the torso at t is the graph L obtained from the subgraph
of G induced by X; by adding edges such that for each neighbor ¢’ of ¢ in T, X; N Xy
is a clique in L. When the tree T is a path, we say (T, X) is a path-decomposition. The
tree-width of G is the minimum width of a tree-decomposition of G.

Now, we are ready to prove the main theorem of this section.

Theorem 4.2. For every positive integers d > 3,p,k and s, there exist integers s’ =
s'(k,d, s, p) and k' = k' (k, p) such that for every s'-nested society (S, Q) that is a compo-
sition of a p-vortex (So, Qo) with a rural neighborhood that has an s'-nest, and for every
k' pairwise disjoint d-spiders Dy, Do, ..., Dy from V(Sp) —Qq to Q such that every vertex
of D; N Q is a leaf of D;, there exist k pairwise disjoint d-spiders D}, D}, ..., D} from
V(So) to Q such that the following hold.

1. (S,9) can be expressed as a composition of a society (Sf, Q') with a rural neighborhood
(57,9, that has a presentation with an s-nest (Cy,Ca, ..., Cs) such that D; NS’ is
perpendicular to (Cy,Cy, ...,Cs) for every 1 <i < k.

2. For every 1 <i <k, the head of D} is the head of Dy for some 1 <i <k .

For every 1 <1i <k, every leaf of D} is a leaf of Dy U Dy U...U Dyy.

4. For every 1 <i <k, there exists an interval I; of Q containing all leaves of D} such

o

that I; is disjoint from I; for every j # .

Proof. Let s'(k,d, s, p) = s, ,(s,d, (12p+7)k) and k' (k, p) = (12p+T)k, where s/, ; is the
function s’ mentioned in Theorem 4.1. By Theorem 4.1, there exist (12p 4+ 7)k pairwise
disjoint d-spiders D}, D5, ..., D}, from the set of the heads of D1, D, ..., Dy to the union
of the set of leaves of Dy, Da, ..., Dy such that (S5, Q) can be expressed as a composition
of some society with a rural neighborhood (S’,€,Q’) that has a presentation with an
s-nest (C1,Cq,...,Cs) such that D} NS’ is perpendicular to (Cy,Cy,...,Cy) for every
1<i<k.

Let Qo = {vy,v2, ..., Ui} in order. Since the head of each D; is contained in V/(So) —
Qg, each component of D} — (V(Sp) — Qo) is a path. For each 1 < i < ¥/, let W, be the
subset of [|Q]] such that for each j € W;, some component of D} —(V (Sy) —Qp) is a path
from a leaf of D} to vj, and let a; = min W; and b; = max W;. For each 1 < ¢ < k', define
¢; and r; to be the leaves of D! such that there exists a path in S — (V(Sg) — Qo) N D!
from ¢; to v,, and from r; to vy, respectively; define I; to be the interval of € with
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ends ¢; and r; containing all leaves of Dj. Then it is sufficient to prove that there exist
1<i; <ig <..<ip <k suchthat I, I;,, ..., I;, are pairwise disjoint.

Since (So, o) is a p-vortex, by Theorem 8.1 in [9], there exists a path-decomposition
(tita...tjgy), &) of Sp, where X = (X¢, 1 1 < i < |Q]), such that |X;, N Xy,| < p for
every 1 <i < j < |Q| and v; € Xy, for every 1 < i < |Qp|. And we define Xy = ) and
X‘Q—()H_l = (). Furthermore, for each 1 <14 < &/, let @; be the path in D} from r; to ¢;, L;
be the path in D} from ¢; to v,,, and R; be the path in D] from r; to v,. We say that
I; is naughty if Q; — ((So — Qo) UV(L;) UV (R;)) contains a path from v, to v., where
1 <c<a; <b; <c <[ such that Q; passes through /;, v, v, ; in the order listed;
otherwise we say I; is nice.

Claim 1. If I; NI; # 0 for some i # j, and either both I;, I; are naughty or both I;, I; are
nice, then there exists a € [|Q|] such that X, N Xo 1 NV (D)) # 0 # XoNXar1 N V(D%).

Proof of Claim 1. Since V(D;) N V(D)) = (), we may assume that b; < b; by symmetry.
Since I; N I; # 0, a; < b; < bj. Since (5,Q) is a composition of (Sp, Qo) with a rural
neighborhood, and V(D;) N V(D)) = 0, the vertices £;,7;,r; appear in Q in the order
listed. Note that Q; passes through v, a vertex in V(Sp) — o, and v,, in the order
listed. So V(Qi)N Xy, N(Xy, ,UXy, ,,) # 0. Similarly, V(Q;) N X¢, N(Xy,, ,UXt, ),
V(Q) N Xy, N(Xy, , UXy, o)) and V(Q;) N Xy, N (Xy, , UXy, ) are non-empty
sets. If V(Qi) N X, 0 Xy, # 0 # V(Q:)N Xi,, N Xy, .y, then we are done by
choosing a = b; — 1 or a = b;. So we may assume that V(Q;) N Xpy, 0 N Xy, = 0 or
V(Qi) N Xy, N Xy, o, = 0.

Let Y, be one of X;, _ N Xy, and X;, N Xy ., such that V(Q;) NY, is empty.
Similarly, there exists YZ e {X; ’ N Xtaj ,]Xtaj ﬂ]Xtaj+1} such that V(Q;) NY, = 0;
otherwise we are done by taking a = a; — 1 or a = a;. Hence V(L;)UV(R;) UY,UY, is
disjoint from V(D}). So a; < a; < b; < b; and I; is nice.

If V(Di) N Xy, , N Xy, = 0, then v,, and the neighbor of v, in Q; — V(R;)
belong to different components of S — (V(R;) U (X, , N Xy, ) U V(R;) UY,), but
Qi — (V(Ri) U (Xy,, , N Xy, ) UV(R;) UY;) contains a path passing through these
two vertices, a contradiction. So V(D;)N Xy, , N Xy, # 0. Since I; is nice, I; is nice. If

a,j—l

V(D%)N Xy, N Xy, =0, then since I; is nice, £; and 7; belong to different components
of D} — (X4, , UXy, ), but @ — (X4, , UXy, ) contains a path passing through these
two vertices, a contradiction. Therefore, V/(D})N Xy, , NXy, # 0. This proves the claim
by takinga =b; — 1. O

Suppose that there do not exist such k pairwise disjoint intervals among I, I, ..., Ij/.
Let H be the intersection graph of I, Io, ..., Ixs. Then H does not contain an independent
set of size k. We claim that H contains a clique with size at least 12p + 7. Let uy, usg
be consecutive vertices in Q. If there are at least 12p + 7 members of {I, I, ..., ;v }
containing both wi,u9, then these 12p + 7 members form a clique in H. So we may
assume that there exist at most 12p + 6 members of {Iy, I, ..., Iy} containing both
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u1,ug. Let H' be the intersection graph of the members of {Iy, I, ..., I;» } not containing
both w1, us. Then H' is an interval graph on at least ¥’ — 12p — 6 vertices, and H' is
an induced subgraph of H. Since H has no independent set of size k, H' does not have
an independent set of size k. Since interval graphs are prefect, H' (and hence H) has a
clique with size at least (k' —12p—6)/(k — 1) > 12p+ 7.

Therefore, there exist 12p+7 pairwise intersecting members of {I, Is, ..., I} }. So there
exist 6p + 4 pairwise intersecting members of {1y, I, ..., Is } such that either all of them
are naughty or all of them are nice. Let G be the graph obtained from S by adding edges
such that vertices in X; N X, are pairwise adjacent in G, for every 1 < i < |Q_0| — 1.
Since there exist 6p+4 pairwise intersecting members of {11, I, ..., I}y } where either all of
them are naughty or all of them are nice, Claim 1 implies that G contains a Kg,4-minor,
where each branch set is D/ for some i. Without loss of generality, we may assume that
the branch sets of the Kg,4-minor are Df, Dy, ..., D, 4.

Let G’ be the graph obtained from G by the following operations.

o Deleting vertices not in D} U Dy U...U Dg, 4.

» Contracting each path in D] — E(Sp) from Qg to € internally disjoint from V(Sy)
into a vertex for every 1 <i < 6p + 4.

o For every 1 <i < 6p+ 4 and for each path in D} — E(Sp) from Qg to Qg internally
disjoint from V(Sy), contracting all edges incident with at least one internal vertex
of this path into an edge.

+ Repeatedly contracting edges of Dj[X},] having an end not in {v; }U((X¢,_,UX;, )N
X¢,) until each remaining edge has ends in {v;} U ((X¢,_, U X¢,,,) N Xy;) for every
1<i<6p+4andl<j<|Q

Note that G’ contains a K¢,44-minor, so the tree-width of G’ is at least 6p + 3. Observe
that V(G") C V(Sp). Furthermore, G’ can be written as GoUG; such that V(GoNGy) =
V(Go) € Qo, and Gy is an outerplanar graph that can be drawn in the plane such that
the vertices of V(Go N G1) are in the boundary of a region in order, and G; has a
path-decomposition of width at most 2p such that each bag is a subset of {v;} U (X;, N
(Xt,_,UX¢ ) (for some j) and contains a vertex in V(GoNG1) in order. By Lemma 8.1
in [1], G’ has tree-width less than 6p + 3, a contradiction. This proves the theorem. 0O

5. Theorems on surfaces

In this section, we recall some results about graphs embedded in surfaces.

Let X be a surface and let T' be a drawing in X. The sets {v}, for v € V(T'), the edges
and regions of T" are called the atoms of I'. A subdrawing I of T is a drawing satisfying
V() CV(T) and E(I") C E(T'); we write I" C T if I is a subdrawing of I'. A drawing
is 2-cell if every region is an open disk.

Let T" be a 2-cell drawing in a surface . We say that a drawing K in X is a radial
drawing of T if it satisfies the following conditions.
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UD)NU(K)=V(l') CV(K).

e Each region r of I contains a unique vertex of K.

o K is a drawing of a bipartite graph, and (V(T"), V(K) — V(I')) is a bipartition of it.
e For every v € V(T'), the edges of K UT incident with v belong alternately to I" and
to K (in their cyclic order around v).

Let 3 be a surface, and let I" be a drawing in . A subset Z of ¥ is I'-normal if
ZNU(T) C V(I). If X is not a sphere, we say that I' is 6-representative if |[FNV(T)| > 6
for every non-null-homotopic I'-normal O-arc F' in 3. If A C ¥ is a closed set such that
either ¢ C A or eN A = () for each e € E(T"), then we define I' N A to be the drawing
UMnNnAVI)NA).

Let X be a surface, and let I" be a drawing of a graph G in 3. A tangle in I' and a
separation of I' are a tangle in G and a separation of G, respectively. A tangle 7 in I’
of order 6 is said to be respectful (towards ) if ¥ is connected and for every I'-normal
O-arc F in ¥ with |[FNV(T")| < 0, there is a closed disk A C ¥ with A = F such that
(TNA,TNY —A) € T. It is clear that A has to be unique, and we write A = ins(F);
the function ins is called the inside function of 7. Assume that I" is 2-cell, and let K be
a radial drawing of T'. If W is a closed walk of K, we define K|W to be the subdrawing
of K formed by the vertices and the edges in W. If the length of W is less than 260,
then we define ins(W) to be the union of U(K|W) and ins(C), taken over all cycles C
of K|W. For every two atoms a,b of K, define a function m+(a,b) as follows:

e if a = b, then my(a,b) = 0;

e ifa#band a,bC ins(W) for some closed walk W of K of length less than 26, then
m7(a,b) = min 1|E(W)|, taking over all such closed walks W;

o otherwise, my(a,b) = 6.

Note that K is bipartite, so my is integral. In addition, for every atom c of I", we define
a(c) to be an atom of K such that

o alc)=cif c CV(D);
e a(c) is the region of K including c if ¢ is an edge of T
e a(c) = {v}, where v is the vertex of K in ¢, if ¢ is a region of I".

For every atoms b, ¢ of T, we define my(b, ¢) = my(a(b),a(c)). If X,Y are sets of atoms
of G, then we define m7(X,Y) = min{my(z,y) : © € X,y € Y}. When one of X and Y,
say Y, has size one, then we denote m7(X,Y) by my(X,y), where y is the unique
element of Y.

The following is a consequence of Theorem 9.1 of [11].

Theorem 5.1. Let 33 be a surface, and let T' be a 2-cell drawing of a graph in 3. If T is
a respectful tangle in T, then my is a metric on the atoms of T.
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The following theorem is useful.

Theorem 5.2 ([12, Theorem (1.1)]). Let ¥ be a surface, and let ' be a 2-cell drawing
of a graph in > with E(T') # (0. Let T be a respectful tangle of order 6 in T, and let
K be a radial drawing of T'. Let (A, B) be a separation of T' of order less than 0. Then
(A,B) € T if and only if for every edge e of A, there exists a cycle C of K with
V(C)NV([I) CV(A)NV(B) and with e C ins(C).

Theorem 5.3. Let X be a surface, and let T' be a 2-cell drawing of a graph in ¥ with
ET) #0. Let T be a respectful tangle of order 0 in T'. Then the following hold.

1. If x € V() and (A,B) € T is a separation of T’ such that x € V(A) — V(B) and
there exists a path P in A from x to a vertex y € V(A) internally disjoint from V(B),
then mr(z,y) < |[V(A) NV (B)|.

2. If X CV(T) and (A, B) € T is a separation of I' of order less than |X| such that
X CV(A), subject to this, A is minimal, then my(X,y) < |V(A) NV(B)| for every
y e V(A).

Proof. We first prove Statement 1. Let x and (A, B) be a vertex and a separation men-
tioned in the statement of Conclusion 1. Let y € V(A) be a vertex different from . Let
P be a path in A from z to y internally disjoint from V(B). Let e be the edge in P
incident with x. By Theorem 5.2, there exists a cycle C of the radial drawing K of T’
with V(C) NV (") C V(A) NV (B) and with e C ins(C). So z € ins(C). If y ¢ ins(C),
then C intersects P at an internal vertex of P. However, V(C)NV(T') C V(A) NV (B).
This implies that some internal vertex of P is in V/(A) N V(B), a contradiction. Hence,
y € ins(C'). Therefore, mr(z,y) < |V(A) NV (B)|.

Now we prove Statement 2. Let X and (A, B) be a set and a separation mentioned in
the statement of Conclusion 2. Since |V (AN B)| < |X| and X C V(4), X — V(B) # 0.
Since A is minimal, every component of A — V(A N B) intersects X — V(B), and each
vertex in V(A N B) is either in X or adjacent to some vertex in V(A) — V(B). So for
every y € V(A), either y € X, or there exists a path in A from a vertex z, € X — V(B)
to y internally disjoint from V(B). If y € X, then m(X,y) = 0; otherwise, my(xy,y) <
V(AN B)| by Statement 1. Hence m7(X,y) < |V(AN B)| for every y € V(A). O

Theorem 5.4 ([11, Theorem (8.12)], [12, Theorem (1.2)]). Let T be a respectful tangle
of order 0, where 8 > 2, in a 2-cell drawing I in a connected surface . If ¢ is an atom
in T, then there exists an edge e of T such that my(c,e) = 6.

Let T be a 2-cell drawing in a surface X, and let 7 be a respectful tangle of order 6
in I'. Let  be an atom of I". A A-zone around x is an open disk A in ¥ with x C A,
such that A is an O-arc, DA C U(T), my(z,y) < X for every atom y of I with y C A,
and if x € E(T"), then A > 2. A A-zone is a A-zone around some atom.
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Let A be a A-zone. Note that U(I') N9A is a cycle, and the drawing I =T'N (X — A)
is 2-cell in . We say that I" is the drawing obtained from T by clearing A. We say that
T’ is a tangle of order 8 — 4\ — 2 obtained by clearing A if T’ is a tangle in I of order
0 —4X\ — 2, and

o T’ is respectful with a metric my, and

o 7T’ is conformal with 7, and

e if z,y are atoms of T' and z’,3y’ are atoms of IV with z C 2z’ and y C ¢/, then
m(e,y) = mr (', y) = mo(,y) — 41 - 2

Theorem 5.5 ([12, Theorem (7.10)]). Let A be a A-zone. If @ > 4\ + 3, then there exists
a unique respectful tangle of order @ — 4\ — 2 obtained by clearing A.

Theorem 5.6 ([14, Theorem (9.2)]). Let T' be a 2-cell drawing in a surface ¥, and let
T be a respectful tangle in T' of order 8. Let x be an atom of T, and X an integer with
2 <A< 0—4. Then there exists a (A + 3)-zone A around x such that ' C A for every
atom x’ of T with my(z,2") < A.

Lemma 5.7. Let I" be a 2-cell drawing in a surface, z an atom, and T a respectful tangle
in ' of order 0. Let \ be a nonnegative integer, and let C' be the cycle of the boundary
of a A\-zone around z. If 0 > A+ 38, then there exists a (A+7)-zone A around z such that
the cycle bounding A is disjoint from C, and A contains the A-zone bounded by C.

Proof. For every atom z of I, let A, be a 4-zone around x containing all atoms y with
my(z,y) <1, and let A, be the closure of A,, and let C,; be the boundary cycle of A,.
For every v € V((), since every region incident with v has distance 1 from v, v is an
interior point of A,. Let A = A’ U Uvev(c) A,, where A’ is the open disk with the
boundary C. So V(C) are interior points of A. By the triangle-inequality, for every
v € V(C) and for every vertex u in A,, my(z,u) < A+ 4. Therefore, there exists a
(A + T)-zone A around z that contains A by Theorem 5.6. Since any vertex in C is an
interior point of A, it is an interior point of A, so C' is disjoint from the cycle that
bounds A. O

Let T" be a 2-cell drawing in a surface having a respectful tangle 7. Let A be a A-zone
(with respect to my) around some atom of T' for some nonnegative integer A. For every
v € V(I') N OA, a loose component with respect to (A,v,T) is a component L of I' — v
such that some vertex of L is adjacent to v, and there exists no separation (4,B) € T
with V(AN B) = {v} and V(B) = V(L) U {v}; we call v the attachment of L. A loose
component with respect to (A, T) is a loose component with respect to (A, v, T) for some
v e V() NOA.

Lemma 5.8. Let I" be a 2-cell drawing in a surface, z an atom, and T a respectful tangle
in I' of order 0. Let A\ be a nonnegative integer, and let A be a A-zone around z. If
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0 > 4\ + 31, then there exists a (A + 7)-zone A around z containing A such that the
following hold.

1. 9N is obtained from OA by adding pairwise disjoint paths in T, where each of them
has both ends in ON and for each of its internal vertices v, every edge incident in T’
with v is either contained in N’ or incident with a vertex in a loose component with
respect to (A, v, T).

2. The drawing T' obtained from T by clearing N, deleting E(T') N OA’ and all loose
components with respect to (A, T) and deleting all resulting isolated vertices is 2-cell
and has a respectful tangle T' of order at least 6 — (4 + 30) conformal with T such
that mr(z',y") > my (z,y) > my(a’,y’) — (4\ + 30) for every two atoms x,y of I”,
where ',y are atoms of T with ' C x and y' C y.

Proof. By Lemma 5.7, there exists a (A+7)-zone Ag such that Ag 2 A and A NIA = 0.
Let T'g be the drawing obtained from T' by clearing Ag. Then I'y has a respectful tangle
To of order at least 6 — (4\ + 30) obtained from 7T by clearing Ay conformal with 7, and
Ty is 2-cell.

Let T'y be the drawing obtained from I' by clearing A and deleting E(I") N A and
isolated vertices. Since I'g is a subgraph of I'y, 'y contains a respectful tangle 77 of order
at least 6 — (4\ + 30) conformal with 7. We may assume that I'y is not 2-cell; otherwise
we are done by choosing A’ = A.

Since 6 — (4\ + 30) > 1, there exists a component of I'1, say @i, such that (I'y —
V(Q1),Q1) € T1. Since Ty is 2-cell, Ty is connected. So V(I'y) C V(Q1). Hence, every
component of 'y — V(Q1) is contained in Ayg.

Let @ be a component of I'y — V(Q1) with |[V(Q)NOA| > 2. Hence there exists a path
Pg in @ on at least two vertices with ends contained in OA. We choose Pg such that
the closed set, denoted by Ag, bounded by dA U Py with interior disjoint from V/(Q1)
is maximal.

Define A’ to be the open disk whose closure is A U UQ, Agr, where the union is over
all components Q' of I'; — V(Q1) with |[V(Q') NOA| > 2. Hence A’ is obtained from 9A
by adding UQ/ Pg/, where the union is over some components @’ of I'y —V(Q1). Clearly,
A’ is bounded by a cycle C” in T'. Note that those Py are pairwise disjoint, and for every
internal vertex v of some Pg/, every edge incident in I' with v is either contained in A
or incident with a vertex in a loose component with respect to (A’, v, T). Furthermore,
the drawing I'" obtained from T" by clearing A’ and deleting F(C"), all loose components
with respect to (A’,7) and all isolated vertices is Q1. Since A N IAy = 0, every region
of @)1 is either a region of I or a subset of Ag. Since ()7 is connected, Q1 and hence T
is 2-cell. Since T’y is a subgraph of IV, there exists a respectful tangle 7’ in I of order
at least @ — (4\ + 30) conformal with 7, and my(2’,y") > mr (x,y) > mp (2", y") >
my(z',y") — (4\ 4 30) for all atoms xz,y of I, where z’,y" are atoms of T and =",y are
atoms of Ty with 2/ C & C 2" and 3y’ C y C y”. Since A’ C Ag, A’ is a (A + 7)-zone. This
proves the lemma. O
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Let ¥ be a connected surface, and let Aq,...,A; be pairwise disjoint closed disks
in ¥. Let I’ be a drawing in ¥ such that U(T') N A; = V(I') N 0A,; for 1 <4 < ¢. Let
Z = U§:1 V(I')NOA,;. We say that a partition (Z1, Zs, ..., Zp) of Z satisfies the topological
feasibility condition if there exist pairwise disjoint disks Dy, Da,..., D, in ¥ such that
DN (Ui_, Ay) = Zj for 1 < j <p.

Theorem 5.9 ([12, Theorem (3.2)]). For every connected surface ¥ and all integers ¢t > 0
and z > 0, there exists a positive integer 6 > 1 such that the following is true. Let
Aq, ..., A be pairwise disjoint closed disks in 3, and let ' be a 2-cell drawing in ¥ such
that U(T)NA; = V(T)NOA; for 1 <i <t. Let |Z| < z, where Z = J;_, (V(T')NIA;), and
let (Z1,2s,...,Zy) be a partition of Z satisfying the topological feasibility condition. Let
T be a respectful tangle of order at least 6 in T’ with metric my such that my(r;,r;) > 0
for1 <1< j <t, wherer; is the region of T' meeting A; for 1 <i <t, and V(I')NIA; is
free for 1 <1i <'t. Then there are mutually disjoint connected subdrawings I'1,I's,...,I'
of T with V(T';)NZ = Z; for1 < j <p.

6. Excluding a subdivision of a fixed graph

Let G be a graph and 7 a tangle in G. Given an integer k, a vertex v of G is said
to be k-free (with respect to T) if there is no (A4, B) € T of order less than k such that
veV(A)—V(B).

Let S = 81 US, be a segregation of S with S; NSy = ) such that || < 3 for every
(S,9Q) € S1. The skeleton of a proper arrangement « of S in ¥ (with respect to (S, S2))
is the drawing I' = (U, V) in ¥ with V(T') = {«a(v) : v € V(S)} such that U(T") consists
of the boundary of a(S, Q) for each (S,Q) € S; with || = 3, and a line in the boundary
a(S’, Q') with ends  for each (S’,') € S; with |Q’| = 2. Note that we do not add any
edges into the skeleton for (S, Q) with |Q| < 1 or (S,Q) € S,. Furthermore, the skeleton
of a is unique up to the choice of the line in a/(S’,§)') for each (S’,Q’) € S with [V| = 2,
and the choices of those lines do not affect whether the skeleton is a 2-cell drawing or
not.

Lemma 6.1. Let t, p,0 be nonnegative integers. Let G be a graph. Let S = §1 U Sy with
S1 NSy = 0 be a segregation of G such that |Q| < 3 for every (S,Q) € Si. Let a be a
proper arrangement of S with respect to (S1,S2) of G in a surface 3. Let (S,) € S be
a p-vorter. Let G' be the skeleton of a. Let T' be a respectful tangle in G’ of order 6. If
G’ is 2-cell and 6 > 4t + 59, then there exists a cycle C such that the following hold.

1. C bounds a (t + 14)-zone A in G’ around some vertex in €.
2. A contains every atom x of G' with mr:(x,y) <t for some y € Q.
3. The closure of A contains a(S, ).
4. Let S be the union of S” over all societies (S”,Q") € S with
o either a(S",Q") CA, or
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e |7 =2 and a(S", Q)N E(C) #0, or

o Q' contained in the union of some loose component with respect to (A, T") and its
attachment, or

o | =1and Q" CV(C).

Let O = V(C) — {z € V(C): every edge of G' incident with = is either contained

in A or incident in G' with a vertex in a loose component with respect to (A, T')},

and let ) be a cyclic ordering consistent with the cyclic ordering of C. If every

(8", Q") € Sy with a(S”, Q") C A is a psn-vortex for some nonnegative integer pgr,

then (S',Y) is a (p+t+ 8+ > g/ psr)-vortex, where the sum is over all societies

(8", Q") € Sy — {(S, )} with a(S”,Q") C A.

5. LetS; =& —{(87,9") €8 : 5" C S}t and S = (So—{(5",Q") e S, : 8" C S'Hu
{(8", )}, If mp(z,y) > 3 for every atom x C OA and y € V(') with (S”,Q") €
Sy —{(58",QY)}, then 8* is a segregation, and there exists a proper arrangement o
of 8§ US; with respect to (S7,83) such that the skeleton G* of o*

o is obtained from G’ by clearing A and deleting some edges in E(C) and all loose
components with respect to (A, T") and deleting all resulting isolated vertices,

o is 2-cell, and

e has a respectful tangle T* conformal with T’ of order at least 8 — 4t — 58 such that
my (2, y') > my«(z,y) > myp(2!,y") — 4t — 58 for all atoms x,y of G*, where
2,y are atoms of G with ' C x and y' C .

Proof. Let y be a vertex in Q. By Theorem 5.6, there exists a (¢+5)-zone A’ around y in
G’ such that x € A’ for every atom z of G’ with my(z,y) < t+2. Since my (y/,y"”) < 2
for every two vertices y',y"” in Q, x € A’ for every atom x of G’ with m+(x,2) <t for
some z € Q. Let H be the drawing obtained from G’ by deleting every atom x € V(G’)
with m7 (z,y) < t + 2. It follows from [11, Theorem (8.10)] that H has a region f
homeomorphic to an open disk that contains «(S, Q) and all deleted vertices.

In the rest of the proof, we fix a radial drawing of G'.

Claim 1. For every vertex v of H incident with f, there exists a closed walk ¢, of length
at most 2t + 8 in the radial drawing of G' with {v,y} C ins(¢,) C f C A such that v is
adjacent to only one vertex in £, and V(£,) NV (H) = {v}.

Proof of Claim 1. Since v is incident with f, there exists a path P C f of length two in
the radial drawing of G’ containing v and a vertex v’ of G’ — V(H) internally disjoint
from V(H). As m7/(v',y) < t+ 2, there exists a closed walk W, of length at most
2t + 4 in the radial drawing of G’ such that {v’,y} C ins(W,/). Note that v € V(H), so
my(v,y) > t+ 2 and {v} ¢ ins(W,/). Hence, there exists a closed walk ¢, of length at
most 2t48 in W, UP with {v,y} C ins(¢,) and such that v is adjacent to only one vertex
in £,. Note that m7(u,y) < t+2 for every u € V(W) NV(G), so ins(W,) C f. Hence
ins(¢,) C f. Since A’ contains all atoms u of G’ with my (u,y) <t+2, fCA. O
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By Claim 1, my (y,v) < t+ 4 for every vertex v incident with f. So there exists a
(t + 7)-zone A” containing all vertices incident with f. Hence f C A”. By Lemma 5.4,
there exists an edge ¥’ of G’ such that my (y,y’) =6 >t + 8. So y' ¢ A”. Each cycle
Y contained in the boundary of f bounds an open disk Ay disjoint from y’. Let Cy be
the cycle contained in the boundary of f such that A, is maximal among all cycles Y
contained in the boundary of f. Then f C A, and hence Ag, contains (S, ) and all
atoms z with my (z,y) < t+ 2. Since Ag, € A”, Cy bounds a (¢t + 7)-zone.

Let Sj be the union of S” over all societies (S”,Q") € S with «(S”, Q") contained in
the closure of the disk bounded by Cj disjoint from y’. We call such a society (S”, Q")
an inner vortex. Let € be the cyclic ordering of Cy. Since (5, ?) is a p-vortex, for every
two intervals I,.J that partition €, there exists X157 CV(S) with | X7 ;] < p such that
there exists no path in S — X7 ; from I — X7 ; to J — X ;. Similarly, since (S”,Q")
is a pgr-vortex for every (S”,Q") € Sy — {(S,Q)}, for every two intervals I,J that
partition ", there exists X;SW, C V(S) with |X}9/;| < pg» such that there exists no path
in 8" — X7 from I — X7} to J — X7

Claim 2. (S},9Q) is a (p+t+6+> psr)-vortex, where the sum is over all inner vortices.

Proof of Claim 2. Let I’, J’ be two intervals that partition €, let u, v be the first vertex
in I', J', respectively, under the ordering €', and let £ and £} be a closed walk £, and
a closed walk ¢, mentioned in Claim 1, respectively.

Note that for each path @ in £ U¢¥ and for each vertex w € V(Q) corresponding to the
region containing «(S”, Q") for some inner vortex (S”,Q") or vortex (S”,Q") = (S,9Q),
the edges in Q incident with w define a partition of Q” into two intervals I, J”, and we
denote X}g,i:J,, by XEHQ

Assume that there exists a path @ in ¢;, U/} from u to v on at most 2t 4 11 vertices.
Let X" = (V(Q)NV(G") UlUyevg)-viey Usr Xi:/Q, where the last union is over all
(S”, Q") such that either (S”, Q") = (S,) or (S”,") is an inner vortex with «(S”, ")
corresponding to w. Then there exists no path in S — X" from I’ — X" to J'— X"”. Note
that | X" <[22 4+ p+ 3", pgr, where the sum is over all inner vortices (S”,€”).
Therefore, (Sg,€) is a (p +t+ 6+ > g, pgr)-vortex, where the sum is over all inner
vortices (S”,Q").

So we may assume that there does not exist a path @ in £ U £} from u to v on at
most 2¢ 4 11 vertices. In particular, £ is disjoint from £;. So one of £} and ¢}, does not
contain y. By symmetry, we may assume that £ does not contain y. Since {y} C ins(¢}),
£y contains a cycle Cy, such that C, bounds an open disk A, C ins(¢}) containing {y}.
Since A, C f C A/, {v} is not contained in the closure of A, for if it did, then, since v
belongs to the boundary of f, it would belong to the boundary of A,, contrary to the
fact that £} and £ are disjoint. Since £}, is disjoint from £}, £} is disjoint from the closure
of A,. In particular, y ¢ V(£}). Hence £ contains a cycle C, such that C, bounds an
open disk A, C ins(£}) containing {y} U A,,. Since A, C f C A/, {u} is not contained
in the closure of A,, for if it did, then, since u belongs to the boundary of f, it would
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belong to the boundary of A,, contrary to the fact that ¢ and ¢ are disjoint. Since
¢ intersects the closure of A, and the complement of the closure of A,, £ intersects
C, C £}, a contradiction. This proves the claim. O

By Lemma 5.8, there exists a (¢ + 14)-zone A’ containing the (¢ 4 7)-zone bounded
by Cj satisfying the conclusion of Lemma 5.8. Define C to be the cycle bounding A’. So
Conclusions 1-3 hold.

Let (57, €)) be the society mentioned in Conclusion 4. To prove Conclusion 4, it suffices
to prove the following claim.

Claim 3. If (S},Q) is a p-vortex for some nonnegative integer p, then (S',Q) is a
(p + 2)-vortex.

Proof of Claim 3. Suppose that (5’,Q') is not a (p+ 2)-vortex. So there exist a partition
I,J of € into cyclic intervals and p + 3 disjoint paths P, ..., Ppy3 in S’ from I to J.
By the definition of ', we know @/ C Qf. Let I’ be the minimal cyclic interval in €
containing I, and let J’ be the cyclic interval such that I’ U J" = Q. Note that the ends
of I and I" are the same. By changing the indices, we may assume that Py, P, ..., P11
do not intersect the ends of I’. So for each ¢ with 1 < i < p+1, some subpath Q; of P; in
S{ is from I’ to J'. This contradicts that (57, €2()) is a p-vortex and proves the claim. O

Then Conclusion 4 follows from Claims 2 and 3.

Define S and S as mentioned in Conclusion 5. Now we assume that my (z,y) > 3 for
every x C A and y € Q7 with (S”,Q") € S5 — {(5’,)}. Hence every loose component
with respect to (A,7’) does not intersect Q” for every (S”,Q") € S5 — {(9',9)}. So
S§* = S7USS is a segregation of G. Then it is clear that there exists a proper arrangement
a* of §* with respect to (S7,S3) such that the skeleton G* of a* can be obtained from
G’ by deleting some edges in E(C) and all loose components with respect to (A, 7T7),
and deleting all resulting isolated vertices. Conclusion 2 of Lemma 5.8 implies that G*
is 2-cell. Furthermore, Conclusion 2 of Lemma 5.8 implies that there exists a respectful
tangle 7* in G* conformal with 77 of order at least 6 — (4(t+7) +30) = 6 — 4t — 58 such
that my (2',y") > my«(z,y) > mr(2',y’) — (4t 4+ 58) for all atoms z,y of G*, where
z',y" are atoms of G’ with 2’ C x and 3’ C y. This proves Conclusion 5. O

Lemma 6.2. Let d > 3, and let k,h,hy,ha, ..., he, p,0" be nonnegative integers. Then
there exist integers 0o(d, h, p,k,0"), B(d,h,p) and f(d,h,p,K) such that the following
holds. Suppose that

1. G is a graph and T is a tangle in G, and

2. T is a proper arrangement of a T -central segregation S of G with respect to (S1,S2)
in a surface X, and

3. G’ is the skeleton of 7, G' is 2-cell and is a minor of G, and T is a respectful tangle
in G’ of order 0, for some 6 > 0y, such that T’ is conformal with T, and
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4. let X CV(G) and let (S1,), ..., (Sk, ) be societies in S, where each (S;,Q;) is a
p-vortez such that V(S;)NX contains at least one d-free vertex with respect to T, such
that for every 1 <i < j <k, and for every x € Q; and y € Q;, my(z,y) > 2f + 1,
and

5 my(x,y) > f+ 1, for every x € Q; with 1 < i < k, and for every y € Q with
(5,Q) €S —{(S;,)} and |Q| > 3, and

6. hy <h forl<i<k.

Then there exist Z1, Za, ..., Z, € V(G), a subdrawing G" of G' and a tangle T" in G
obtained from G’ and T by clearing at most K f-zones A1, ..., A, such that T" —\U._, Z;
has order at least 8" and is conformal with T, and for every i € {1,2,...,k}, either

1. hy > 2, Ay =0 and | Z;| < B such that every vertezx in (V(S;) — Z;) N X is not d-free
with respect to T —Ji, Z;, or

2. Z; =0, and A; is an f-zone in G' around a vertex in Q; with the boundary cycle Y;,
and there exist h; subsets A; 1, Aiz2, ..., Ain, of Yi such that the following hold.

(b) Each A; ; has size d and U;”:l A; j is free in G" with respect to T — i, Z;.

(¢) For each 1 < j < h;, there exists a minimum interval I; of Y; containing A; ;
such that Ijy NI =0 for every 1 < j' < j”" < h,.

(d) There exist v;1,;.2,...,Vin, € Ay N X such that there are h; disjoint d-spiders in
G contained in A; U U?;l A j, where the j-th spider is from v, ; to A; ;.

Proof. Define &’ to be the value k/(h, p) mentioned in Theorem 4.2, and let 5(d, h, p) =
2(k'd + 1)1, Define s’ = s/ ,(h,d,4hd + 2k + 3,p) + 2hd + kB3, where s, , is the
value s’ mentioned in Theorem 4.2. Let f(d, h, p,x) = 19 + 10s’ and 6y(d, h, p, ,0") =
0" + k(4f + B+ 2). Let i € {1,2,...,x} be fixed. For simplicity, we denote (S;,€2;) by
(S,9), and let vg be a vertex in Q.

We may assume that x > 1 and h > 1, for otherwise this lemma is obvious. In
particular, g > 6. By Theorem 5.6, there exists a 5-zone A, in G" around vg such that
A’ o contains all atoms y of G’ with m7(vs,y) < 2. Note that every vertex in Q has
distance at most 2 from vg with respect to the metric my, so Aisyo contains 7(S5, Q). Let
Ag o be a 19-zone in G’ around vg such that Ag satisfies Lemma 6.1 and contains A/s,o-
Let (Gs,0,82s,0) be the society (5, €) mentioned in Lemma 6.1 by taking A to be Ag .
Note that Lemma 6.1 ensures that (Gg,s,0) is a (p + 13)-vortex.

For 1 <j <&, let Ag; be a (19 + 10j)-zone around vg such that Ag; contains every
vertex z of G” with my (z,vs) < 19+ 10(j — 1) and 9As; N OAs;—1 = 0. Note that
the existence of Ag ; follows from Lemmas 5.6 and 5.7. Let C's ; be the boundary cycle
of Agjfor1 <j<s'. Let Ag = Ag . Let Gg be the union of S” over all societies (S’, ')
with 7(5’, Q') contained in the closure of Ag, and let g be the cyclic ordering on the
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boundary cycle of Ag. So (Gg,Qs) is a composition of a (p+ 13)-vortex (Gs o, 2s,0) with
a rural neighborhood which has a presentation with an s’-nest (Cs 1,Cs2, ...,Css).

Let b = k" if h; # 1, and b} = 1 if h; = 1. Let Xg be the set of d-free vertices
in V(S) N X with respect to 7. Note that Xg # () by assumption. By Theorem 3.5,
either there exist A/ disjoint d-spiders from Xg to Qg, or there exists Wg C V(Gg) with
|Ws| < 2(hid + 1)+ < 3 such that every d-spider from Xg to Qg intersects W.

We first assume that h; > 1 and the set W mentioned above exists. Then for every
vertex v € Xg — Wy, there exists a separation (A, B) of Gg — Wg of order less than
d such that v € V(A) — V(B) and Qg — Ws C V(B). So there exists a separation
(A", B") of G — Wg with V(AN B) = V(A’N B’) such that V(A") = V(A) and V(B’) =
V(B)U(V(G) - V(Gg)). Note that (A’, B") € T — Wg; otherwise since 7" is conformal
with 7, there exists a separation (B"”,A"”) € T' — Wg, where V(A") = V(A") N V(G")
and V(B") =V(B')NV(G"), but A” is contained in a (19 4 10s’)-zone around vg in G’,
a contradiction. So every vertex in Xg — Wy is not d-free in 7 — Wg. Hence every vertex
in (V(S) — Ws)N X is not d-free in T — Wg. In other words, the first statement of this
theorem holds by taking A; = ) and Z; = W.

When h; = 1, the former case holds by Menger’s Theorem and the fact that V' (S)NX
contains a d-free vertex. Therefore, we may assume that there exist h) disjoint d-spiders
from Xg to Qg.

Define Z; to be the empty set. Let D; 1, D; 2, ..., D; p; be disjoint d-spiders from Xg, to
Qs,. Apply Theorem 4.2 by taking (5, 9) = (Gs,,Qs,), (S0,Q0) = (Si, Q) and D; = D, ;
for 1 < j < hj. There exist pairwise disjoint d-spiders Dj 1, D, ..., D; . from Xg, to
V(Cs,,s), a (4hd+2k8+3)-nest (Ng; 1, ..., Ns, ahd+2rp+3) and intervals I; 1,1 o, ..., I p,
of Cg, s satisfying the conclusions of Theorem 4.2. For every 1 < j < h;, since each
Dg,j is perpendicular to (N, 1, ..., Ns, and+2r8+3), there exists a set A; ; of h;d vertices
in D ; N V(Nsg, 1) such that there exist h;d disjoint paths from A;; to V(Cs, s ), but
there exists no path from the head of D] ; to V(Ng, 1) in D ; — A; ;. Note that Ng, 1
is contained in the disk bounded by Cs, » which bounds an f-zone, so Ng, ; is the
boundary of an f-zone. Define A; to be the f-zone bounded by Ng, 1. Define G” to be
the drawing and 7" to be the tangle obtained from G’ and 7, respectively, by clearing
UL, Ai. Note that 7" — |J;_, Z; has order 0 — k8 — k(4f +2) > 6" and is conformal
with 77 — Ui, Z;. On the other hand, by planarity, for every 1 < j < h;, there exists
an interval J; ; of Ng, 1 containing A, ;, such that J; ; N J; j» = 0 for every j' # j.

To prove this lemma, it is sufficient to show that U?Zl A; ; is free with respect to
T"—Uj=, Z;. Suppose that U;“Zl A; j is not free with respect to 7" —J;_, Z; for some i,
then there exists (A’, B') € T" —UJj_, Z; with order less than dh; such that U?:1 A;; C
V(A"). Let (A,B) € T"” with V(A) = V(A") U U';Zl Zj and V(B) = V(B') U U';Zl Z;.
We assume that A is as small as possible, so m~ (U;“:1 A, j,u) < dh + k3 for every
u € V(A) by Theorem 5.3.

We claim that Qg, C V(B) — V(A). Suppose to the contrary that there exists u €
Qg, NV(A). So there exists a closed walk W of a radial drawing of G” with length less
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than 2dh; +2k0 and {u,v} C ins(W) for some vertex v € U;;l A, ;. Since {v} C ins(W),
if W contains the vertex of a radial drawing of G” corresponding to the region bounded
by Ng, 1 for any ¢ # i, then W N V(Ng, ;) # 0 for every 2 < j < 4hd + 2k + 2, so
|W| > 4hd + 2k0 + 1, a contradiction. So W does not contain the vertex of a radial
drawing of G” corresponding to the region bounded by Ng, 1 for any ¢ # . Similarly,
since {u} C ins(W), if W contains the vertex of a radial drawing of G” corresponding to
the region bounded by Ng, 1, then W N V(Ny, ;) # 0 for every 2 < j < 4hd + 2k + 2,
a contradiction. So W does not contain the vertex of a radial drawing of G” corresponding
to the region bounded by Ng, 1. Therefore, W is a closed walk in a radial drawing of G'.
This implies that m7 (u,v) < dh; + k8. So u is a vertex in Csg, & contained in the disk
bounded by Cs, gn4xpg containing C'g, 1, a contradiction.

Therefore, Qg, C V(B') — V(A’). However, there exist dh; disjoint paths in G” from
U?:1 A;; to Qg,, a contradiction. So U?:l A; j is free with respect to T — Jj_, Z; for
every ¢. This proves the lemma. O

Lemma 6.3. Let d > 3, h be positive integers, and let 3 be a surface. Then there exist in-
tegers 0(d, h,X), ¢(d, h, X)) such that if G is a 2-cell drawing in X, T is a respectful tangle
in G of order at least 8, and G contains h d-free vertices vy, va, ..., vy with my(vi,v;) > ¢
for1 <i<j<h, then G admits an H-subdivision with branch vertices vy, va, ..., vy, for
every graph H of order h and of mazimum degree at most d embeddable in 3.

Proof. Let H be a graph of order h and of maximum degree at most d embeddable
in X. Let 659 be the positive integer # mentioned in Theorem 5.9 by taking t = h
and z = dh. Note that ({v;},{v;}) is a O-vortex for every i. For 1 < i < h, let A;
be the 12-zone around v; of G mentioned in Lemma 6.1 such that A; contains v; and
all its neighbors, and let S; be the subgraph of G contained in the closure of A;, and
let Q; = OA; N V(G) with the cyclic order defined by the boundary cycle of A;. So
(Si, ;) is a 24-vortex by Lemma 6.1. Let 6/ = 055(d,1,24,h,059), 8 = Bs.2(d, 1,24)
and f = fs.2(d, 1,24, k), where 0.2, 852 and fs o are the numbers g, 3, f mentioned in
Lemma 6.2. Define 8 =6’ + h(4f +2)+2f +1and ¢ =059 + h(4f +2) +2f + 1.

Applying Lemma 6.2 by taking kK = h, hy; = 1 for 1 <i < h, p =24, 0" = 05, and
S the segregation consisting of (S, 1), (S2,Q2), ..., (Sk, Q) and the societies in which
each of them consists of exactly one edge that is not in U?Zl S;, we obtain the desired
subgraph G with a respectful tangle 7", and A, for 1 < i < h, such that every 4, ;
is free with respect to 7", as mentioned in the conclusion of Lemma 6.2. Then for every
x € A and y € Aj, for some i # j, we have that myw (z,y) > 6059 by Theorem 5.5.

For 1 <i < h, let A; be a closed disk in ¥ contained in the closure of A; such that
A, NG" = A; ;. Since H can be embedded in %, we can partition U?:l A; 1 and apply
Theorem 5.9 to obtain a linear forest so that an H-subdivision in G can be obtained by
concatenating these linear forests and h disjoint d-spiders D1, Do, ..., Dy, where each D;
is from v; to A; 1 contained in S;. We obtain an H-subdivision in G with branch vertices
V1,02, ...,Vp. O
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Lemma 6.4. Let p be an integer, G a graph, T a tangle in G of order at least 2p+2, and
S a segregation of G. If (S,Q) € S is a p-vortex and there exists no (A, B) € T of order
at most 2p + 1 such that B C S, then there exists no (A’,B’) € T of order at most the
half of the order of T such that B’ C S.

Proof. Suppose that there exists (A, B) € T of order at most the half of the order of T
such that B C S. Let Q = vy, va, ..., v, in order, where n = |Q| We may assume that
every v; is adjacent to a vertex in G — V(S), for otherwise we may remove it from Q.
As (S,9Q) is a p-vortex, by Theorem 8.1 in [9], there exists a path-decomposition (P, X)
of S of adhesion at most p such that the i-th bag X; of (P, X) contains v; for every
1 <i < n. For every subgraph H of S, we define (Ay, By) to be the separation of G
with minimum order such that Ay = H. In particular, for 1 < i < n, (Agx,}, Bsix,))
has order at most 2p + 1, so (Ag(x,}, Bs(x,)) € T. For 1 < i < n, define (A;, B;) =
(AU AS[U’}:l x5, BN BS[U_§:1 x,])- Note that if v; € V(B) for some j, then v; € V(A)
since B C S and v; is adjacent to a vertex in G — V(S). So the order of (4;, B;) is at
most [V(4) N V(B)| + V(Ag_, x,) NV (Bsyy_, x,) N (V(B) = V()| < [V(4)
V(B)|+ (U=, X5) N (Ui X)) < [V(A) N V(B)| + p. Since the order of (A, B) is at
most the half of the order of T, and the order of T is greater than 2p, either (4;, B;) € T
or (B;,A;) € T by the first tangle axiom. Let (Ao, By) = (A, B). We shall prove that
(4;,B;) € T for 0 <i <n by induction on .

When i = 0, (Ao, By) = (A,B) € T. Assume that (A4;,B;) € T for some i. Sup-
pose that (Biy1,Ai11) € T. But (4, Bi), (Asix,..]s Bsixisy)) € T, and By U A; U
S[Xi+1] = G, a contradiction. This proves that (A;, B;) € T for every 0 <14 < n.

Furthermore, (A,,B,) = (AU S, BN Bs). Recall that V(BN Bg) C V(B)NQ C
V(A)NV(B), so |V(By)| < |V(A) NV (B)|. Since (By,,G — E(B,)) has order less than
the order of T, (B,,G — E(B,)) € T by the first and third tangle axioms. However,
A, U B, = G, contradicting the second tangle axiom. This completes the proof. O

Lemma 6.5. For a positive nondecreasing function ¢ and integers p, A\, k, k,0%, d with
d > 4, there exist integers 0, p* such that the following is true. Assume that G is a graph,
X is a subset of V(G), T is a tangle in G, and S = 81 U Sy is a T -central segregation
that has a proper arrangement T in a surface ¥ such that the following hold.

1. For every (S,9) € S1, |Q| < 3, and for every x € Q, there exist |Q| — 1 paths in S
from z to Q — {x} intersecting only in {z}.

2. |Sa] < k.

3. (5,9Q) is a p-vortex for every (S,Q) € Ss.

4. The skeleton G' of S is a minor of G, is 2-cell embedded in ¥ and has a respectful
tangle T of order at least 6 conformal with T .

5. There exist k A-zones A1, As, ..., A in G’ around some vertices of G' with respect to
the metric my such that every d-free vertexr of G' with respect to T’ contained in X

; .
is contained in |J;_; A;.
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Then there exist a T -central segregation S* = S; U S5 of G and a proper arrangement
T* of §* with respect to (S7,S5) in ¥ such that the following hold.

1. 8§ C Sy; in particular, |Q| < 3 for every (S,Q) € Sf.

2 |53l < stk and Uis g)es, S YU s anesasroncue, & 9 € Usoes; S-

3. There exists an integer p' with p' < p* such that (S,Q) is a p'-vortex for every
(5,02) € S;.

4. The skeleton G* of T* is a minor of G, is 2-cell embedded in ¥ and has a respectful
tangle T* of order at least 0* + ¢(p*) + 2p* conformal with T .

5. There is no d-free vertex of G* with respect to my~ contained in X.

6. mr«(x,y) > ¢(p') for every atoms x,y of G* with x € Sg,y € Sy, for different
members (Sg, ), (Sy,Qy) € S3.

Proof. Note that each society that consists of a single vertex is a 0-vortex. For each 1,
applying Lemma 6.1 by taking (S, Q) = ({v;}, {vi}), where v; is a vertex of G’ such that
A; is a A-zone around v; (we will choose 6 to be greater than 4\ + 59 so that Lemma 6.1
is applicable), we can find a (A4 14)-zone A/ containing A; such that the society (S’, ')
mentioned in Lemma 6.1 by taking A = A; is a (A + 8 4+ kp)-vortex. Therefore, we can
replace A; by A} so that we may assume that every A; is a N'-zone and the subgraph
of G inside the disk A; is a N-vortex (S,(Q), where N = X\ 4+ 14 + kp. Similarly, for
each (5,Q) € Sy, there exists a 16-zone Ag containing the disk 7(S, §2), and the society
(57, €Y) mentioned in Lemma 6.1 by taking A = Ag is a (kp + 10)-vortex.

Let C = {Ai,As : 1 < i <k, (5,Q) € S}, and let A\¢ be the minimum ¢ such that
every member of C is a t-zone. For each member A of C, let (Sa,Q4) be the (S, )
mentioned in Lemma 6.1 by taking A = A. Let M¢ be the minimum such that (Sx, Q4)
are Mc-vortices for all members A of C. Let pg = M¢ and \g = A¢. Note that |C] < k+«,
po < max{\,kp + 10}, and A9 < max{XN,16}. For i > 1, let ¢; = ¢(pi—1) + (4Xi—1 +
58)(k+k)+2, \i =t;+14 and p; = (k+rk—i+1)p;_1+t;+8. Then we consecutively test
whether there exist two atoms of G’ in different members of C with distance less than
d(Mc) + (4X¢ + 58)|C| under the metric my, and if such two nearby vortices exist, then
we do the following. Find the (fj4.41-|c| + 14)-zone A mentioned in the conclusion of
Lemma 6.1 containing these two nearby members of C, remove these two members from
C and add A into C, and update M¢ and A¢. Since |C| decreases in each step, this process
will terminate within x + k steps. Furthermore, during the process, A¢ < Api,—|c| and
Mec < pryw—|c|- Therefore, when the process terminates, each member A of C is a A¢c-zone
in G’ with A\¢ < A1« and defines an Me-vortex (S, Qp) with Me < prik, and the
distance between any two members of C is at least ¢(Mc)+ (4 +58)|C| under the metric
mrr. Let p* = prar and X* = \py .. We define 0 = 0* +¢(p*) +2p* + 1+ (A\* +58) (k+k).

Define §7 = &1 —{(5",Q") € 81 : 8" € Upee Sat and S5 = {(Sa,Q4) : A € C}. Then
Conclusions 1-3 hold. Since atoms belonging to different members of &5 have distance
at least 3 4 (|C| — 1)(4\¢ + 58), there exists a proper arrangement 7 of §* such that
the skeleton of 7* with respect to (S7,S;) is 2-cell and has a respectful tangle 7* of
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order at least 6* + ¢(p*) + 2p* by repeatedly applying Lemma 6.1 |C| times. Note that
G* is a subgraph of G’ and hence is a minor of G. So Conclusion 4 holds. Since G* is
a subgraph of G’, Conclusion 5 holds. For any = € S,,y € S, for different members
(S, Q22), (Sy, Q) € S5, let A}, Ay be the zones A* containing S, and Sy, respectively,
then my(z,y) > my (z,y) — |C|(4\c + 58) > ¢(p*). This proves Conclusion 6.

It remains to prove that S* is a T-central segregation of G. Since 7' has order at
least 6 and is conformal with 7, the order of 7 is at least 6. Since §§ C &§; and S is
T-central, by Lemma 6.4, it is sufficient to show that there is no (A, B) € T of order at
most 2p* + 1 such that B C S for some (5,€2) € ;. Suppose that such (A, B) exists.
Since B C S, V(B N G*) consists of a subset of V(A) N V(B) and some vertices of
degree at most two in G*. Let 5 be the G*-minor of G witnessing that 7 is conformal
with 7. Since T* has order at least p* + 1, there exists a separation (A’, B') € T* such
that B(E(A")) = E(A) N B(E(G*)), and subject to this, |V(B’)| is minimum. Note that
every vertex in V(B’) — V(A’) has degree at most two in G*. So if V(B') — V(A’) # 0,
then one can move a path in B’ with at least one internal vertex in V(B’) — V/(4’) into
A’, contradicting the minimality of [V (B’)|. So V(B’) C V(A) NV (B) contains at most
2p* + 1 vertices. This implies that (G* — E(B’), B’) € T* by the second tangle axiom,
contradicting the third tangle axiom. Hence &* is T-central. O

A segregation S of G is mazimal if there exists no segregation S’ such that {(5,Q) €
S: Q] >3} ={(8,Q) €8 | > 3} and for every (S,Q) € S with 2 < |Q| < 3,
there exists (S’,Q') € &’ with |Q/| < 3 such that S’ C S, and the containment is strict
for at least one society. Note that if a segregation S of G is maximal, then G contains
the skeleton of S as a minor, and for every (S,Q) € S with | < 3 and = € Q, there
exist |Q| — 1 paths in S from z to Q — {z} intersecting only in {z}. Consequently, if
H is a triangle-free graph and the skeleton of a maximal segregation S of G admits an
H-subdivision, then G admits an H-subdivision.

The following theorem is proved in [2] and is a stronger form of the structure theorem
for excluding minors in [15]. (We remark that our definition of maximal segregations is
slightly different from the one in [2]. But our alternative is required, for otherwise the
skeleton mentioned in Theorem 6.6 might not be 2-cell and the metric ms might not
be defined. And the proof of Theorem 6.6 in [2] works under this setting.)

Theorem 6.6 (/2, Theorem 7]). For every graph L, there exists an integer x such that
for any nondecreasing positive function ¢, there exist integers 0,&, p with the following
property. Let T be a tangle of order at least 0 in a graph G controlling no L-minor of G.
Then there exist Z C V(G) with size at most & and a maximal (T — Z)-central segregation
S =8 USs of G— Z properly arranged by an arrangement « in a surface % in which
L cannot be drawn, where every (S,Q) € S; has the property that |Q| < 3, and |Ss| < K
and there exists p < p such that every member in Sy is a p-vortex. Furthermore, the
skeleton G’ of o with respect to (S1,S2) is 2-cell embedded in X with a respectful tangle
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T’ of order at least ¢(p) conformal with T — Z, and if x and y are two vertices in G’
incident with two different members in Sz, then my (z,y) > ¢(p).

Let us recall that the function mf was defined prior to Theorem 1.3. A graph H has
a nice embedding in ¥ if H can be 2-cell embedded in ¥ and it has a set F' of regions
such that every vertex of H of degree at least 4 is incident with exactly one region in F',
and |F| = mf(H, ).

Lemma 6.7 ([2, Lemma 12]). Let H be a graph of mazimum degree d that can be embedded
in a surface Y. Then there exists a triangle-free graph H' of mazimum degree d admitting
an H-subdivision such that mf(H',¥) = mf(H,X) and H' has a nice embedding in 3.

Recall that a vertex v in a graph G is d-free with respect to a tangle 7 in G if there
does not exist a separation (A4, B) € T of order less than d such that v € V(A) — V(B).
Now, we are ready to prove Theorem 6.8, which is the main theorem of this paper. Note
that Theorem 1.3 immediately follows if we take X = V(G) in Theorem 6.8.

Theorem 6.8. Let d, h be positive integers. Then there exist 0, kK, p,&, g > 0 satisfying the
following properties. If d > 4, H is a graph of maxzimum degree at most d on h vertices,
G is a graph, and X is a subset of V(G) such that G does not admit an H -subdivision
whose branch vertices corresponding to vertices of degree at least four in H are contained
in X, then for every tangle T in G of order at least 0, there exists Z C V(Q) with |Z| < &
such that either

1. no vertex in V(G — Z) N X is d-free with respect to T — Z, or

2. there exist a (T — Z)-central segregation S = §1 U Sy of G — Z with |Ss| < k, having
a proper arrangement in some surface ¥ of genus at most g such that every society
(S1,) in Sy satisfies that |Q1| < 3, and every society (Sa,$) in Sy is a p-vortez,
and satisfies the following property: either

(a) H cannot be drawn in X, or

(b) H can be drawn in X and mf(H,X) > 2, and there exists S C Sy with |S5| <
mf(H,X) — 1 such that every d-free vertex in V(G — Z)NX with respect to T —Z
is in S — Q for some (S,Q) € S}.

Furthermore, if T  controls a K s 4, -minor and G does not admit an H -subdivision with
branch vertices contained in X, then the first conclusion always holds even when d < 3.

Proof. Note that there are only finitely many graphs of maximum degree at most d
on h vertices, and there are only finitely many surfaces in which H can be drawn but
K| 34p) Cannot. So there exists h* such that for every graph H on h vertices of maximum
degree at most d and surface in which H can be drawn but K |8an| cannot, the graph
H' mentioned in Lemma 6.7 can be chosen such that it has at most h* vertices.
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We define the following.

e Let kg be the number k£ mentioned in Theorem 6.6 by taking L = Kt%th'

e Let 055,862, fo.o be the functions 8, 8, f mentioned in Lemma 6.2, respectively.

o Let ¢’ be the maximum of ¢¢ 3(d, h*, X) among all surfaces X in which thth cannot
be drawn, where ¢g 3 is the number ¢ mentioned in Lemma 6.3.

e Let 059 be the maximum of # mentioned in Theorem 5.9 by taking all surfaces in
which K54, cannot be drawn, ¢ = (d + 2)h" and z = dh”.

o Let ¢*(z) = 0s.2(d, h*, x,2k6.6+h*, (dh*+h*+1)(05.9+1))+2fs 2(d, h*, x, 2k6.6+h*)+
(2k6.6 +h*)(686.2(d, h*, 2) +4fs.2(d, h*, x,2k6.6 +h*) +2) + 2(dh* + h* +1)(05.9+6).

o Let 0f ;(z) be the function 6 obtained by applying Lemma 6.5 by taking ¢ = ¢*,
p=x, A=d+¢ + 11, k = Keg, k = h* + ke, 0" = 05.2(d, h*, x,2k6.6 + h*, (dh* +
h*+1)(659+1)) and d =d.

e Let 055 be the maximum of 6(d, h*,3) mentioned in Lemma 6.3 among all surfaces
2 in which K54y, cannot be drawn.

e Let 056, &6.6, ps.c be the numbers 6, £, p mentioned in Theorem 6.6, respectively, by
taking L = K| 34p,) and further taking ¢(z) = 0f 5 (x) + 0 5.

e Let 055 and pg 5 be the numbers 6 and p* obtained by applying Lemma 6.5 by taking
=0 " p=rpsc, \=d+¢ +11, k = ke, k = h*+Kes, 0° = 052(d, h*, ps.6,2k6.6 +
h*, (dh*+ h* +1)(059+ 1)) and d = d.

o Let 05,4 = (hd)¥t! +d.

Now we are ready to define the numbers for the conclusion of this theorem.

o Let £ = max{&.6 + (2k6.6 + h*)Bo.2(d, h*, ps.5), (hd + 1)4T1}.

e Let 0 =055+ 053+ 056 +&+d+ pss+ pos.

o Let k= K6.6 + h*.

e Let p=ps.c + ps.s.

o Let g be the maximum genus of a surface in which K [3gn] cannot be drawn.

Let T be a tangle of order at least 6 in GG, and assume that G has no H-subdivision
with branch vertices contained in X. We may assume that X contains at least h vertices
of degree at least d in G, otherwise the first statement holds by letting Z be the set
of vertices in X of degree at least d. We first assume that 7 controls a K | 8gp)-Minor.
By Lemma 3.2 and Theorem 3.4, since G does not admit an H-subdivision with branch
vertices contained in X, there exists a set of vertices Z of G with |Z] < £ such that
for every vertex v € V(G — Z) N X of degree at least d in G, there exists a separation
(Ay, By) € T—Z of G—Z of order at most d—1 such that v € V(A,)—V(B,). Therefore,
the first statement holds.

So we may assume that 7 does not control a K | 3 -T0inOT. To prove this theorem,
we may assume that G does not contain an H-subdivision whose branch vertices corre-
sponding to vertices of degree at least four in H are contained in X.
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By Theorem 6.6, there exist a surface 3 in which KL%th cannot be drawn, Z C V(G)
with |Z] < &s.6, a number p with p < ps 6, and a maximal (7 — Z)-central segregation
S =81US8; of G — Z with |Sa| < kg6, having a proper arrangement 7 in ¥ such that
every society (S,Q) in S; satisfies that |Q| < 3, and every society in Sy is a p-vortex,
and the skeleton G’ of S is 2-cell embedded in ¥ and has a respectful tangle 7" of order
at least 6} -(p) + 0s.5 conformal with 7 — Z, and if 2,y are two vertices in G’ incident
with two different members in S, then my (z,y) > 605 5(p). If H cannot be drawn in X,
then Statement 2(a) holds, so we may assume that H can be drawn in 3.

In addition, we may assume that V(G — Z)NX contains d-free vertices with respect to
T —Z, for otherwise Statement 1 holds. Note that every vertex in g )es, V(5)=V(G')
is not d-free with respect to 7 — Z since d > 4. If v is in V((G — Z) N G’) but is not
d-free with respect to 77, then there exists a separation (A’, B’) € T’ of order less than
d such that v € V(A") — V(B’). We choose (A’, B’) such that A’ is as small as possible.
Note my (v, z) < d for every x € V(A’) by Theorem 5.3. Suppose that there is no vertex
r € Q with (9,Q) € S; and m7(v,z) < d. Then there exists (A, B) € T — Z of order
less than d such that V(A) = U 0)esacvan V() and V(A)NV(B) = V(A)NV(B).
So v is not d-free with respect to T — Z. Therefore, if v is a vertex in (G — Z) NG’ that
is d-free with respect to T — Z but not d-free with respect to 7', then my (v, z) < d for
some z € V(S) with (S,Q) € So. By Theorem 5.6 and Lemma 5.7, for every (5,Q) € Sa,
there exists a (d 4 11)-zone Ag with respect to 7’ around a vertex in Q containing every
atom y with my (x,y) < d+ 1 for one such z. Thus every vertex of (G — Z) N G’ that
is d-free with respect to 7 — Z but not d-free with respect to 7" is in U(S,Q)GSQ Ag.

Let H' be a graph that has a nice embedding mentioned in Lemma 6.7 such that
|[V(H")| < h*. By Lemma 6.3, V(G') N X does not contain |V (H')| d-free vertices with
respect to 7’ such that every pair of them has distance at least ¢’ under the metric
mqy, for otherwise G contains an H-subdivision with branch vertices contained in X.
So by Theorem 5.6 and Lemma 5.7, there exist integer k& with 0 < k < h*, d-free
vertices vy, v, ..., v of G’ with respect to 7', and (¢’ + 10)-zones Aq, Ag, ..., Ay around
V1, Vg, ..., Uk, respectively, such that every d-free vertex in V(G’) N X with respect to T’
is in Ule A;. Then every d-free vertex in V(G — Z)NX with respect to 7 — Z is a vertex
of G"UU (s 0)es, S and it is in Ule AiUUs0)es, As-

Then let S* = §§US3, p/, T* and G* be the §*, p/, T* and G*, respectively, mentioned
in the conclusion of Lemma 6.5 by taking ¢ = ¢*, p = p, A = d+ ¢ + 11, k = kg,
k= h*+kes, 0" = 0s2(d, h*, ps.5,2k6 6+h*, (dh*+h*+1)(05.9+1)) and d = d, and further
takingG=G—-Z,T=T—-Z,85§=8,7=7,%X =%, and G’ to be the skeleton of S. Note
that |S5| < 2ke6 + h*, and the order of T* is at least 0s2(d, h*, ps.5,2k6.6 + h*, (dh* +
h*+1)(05.0+1)) + ¢*(p6.5) +2p6.5 > 06.2(d, h*, p6 5, 2666 + h*, (dh* +h* +1)(05.9 +1)).

Let k' be the number of members of 8 containing d-free vertices with respect to 7—Z2
belonging to X. Note that ' < |S3] < 2k66 + h*. Let Z1, Za, ..., Z,r, A1, Aa, ...y Ay be
the sets obtained by applying Lemma 6.2 by taking x = ', h; = h* for every i, p = p/,
0" = (dh*+h*+1)(050+1),G=G—-Z,G = G* and (S1,1), (S2,Q2), ..., (S, Q) as
the vortices in S5 containing d-free vertices with respect to 7 — Z belonging to X . Define
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83" C 83 to consist of the members in which A; # (). We define Z’ to be ZUJ, <, <, Zi.
Note that |Z’| < &. o

We may assume that there exist d-free vertices of V(G —Z')NX with respect to T—Z;
otherwise Statement 1 holds. So |S3’| > 1. In addition, we may assume that mf(H, %) > 1
since otherwise H contains no vertex of degree at least four, and hence G has no H minor
and Statement 2(a) holds by Theorem 6.6. If mf(H,Y) > 2 and |S3'| < mf(H,¥) — 1,
then Statement 2(b) holds. So we may assume that |S;’| > mf(H,¥) > 1 and that
A; # 0 fori=1,2,..,|S5|

Let G” be the drawing and 7" the tangle in G conformal with 7* mentioned in
the conclusion of Lemma 6.2. For 1 < i < |S3'| and 1 < j < h*, let Y; and A; ; be
the cycles and sets mentioned in Conclusion 2 of Lemma 6.2, respectively. So for every
1<i<i <8 j,j € {1,2,...,h*}, z € Aij,y € Ay jr, we have that my(z,y) >
my«(x,y) — (266.6 + h*)(4fs.2(d, h*, p', 2k6.6 + h*) + 2).

Note that for such z,y, we know my-(z,y) > ¢*(p') — 2f6.2(d, h*, p’, 2666 + h*),
since each z,y is within distance at most fs.2(d, h*, p’, 2k6.6 + h*) (with respect to my)
away from a member of S;’, and the distance (with respect to m7~) between those two
members is at least ¢*(p’). Therefore, for every 1 < i < i’ < |83'], 4,5 € {1,2,...,h*},
x € Ajj,y € Ay jr, we have that mrn (z,y) > ¢*(p') —2f6.2(d, h*, p', 2k6.6 +h*) — (2K6.6+
hW)(Afso(d, h*, p', 2k6.6 + h*) +2) > 2(dh* + h* +1)(059 + 6).

Let x € Ay1. By Lemma 5.4, there exists an edge e* of G” with myn(e*,x) >
(dh* + h* 4+ 1)(05.9 + 6). As in the proof of Theorem 4.3 in [12], there exist non-loop
edges e1, €, ..., eqp+p« of G” such that (059 + 6)i < myv(z,e;) < (059 + 6)i + 3 for
1 < i < dh*+ h*, and the set of the ends of each e; is free for each 1 < i < dh* + h*.
Therefore, my(e;,e5) > 05.9+3 for every 1 < i < j < dh*+h*. Note that my (z,y) < 2
for y € U;L; Ay j and my(x,y) > 2(dh* + h* +1)(05.9 4 6) for y € U‘ii%/‘ U?Zl A ;.
Hence, my (y,eq) > 059+ 1 for every y € U‘iigll‘ U?:1 A;; and 1 < ¢ < dh* + h*. For
1 <i < [S3'|, define A; to be a disk in ¥ contained in A; such that A;NG" = U?:l A
For 1 <i < dh*+h*, define A s/ 4, to be a disk in ¥ such that A; NG" is the set of the
ends of e;. Let W = U?;%HI’E) U;lzl A U ULE(IHI)HW(H/)'{ai,bi}, where a;, b; are the
ends of e;. By Theorem 5.9, for any positive integer p and any partition (Wi, ..., W,) of W
satisfying the topological feasibility condition, there exist pairwise disjoint connected
subdrawings I'y,...,I', of G” with V(I';) N W = W; for every 1 < j < p.

Since H' has a nice embedding in 3, we can embed H’ into ¥ such that the vertices
of degree at least four of H' are incident with mf(H’,¥) regions. Then there exists a
partition (W, : z € V(H')U E(H')) (with possible empty part) of a subset of W such
that the following hold.

 Fix an nice embedding of H' in X, a set of mf(H’, X)) faces incident with all vertices
of degree at least four in H’, an injection ¢ that maps each of those mf(H’, X)) faces
to a member of S}, a set of h* disjoint d-spiders mentioned in Conclusion 2(d) in
Lemma 6.2 for each member of S}’, and an injection 15 that maps each vertex u
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of H' of degree at least four in H' to a d-spider in the set for ¢1(f), where f is the
face among those mf(H’,X) faces incident with w.

e There exist an injection t3 from E(H') to {e; : 1 < ¢t < dh*}, and an injection u4
that maps each vertex-edge incidence pair (v, e) of H' to an end of 13(e), where every
loop contributes two vertex-edge incidence pairs.

o For each vertex v of H' of degree at most three, W, = {t4((v,¢e)) : e is an edge of H'
incident with v}.

o Tor each edge e of H' incident with both ends, say u, v, of degree at least four, where
u, v are not necessarily distinct, W, is a set of size two consisting of one leaf of o (u)
and one leaf of 15(v).

¢ For each edge e of H' incident with one vertex, say u, of degree at most three and one
vertex, say v, of degree at least four, W, consists of t3((u, e)) and one leaf of t5(v).

o W, =0if z is a vertex of H' of degree at least four or z is an edge of H' not incident
with any vertex of degree at least four.

o (W,:2z€V(H')UE(H')) satisfies the topological feasibility condition.

Since the partition (W, : z € V(H') U E(H')) satisfies the topological feasibility con-
dition, by Theorem 5.9, there exist pairwise disjoint connected subdrawings (T', : z €
V(HYUE(H")) of " with V(I',)NW = W, for every z € V(H')UE(H'). Observe that
the union of the image of 15 and UzGV(H’)uE(H’) I,u UZ:1 e; contains an H’-subdivision
(my, ) such that its every branch vertex corresponding to a vertex of degree at least
four in H’ is contained in X.

Finally, we shall obtain a contradiction by showing that G admits an H-subdivision
whose branch vertices corresponding to vertices of degree at least four in H are contained
in X. Recall that S* is maximal, so for every (S, Q) € S} and for every a € Q, there exist
|Q| — 1 paths in S from a to Q — {a} intersecting in a and otherwise disjoint. Since H’ is
triangle-free, one edge of the triangle in G” formed by Q is not contained in the image
of g for any (S,Q) € Sf with || = 3. Therefore, G admits an H-subdivision whose
branch vertices corresponding to vertices of degree at least four in H are contained in X.
This completes the proof. 0O

7. Remarks about optimality

In this section we shall prove that the order of the separations mentioned in the
first conclusion of Theorem 1.3 cannot be improved, and the value D mentioned in
Theorem 1.2 and [2, Theorem 3] cannot be replaced by any number smaller than the
number d — 1 mentioned in the first conclusion of Theorem 1.3.

Let 0 be a positive integer. A 26 x 20-wall is the graph W with V(W) = {(4,j) : 1 <
1<20,1<j5<20}and EIW)={(,5)(4,j+1):1<i<20,1<j<20—-1}U{(2k —
1,)(2k,5): 1<k <0,1<35<20, jisodd}U{(2k,j)(2k+1,7j):1<;j<0-1,1<j<
20, j is even}. For each 1 < ¢ < 20, the i-th row is the subgraph induced by the vertices
{(4,7) : 1 < j <26}.
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We fix d to be a positive integer with d > 4 in the rest of this section. Let r be a
positive integer. Let Y be the collection of all (d — 1)-element subsets of the edge-set of
the 2r x 2r-wall. Define G, to be a graph obtained from the 2r x 2r-wall by the following
procedure.

o Subdividing each edge |Y| times.

o For each member y of Y, add a vertex v,. Let Vy = {v, : y € Y}.

o For each y € Y and e € y, add an edge between v, and a vertex obtained by
subdividing e in a way that every vertex not in Vy has degree at most three in G,.

Note that G, has maximum degree d—1, so G,- does not contain any graph with maximum
degree at least d as a subdivision.

Theorem 7.1. For all positive integers d, 0, k, p,&, g, there exist a positive integer v and
a tangle T in G, of order at least 6 such that the following hold.

1. For every Z C V(G,) with |Z| < &, there exists a verter v € Vy — Z such that there
exists no separation (A, B) € T — Z of order at most d — 2 with v € V(A) — V(B).

2. For every Z C V(G,) with |Z| < &, there exists no (T — Z)-central segregation
S =8USs of G, — Z with |S2| < k such that S can be properly arranged in some
surface ¥ with genus at most g, every (S1,Q1) € Sy satisfies |Q1| < 3, and every
(S2,Q9) € Sy is a p-vorter.

3. G, cannot be constructed by clique-sums, starting with graphs that are an <
E-extension of either a graph of maximum degree at most d — 2, or an out-growth
by < Kk p-rings of a graph that can be drawn in a surface of genus at most g.

Proof. We may assume d > 2; otherwise the first conclusion holds. Let r be a fixed
positive integer. We shall prove that every sufficiently large r satisfies the conclusion of
this theorem.

Define T to be the collection of all separations (A4, B) of G, of order less than |2 |
such that B contains all vertices in some row of the 2r x 2r-wall. It is straightforward to
verify that 7 is a tangle of order [%"]. We choose 7 to be a number with || > 6, then
T is a tangle in G, of order at least 6.

There exists a positive integer k such that if 7 controls a Kj-minor, then there exist
no Z C V(G,) with |Z] < £ and a (T — Z)-central segregation S = S US2 of G, — Z
with |Sz| < k such that S can be properly arranged in a surface of genus at most g,
every (S1,€1) € & satisfies |21] < 3, and every (S2,Q2) € Ss is a p-vortex. It is not
hard to show that there exists an integer r; such that if r > ry, then G, contains a
Kj-minor such that each branch set intersects every row of the 2r x 2r-wall in G,.. That
is, if » > 7y, then T controls a Ki-minor. We choose r > 1, so the second conclusion of
this theorem holds.
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Choose r > d26+192¢°  Now we prove the first conclusion of this theorem. Let Z C
V(G) with |Z] < €. Then G, — Z contains a subgraph R which is a subdivision of G242,
and only the edges contained in the subdivided wall are subdivided. Let v be a vertex
of V(R) N Vy such that there exists a row of the subdivided wall in G.42, such that all
neighbors of v are vertices obtained by subdividing edges of that row. Then for any row
of the subdivided wall in G242, there exist d — 1 disjoint paths in the subdivided wall
from the neighbors of v to that row. So if (4,B) € T — Z with v € V(A) — V(B), then
the order of (A, B) is at least d — 1. This proves the first conclusion of this theorem.

Finally, we prove the third conclusion of this theorem. Suppose that G, can be con-
structed by clique-sums starting from graphs mentioned in the third conclusion. Then
G, has a tree-decomposition (7, X') such that each torso is a graph involved in the clique-
sum. For each node t of the tree, let X; be the bag at t. Since the clique size of each graph
involved in the clique-sum is bounded, the adhesion of (T, X) is bounded. We choose r
to be larger than the adhesion of (T, X). For each edge tt’ of the tree T', let T; and Ty be
the components of T' — ¢’ containing ¢ and t’, respectively. Then there exists a separa-
tion (Asr, By) of G, such that V(A ) = Ut”eV(T,,) Xprand V(B ) = Ut”eV(th) Xy,
Since the order of T is larger than the adhesion of (T, X), either (A4, By) € T or
(B, Asr) € T. We orient the edge tt’ from t to t' if (As, Biy) € T. Then there exists a
node t* of T' with out-degree zero. Let L be the torso at t*. Since T controls a Kj-minor,
L is a < &-extension of a graph of maximum degree at most d — 2. Let Z C V(L) with
|Z] < & such that L — Z has maximum degree at most d — 2.

Note that G, — Z contains a subgraph R which is a subdivision of G,.42,; and only
the edges contained in the subdivided wall are subdivided. And there exists a vertex v
of V(R) N Vy such that there exists a row of the subdivided wall in G242 4 such that all
neighbors of v are vertices obtained by subdividing edges of that row.

Since L — Z has maximum degree at most d — 2, | X« N Xy — Z] < d — 2 for every
neighbor ¢ of t*. Since there exists no separation (A, B) € T—Z of order at most d—2 with
v e V(A)—V(B),v € X;». But since v has degree d—1 in G, — Z, v belongs to X N X,
for some neighbor ¢ of t*. Let c1,¢a, ..., ¢y be the neighbors of ¢* such that v is adjacent
in G, to some vertex in (Uf:1 Utech X:) — Xi», where T, is the component of T'— t*¢;
containing ¢;. Since v has degree d — 1 in G,., £ < d — 1. Let (A’, B) be a separation
of G, such that V(A") = ZUUiZ, Usey r,,) Xe and V(B') = ZUU,ev oy _ye_, vir,) X
Note that the order of (4’, B') is at most £ +dl < £ +d* < |%]. So (A, B’) € T. Let
(A*,B*) € T — Z be a separation of G, — Z with V(4*) = V(A’) — Z and V(B*) =
V(B') — Z. Since the order of (A*, B*) is at most d?, R N B* contains a subgraph L’
isomorphic to a subdivision of G4, where only the edges contained in the subdivided wall
are subdivided. So there exists a row of the subdivided wall in L’ contained in B*. Note
that there are d — 1 disjoint paths Py, Ps,..., P;_1 in G, — Z from the neighbors of v
to that row, where each neighbor of v in G, — Z is contained in some P;. Let p be the
number of neighbors of v in G, — Z contained in V(A4*) — V(B*), and we may assume
that Py, P, ..., P, contain such neighbors. So for each ¢ with 1 < ¢ < p, P; intersects
V(A* N B*). Hence p < |V(A* N B*) — {v}|. By the definition of a torso, v is adjacent
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in L to every vertex in V(A* N B*) — {v}. Therefore, the degree of v in L is at least the
degree of v in G, — Z, which is d — 1, a contradiction. This proves the theorem. O
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