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In this work, we present a comprehensive theoretical and computational study of

donor/acceptor resonance energy transfer (RET) beyond the dipole approximation,

and including for arbitrary inhomogeneous and dispersive media. The theoretical

method extends Förster theory for resonance energy transfer between donor and ac-

ceptor molecules or nanoparticles to the case where higher multipole transitions in

the donor and acceptor play a significant role in the energy transfer process. In our

new formulation, the energy transfer matrix element is determined by a fully quan-

tum electrodynamic expression, but its evaluation only requires classical electrody-

namics calculations. By means of a time-domain electrodynamical approach (TED),

the matrix element evaluation involves the electric and magnetic fields generated by

the donor and evaluated at the position of acceptor, including fields associated with

electric dipoles, electric quadrupoles and magnetic dipoles in the donor, and the ac-

ceptor response to the electric and magnetic fields and to the electric field gradient.

As an illustration of the benefits of the new formalism, we tested our method with

a 512-atom lead sulfide (PbS) quantum dot as donor/acceptor either in vacuum or

with a spherical nanoparticle(toy model) in the surrounding medium. This includes

an analysis of the effects of interferences between multipoles in the energy transfer

rate. The results show important deviations from the conventional Förster dipole

theory that are important even in vacuum, but which can be amplified by interaction

with a plasmonic nanoparticle.
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I. INTRODUCTION

Förster resonance energy transfer (FRET), resulting from donor/acceptor dipole-dipole

interactions was originally developed in 1948 [1], and it was used for the first time in 1967 as

a spectroscopic ruler to measure distances in macromolecules[2]. Such optical rulers based

on FRET opened a new era for a wide range of biological studies where nonzero spectral

overlap between donor emission and acceptor absorption plays a key role. As is discussed

in several articles [3, 4], the distance dependent criteria restricts the length scale of FRET

rulers to a maximum of about 10 nm, which means that normal FRET optical rulers are not

suitable for the investigation of many biological structural changes that take place at longer

length scales [5].

This type of energy transfer from a donor species initially in an excited electronic state

to an acceptor in its ground state, possesses features that have been under a great deal of

attention, both theoretically and experimentally, particularly in nanoscience and technology.

Moreover, the science of resonance energy transfer has been broadly explored in artificial light

harvesting antenna devices [6, 7], spasers [8, 9], and especially in biology as an assessment

method for studying the dynamical evolution of energy [10]. The study of these phenomena

in nanostructures has recently led to promising applications in solar cell systems [11, 12]

and optical switching [13, 14].

Semiconductor quantum dots (QDs) have sometimes been used as novel light harvesters in

solar cells, where FRET induced by electronic coupling between QDs plays an essential role

in the function of such devices. However, FRET, based on the point dipole approximation,

is only valid if the donor-acceptor distance is significantly larger than the size of the donor

or acceptor. For closely placed donor-acceptor systems, various adjustments to the FRET

approximation have been suggested, like atom-centered transition charges [15], continuous

transition densities [16], or partial dipoles [17].

Past studies of FRET in QD films have emphasized the key role of higher order multipole

interactions in exciton transfer between closely packed QDs [18]. When the donor-acceptor

distance is beyond the van der Waals effective regime, and Coulombic interaction between

the transition densities of the chromophores [19] is their primarily coupling, as long as

the emission and absorption transitions are electronically allowed, the type of interaction

occurring between transition dipoles is known as the ”ideal dipole approximation” (IDA)
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[20–22]. Here the Coulombic interaction between donor and acceptor defines the rate of

energy transfer between these two. IDA is an excellent approximation for energy transfer

at visible photon energies, since the wavelength of light in this case is much larger (several

hundred times) than the size of the molecule. In other words, the coupling matrix element is

not sensitive to any variation in the vector potential which may be present over the spatial

extent of the transition densities of the donor or acceptor. However an asymmetric shape

to the transition densities and/or large spatial extent may make the IDA invalid. This is

also an issue when the transition is dipole forbidden or only weakly allowed. Under these

circumstances, the transition dipole moment is not sufficient to represent the the spatial

distribution of the transition density, and the IDA is not applicable. A more accurate

description of the Coulombic interaction between transition densities would involve the use

of more terms from the multipolar expansion for donor emission and/or acceptor absorption.

In addition, since the electromagnetic field due to the donor may be highly nonuniform over

the extent of the acceptor, it may be important to couple field gradients to the multipole

expansion in determining energy transfer rates. This is especially important for emitters and

absorbers that are nanoparticles of sufficient size, as size can easily activate higher multipole

forbidden transitions.

Recently, Ding et al.[23, 24] have presented a general computational scheme to simulate

RET in inhomogeneous absorbing and dispersive media using a real-time electrodynamics

approach; the time-domain electrodynamics resonance energy transfer (TED-RET) method.

Applications of this method have considered plasmon-coupled resonance energy transfer in

which there is a plasmonic particle in the medium near to the donor and acceptor, and this

leads to substantial enhancements in both the rate and range associated with energy transfer.

In their approach the donor is assumed to be a single radiating molecule positioned at rD

whose size is much smaller than the distance between the donor and the acceptor. In this

case, it is appropriate to make the point-dipole approximation, Pex(r, t) = pex(t)δ(r− rD),

in which the external polarization Pex generated by the donor in a dielectric medium is

defined by pex(t). In the TED-RET approach, the transition matrix element, at angular

frequency ω, is calculated from the electric field ED(rA) at the position of the acceptor (rA)

originating from the donor at position rD using the following expression:

M ee(rD, rA, ω) = −µeg(rA)µge(rD)
eA.E

D(rA, ω)

pex(ω)
(1)
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Here µeg(rA)(µge(rD)) represents the magnitude of the transition dipole of the donor (accep-

tor) and the superscript e(g) stands for the excited(ground) states, while the orientation of

acceptor transition dipole is defined by the unit vector eA. Employing Fermi’s Golden rule,

the rate of energy transfer is expressed as

WD−→A =
2π

~
|M ee(rA, rD, ω)|2ρ(ω) (2)

where ρ(ω) is the density of final states associated with energy ~ω (corresponding to the

exciton energy). This formulation has several advantages: (i) electric and magnetic fields

can be obtained from standard computational electromagnetic software, such as the finite

difference time domain method (FDTD) or Mie theory; (ii) transition dipoles for both the

donor and the acceptor can be calculated via quantum chemistry software such as time-

dependent density functional theory(TD-DFT); and (iii) it is valid for any inhomogeneous,

absorbing, and dispersive media. Indeed, evalution of the field ED in the time domain is

often desirable for such media, which is why the theory is referred to as the TED-RET

approach.

However, when the optical transition in the donor and/or acceptor is dipole forbidden,

or the size of the donor and/or the acceptor is comparable with distance between them, the

dipole approximation is not valid any more and the effect of higher order multipoles needs to

be included. Here, we present a general but simple computational scheme, to mimic RET in

inhomogeneous, absorbing, and dispersive media, but going beyond the dipole approximation

to include magnetic dipole and electric quadrupole effects. As part of this approach, we show

that the transition matrix elements for RET (M(rD, rA, ω)) can be expressed in terms of

interactions between acceptor transition multipoles (electric dipole, magnetic dipole, and

electric quadrupole) and the corresponding electromagnetic fields generated by the donor

transition multipoles.

II. ELECTRODYNAMICS OF MULTIPOLE FIELDS

The electromagnetic fields generated by electric and magnetic dipoles at the observation

point r produced by current densities J(r′, ω) in the infinitesimal volume d3r′ located at r′

in the space-frequency domain are [25]
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E(r;ω) = iµ0ω

∫ ∞
−∞

d3r′
←→
G (R;ω).J(r′, ω)

B(r;ω) =
iµ0ω

c

∫ ∞
−∞

d3r′
←→
G m(R;ω).J(r′, ω)

(3)

where R = r− r′.

The standard Green’s functions
←→
G and

←→
G m, relate the electric and magnetic fields to

the particle current density and can be expressed in a variety of different forms, which are

physically equivalent. It is of interest to express the Green’s functions for the electric and

magnetic fields in spherical coordinates centered on R = 0. Closed-form expressions are

obtained for the Green’s function of the electric field,
←→
G (R;ω), and the Green’s function of

the magnetic field,
←→
G m(R;ω) in these coordinates in vacuum [25] as

←→
G vac(R;ω) =

ik

4π

[
1

ikR

(←→
U − R̂R̂

)
−
[

1

(ikR)2
− 1

(ikR)3

](←→
U − 3R̂R̂

)]
eik.R,

←→
G m

vac(R;ω) =
ik

4π

[
1

ikR
− 1

(ikR)2

]
eik.R
←→
U × R̂,

(4)

where k is the wavevector, k = ω/c is the wave number, R = |R| is the distance from the

source to the observation point, and
←→
U = R̂R̂ + Θ̂Θ̂ + Φ̂Φ̂. A more general form of the

Green’s function is discussed in the Supporting Information (SI). Assuming the permeability

of the achiral media is close to 1 (µ = µ0 which is true for water, silver, and copper), in the

absorbing and dispersive, but still homogeneous, media [26]

←→
G = ε−1r [(εr + 2)/3]2

←→
G vac(n(r, ω)k)

←→
G m = ε−1r [(εr + 2)/3]2

←→
G m

vac(n(r, ω)k)
(5)

Now, if the source current density distribution is narrowed down to a spatial region (δ(r)

where r is the spatial position of the source) much smaller than the typical wavelength of

the corresponding field, then the emitted field can be calculated on the basis of a multipole

expansion of the current density in k-space as:[25]

J(k; t) =
n=∞∑
n=0

1

n!
(k · ∇k)

nJ(k = 0; t) (6)

where,

J(k = 0; t) =

∫ +∞

−∞
J(r, t)d3r ≡ JED(t) (7)
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In fact for n = 0, the moment expansion of the medium behaves like an electric point-dipole

as

JED(r, ω) = −iωp(ω)δ(r) (8)

Here p(ω) is the electric dipole moment in the frequency (ω) domain. By means of the

dyadic Green’s functions
←→
G (R;ω) and

←→
G m(R;ω), quite simple formulas for the electric

(EED(r;ω) ) and magnetic (BED(r;ω)) fields from the electric dipole source can be found

as [25]:

EED(r;ω) = µ0ω
2←→G (r;ω).p(ω)

BED(r;ω) = c−1µ0ω
2←→G m(r;ω).p(ω),

(9)

We assumed that the background medium is a linear time-invariant medium where D(r, ω) =

εr(r, ω)ε0E(r, ω) and n(r, ω) ≡ n1 + in2 =
√
εr(r, ω) is a complex function. In this study

we assume εr is independent of the positions of the donor or acceptor, i.e., we neglect the

influence of these species on the dielectric.

As we can see in Eq. 5, the medium effects are described in terms of the frequency-

dependent macroscopic relative permittivity, εr = ε/ε0. Moreover, the screening contribution

ε−1r and the local field factor (εr+2)/3 have also been included in our Green’s function. This

extra factor in Eq. 5 is important for a homogeneous medium when the dielectric medium

is in direct contact with the dipole, but it can be ignored if the donor and acceptor are

separated from, for instance, gold nanostructures in vacuum. Indeed, we need to carefully

and correctly incorporate local field effects associated with nanostructures that are not in

direct contact with the donor and acceptor.

Including the first-order moment of the current density distribution (n=1) which is related

to the symmetric and antisymmetric parts of the tensorial terms in Eq. 6 we obtain:

J1(r, t) = −JMD+EQ(t).∇δ(r) (10)

The fields generated by the magnetic dipole current density m are defined as

BMD(r;ω) = c−2µ0ω
2←→G (r;ω).m(ω)

EMD(r;ω) = −c−1µ0ω
2←→G m(r;ω).m(ω).

(11)

The electric field and the magnetic field from an electric quadrupole source are given by

EEQ(r, ω) = −µ0ω
2←→Q : ∇

←→
G (r, ω)

BEQ(r, ω) = −c−1µ0ω
2←→Q : ∇

←→
G m(r, ω)

(12)
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where Qjk is the electric quadrupole moment tensor defined as Qjk = 1
2

∫
x′jx

′
kρ(x′)d3x′ and

(
←→
Q : ∇

←→
G )i =

∑
j,kQjk∇kGji.

We note that the dyadic Green’s function
←→
G (r, ω), which describes the fields EED(r, ω)

and BMD(r, ω) from electric and magnetic dipoles, has terms that depend on r−1, r−2, and

r−3. However, the near-zone term is missing for the fields BED(r, ω) and EMD(r, ω), because

these fields are defined by the Green’s function
←→
G m(r;ω), which only has r−1 and r−2 terms.

On the other hand, the electric and magnetic fields from a quadrupole current density

source are characterized by the tensors ∇
←→
G (r;ω) and ∇

←→
G M(r;ω), respectively. There-

fore, EEQ(r, ω) has terms varying as r−1, r−2, r−3, and r−4. A term with a r−4 distance

dependence is not present in BEQ(r, ω).

Assume that a single radiating donor is placed at rD, and that the donor size is comparable

with the distance between donor and acceptor. We introduce the relationship between the

electric and magnetic fields generated by a donor and the dyadic Green’s function. The total

electric field in our system is the sum of the E-field of the electric dipole (EED), the E-field

of the magnetic dipole (EMD), and the E-field of the electric quadrupole (EEQ), while the

total magnetic field is the sum of the M-field of the electric dipole (BED), the M-field of the

magnetic dipole (BMD), and the M-field of the electric quadrupole (BEQ):

E = EED + EMD + EEQ (13)

B = BED + BMD + BEQ. (14)

We should note that dipole-allowed transitions are caused by the electric field of the radiation

acting uniformly through the molecular volume while quadrupole transitions are caused by

spatial variation in the field. Thus the electric quadrupole as a second rank tensor interacts

with the gradient of the electric field defined as

∇E = ∇EED +∇EMD +∇EEQ. (15)

Knowing that for absorbing and dispersive media, in the framework of quantum electrody-

namics and Fermi’s Golden rule, the transition matrix element with only the electric dipole-

electric dipole interaction included is expressed as [27–30]:

M = −µ0ω
2PA.

←→
G (rA, rD, ω).PD (16)

where PD(A) is the vector of the transition dipole moment of the donor (acceptor). However,

by including the interaction of magnetic dipole and electric quadrupole, the matrix element



8

becomes more complicated:

MEd,m,q(rA, rD, ω) = −µ0ω
2pA ·

[
(
←→
G · pD)− (

←→
G m · mD

c
)− (
←→
Q D : ∇

←→
G )
]

MBd,m,q(rA, rD, ω) = −µ0ω
2mA

c
·
[
(
←→
G m · pD)− (

←→
G · mD

c
) + (
←→
Q D : ∇

←→
G m)

]
M∇Ed,m,q(rA, rD, ω) = −µ0ω

2←→Q A :
[
∇(
←→
G · pD)−∇(

←→
G m · mD

c
)−∇(

←→
Q D : ∇

←→
G )
](17)

and the total matrix element is given by:

M = MEd,m,q(rA, rD, ω) +MBd,m,q(rA, rD, ω) +M∇Ed,m,q(rA, rD, ω). (18)

Comparing elements of the tensors in Eq. 18 with Eq. S1,Eq. S2,Eq. S3, and using the

corresponding expressions for the EM and ME coupling term from [29], we obtain the final

form of the transition matrix based on the response fields at rA (the position of the acceptor)

caused by the donor as

MEd,m,q(rA, rD, ω) = −pA(rA).
[
EED(rA, ω) + EMD(rA, ω) + EEQ(rA, ω)

]
MBd,m,q(rA, rD, ω) = −mA(rA).

[
BED(rA, ω) + BMD(rA, ω) + BEQ(rA, ω)

]
M∇Ed,m,q(rA, rD, ω) = −

←→
Q A(rA) :

[
∇EED(rA, ω) +∇EMD(rA, ω) +∇EEQ(rA, ω)

] (19)

These expressions provide intuitive generalizations of Eq. 8 for determining the interactions

between different multipoles with the electromagnetic fields generated by another set of

multipoles (details of the derivation of this set of equations can be found in the SI).

Note that in the derivation of Eq. 19, second order tensors arise from the dyadic product

of two vectors, a and b

←→
S = a⊗ b Sij = aibj. (20)

and as a result, if S and T are two second order tensors, the inner product of S and T is a

scalar, denoted by
←→
S :
←→
T , represented by their components:

←→
S :
←→
T = SijTij. (21)

Eq. 19 includes the effect from both electric and magnetic fields, as well as the electric field

gradient. The gradient of the field,∇E, contains nine components, e.g. (∇E)βγ is the change

of the Eβ component in the γ direction.
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Note that, if there is no DC magnetic field interacting with the system, the dynamics of

the system preserve time-reversal symmetry, and all molecular eigenfunctions can be chosen

to be real [31]. From this the electric dipole and electric quadrupole transition matrix

elements are real, and magnetic dipole transition matrix elements are entirely imaginary

[32].

Recasting Eq. 19, the transition matrix based on the fields from the donor at the position

of the acceptor is expressed as follows [23, 33]

M(rA, rD, ω) = M e(rA, rD, ω) +Mm(rA, rD, ω) +M q(rA, rD, ω), (22a)

M e(rA, rD, ω) = M ee +M em +M eq

= −µegA eµA ·
[
µgeD
p(ω)

EED +
mge
D

m(ω)
EMD +

qgeD
q(ω)

EEQ

]
,

(22b)

Mm(rA, rD, ω) = Mme +Mmm +Mmq

= −meg
A emA ·

[
µgeD
p(ω)

BED +
mge
D

m(ω)
BMD +

qgeD
q(ω)

BEQ

]
,

(22c)

M q(rA, rD, ω) = M qe +M qm +M qq

= −qegA
←→e q

A :

[
µgeD
p(ω)
∇EED +

mge
D

m(ω)
∇EMD +

qgeD
q(ω)
∇EEQ

]
.

(22d)

Eq. 22 enables the study of resonance energy transfer in inhomogeneous, absorbing, and

dispersive media for the cases where the sizes of the donor and the acceptor are comparable

to the distance between them. Note that the pre-factors in front of each E and ∇E is for

renormalization so that the fields have the correct magnitudes, corresponding to the donor

transition multipole moments.

Considering the size of donor/acceptor to be d (d� λ) and d 5 R, eight additional terms,

due to the contribution of magnetic dipole and electric quadrupole, are included in the RET

rate calculation, as compared to the traditional Förster formulation. The rate of RET can

then be determined by substituting M ee in Eq. 2 with the new form of the transition matrix

element presented in Eq. 22.

The necessary condition of the multipole expansion to be useful is that the transition

density distributions of the interacting molecules do not overlap, i.e., the inter-chromophore

separation R > (rD + rA) where rD/A is the radius of the donor or acceptor. Note that

transition selection rules often make some of the transition multipoles vanish, causing certain

terms in Eq. 22 to be zero. In general, the selection rules for mkm and qkm can be different
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from that for the electric dipole, and therefore give non-zero transitions between two states

even when the dipole transition is forbidden.

III. RESULTS AND DISCUSSION

Here we explicitly examine the total coupling intensity, |M |2, for selected situations to

provide better insight about the role of the different terms. |M |2 includes both purely

electric, magnetic and quadrupole contributions to the transfer matrix element in addi-

tion to interference terms corresponding to mixed electric-magnetic, electric-quadrupole and

magnetic-quadrupole couplings as follows

|M|2 =|M ee +Mmm +M qq + (M em +Mme) + (M eq +M qe) + (Mmq +M qm)|2
(23)

Although Eq. 23 seems very complicated, we may simplify it with an initial consideration

of the geometry and transition moment symmetry of the donor and acceptor. The next

few paragraphs provides a general consideration of simplifications that can arise, and then

we provide numerical results for simple model systems that include electric quadrupole and

magnetic dipole effects. All these examples refer to donors and acceptors in a homogeneous

medium; in the future we will examine the influence of plasmonic particles present in the

medium on donor-acceptor energy transfer when electric quadrupole and magnetic dipole

effects are important.

Generally, the interaction between molecules with sufficiently low symmetry and no

proper axis of rotation (chiral or optically active molecules), are dominated by the electric

dipole terms for resonance energy transfer. However this type of molecule is also subject to

additional small interactions which are different for left handed-left handed as opposed to

left handed-right handed enantiomer combinations. For a discussion of intermolecular inter-

actions between optically active molecules, the contributions from magnetic-magnetic dipole

and also electric-magnetic dipole must be taken into account. These contributions come from

the magnetic transition dipole connecting the excited(ground) state of donor(acceptor) to

its ground(excited) state, when both of them are allowed. The condition is met if the donor

is chiral but not when it is centrosymmetric. Thus the theory we have developed could be

useful for comparing energy in chiral assemblies of molecules compared to a racemic mixture

of the same molecules, as has been examined by Rodriguez and Salam [34]



11

Thus the theory we have developed could be useful for comparing energy in chiral assem-

blies of molecules compared to a racemic mixture of the same molecules.

On the other hand, due to importance of the orientation of the electric and magnetic

dipoles in donor/acceptor, there can be orientations where there is no energy transfer for

optically active species. It is not hard show from Eq. 22 that when µD ‖ mA and mD ‖ µA,

the energy transfer matrix elements (M em and Mme) are zero even though the transition

dipoles are nonzero, as previously noted.[29, 32] However, the total energy transfer rate could

survive due to other interactions, such as electric dipole-electric dipole coupling (M ee), or

magnetic dipole-magnetic dipole coupling (Mmm), etc. We will discuss this in case 4 of the

numerical section in more detail.

It should be noted that the magnetic dipole transition moment amplitude is smaller (for

molecules smaller than a few nm) than the electric dipole transition moment by two to three

orders of magnitude, i.e., Mmm/M ee 6 10−3 and if the leading contribution is coming from

the electric-electric dipole coupling, the amplitude of magnetic dipole transitions both in

donor and acceptor can be discarded (|Mmm|2 ≈ 0) [29, 32, 35, 36]. Magnetic quadrupole

and higher magnetic multipoles should also be negligible in this situation. However we note

that for large nanoparticle structures, it is possible to have magnetic and electric transition

moments that are comparable in size, in which case the terms in Eq. 22 would need to be

fully evaluated to generate accurate results [37]

In the near zone limit, it has been shown that the electric quadrupole-quadrupole and

magnetic dipole-electric quadrupole interactions are small [35, 38]. This is also apparent

in Eq. 22 when one examines the distance dependence of the relevant quadrupole fields in

comparison with the corresponding dipole fields. However generally the coupling of magnetic

dipole-electric quadrupole is nonzero for oriented molecular pairs but vanishes on rotational

averaging if we consider an ensemble of randomly oriented molecules [35, 39, 40]

We may identify further simplifications to Eq. 23 by looking at the contribution of electric

dipole-quadrupole interference terms; M eq, M qe. These two interference terms cancel for an

ordered ensemble with the same orientation and same magnitude for electric dipole and

quadrupole transitions for both donor and acceptor i.e. M eq + M qe = 0 [35, 41] (see also

SI for proof). This means regardless of donor-acceptor geometry or polarization directions,

the electric dipole-electric quadrupole energy transfer vanishes for an ordered system (we

also discuss this in case 2 in the simulation section). However, we should be cautious when
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treating disordered systems, since orientation averaging should be employed to determine

the total energy transfer rate.

Numerical simulation

To illustrate the effect of including transition magnetic dipole and electric quadrupole,

we calculate the distance-dependent coupling intensity for different cases in which different

multipoles are considered for donor and acceptor, and show that the coupling intensity can

be diminished by different types of interferences. The matrix element (coupling intensity) in

Eq. 23 is determined by the interaction between the acceptor multipoles and the total electric

and magnetic fields from the donor. Compared to the electric dipole-dipole approximation,

the total fields from the donor are much more complicated, giving rise to interferences in the

fields and the multipole-field interactions. More specifically, interferences can come from

two origins: the interferences between the fields generated by different donor multipoles,

and the cancellation of interaction energies between different acceptor multipole-donor field

interactions.

In the following sections, we analyze the electric dipole-electric quadrupole (ED-EQ)

interference and the electric dipole-magnetic dipole (ED-MD) interference. Using three dif-

ferent ED-EQ cases, we show, respectively, three consequences due to interference, namely:

(1) there can be minima in electric field and field gradient magnitudes for certain acceptor

locations; (2) there can be cancellation in the contribution to the energy transfer rate that

arises from dipole-field and quadrupole-field gradient contributions; and (3) there are mod-

ified field orientation effects compared to the dipole only case. Each consequence leads to a

dip in the coupling intensity at a certain donor-acceptor distance. On the other hand, the

ED-MD case provides an example where the energy transfer rate is completely suppressed,

regardless the donor-acceptor separation, due to the ED-MD interference.

A total of four cases will be discussed, with various donor-acceptor configurations and

multipoles. The simulations are performed with spatial distributions of the donor and accep-

tor shown in Fig. 1 (a) or (b). The donor is centered at the origin, with the donor-acceptor

pair axis aligned with the x-axis. Spheres are used to represent the two particles, but the ori-

entations of multipoles may vary in each case. If the acceptor is located on the positive side

of the x-axis, the configuration is named Side A; otherwise, Side B. In either configuration,
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(b)  Side B 
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FIG. 1. Schematic representation of the system considered in the simulation. The donor is located

at the origin of the coordinate system, while the acceptor is placed either on the positive x-axis

(Side A) or on the negative x-axis (Side B).

the distance is defined as the absolute distance between the donor and the acceptor.

Case 1: Electric dipole-electric quadrupole (ED-EQ) interference - field magnitude minimum

The first case in our analysis is to show that the interference between the donor dipole

field and donor quadrupole field can create local minima in the total field intensity, as well

as the total field gradient intensity, leading to large suppression of donor-acceptor electronic

coupling with a certain particle separation. This case uses Fig. 1(a) as its configuration, with

well defined transition electric dipole and quadrupole moments associated with the donor

and the acceptor. The fields generated by these multipoles lead to destructive interference

along the positive x-axis, giving rise to a dip in the donor-acceptor coupling intensity.

The donor and acceptor multipoles are defined as the following. The donor electric

dipole is assumed to point towards the positive y-axis with a magnitude of 1 Debye, i.e.

µ1 = (0, 1, 0) D. The donor quadrupole emitter consists of 4 point charges in the xy-plane.

Each charge has a magnitude of 2.082e, and is located in one quadrant of the plane, at a
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FIG. 2. Heat maps, for Case 1, of the magnitude of the total electric field (Etot) (a) and the

magnitude of the gradient of the total electric field (∇Etot) (b) in the xy-plane with z = 0 nm. (c)

The coupling intensity associated with an acceptor having an electric dipole-field interaction or an

electric quadrupole-field gradient interaction.

distance of 0.5 Å along each axis (x and y). The charges in the first and the third quadrants

are negative, while the other two are positive. This charge distribution gives an electric

quadrupole tensor with all zero matrix elements except Q12 = Q21 = −10 D·Å. Both the

dipole and the quadrupole are oscillating with a frequency of 475.86 THz (equivalent to

630 nm). In order to separate the effects of the total field and the total field gradient,

two acceptors are considered here: one with the same electric dipole as the donor but no

quadrupole, and the other with the same quadrupole as the donor but no dipole. Hence,

the first acceptor would interact with the electric fields only, while the second only interacts

with the field gradients. Note that only one acceptor is coupled with the donor at one time,

not both at the same time. The magnetic dipole in this case is assumed to be zero for both

the donor and the acceptors.

The total electric field magnitude (where Etot = EED + EEQ) associated with the donor

dipole and quadrupole transition moments as defined is presented in Fig. 2(a), while Fig. 2(b)

shows the magnitude of the total field gradient (∇Etot). It is obvious that there is a minimum

along the positive x-axis in each heat map. The minimum in the field map (Fig. 2(a)) is

caused by interference between the donor field and the quadrupole field, which can be seen

in the corresponding vector maps of the fields in the xy-plane (see Fig. S1 in SI). The

vector maps plot the real parts of the x and y components of the different fields, while their

corresponding imaginary parts at these distances are several orders of magnitudes smaller.
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Because we assume that the acceptor has the same orientation as the donor, together with

the fact that the electric fields interact with the dipole moment of the acceptor via a dot

product operation, only the y components of the fields can affect the coupling strength.

Therefore, there is no need to analyze the z components of the electric fields in Case 1.

In Fig. S1 (a) and (b), the electric fields from the dipole and the quadrupole have the con-

ventional vector maps, while a local minimum can be observed in the total field (Fig. S1(c)).

The dipole field has two symmetrical loops on the positive and negative sides of x-axis, while

the quadrupole field has four loops, one in each quadrant of the xy-plane. The quadrupole

field is stronger than the dipole field near the origin, but decays more rapidly as distance

increases. Because of the nature of the field lines, the total field along the positive x-axis

is affected by the destructive interference between the dipole and quadrupole fields. This

interference causes a minimum at x = 6 nm, while the quadrupole and dipole fields dominate

at positions before and after 6 nm, respectively. The gradient of the fields have a more com-

plicated pattern, although the origin of the local minimum is coming from the same effect,

as shown in Fig. S2. The field gradient vector plots present only the xy and yx components

of the gradients, because those components are the only non-zero elements in the selected

quadrupole tensor.

Due to the local minima in Etot and ∇Etot, and given that the prefactors to these fields

in Eq. 22b (i.e., µgeD /p(ω) and qgeD /q(ω)) are comparable in magnitude, it is expected to see

dips in the coupling intensities (|M e|2 and |M q|2), and therefore in the resonance energy

transfer rate. Indeed, Fig. 2(c) shows a dip in both types of coupling, namely the coupling

between the acceptor dipole moment and the total field from the donor (|M e|2), and the

coupling between the acceptor quadrupole and the gradient of the donor fields (|M q|2). The

dipole-dipole coupling (green line) is a smoothly decaying line as expected, since the dipole

field without interference decays smoothly (as 1/R3) and the acceptor dipole is aligned with

the donor’s.

Case 2: ED-EQ interference - interaction energy cancellation

Using the Side B configuration in Fig. 1(b), we investigate the second case mentioned

earlier, in which there is cancellation of interaction energies between the dipole-field and

quadrupole-field gradient interactions, resulting in a suppression in the donor-acceptor cou-
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FIG. 3. The coupling intensity (a) and transition amplitude (b, c) for different multipole interac-

tions for Case 2. Plots of the transition amplitudes (b, c) only show the real parts. The orange

dashed line in (c) marks the value of zero for easy observation.

pling intensity. The transition multipoles for the donor and the acceptor are kept the same

as defined in Case 1, except that the acceptor has both dipole and quadrupole moments. The

Side B configuration shows a smoothly decaying electric field and field gradient (Fig. 2(a)

and (b)), without any local minimum. Usually, this suggests that, provided the acceptor

multipoles being the same as the donor’s, the coupling intensity decays smoothly as the

donor-acceptor distance increases. This is indeed the case for |M e|2 and |M q|2 (see blue

and red lines in Fig. 3(a), respectively), which are calculated using Eq. 22b and Eq. 22d,

respectively. However, the total coupling intensity (|M|2 = |M e + M q|2, black line) clearly

shows a dip close to x = −7 nm (distance 7 nm).

The dip in coupling intensity |M|2 is not due to destructive interference in the field or

field gradient, but in fact, comes from cancellation between the interaction energies of the

dipole and the quadrupole with the fields and the field gradients, respectively. In other

words, in contrast to Case 1 where the cancellation occurs within Eq. 22b or 22d, it happens

between these two equations. In Fig. 3(b), one can see that the transition amplitudes

from the pA-EED
D interaction (M ee) and the pA-EEQ

D interaction (M eq) are both positive,

while the
←→
Q A-∇EED

D (M qe) and
←→
Q A-∇EEQ

D (M qq) interactions are both negative. When

summing over all interactions in Eq. 22a, the total transition amplitudeM (Fig. 3(c) black

line) passes through zero when x = −7 nm and a local minimum in the coupling intensity

|M|2 appears. Therefore, it is not always possible to predict the behavior of the coupling

intensity by considering only the magnitudes of the total electric field and field gradient.



17

The interactions between the acceptor multipoles and the donor fields and field gradients

must be analyzed before reaching any conclusion for the energy transfer rate.

It is worth noting that only the real part of the transition amplitudes are plotted in Fig. 3

(b, c), which could reach zero at a certain distance. On the other hand, the imaginary part

of M, although small at most distances, may not be exactly zero. Hence, even though at a

distance of 7 nm, the real part of M is zero, the total coupling intensity term (|M|2) still

has a non-zero residual value.

Case 3: ED-EQ interference - modified field orientation

Analysis of Case 3 shows that the ED-EQ interference can also lead to a modified total

field orientation, as compared to the pure dipole field, giving rise to a misalignment between

the acceptor multipoles and the donor fields and field gradients. In this case, the multipole

moments of the donor and the acceptor are the transition dipole and quadrupole moments

of the first excited state of a 512-atom PbS quantum dot.[42] The transition dipole has

the form µPbS = (0.116, 0.848, 0.049) D, while
←→
Q PbS (in unit of D·Å) is defined by the

following tensor elements: Q11 = 1.968, Q22 = −4.039, Q33 = 2.070, Q12 = Q21 = 6.484,

Q13 = Q31 = −0.080, and Q23 = Q32 = 1.581. The wavelength of the donor emission is at

630 nm. The donor and the acceptor are assumed to have the same identity and orientation.

Fig. 4(a) shows the coupling intensities associated with different multipole interactions,

as well as the total coupling summing over all interactions (using Eq. 22a), which exhibits

different characteristics at short, intermediate, and long range distances. First, the total

coupling (|M|2, black line) at short distance (< 3.5 nm) is larger than the dipole-dipole

coupling (|M ee|2, green line), due to the constructive interference between the pA-ED and
←→
Q A-∇ED interactions. Second, |M|2 converges towards |M ee|2 at large distance because

of the dominating dipole field. Third, the coupling intensities have local minima at certain

distances. Through the following analysis, we shall see that the local minima in |M e|2 and

|M q|2 are caused by the misaligned interaction between multipole and field/field gradient.

The magnitudes of the total electric field and the field gradient generated by dipole and

quadrupole are shown in Fig. S3, in which a dip can be found in the fourth quadrant of

the xy-plane. Similar to Case 1, the local minima are caused by interference between the

two multipoles (see vector plots for the fields in Fig. S4). However, the dips in the fourth
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FIG. 4. Coupling intensities, electric fields, and field gradients associated with the different multi-

poles for Case 3. (a) The coupling intensity of different multipole interactions. (b) Vector plots of

the different electric fields, showing the real parts of the x and y components, in the xy plane with

z = 0 nm. (c) Magnitudes of electric fields along the x-axis. (d) Magnitudes of the field gradients

along the x-axis.

quadrant have insignificant effects on the magnitudes of the total field and field gradient

on the positive x-axis (Fig. 4(c) and (d)), which have no local minimum at the distances in

interest. Meanwhile, by examining the vector plots carefully (Fig. 4(b)), one can see that

due to interference, the total electric field (Etot) has an orientation change from x = 3 nm to

x = 8 nm. The field has a significant contribution from the y component between x = 3 nm

and 4 nm. However, it becomes parallel to x-axis around x = 5 nm, which means that at this
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distance, the interaction between the field and the acceptor dipole moment (mostly aligned

with y-axis) is minimal. Then, the field gradually increases its y component, giving a much

larger interaction with the acceptor dipole as compared to that at x = 4.5 nm. Hence, the

coupling intensity due to the pA-ED interaction (|M e|2, blue line in Fig. 4(a)) exhibits a

dip at x = 5 nm. The dip in the coupling of the
←→
Q A-∇ED interaction (|M q|2, red line)

has a similar origin. Finally, the dip in the total coupling intensity (|M|2) comes from the

interaction energy cancellation effect as described in Case 2.

The study of different coupling intensities shows the complexity of the interactions among

the multipoles. The multipole interference can lead to a local minimum in field magnitude,

modification in field orientation, and cancellation of the interaction energy. Any one of the

effects could result in a dip in the coupling intensity. Therefore, it is important to analyze

the coupling intensity as determined by Eq. 18 instead of the field magnitude alone.

Case 4: Electric dipole-magnetic dipole (ED-MD) interference - total suppression of energy

transfer

Electric dipole-magnetic dipole interference is examined in Case 4, where the electric

quadrupole moments are set to zero. This means that only Eqs. 22b and 22c would provide

non-zero results, rather than Eq. 22d. We find that it is common for the cross terms M em and

Mme to be zero, due to orthogonality of the electric and magnetic fields from the oscillating

electric and magnetic dipoles. It is also possible to orient the dipoles in such a way that the

energy transfer is nearly completely turned off.

Fig. 5 shows the distance-dependent coupling intensity ratio using different donor and

acceptor magnetic dipoles, while both donor and acceptor electric dipoles are kept at 1 D

and aligned with y-axis. Each plot contains two types of ratios: the ratio of total coupling

intensity (|M|2) to the ED-ED coupling (|M ee|2), and the ratio of the sum of ED-ED and

MD-MD coupling (|M ee +Mmm|2) to the ED-ED coupling (|M ee|2). The difference between

them, if any, is from the contributions of the cross terms: the interaction between the

electric dipole and the electric field from the oscillating magnetic dipole (M em), and the

interaction between the magnetic dipole and the magnetic field from the oscillating electric

dipole (Mme). Fig. 5(a) and (b) show that if the magnetic dipoles of the donor and the

acceptor are both aligned with either x or y axis, together with the y-oriented ED, the cross
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FIG. 5. Coupling intensity ratio for Case 4 with various m orientations and magnitudes. (a - c)

mD = mA with magnitude of 50µB (Bohr Magneton) in x direction, y direction, and z direction,

respectively. (d) mD = −mA, with magnitude of 107.8282µB. The black circles represent the

ratio of the total coupling intensity (|M|2) to the ED-ED coupling (|M ee|2), while the red line is

for the ratio of the sum of ED-ED and MD-MD coupling (|M ee +Mmm|2) to the ED-ED coupling

(|M ee|2).

terms are zero, and the two types of ratio coincide with each other. When the MDs are

both aligned with x-axis the energy transfer rate is suppressed for a wide range of distance,

from 3 nm to 100 nm, due to interaction energy cancellation. When the MDs are both in

the positive y direction, very small enhancement can be seen.

On the other hand, if the MDs are both aligned with the z-axis, then larger enhancement
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in the total coupling intensity can be achieved at large distances (> 30 nm), as demonstrated

by the ratio |M |2/|M ee|2 (Fig. 5(c)). The deviation between the two ratios in this plot

suggests that with for z-oriented magnetic dipoles, the cross terms, from the pA-EMD
D and

the mA-BED
D interactions, provide a significant contribution, especially at large distances.

In addition, if the MDs of the donor and the acceptor are aligned with y-axis, but pointing

towards opposite directions, it is possible to completely turn off the resonance energy transfer

by choosing the appropriate MD magnitude. Fig. 5(d) shows that when the magnitude of

MD is 107.8282µB (unit of Bohr Magneton), the coupling ratio remains constant at the

value of 10−13 when varying the donor-acceptor distance. Note that in order to reach this

total suppression, the magnetic dipole magnitude has to be much larger than the electric

dipole, when both are expressed in atomic units. The electric dipole magnitude of 1 D equals

to 0.3934 atomic units, while the MD magnitude of 107.8282µB is almost 54 atomic units,

i.e. 2 orders of magnitude larger than the electric dipole. This control condition is possible

in a nonsymmetric bichromophore system or a layered Langmuir-Blodgett film[36].

IV. CONCLUSION

We have extended Förster theory beyond the dipole approximation by introducing a

general but practical computational scheme to simulate RET in inhomogeneous absorbing

and dispersive media which can be easily implemented using a real-time electrodynamics

approach, the so-called ”the time-domain electrodynamics resonance energy transfer” (TED-

RET) method. The main focus of this work is on Eq. 22, which allows us to study RET at

donor/acceptor separations comparable to the size of the donor or acceptor for an arbitrary

dielectric medium that could include plasmonic particles. The formulas also take care of

energy transfer when the electric dipole transitions are forbidden, which was an important

missing aspect of our previous work. Comparing with the general FRET approach in which

only the electric dipole is included, we have a much more complicated transition matrix

element, although the form is conceptually straightforward, and we have therefore been able

to use it in numerical applications. These applications have demonstrated the usefulness and

capability of our new formulation by examining energy transfer simulations for different cases

of multipole resonance configurations with a complex spatial distribution of matrix elements.

Using a toy model and 512-atom lead sulfide (PbS) quantum dot, we found that the following
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effects can play a role in energy transfer: (1) there can be a minimum in energy transfer rates

that arises from interfering electric field and field gradients; (2) there can be cancellation

of interaction energies associated with dipole-field and quadrupole-field gradients; and (3)

higher multipoles lead to modified field orientation compared to the dipole only case. As

a last part of the numerical simulation, the electric dipole-magnetic dipole interference is

discussed in detail. The results demonstrate important deviations from conventional rate

calculations using Förster theory, and we have also set the stage for properly and efficiently

implementing plasmon coupled (PC)-RET calculations in relatively large particles that are

important in biology, optical switching, solar cells, where energy transfer processes typically

take place in inhomogeneous absorbing and dispersive media.
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SUPPORTING INFORMATION: RESONANCE ENERGY TRANSFER IN

ARBITARY MEDIA: BEYOND THE POINT DIPOLE APPROXIMATION

A. Derivation of matrix element beyond dipole approximation

As we explained in the main text, the emitted field can be calculated on the basis of

a multipole expansion of the current density by means of the dyadic Green’s functions
←→
G (R;ω) and

←→
G m(R;ω). By means of the first term of the current density expansion we

write quite simple formulas for the electric (EED(r;ω) ) and magnetic (BED(r;ω)) fields

from the electric dipole source can be found as [25]:

EED(r;ω) = µ0ω
2←→G (r;ω).p(ω)

BED(r;ω) = c−1µ0ω
2←→G m(r;ω).p(ω),

(S1)

The second term of the current density expansion can give us the fields generated by the

magnetic dipole current density m:

BMD(r;ω) = c−2µ0ω
2←→G (r;ω).m(ω)

EMD(r;ω) = −c−1µ0ω
2←→G m(r;ω).m(ω).

(S2)

And also the electric field and the magnetic field from an electric quadrupole source:

EEQ(r, ω) = −µ0ω
2←→Q : ∇

←→
G (r, ω)

BEQ(r, ω) = −c−1µ0ω
2←→Q : ∇

←→
G m(r, ω)

(S3)

The matrix element is defined based on the interaction of multiples of the donor with cor-

responding multipoles of the acceptor [29, 30, 36]

M ee +Mmm =
[
µAi µ

D
j +mA

i m
D
j /c

2
]
Vij

M eq +M qe =
[
µAi q

D
jk + qAjkµ

D
i

]
Vijk

M qq = qAikq
A
jlVijkl

M em +Mme = Im
[
µAi m

D
j /c+mA

i µ
D
j /c
]
Uij

Mmq +M qm = Im
[
mA
i q

D
jk/c+ qAjkm

D
i /c
]
Uijk

(S4)

Here c is the velocity of light and µ(A/D), m(A/D) are the electric and magnetic transition

moments and andQ(A/D) is the electric quadrupole transition moment of donor(D)/acceptor(A)

respectively. It should be noted that the magnetic transition moment tensor is purely imag-

inary, i.e. Im(mj) = −imj.
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Comparing our electric Green function (
←→
G ) used in this work with the one in references

[29, 30, 40], there are some coefficients that can be derived simply to have the compatible

expression for the coupling tensors of Vij, Vijk and Vijkl as follow:

Vij = −µ0ω
2Gij,

Vijk = µ0ω
2∇kGji,

Vijkl = µ0ω
2∇i∇jGkl.

(S5)

The coefficients of the coupling tensor for the magnetic Green function (
←→
G m) are different

[29, 36],

Uij = −iµ0ω
2Gm

ij ,

Uijk = −iµ0ω
2∇kG

m
ji .

(S6)

Since we can separate the interaction of electric dipole, magnetic dipole and the electric

quadrupole from the donor side with the corresponding multipole of the acceptor, for the

ease of convenience we rearrange these interactions into three equations:

M(rA, rD, ω) = M e(rA, rD, ω) +Mm(rA, rD, ω) +M q(rA, rD, ω), (S7a)

(S7b)

M e = M ee +M em +M eq

= µA.

[
←→
V .µD −

←→
U .

imD

c
.+
←→
Q D :

←→
V

] (S7c)

(S7d)

Mm = Mme +Mmm +Mmq

= −im
A

c

[
←→
U .µD +

←→
V .

imD

c
+
←→
U :
←→
Q D

] (S7e)

(S7f)

M q(rA, rD, ω) = M qe +M qm +M qq

=
←→
Q A :

[
−∇(
←→
V .µD) +∇(

←→
U .

imD

c
) +∇(

←→
Q D : ∇

←→
V )

]
.

(S7g)

After plugging in the corresponding terms from Eq. S5 and Eq. S6 into Eq. S4 and some

algebra we get the main expression in Eq. 22d.
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B. Proof of M eq = −M qe and M em = Mme for a special case

When the donor and the acceptor have the same identity and orientation, we have the

relations:

M eq = −M qe, (S8)

M em = Mme. (S9)

In the following proof for these relations, we shall see that the reason for the opposite signs in

the two equations comes from the fact that the electric Green’s function (
←→
G ) is a symmetric

tensor, while the magnetic Green’s function (
←→
G m) is antisymmetric.

First, let us look at the proof of Eq. S8, starting from the expression of M qe, and recasting

it into the matrix element form. Suppose the transition dipole moments for both the donor

and the acceptor are µD = µA = µ, and the quadrupole moment is
←→
Q D =

←→
Q A =

←→
Q .

Then, the coupling term M qe is the interaction between
←→
Q A and the gradient of the electric

field from µD:

M qe = −
←→
Q A : ∇ED,µ = −

←→
Q A :

[
∇
(
µ0ω

2←→G · µD
)]

= −µ0ω
2
∑
jk

Qjk

[
∇
(←→
G · µ

)]
jk

= −µ0ω
2
∑
jk

Qjk

[
∇k

(←→
G · µ

)
j

]

= −µ0ω
2
∑
jk

Qjk

[
∇k

(∑
l

Gjlµl

)]
= −µ0ω

2
∑
jk

Qjk

[
∇k

(∑
l

µlGlj

)]

= −µ0ω
2
∑
jkl

Qjk∇kµlGlj = −µ0ω
2
∑
jkl

Qjk∇kµlGjl.

(S10)

Note that we utilize the symmetric property of the
←→
G tensor in the last step, i.e. Glj = Gjl.

On the other hand, the coupling term M eq is the interaction between µA and the electric

field from
←→
Q D:

M eq = −µA · ED,
←→
Q = −µA ·

[
−µ0ω

2
(←→
Q D : ∇

←→
G
)]

= µ0ω
2
∑
l

µl

(←→
Q D : ∇

←→
G
)
l
= µ0ω

2
∑
l

µl

(∑
jk

Qjk∇kGjl

)

= µ0ω
2
∑
jkl

µlQjk∇kGjl = µ0ω
2
∑
jkl

Qjk∇kµlGjl

= −M qe.

(S11)
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The final equation is made possible by the fact that the donor and the acceptor have the

same electric dipole and quadrupole, as specified earlier.

Following a similar path, we can prove the second relation, Eq. S9. Suppose that the

magnetic dipoles are mD = mA = m, and the electric dipoles are µD = µA = µ. Starting

from the M em term, we have:

M em = −µA · ED,m = −µA ·
[
−c−1µ0ω

2
(←→
G M ·mD

)]
= c−1µ0ω

2
∑
j

µj

(←→
G M ·m

)
j

= c−1µ0ω
2
∑
j

µj

(∑
k

GM
jkmk

)

= c−1µ0ω
2
∑
j

µj

(∑
k

mkG
M
kj

)
= c−1µ0ω

2
∑
j

µj

(∑
k

mk(−GM
jk)

)
= −c−1µ0ω

2
∑
jk

µjmkG
M
jk = −c−1µ0ω

2
∑
jk

mkG
M
kjµj

= −c−1µ0ω
2
∑
k

mk

(∑
j

GM
kjµj

)
= −c−1µ0ω

2
∑
k

mk

(←→
G M · µ

)
k

= −c−1µ0ω
2m ·

(←→
G M · µ

)
= −mA ·

[
c−1µ0ω

2
(←→
G M · µD

)]
= −mA ·BD,µ = Mme.

(S12)

C. Green function for dispersive, absorptive, infinitely homogeneous,

nonconductive medium

According to Drude-Born-Fedorov equations [43], field operators in a dielectric medium

that is dispersive, absorptive, infinitely homogeneous, nonconductive, with no free charges,

and chiral can be defined as

←→
G hom(R;ω) =

γ

4π

[
1

γR

(
U− R̂R̂

)
−
[

1

(γR)2
− 1

(γR)3

](
U− 3R̂R̂

)]
eγ.R,

←→
G M

hom(R;ω) =
γ

4π

[
1

γR
− 1

(γR)2

]
eγ.RU× R̂,

(S13)

and γ, the magnitude of wavevector is given by

γ(±)(ω) =
k(ω)

1∓ k(ω)β(ω)
= γ

′(±)(ω) + iγ”(±)(ω). (S14)

We should note that + and − denote left-circularly polarized and right-circularly polarized

field components, respectively. If we define γ”(±)(ω) be strictly positive, the wave is absorbed

by the medium and is not amplified by it.
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The complex chirality admittance of the medium is defined by β in Eq. (S14) and the

properties of the chiral medium are included within these electromagnetic field operators. If

β(ω) > 0, the chiral medium is left-handed, while β(ω) < 0 corresponds to a right-handed

medium.

Chiral media refers to a general class of bianisotropic media, responding with both electric

and magnetic polarization to excitation by electric and magnetic fields. The chiral media

couplings to these fields are described by a generalized set of fundamental relations. The

strength of coupling is determined by the magnitude of chirality admittance, β which assesses

the bulk magneto-electric properties of the material[44].

D. Calculating transition electric dipole, magnetic dipole, and electric quadrupole

matrix elements: quantum electrodynamics approach

Employing time-dependent perturbation theory, we investigate the interaction of a par-

ticle with classical (i.e., non-quantized) electromagnetic radiation. The Hamiltonian of such

a system is expressed as

H =
1

2m

(
p− e

c
A
)2

+ Vs = H0 +Hint (S15)

whereH0 is the Hamiltonian in the absence of the field andHint is the matter-field interaction

Hamiltonian. Adopting the Coulomb gauge, ∇·A = 0 and supposing that the perturbation

corresponds to a monochromatic plane-wave of angular frequency ω, Hint becomes

Hint ' −
e

mc
A.p = − e

mc
A0 cos(k.R− ωt)ê.p (S16)

=
e

mc
A0

(
ei(k.R−ωt) + e−i(k.R−ωt)

)
ê.p (S17)

= M(k)e−iωt +M(-k)eiωt (S18)

Correspondingly, the first(second) term on the right-hand side of Eq. (S18) describes a

process by which the atom absorbs(emits) energy ~ω from the electromagnetic field.In other

word this can be decoded as the absorption and stimulated emission of a photon of energy

~ω by the particle respectively.

Using the Fermi’s Golden rule to calculate the rate of transition induced by Hint, we see

WD−→A =
2π

~
|M(rA, rD, ω)|2ρ(ω) (S19)
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where ω is the angular frequency of the transferred energy (essentially the excitation energy

of the acceptor), rD (rA ) is the spatial position of the donor (acceptor) particle, and ρ(ω)

is the density of final states associated with energy ω (corresponding to the excited state of

the acceptor and the ground state of the donor).

For a particle of size 10 to 100 Angstroms and the long-wavelength approximation,

e−i(k.R) ∼= 1, which is known as dipole approximation, the transition rate involves the electric

dipole matrix element and as long as this is nonzero, it is called an electric-dipole allowed

transition. The magnitude of the transition dipole of the donor (acceptor) from the excited

state (the superscript e) of the donor molecule to its ground state (the superscript g) is

pge(rD) = µge(rD)eD =

∫
dτΨ∗g(rD)RΨe(rD) (S20)

peg(rA) = µeg(rA)eA =

∫
dτΨ∗e(rA)RΨg(rA) (S21)

Keeping the second term in the expansion of e−i(k.R), the corresponding terms for the

magnetic dipole and electric quadrupole matrix elements are:

mkm(r) =
e

2mc
< k|L|m >=

e

2mc

∫
dτΨ∗k(rD)LΨm(rD)

(qkm)ij =< k|(eri)(erj)|m >

(S22)

where L is the orbital angular momentum L = r× p.

If we take into account the interaction of the magnetic component of the electromagnetic

wave with the electron’s spin and orbital magnetic moment, the complete quantity that

mediates magnetic dipole transitions between different atomic states is defined as

mtotal =
e

2mc
< k|L + 2S|m > (S23)

where S is the electron spin operator. However, for the magnetic transition moments, the

spin contributions can be ignored since for states with a multiplicity larger than zero (i.e.,

for S > 0) the different MS-components of the multiplet will be degenerate [45] and the

components with +MS and −MS provide spin contributions to the magnetic transition

moments that cancel each other.
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E. Additional figures
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FIG. S1. The vector maps, for Case 1, of the electric fields of dipole (EED) (a) and quadrupole

(EEQ) (b), and the total field of both dipole and quadrupole (Etot) (c). The spatial plane is the

xy plane with z = 0 nm. The vectors only represent the real part of x and y components of the

electric fields.
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FIG. S2. The vector maps, for Case 1, of the electric field gradients of dipole (∇EED) (a) and

quadrupole (∇EEQ) (b), and the gradient of the total field (∇Etot) (c). The spatial plane is the

xy plane with z = 0 nm. The vectors only represent the real part of xy and yx components of the

electric fields.
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FIG. S3. The heat maps, for Case 2, of the magnitude of the total electric field (Etot) (a) and the
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FIG. S4. The vector maps, for Case 2, of the electric fields of dipole (EED) (a) and quadrupole

(EEQ) (b), and the total field of both dipole and quadrupole (Etot) (c). The spatial plane is the

xy plane with z = 0 nm. The vectors only represent the real part of x and y components of the

electric fields.
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