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In this work, we present a comprehensive theoretical and computational study of
donor /acceptor resonance energy transfer (RET) beyond the dipole approximation,
and including for arbitrary inhomogeneous and dispersive media. The theoretical
method extends Forster theory for resonance energy transfer between donor and ac-
ceptor molecules or nanoparticles to the case where higher multipole transitions in
the donor and acceptor play a significant role in the energy transfer process. In our
new formulation, the energy transfer matrix element is determined by a fully quan-
tum electrodynamic expression, but its evaluation only requires classical electrody-
namics calculations. By means of a time-domain electrodynamical approach (TED),
the matrix element evaluation involves the electric and magnetic fields generated by
the donor and evaluated at the position of acceptor, including fields associated with
electric dipoles, electric quadrupoles and magnetic dipoles in the donor, and the ac-
ceptor response to the electric and magnetic fields and to the electric field gradient.
As an illustration of the benefits of the new formalism, we tested our method with
a bl12-atom lead sulfide (PbS) quantum dot as donor/acceptor either in vacuum or
with a spherical nanoparticle(toy model) in the surrounding medium. This includes
an analysis of the effects of interferences between multipoles in the energy transfer
rate. The results show important deviations from the conventional Forster dipole
theory that are important even in vacuum, but which can be amplified by interaction

with a plasmonic nanoparticle.
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I. INTRODUCTION

Forster resonance energy transfer (FRET), resulting from donor/acceptor dipole-dipole
interactions was originally developed in 1948 [1], and it was used for the first time in 1967 as
a spectroscopic ruler to measure distances in macromolecules[2]. Such optical rulers based
on FRET opened a new era for a wide range of biological studies where nonzero spectral
overlap between donor emission and acceptor absorption plays a key role. As is discussed
in several articles [3, 4], the distance dependent criteria restricts the length scale of FRET
rulers to a maximum of about 10 nm, which means that normal FRET optical rulers are not
suitable for the investigation of many biological structural changes that take place at longer

length scales [5].

This type of energy transfer from a donor species initially in an excited electronic state
to an acceptor in its ground state, possesses features that have been under a great deal of
attention, both theoretically and experimentally, particularly in nanoscience and technology.
Moreover, the science of resonance energy transfer has been broadly explored in artificial light
harvesting antenna devices [6, 7], spasers [8, 9], and especially in biology as an assessment
method for studying the dynamical evolution of energy [10]. The study of these phenomena
in nanostructures has recently led to promising applications in solar cell systems [11, 12]

and optical switching [13, 14].

Semiconductor quantum dots (QDs) have sometimes been used as novel light harvesters in
solar cells, where FRET induced by electronic coupling between QDs plays an essential role
in the function of such devices. However, FRET, based on the point dipole approximation,
is only valid if the donor-acceptor distance is significantly larger than the size of the donor
or acceptor. For closely placed donor-acceptor systems, various adjustments to the FRET
approximation have been suggested, like atom-centered transition charges [15], continuous

transition densities [16], or partial dipoles [17].

Past studies of FRET in QD films have emphasized the key role of higher order multipole
interactions in exciton transfer between closely packed QDs [18]. When the donor-acceptor
distance is beyond the van der Waals effective regime, and Coulombic interaction between
the transition densities of the chromophores [19] is their primarily coupling, as long as
the emission and absorption transitions are electronically allowed, the type of interaction

occurring between transition dipoles is known as the ”ideal dipole approximation” (IDA)



[20-22]. Here the Coulombic interaction between donor and acceptor defines the rate of
energy transfer between these two. IDA is an excellent approximation for energy transfer
at visible photon energies, since the wavelength of light in this case is much larger (several
hundred times) than the size of the molecule. In other words, the coupling matrix element is
not sensitive to any variation in the vector potential which may be present over the spatial
extent of the transition densities of the donor or acceptor. However an asymmetric shape
to the transition densities and/or large spatial extent may make the IDA invalid. This is
also an issue when the transition is dipole forbidden or only weakly allowed. Under these
circumstances, the transition dipole moment is not sufficient to represent the the spatial
distribution of the transition density, and the IDA is not applicable. A more accurate
description of the Coulombic interaction between transition densities would involve the use
of more terms from the multipolar expansion for donor emission and/or acceptor absorption.
In addition, since the electromagnetic field due to the donor may be highly nonuniform over
the extent of the acceptor, it may be important to couple field gradients to the multipole
expansion in determining energy transfer rates. This is especially important for emitters and
absorbers that are nanoparticles of sufficient size, as size can easily activate higher multipole
forbidden transitions.

Recently, Ding et al.[23, 24] have presented a general computational scheme to simulate
RET in inhomogeneous absorbing and dispersive media using a real-time electrodynamics
approach; the time-domain electrodynamics resonance energy transfer (TED-RET) method.
Applications of this method have considered plasmon-coupled resonance energy transfer in
which there is a plasmonic particle in the medium near to the donor and acceptor, and this
leads to substantial enhancements in both the rate and range associated with energy transfer.
In their approach the donor is assumed to be a single radiating molecule positioned at rp
whose size is much smaller than the distance between the donor and the acceptor. In this
case, it is appropriate to make the point-dipole approximation, P..(r,t) = p.,(t)é(r — rp),
in which the external polarization P., generated by the donor in a dielectric medium is
defined by p,,(t). In the TED-RET approach, the transition matrix element, at angular
frequency w, is calculated from the electric field E” (r4) at the position of the acceptor (r4)

originating from the donor at position rp using the following expression:

eA.ED(rA, w)

Pea (W)

(1)

M(rp,ra,w) = —p(ra)p*(rp)



Here 19 (r4)(u9%¢(rp)) represents the magnitude of the transition dipole of the donor (accep-
tor) and the superscript e(g) stands for the excited(ground) states, while the orientation of
acceptor transition dipole is defined by the unit vector e4. Employing Fermi’s Golden rule,

the rate of energy transfer is expressed as
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where p(w) is the density of final states associated with energy hw (corresponding to the
exciton energy). This formulation has several advantages: (i) electric and magnetic fields
can be obtained from standard computational electromagnetic software, such as the finite
difference time domain method (FDTD) or Mie theory; (ii) transition dipoles for both the
donor and the acceptor can be calculated via quantum chemistry software such as time-
dependent density functional theory(TD-DFT); and (iii) it is valid for any inhomogeneous,
absorbing, and dispersive media. Indeed, evalution of the field E” in the time domain is
often desirable for such media, which is why the theory is referred to as the TED-RET
approach.

However, when the optical transition in the donor and/or acceptor is dipole forbidden,
or the size of the donor and/or the acceptor is comparable with distance between them, the
dipole approximation is not valid any more and the effect of higher order multipoles needs to
be included. Here, we present a general but simple computational scheme, to mimic RET in
inhomogeneous, absorbing, and dispersive media, but going beyond the dipole approximation
to include magnetic dipole and electric quadrupole effects. As part of this approach, we show
that the transition matrix elements for RET (M (rp,ra,w)) can be expressed in terms of
interactions between acceptor transition multipoles (electric dipole, magnetic dipole, and
electric quadrupole) and the corresponding electromagnetic fields generated by the donor

transition multipoles.

II. ELECTRODYNAMICS OF MULTIPOLE FIELDS

The electromagnetic fields generated by electric and magnetic dipoles at the observation
point r produced by current densities J(r,w) in the infinitesimal volume d®r’ located at r’

in the space-frequency domain are [25]



E(r;w) = ipow /OO dgrlﬁ(R; w).J(r',w)
B(r;w) = ot /OO dgr’ﬁm(R;w).J(r’,w)

c

where R =r —r'.

The standard Green’s functions ﬁ and ﬁm, relate the electric and magnetic fields to
the particle current density and can be expressed in a variety of different forms, which are
physically equivalent. It is of interest to express the Green’s functions for the electric and
magnetic fields in spherical coordinates centered on R = 0. Closed-form expressions are
obtained for the Green’s function of the electric field, ﬁ(R; w), and the Green’s function of

the magnetic field, ﬁm (R;w) in these coordinates in vacuum [25] as
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where k is the wavevector, k = w/c is the wave number, R = |R| is the distance from the
source to the observation point, and ﬁ = RR + OO + #d. A more general form of the
Green’s function is discussed in the Supporting Information (SI). Assuming the permeability
of the achiral media is close to 1 (i = uo which is true for water, silver, and copper), in the

absorbing and dispersive, but still homogeneous, media [26]
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Now, if the source current density distribution is narrowed down to a spatial region (J(r)
where r is the spatial position of the source) much smaller than the typical wavelength of
the corresponding field, then the emitted field can be calculated on the basis of a multipole

expansion of the current density in k-space as:[25]
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In fact for n = 0, the moment expansion of the medium behaves like an electric point-dipole

J¥P (r, w) = —iwp(w)d(r) (8)

Here p(w) is the electric dipole moment in the frequency (w) domain. By means of the
dyadic Green’s functions ﬁ(R; w) and ﬁm(R; w), quite simple formulas for the electric
(EFP(r;w) ) and magnetic (B¥P(r;w)) fields from the electric dipole source can be found
as [25]:

B2 (1) = jiow? G (1) p(w) ;

B"P(r;w) = C_IMOWQﬁm(r;w).p(w), ¥
We assumed that the background medium is a linear time-invariant medium where D(r,w) =
e (r,w)eoB(r,w) and n(r,w) = ny +ing = /e, (r,w) is a complex function. In this study
we assume ¢, is independent of the positions of the donor or acceptor, i.e., we neglect the
influence of these species on the dielectric.

As we can see in Eq. 5, the medium effects are described in terms of the frequency-
dependent macroscopic relative permittivity, €, = €/eg. Moreover, the screening contribution
¢, ' and the local field factor (e, +2)/3 have also been included in our Green’s function. This
extra factor in Eq. 5 is important for a homogeneous medium when the dielectric medium
is in direct contact with the dipole, but it can be ignored if the donor and acceptor are
separated from, for instance, gold nanostructures in vacuum. Indeed, we need to carefully
and correctly incorporate local field effects associated with nanostructures that are not in
direct contact with the donor and acceptor.

Including the first-order moment of the current density distribution (n=1) which is related

to the symmetric and antisymmetric parts of the tensorial terms in Eq. 6 we obtain:
3 (r,) = —3MPHER () V() (10)
The fields generated by the magnetic dipole current density m are defined as
BYP(r;w) = 0_2,uow2<a(r;w).m(w)
EMP(r;w) = —c’luowzﬁm(r;w).m(w).

(11)

The electric field and the magnetic field from an electric quadrupole source are given by
Apd
EfC®r,w) = —pow’® @ - Vﬁ(r,w)

12)
B¢ (r,w) = —c_l,uowz(a> : Vﬁm(r,w) (



where Qjy, is the electric quadrupole moment tensor defined as Qi = 3 [ 2} p(x)d*z’" and
(6 : Vﬁ)z = ix QirViGji.

We note that the dyadic Green’s function ﬁ(r, w), which describes the fields EZP(r,w)
and BMP(r,w) from electric and magnetic dipoles, has terms that depend on r—*, =2, and
r~3. However, the near-zone term is missing for the fields B (r,w) and EMP(r,w), because
these fields are defined by the Green’s function ﬁm(r; w), which only has r~* and 2 terms.

On the other hand, the electric and magnetic fields from a quadrupole current density
source are characterized by the tensors Vﬁ(r;w) and VﬁM (r;w), respectively. There-

fore, EF?(r,w) has terms varying as r—%, =2, 7=, and r~*.

A term with a r—* distance
dependence is not present in B¥%(r, w).

Assume that a single radiating donor is placed at rp, and that the donor size is comparable
with the distance between donor and acceptor. We introduce the relationship between the
electric and magnetic fields generated by a donor and the dyadic Green’s function. The total
electric field in our system is the sum of the E-field of the electric dipole (E”), the E-field
of the magnetic dipole (EM?), and the E-field of the electric quadrupole (E¥?), while the
total magnetic field is the sum of the M-field of the electric dipole (BED ), the M-field of the

magnetic dipole (BM?), and the M-field of the electric quadrupole (B¥9):
E = EFP + EMP L EFC (13)
B = B¥Y 4 BMP | B¥C, (14)
We should note that dipole-allowed transitions are caused by the electric field of the radiation
acting uniformly through the molecular volume while quadrupole transitions are caused by

spatial variation in the field. Thus the electric quadrupole as a second rank tensor interacts

with the gradient of the electric field defined as
VE = VE*? + VEMP + VE*9. (15)

Knowing that for absorbing and dispersive media, in the framework of quantum electrody-
namics and Fermi’s Golden rule, the transition matrix element with only the electric dipole-

electric dipole interaction included is expressed as [27-30]:
M = —quQPA.ﬁ(rA,rD,w).PD (16)

where P py4) is the vector of the transition dipole moment of the donor (acceptor). However,

by including the interaction of magnetic dipole and electric quadrupole, the matrix element



becomes more complicated:
m —
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and the total matrix element is given by:
M = MEdﬂnﬁq (rA7 rp, w) + MBd,m,q (rAa Ip, (U) + MVEd’m’q (rAa rp, w) (18)

Comparing elements of the tensors in Eq. 18 with Eq. S1,Eq. S2,Eq. S3, and using the
corresponding expressions for the M and M E coupling term from [29], we obtain the final
form of the transition matrix based on the response fields at r4 (the position of the acceptor)

caused by the donor as

MEd,m,q(rA, rp,w) = —Ppu(ra). [EED(rA,w) + EMD(rA,w) + EEQ(rA,w)}
MPBima(ry,rp,w) = —ma(ra). [B¥”(ra,w) + BYP(ra,w) + BP9 (14, w)] (19)

MYFsma(r g, p,w) = — Q a(ra) - [VE"P(ra,w) + VEY? (4,0) + VE™(r,0)]

These expressions provide intuitive generalizations of Eq. 8 for determining the interactions
between different multipoles with the electromagnetic fields generated by another set of
multipoles (details of the derivation of this set of equations can be found in the SI).

Note that in the derivation of Eq. 19, second order tensors arise from the dyadic product

of two vectors, a and b
? =a® b Sz'j = aibj. (20)

and as a result, if S and T" are two second order tensors, the inner product of S and T is a

scalar, denoted by ? : ?, represented by their components:

Eq. 19 includes the effect from both electric and magnetic fields, as well as the electric field
gradient. The gradient of the field, VE, contains nine components, e.g. (VE)g, is the change

of the E3 component in the v direction.



Note that, if there is no DC magnetic field interacting with the system, the dynamics of
the system preserve time-reversal symmetry, and all molecular eigenfunctions can be chosen
to be real [31]. From this the electric dipole and electric quadrupole transition matrix
elements are real, and magnetic dipole transition matrix elements are entirely imaginary
[32].

Recasting Eq. 19, the transition matrix based on the fields from the donor at the position

of the acceptor is expressed as follows [23, 33|

M(ry,rp,w) = M(ra,rp,w) + M™(ra,rp,w) + Mi(rs,rp,w), (22a)
Me(I'A,I'D,U}) — Mee + Mem + Meq
e e e 22b)
e /ﬁ) ED m% MD Cbgj EQ (
:-ﬂgeﬂ-{ EFD 4 gMD ¢ I _geQ|
AT p(w) m(w) q(w)
Mm(I'A,I'D,u}) — Mme _|_ Mmm _|_ Mmq
e e e 22
= —mem . [M% BED m% BMD | q% BEQ:| ’ (22¢)
p(w) m(w) q(w)
M9(r a4, vp,w) = M+ MI™ 4 )9
9 (22d)

_ _qeg(?q . |:IugDe VEED+ /n/LDe VEMD+ q%e VEEQ:| )
AT AT p(w) m(w) q(w)

Eq. 22 enables the study of resonance energy transfer in inhomogeneous, absorbing, and
dispersive media for the cases where the sizes of the donor and the acceptor are comparable
to the distance between them. Note that the pre-factors in front of each E and VE is for
renormalization so that the fields have the correct magnitudes, corresponding to the donor
transition multipole moments.

Considering the size of donor/acceptor to be d (d < \) and d < R, eight additional terms,
due to the contribution of magnetic dipole and electric quadrupole, are included in the RET
rate calculation, as compared to the traditional Forster formulation. The rate of RET can
then be determined by substituting M*® in Eq. 2 with the new form of the transition matrix
element presented in Eq. 22.

The necessary condition of the multipole expansion to be useful is that the transition
density distributions of the interacting molecules do not overlap, i.e., the inter-chromophore
separation R > (rp + ra) where rpsa is the radius of the donor or acceptor. Note that
transition selection rules often make some of the transition multipoles vanish, causing certain

terms in Eq. 22 to be zero. In general, the selection rules for m*™ and g*™ can be different
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from that for the electric dipole, and therefore give non-zero transitions between two states

even when the dipole transition is forbidden.

III. RESULTS AND DISCUSSION

Here we explicitly examine the total coupling intensity, |M|?, for selected situations to
provide better insight about the role of the different terms. |M]? includes both purely
electric, magnetic and quadrupole contributions to the transfer matrix element in addi-
tion to interference terms corresponding to mixed electric-magnetic, electric-quadrupole and

magnetic-quadrupole couplings as follows

M =M+ M™™ + MY + (M™ + M™) 4+ (M + M) + (M™ + M™™)? (23

Although Eq. 23 seems very complicated, we may simplify it with an initial consideration
of the geometry and transition moment symmetry of the donor and acceptor. The next
few paragraphs provides a general consideration of simplifications that can arise, and then
we provide numerical results for simple model systems that include electric quadrupole and
magnetic dipole effects. All these examples refer to donors and acceptors in a homogeneous
medium; in the future we will examine the influence of plasmonic particles present in the
medium on donor-acceptor energy transfer when electric quadrupole and magnetic dipole
effects are important.

Generally, the interaction between molecules with sufficiently low symmetry and no
proper axis of rotation (chiral or optically active molecules), are dominated by the electric
dipole terms for resonance energy transfer. However this type of molecule is also subject to
additional small interactions which are different for left handed-left handed as opposed to
left handed-right handed enantiomer combinations. For a discussion of intermolecular inter-
actions between optically active molecules, the contributions from magnetic-magnetic dipole
and also electric-magnetic dipole must be taken into account. These contributions come from
the magnetic transition dipole connecting the excited(ground) state of donor(acceptor) to
its ground(excited) state, when both of them are allowed. The condition is met if the donor
is chiral but not when it is centrosymmetric. Thus the theory we have developed could be
useful for comparing energy in chiral assemblies of molecules compared to a racemic mixture

of the same molecules, as has been examined by Rodriguez and Salam [34]
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Thus the theory we have developed could be useful for comparing energy in chiral assem-
blies of molecules compared to a racemic mixture of the same molecules.

On the other hand, due to importance of the orientation of the electric and magnetic
dipoles in donor/acceptor, there can be orientations where there is no energy transfer for
optically active species. It is not hard show from Eq. 22 that when p? || m# and mP || u?,
the energy transfer matrix elements (M™ and M™¢) are zero even though the transition
dipoles are nonzero, as previously noted.[29, 32] However, the total energy transfer rate could
survive due to other interactions, such as electric dipole-electric dipole coupling (M®¢), or
magnetic dipole-magnetic dipole coupling (M™™), etc. We will discuss this in case 4 of the
numerical section in more detail.

It should be noted that the magnetic dipole transition moment amplitude is smaller (for
molecules smaller than a few nm) than the electric dipole transition moment by two to three
orders of magnitude, i.e., M™™ /M < 10~ and if the leading contribution is coming from
the electric-electric dipole coupling, the amplitude of magnetic dipole transitions both in
donor and acceptor can be discarded (|[M™™|* ~ 0) [29, 32, 35, 36]. Magnetic quadrupole
and higher magnetic multipoles should also be negligible in this situation. However we note
that for large nanoparticle structures, it is possible to have magnetic and electric transition
moments that are comparable in size, in which case the terms in Eq. 22 would need to be
fully evaluated to generate accurate results [37]

In the near zone limit, it has been shown that the electric quadrupole-quadrupole and
magnetic dipole-electric quadrupole interactions are small [35, 38]. This is also apparent
in Eq. 22 when one examines the distance dependence of the relevant quadrupole fields in
comparison with the corresponding dipole fields. However generally the coupling of magnetic
dipole-electric quadrupole is nonzero for oriented molecular pairs but vanishes on rotational
averaging if we consider an ensemble of randomly oriented molecules [35, 39, 40]

We may identify further simplifications to Eq. 23 by looking at the contribution of electric
dipole-quadrupole interference terms; M¢?, M9, These two interference terms cancel for an
ordered ensemble with the same orientation and same magnitude for electric dipole and
quadrupole transitions for both donor and acceptor i.e. M® 4+ M9 = 0 [35, 41] (see also
SI for proof). This means regardless of donor-acceptor geometry or polarization directions,
the electric dipole-electric quadrupole energy transfer vanishes for an ordered system (we

also discuss this in case 2 in the simulation section). However, we should be cautious when
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treating disordered systems, since orientation averaging should be employed to determine

the total energy transfer rate.

Numerical simulation

To illustrate the effect of including transition magnetic dipole and electric quadrupole,
we calculate the distance-dependent coupling intensity for different cases in which different
multipoles are considered for donor and acceptor, and show that the coupling intensity can
be diminished by different types of interferences. The matrix element (coupling intensity) in
Eq. 23 is determined by the interaction between the acceptor multipoles and the total electric
and magnetic fields from the donor. Compared to the electric dipole-dipole approximation,
the total fields from the donor are much more complicated, giving rise to interferences in the
fields and the multipole-field interactions. More specifically, interferences can come from
two origins: the interferences between the fields generated by different donor multipoles,
and the cancellation of interaction energies between different acceptor multipole-donor field
interactions.

In the following sections, we analyze the electric dipole-electric quadrupole (ED-EQ)
interference and the electric dipole-magnetic dipole (ED-MD) interference. Using three dif-
ferent ED-EQ cases, we show, respectively, three consequences due to interference, namely:
(1) there can be minima in electric field and field gradient magnitudes for certain acceptor
locations; (2) there can be cancellation in the contribution to the energy transfer rate that
arises from dipole-field and quadrupole-field gradient contributions; and (3) there are mod-
ified field orientation effects compared to the dipole only case. Each consequence leads to a
dip in the coupling intensity at a certain donor-acceptor distance. On the other hand, the
ED-MD case provides an example where the energy transfer rate is completely suppressed,
regardless the donor-acceptor separation, due to the ED-MD interference.

A total of four cases will be discussed, with various donor-acceptor configurations and
multipoles. The simulations are performed with spatial distributions of the donor and accep-
tor shown in Fig. 1 (a) or (b). The donor is centered at the origin, with the donor-acceptor
pair axis aligned with the x-axis. Spheres are used to represent the two particles, but the ori-
entations of multipoles may vary in each case. If the acceptor is located on the positive side

of the x-axis, the configuration is named Side A; otherwise, Side B. In either configuration,
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(a) Side A

RET

Donor Acceptor

x=0 x>0 X
(b) Side B

Acceptor

x<0 x=0 X

FIG. 1. Schematic representation of the system considered in the simulation. The donor is located
at the origin of the coordinate system, while the acceptor is placed either on the positive x-axis

(Side A) or on the negative x-axis (Side B).

the distance is defined as the absolute distance between the donor and the acceptor.

Case 1: Electric dipole-electric quadrupole (ED-EQ) interference - field magnitude minimum

The first case in our analysis is to show that the interference between the donor dipole
field and donor quadrupole field can create local minima in the total field intensity, as well
as the total field gradient intensity, leading to large suppression of donor-acceptor electronic
coupling with a certain particle separation. This case uses Fig. 1(a) as its configuration, with
well defined transition electric dipole and quadrupole moments associated with the donor
and the acceptor. The fields generated by these multipoles lead to destructive interference
along the positive x-axis, giving rise to a dip in the donor-acceptor coupling intensity.

The donor and acceptor multipoles are defined as the following. The donor electric
dipole is assumed to point towards the positive y-axis with a magnitude of 1 Debye, i.e.
w1 = (0,1,0) D. The donor quadrupole emitter consists of 4 point charges in the xy-plane.

Each charge has a magnitude of 2.082¢, and is located in one quadrant of the plane, at a
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FIG. 2. Heat maps, for Case 1, of the magnitude of the total electric field (E*!) (a) and the
magnitude of the gradient of the total electric field (VE!?) (b) in the xy-plane with z = Onm. (c)
The coupling intensity associated with an acceptor having an electric dipole-field interaction or an

electric quadrupole-field gradient interaction.

distance of 0.5 A along each axis (x and y). The charges in the first and the third quadrants
are negative, while the other two are positive. This charge distribution gives an electric
quadrupole tensor with all zero matrix elements except Q13 = Qo1 = —10 D-A. Both the
dipole and the quadrupole are oscillating with a frequency of 475.86 THz (equivalent to
630nm). In order to separate the effects of the total field and the total field gradient,
two acceptors are considered here: one with the same electric dipole as the donor but no
quadrupole, and the other with the same quadrupole as the donor but no dipole. Hence,
the first acceptor would interact with the electric fields only, while the second only interacts
with the field gradients. Note that only one acceptor is coupled with the donor at one time,
not both at the same time. The magnetic dipole in this case is assumed to be zero for both

the donor and the acceptors.

The total electric field magnitude (where E* = EEP + EF?) associated with the donor
dipole and quadrupole transition moments as defined is presented in Fig. 2(a), while Fig. 2(b)
shows the magnitude of the total field gradient (VE™). It is obvious that there is a minimum
along the positive x-axis in each heat map. The minimum in the field map (Fig. 2(a)) is
caused by interference between the donor field and the quadrupole field, which can be seen
in the corresponding vector maps of the fields in the xy-plane (see Fig. S1 in SI). The
vector maps plot the real parts of the x and y components of the different fields, while their

corresponding imaginary parts at these distances are several orders of magnitudes smaller.
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Because we assume that the acceptor has the same orientation as the donor, together with
the fact that the electric fields interact with the dipole moment of the acceptor via a dot
product operation, only the y components of the fields can affect the coupling strength.
Therefore, there is no need to analyze the z components of the electric fields in Case 1.

In Fig. S1 (a) and (b), the electric fields from the dipole and the quadrupole have the con-
ventional vector maps, while a local minimum can be observed in the total field (Fig. S1(c)).
The dipole field has two symmetrical loops on the positive and negative sides of x-axis, while
the quadrupole field has four loops, one in each quadrant of the xy-plane. The quadrupole
field is stronger than the dipole field near the origin, but decays more rapidly as distance
increases. Because of the nature of the field lines, the total field along the positive x-axis
is affected by the destructive interference between the dipole and quadrupole fields. This
interference causes a minimum at x = 6 nm, while the quadrupole and dipole fields dominate
at positions before and after 6 nm, respectively. The gradient of the fields have a more com-
plicated pattern, although the origin of the local minimum is coming from the same effect,
as shown in Fig. S2. The field gradient vector plots present only the xy and yx components
of the gradients, because those components are the only non-zero elements in the selected
quadrupole tensor.

Due to the local minima in E*" and VE®, and given that the prefactors to these fields
in Eq. 22b (i.e., u% /p(w) and ¢% /q(w)) are comparable in magnitude, it is expected to see
dips in the coupling intensities (|M¢]* and |[M9[?), and therefore in the resonance energy
transfer rate. Indeed, Fig. 2(c) shows a dip in both types of coupling, namely the coupling
between the acceptor dipole moment and the total field from the donor (|M¢|?), and the
coupling between the acceptor quadrupole and the gradient of the donor fields (|M?]?). The
dipole-dipole coupling (green line) is a smoothly decaying line as expected, since the dipole
field without interference decays smoothly (as 1/R?) and the acceptor dipole is aligned with

the donor’s.

Case 2: ED-EQ interference - interaction energy cancellation

Using the Side B configuration in Fig. 1(b), we investigate the second case mentioned
earlier, in which there is cancellation of interaction energies between the dipole-field and

quadrupole-field gradient interactions, resulting in a suppression in the donor-acceptor cou-
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FIG. 3. The coupling intensity (a) and transition amplitude (b, ¢) for different multipole interac-
tions for Case 2. Plots of the transition amplitudes (b, ¢) only show the real parts. The orange

dashed line in (c¢) marks the value of zero for easy observation.

pling intensity. The transition multipoles for the donor and the acceptor are kept the same
as defined in Case 1, except that the acceptor has both dipole and quadrupole moments. The
Side B configuration shows a smoothly decaying electric field and field gradient (Fig. 2(a)
and (b)), without any local minimum. Usually, this suggests that, provided the acceptor
multipoles being the same as the donor’s, the coupling intensity decays smoothly as the
donor-acceptor distance increases. This is indeed the case for |[M¢|*> and |M?|? (see blue
and red lines in Fig. 3(a), respectively), which are calculated using Eq. 22b and Eq. 22d,
respectively. However, the total coupling intensity (|M|? = |[M¢ + M2, black line) clearly

shows a dip close to = —7nm (distance 7nm).

The dip in coupling intensity |M]? is not due to destructive interference in the field or
field gradient, but in fact, comes from cancellation between the interaction energies of the
dipole and the quadrupole with the fields and the field gradients, respectively. In other
words, in contrast to Case 1 where the cancellation occurs within Eq. 22b or 22d, it happens
between these two equations. In Fig. 3(b), one can see that the transition amplitudes
from the p4-EEP interaction (M¢) and the ps-EL? interaction (M) are both positive,
while the 6A-VE§)D (M%) and 6A-VE§)Q (M%) interactions are both negative. When
summing over all interactions in Eq. 22a, the total transition amplitude M (Fig. 3(c) black
line) passes through zero when £ = —7nm and a local minimum in the coupling intensity
|M|? appears. Therefore, it is not always possible to predict the behavior of the coupling
intensity by considering only the magnitudes of the total electric field and field gradient.
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The interactions between the acceptor multipoles and the donor fields and field gradients
must be analyzed before reaching any conclusion for the energy transfer rate.

It is worth noting that only the real part of the transition amplitudes are plotted in Fig. 3
(b, ¢), which could reach zero at a certain distance. On the other hand, the imaginary part
of M, although small at most distances, may not be exactly zero. Hence, even though at a
distance of 7nm, the real part of M is zero, the total coupling intensity term (|M]?) still

has a non-zero residual value.

Case 3: ED-EQ interference - modified field orientation

Analysis of Case 3 shows that the ED-EQ interference can also lead to a modified total
field orientation, as compared to the pure dipole field, giving rise to a misalignment between
the acceptor multipoles and the donor fields and field gradients. In this case, the multipole
moments of the donor and the acceptor are the transition dipole and quadrupole moments
of the first excited state of a 512-atom PbS quantum dot.[42] The transition dipole has
the form pPP® = (0.116,0.848,0.049) D, while ﬁpbs (in unit of D-A) is defined by the
following tensor elements: Q11 = 1.968, Qoo = —4.039, Q33 = 2.070, Q12 = Q21 = 6.484,
@13 = Q31 = —0.080, and Q23 = Q32 = 1.581. The wavelength of the donor emission is at
630 nm. The donor and the acceptor are assumed to have the same identity and orientation.

Fig. 4(a) shows the coupling intensities associated with different multipole interactions,
as well as the total coupling summing over all interactions (using Eq. 22a), which exhibits
different characteristics at short, intermediate, and long range distances. First, the total
coupling (|M|?, black line) at short distance (< 3.5nm) is larger than the dipole-dipole
coupling (|M®|?, green line), due to the constructive interference between the ps-Ep and
6 4-VEp interactions. Second, |M|? converges towards |[M®|? at large distance because
of the dominating dipole field. Third, the coupling intensities have local minima at certain
distances. Through the following analysis, we shall see that the local minima in |M¢|* and
|M|? are caused by the misaligned interaction between multipole and field /field gradient.

The magnitudes of the total electric field and the field gradient generated by dipole and
quadrupole are shown in Fig. S3, in which a dip can be found in the fourth quadrant of

the xy-plane. Similar to Case 1, the local minima are caused by interference between the

two multipoles (see vector plots for the fields in Fig. S4). However, the dips in the fourth
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poles for Case 3. (a) The coupling intensity of different multipole interactions. (b) Vector plots of
the different electric fields, showing the real parts of the x and y components, in the xy plane with
z =0 nm. (c) Magnitudes of electric fields along the x-axis. (d) Magnitudes of the field gradients

along the x-axis.

quadrant have insignificant effects on the magnitudes of the total field and field gradient
on the positive x-axis (Fig. 4(c) and (d)), which have no local minimum at the distances in
interest. Meanwhile, by examining the vector plots carefully (Fig. 4(b)), one can see that
due to interference, the total electric field (E'*) has an orientation change from x = 3 nm to
x = 8 nm. The field has a significant contribution from the y component between x = 3 nm

and 4 nm. However, it becomes parallel to x-axis around x = 5 nm, which means that at this
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distance, the interaction between the field and the acceptor dipole moment (mostly aligned
with y-axis) is minimal. Then, the field gradually increases its y component, giving a much
larger interaction with the acceptor dipole as compared to that at x = 4.5 nm. Hence, the
coupling intensity due to the p4-Ep interaction (|M¢|?, blue line in Fig. 4(a)) exhibits a
dip at x = 5 nm. The dip in the coupling of the ﬁA—VED interaction (|M9]%, red line)
has a similar origin. Finally, the dip in the total coupling intensity (]M]?) comes from the
interaction energy cancellation effect as described in Case 2.

The study of different coupling intensities shows the complexity of the interactions among
the multipoles. The multipole interference can lead to a local minimum in field magnitude,
modification in field orientation, and cancellation of the interaction energy. Any one of the
effects could result in a dip in the coupling intensity. Therefore, it is important to analyze

the coupling intensity as determined by Eq. 18 instead of the field magnitude alone.

Case 4: Electric dipole-magnetic dipole (ED-MD) interference - total suppression of energy

transfer

Electric dipole-magnetic dipole interference is examined in Case 4, where the electric
quadrupole moments are set to zero. This means that only Eqgs. 22b and 22¢ would provide
non-zero results, rather than Eq. 22d. We find that it is common for the cross terms M ™ and
M™¢ to be zero, due to orthogonality of the electric and magnetic fields from the oscillating
electric and magnetic dipoles. It is also possible to orient the dipoles in such a way that the
energy transfer is nearly completely turned off.

Fig. 5 shows the distance-dependent coupling intensity ratio using different donor and
acceptor magnetic dipoles, while both donor and acceptor electric dipoles are kept at 1 D
and aligned with y-axis. Each plot contains two types of ratios: the ratio of total coupling
intensity (|M]?) to the ED-ED coupling (|M®|?), and the ratio of the sum of ED-ED and
MD-MD coupling (|M® 4+ M™™|?) to the ED-ED coupling (|M¢|?). The difference between
them, if any, is from the contributions of the cross terms: the interaction between the
electric dipole and the electric field from the oscillating magnetic dipole (M¢™), and the
interaction between the magnetic dipole and the magnetic field from the oscillating electric
dipole (M™¢). Fig. 5(a) and (b) show that if the magnetic dipoles of the donor and the

acceptor are both aligned with either x or y axis, together with the y-oriented ED, the cross
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terms are zero, and the two types of ratio coincide with each other. When the MDs are
both aligned with x-axis the energy transfer rate is suppressed for a wide range of distance,
from 3nm to 100nm, due to interaction energy cancellation. When the MDs are both in

the positive y direction, very small enhancement can be seen.

On the other hand, if the MDs are both aligned with the z-axis, then larger enhancement
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in the total coupling intensity can be achieved at large distances (> 30 nm), as demonstrated
by the ratio |M|?/|M|? (Fig. 5(c)). The deviation between the two ratios in this plot
suggests that with for z-oriented magnetic dipoles, the cross terms, from the p4-EX? and
the m4-BEP interactions, provide a significant contribution, especially at large distances.
In addition, if the MDs of the donor and the acceptor are aligned with y-axis, but pointing
towards opposite directions, it is possible to completely turn off the resonance energy transfer
by choosing the appropriate MD magnitude. Fig. 5(d) shows that when the magnitude of
MD is 107.8282 up (unit of Bohr Magneton), the coupling ratio remains constant at the
value of 1071% when varying the donor-acceptor distance. Note that in order to reach this
total suppression, the magnetic dipole magnitude has to be much larger than the electric
dipole, when both are expressed in atomic units. The electric dipole magnitude of 1 D equals
to 0.3934 atomic units, while the MD magnitude of 107.8282 up is almost 54 atomic units,
i.e. 2 orders of magnitude larger than the electric dipole. This control condition is possible

in a nonsymmetric bichromophore system or a layered Langmuir-Blodgett film[36].

IV. CONCLUSION

We have extended Forster theory beyond the dipole approximation by introducing a
general but practical computational scheme to simulate RET in inhomogeneous absorbing
and dispersive media which can be easily implemented using a real-time electrodynamics
approach, the so-called ”the time-domain electrodynamics resonance energy transfer” (TED-
RET) method. The main focus of this work is on Eq. 22, which allows us to study RET at
donor/acceptor separations comparable to the size of the donor or acceptor for an arbitrary
dielectric medium that could include plasmonic particles. The formulas also take care of
energy transfer when the electric dipole transitions are forbidden, which was an important
missing aspect of our previous work. Comparing with the general FRET approach in which
only the electric dipole is included, we have a much more complicated transition matrix
element, although the form is conceptually straightforward, and we have therefore been able
to use it in numerical applications. These applications have demonstrated the usefulness and
capability of our new formulation by examining energy transfer simulations for different cases
of multipole resonance configurations with a complex spatial distribution of matrix elements.

Using a toy model and 512-atom lead sulfide (PbS) quantum dot, we found that the following
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effects can play a role in energy transfer: (1) there can be a minimum in energy transfer rates
that arises from interfering electric field and field gradients; (2) there can be cancellation
of interaction energies associated with dipole-field and quadrupole-field gradients; and (3)
higher multipoles lead to modified field orientation compared to the dipole only case. As
a last part of the numerical simulation, the electric dipole-magnetic dipole interference is
discussed in detail. The results demonstrate important deviations from conventional rate
calculations using Forster theory, and we have also set the stage for properly and efficiently
implementing plasmon coupled (PC)-RET calculations in relatively large particles that are
important in biology, optical switching, solar cells, where energy transfer processes typically

take place in inhomogeneous absorbing and dispersive media.
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SUPPORTING INFORMATION: RESONANCE ENERGY TRANSFER IN
ARBITARY MEDIA: BEYOND THE POINT DIPOLE APPROXIMATION

A. Derivation of matrix element beyond dipole approximation

As we explained in the main text, the emitted field can be calculated on the basis of
a multipole expansion of the current density by means of the dyadic Green’s functions
<a(R; w) and ﬁm(R; w). By means of the first term of the current density expansion we
write quite simple formulas for the electric (E®P(r;w) ) and magnetic (B¥P(r;w)) fields

from the electric dipole source can be found as [25]:
EPP(r;w) = pow? G (r;w).p(w) -
1
B’ (r;w) = c’luo(ﬁﬁm(r; w).p(w),

The second term of the current density expansion can give us the fields generated by the

magnetic dipole current density m:
BYP(r;w) = C’Q,quQﬁ(r;w).m(w) (2)
2
EMP(r;w) = —c_lungﬁm(r;w).m(w).

And also the electric field and the magnetic field from an electric quadrupole source:
EPC(r,w) = —,uow2<§> ; Vﬁ(r,w)

N (S3)

B 9(r,w) = —c¢ tpow® @ : Vﬁm(r,w)

The matrix element is defined based on the interaction of multiples of the donor with cor-
responding multipoles of the acceptor [29, 30, 36]
M+ M™ = [ p? +mim? /2] Vy
M+ M = i, + aui’] Vige
M = Qf}ﬂﬁvz‘jkl (54)
M™ + M™ = Im [pi'm? [c+miu? [c] U

M™ 4+ M = Im [m{q}/c+ qﬁcmf)/c} Usijk

Here ¢ is the velocity of light and ;{A/D), m{A/D) are the electric and magnetic transition
moments and and Q(A/ D) is the electric quadrupole transition moment of donor(D)/acceptor(A)
respectively. It should be noted that the magnetic transition moment tensor is purely imag-

inary, i.e. Im(m;) = —im;.
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Comparing our electric Green function (ﬁ) used in this work with the one in references
29, 30, 40], there are some coefficients that can be derived simply to have the compatible

expression for the coupling tensors of Vj;, V;;r and Vjj; as follow:

Vij = —pow’Gyj,
Vz‘jk = NOWQVijia (85)
Vijk = 10w V;V;Gr.

The coefficients of the coupling tensor for the magnetic Green function (ﬁm) are different

29, 36],

Uij = —ipow?G,

’ : (56)
Uijk = —Z/LowQVkG;r;

Since we can separate the interaction of electric dipole, magnetic dipole and the electric

quadrupole from the donor side with the corresponding multipole of the acceptor, for the

ease of convenience we rearrange these interactions into three equations:

M(r4,tp,0) = M(ta,tp,w) + M™ (x4, tp,w) + M4, 1p,w), (87a)
(S7b)
Me — Mee + Mem + Meq
e [P g o
=u { oo = U - Q7 ]
(S7d)
Mm — Mme 4 Mmm + Mmq
A P (878)
= [T VTG
(STf)
M(r,vp,w) = M9+ MT™ 4 M9
=G O (V) (T (@29

After plugging in the corresponding terms from Eq. S5 and Eq. S6 into Eq. S4 and some

algebra we get the main expression in Eq. 22d.
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B. Proof of M¢ = —M9% and M°" = M™° for a special case

When the donor and the acceptor have the same identity and orientation, we have the

relations:

Met = — e, (S8)
Me™ = M™, (S9)

In the following proof for these relations, we shall see that the reason for the opposite signs in
the two equations comes from the fact that the electric Green’s function (ﬁ) is a symmetric
tensor, while the magnetic Green’s function (ﬁm) is antisymmetric.

First, let us look at the proof of Eq. S8, starting from the expression of M%, and recasting
it into the matrix element form. Suppose the transition dipole moments for both the donor
and the acceptor are u” = pu? = p, and the quadrupole moment is 6[) = 6‘4 = ﬁ
Then, the coupling term M9 is the interaction between 6)‘4 and the gradient of the electric

field from p”:

24

Mo = A yEPH = A [V (Mow G . uD)]
= —pow? Zij [V ( > o = — oW ZQ]’C [vk (ﬁ )J
I
= —pow’ Y Qi | Vi (Z Gjlm> = —pow’® Y Qi [Vk <Z mGlj>
ik l i :

= —pow® Y QuVruGy = —pow’ Y QuViuGi.

jkl jkl

(S10)

Note that we utilize the symmetric property of the ﬁ tensor in the last step, i.e. Gj; = Gji.
On the other hand, the coupling term M is the interaction between p” and the electric

field from ﬁD:
Mea— —pA ED-@ _ _uh [_MOWQ (6[) : Vﬁ)]
fiow” ; Iz <<§>D : Vﬁ% = pow? ; L (Zk ijVijz>
J
= fiow? Z wQirViGj = pow? Z Qi VG

ki ki

= — M.

(S11)
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The final equation is made possible by the fact that the donor and the acceptor have the
same electric dipole and quadrupole, as specified earlier.

Following a similar path, we can prove the second relation, Eq. S9. Suppose that the
magnetic dipoles are m” = m*# = m, and the electric dipoles are u” = pu? = p. Starting

from the M term, we have:

Mem — _/J’A . ED,m — _“A . |:—C_1M0w2 (ﬁM . mD>i|

= ¢ pow? Z 14 (ﬁM . m) = ¢ pow? Z [ (Z G%mk>
J J k

J

-t S (Sme) = S (-
j k J k

= —c tpow? Z ,ujmkG% = —c tpow? Z mkG%uj (S12)

ik ik
- —cfluowQka (Z G%Nj) = —Cflﬂouﬂzmk (ﬁM ' '“’)k
= —c mwm(ﬁM )Z '[C “w<<aM ﬂ
= —m? . BPH# = pme

C. Green function for dispersive, absorptive, infinitely homogeneous,

nonconductive medium

According to Drude-Born-Fedorov equations [43], field operators in a dielectric medium
that is dispersive, absorptive, infinitely homogeneous, nonconductive, with no free charges,

and chiral can be defined as

@ pom(Riw) = l[w@ RR) - [(1 - 1)]<U—3RR>}€%R7

R)2 R)3
o 1 TR (v (513)
o (Riw) = — | — "RU xR,
hom( aw) A ")/R (7R> € X
and v, the magnitude of wavevector is given by
k)(UJ) !/ .o
()= —F S E () + iy B (w). S14
190 = g = 7P + 10w (514)

We should note that + and — denote left-circularly polarized and right-circularly polarized
field components, respectively. If we define v"*)(w) be strictly positive, the wave is absorbed

by the medium and is not amplified by it.
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The complex chirality admittance of the medium is defined by 5 in Eq. (S14) and the
properties of the chiral medium are included within these electromagnetic field operators. If
p(w) > 0, the chiral medium is left-handed, while 5(w) < 0 corresponds to a right-handed
medium.

Chiral media refers to a general class of bianisotropic media, responding with both electric
and magnetic polarization to excitation by electric and magnetic fields. The chiral media
couplings to these fields are described by a generalized set of fundamental relations. The
strength of coupling is determined by the magnitude of chirality admittance, 8 which assesses

the bulk magneto-electric properties of the material|[44].

D. Calculating transition electric dipole, magnetic dipole, and electric quadrupole

matrix elements: quantum electrodynamics approach

Employing time-dependent perturbation theory, we investigate the interaction of a par-
ticle with classical (i.e., non-quantized) electromagnetic radiation. The Hamiltonian of such

a system is expressed as
1 e \2
H=—<p—-A) YV, = Ho+ Hint (S15)

where Hj is the Hamiltonian in the absence of the field and Hj,,; is the matter-field interaction
Hamiltonian. Adopting the Coulomb gauge, V- A = 0 and supposing that the perturbation

corresponds to a monochromatic plane-wave of angular frequency w, H;,; becomes

Hipy =~ —iA.p = —iAO cos(k.R — wt)é.p (S16)
me me
_ iAO (ei(k.R—wt) + e—i(k.R—wt)) ép (Sl7>
me

= M(kK)e ™™ + M(-k)e™! (S18)

Correspondingly, the first(second) term on the right-hand side of Eq. (S18) describes a
process by which the atom absorbs(emits) energy hw from the electromagnetic field.In other
word this can be decoded as the absorption and stimulated emission of a photon of energy
hw by the particle respectively.

Using the Fermi’s Golden rule to calculate the rate of transition induced by H,,;, we see

21
Wp—sa = gIM(rA,rD,W)IQ,O(w) (S19)
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where w is the angular frequency of the transferred energy (essentially the excitation energy
of the acceptor), rp (r4 ) is the spatial position of the donor (acceptor) particle, and p(w)
is the density of final states associated with energy w (corresponding to the excited state of
the acceptor and the ground state of the donor).

For a particle of size 10 to 100 Angstroms and the long-wavelength approximation,
e~ "R) = 1 which is known as dipole approximation, the transition rate involves the electric
dipole matrix element and as long as this is nonzero, it is called an electric-dipole allowed
transition. The magnitude of the transition dipole of the donor (acceptor) from the excited

state (the superscript e) of the donor molecule to its ground state (the superscript g) is
P(rp) = u(rp)ep = / 470 (rp)RY, (rp) (520)

P(r) = H9(ra)es = / A7 (e )RV, (r ) (s21)

—i(k.R)

Keeping the second term in the expansion of e , the corresponding terms for the

magnetic dipole and electric quadrupole matrix elements are:

m"™(r) = 5 < k|Ljm > 5 /dT\Ifk(FD)L‘I’m(rD) (522)
(q"™)i; =< k| (er;)(er;)|m >

where L is the orbital angular momentum L =r X p.
If we take into account the interaction of the magnetic component of the electromagnetic
wave with the electron’s spin and orbital magnetic moment, the complete quantity that

mediates magnetic dipole transitions between different atomic states is defined as

m'et — ZL < k|L + 2S|m > (523)
mc

where S is the electron spin operator. However, for the magnetic transition moments, the
spin contributions can be ignored since for states with a multiplicity larger than zero (i.e.,
for S > 0) the different Mg-components of the multiplet will be degenerate [45] and the
components with +Mg and —Mjg provide spin contributions to the magnetic transition

moments that cancel each other.
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E. Additional figures
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FIG. S1. The vector maps, for Case 1, of the electric fields of dipole (E*”) (a) and quadrupole
(EF?) (b), and the total field of both dipole and quadrupole (E*) (c). The spatial plane is the
xy plane with z = 0 nm. The vectors only represent the real part of x and y components of the

electric fields.
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FIG. S2. The vector maps, for Case 1, of the electric field gradients of dipole (VEP) (a) and

quadrupole (VEF®) (b), and the gradient of the total field (VE!*) (c). The spatial plane is the

xy plane with z = 0 nm. The vectors only represent the real part of xy and yx components of the

electric fields.
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FIG. S3. The heat maps, for Case 2, of the magnitude of the total electric field (E!) (a) and the

magnitude of the gradient of the total electric field (VE!!) (b) in the xy plane whith z = 0 nm.
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FIG. S4. The vector maps, for Case 2, of the electric fields of dipole (E¥P) (a) and quadrupole
(EF?) (b), and the total field of both dipole and quadrupole (E) (c). The spatial plane is the
xy plane with z = 0 nm. The vectors only represent the real part of x and y components of the

electric fields.
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