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Privacy protection and scientific output are pub-

lic goods. When Google displays search content

clearly derivative of your recent online history or

when the U.S. Census Bureau publishes geograph-

ically detailed demographic data clearly descriptive

of your own neighborhood, some privacy is lost for

everybody while supplying information that can be

repeatedly re-used to increase utility.

Economists studying privacy have not focused on

decisions about privacy loss inherent in the data pub-

lication process. These issues have recently been

advanced almost exclusively by computer scientists

who focus on technologies for increasing informa-

tion quality while protecting privacy. Abowd and

Schmutte (2019) showed that decisions about pro-

tecting privacy and making information public inher-

ent in publishing data from confidential sources can

be addressed using traditional social welfare analy-

sis. This embeds the computer scientists’ contribu-

tions into a framework that allows social scientists to

contribute to the debate about safe methods for ana-

lyzing and publishing confidential data.

Economists rely heavily on designed data and ad-

ministrative records from governmental agencies to

do critical research. These studies are often done

under the supervision of a statistical agency exer-

cising its dual mandate to disseminate information

and to protect the privacy and confidentiality of re-

spondent data. We have long recognized that there

is tension between these mandates. Cryptographers

established in the early 2000s that there is a hard

limit to the amount of fully accurate information

that can be published from any finite confidential

database (Dinur and Nissim, 2003)—a budget con-

straint stated in terms of confidential information

leakage. New methods of confidentiality protec-

tion, known as formal privacy in computer science,
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quickly followed.

The implications of database reconstruction for the

work of statistical agencies were largely unexplored

before the U.S. Census Bureau announced its re-

search program (Census Scientific Advisory Com-

mittee (CSAC) Meeting, September 2016) and its

decision to implement differential privacy (Dwork

et al., 2006), the leading variant of formal privacy

models, for the 2020 Census of Population (CSAC

Meeting, September 2017). The Commission on

Evidence-based Policymaking (2017) also explic-

itly recommended that statistical agencies embrace

privacy-enhancing data analysis methods.
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Figure 1. : The trade-off between privacy loss and

accuracy in data publication

These methods enforce an explicit trade-off be-

tween privacy protection and statistical accuracy,

which economists will recognize as a production

function. Implementation requires that the analyst

acknowledge that fitting some models privately pre-

cludes fitting others unless more privacy-loss is per-

mitted. An explicit choice—outside the domain of

computer science, but integral to economics—must

be made: what is the optimal accuracy-privacy pro-

tection point for a given collection of data. The social

choice is constrained by the formal privacy technol-

ogy introduced by cryptographers. The preference
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mapping, on the other hand, must be expressed based

on the uses of the published information and the at-

tendant confidentiality risk. Figure 1 illustrates a typ-

ical production function with privacy loss (ε) on the

x-axis and the accuracy of the data release on the y-

axis. Accuracy is measured relative to releasing the

data with no confidentiality protections (accuracy =

1). Two different social welfare functions are illus-

trated. The tangent point labeled “Data Users” re-

flects the tendency of economists and other social

scientists to favor accuracy over confidentiality pro-

tection. The point labeled “Data Custodians” reflects

the tendency of data curators, often computer scien-

tists, to favor privacy protection over accuracy. So-

cial scientists have behaved as if they could always

have maximum accuracy in every published statistic.

We must now re-design many of our analysis proto-

cols to accommodate the constraints of provably ef-

fective privacy protection.

Economists are not the only ones. Apple (Differ-

ential Privacy Team, 2017), Google (Erlingsson, Pi-

hur and Korolova, 2014), Microsoft (Ding, Kulka-

rni and Yekhanin, 2017), and many other informa-

tion technology giants face the same conundrum. Be-

cause there are both technological and social prefer-

ence components to the problem, ceding the debate

to computer scientists focuses too much attention on

the privacy mechanism and too little attention on how

to do good social science under a privacy-loss con-

straint. By drawing the attention of economists to

their role in studying this problem, this paper begins

to redress this imbalance.

I. Scientific Integrity Is the Highest Priority

Scientific discoveries are made by examining data

using appropriate statistical techniques. We call

those methods inference-valid when, under the main-

tained assumptions, the statistical conclusions have

the probability distributions indicated by the theory.

Inference-valid analyses allow the findings to gener-

alize beyond the data from which they were derived.

Scientists prefer to use the original, unmodified data

as inputs, since any modifications may compromise

the validity of the inference. However, when using

the original data entails the risk of a breach of con-

fidentiality, statistical disclosure limitation (SDL) is

usually applied.

The value of SDL should not be measured merely

as a function of its ability to protect against privacy

loss, though this is surely important. Its value also

lies in its ability to provide data that admit inference-

valid analysis. Traditional SDL methods fail to up-

hold this principle (Abowd and Schmutte, 2015).

But inference-validity should be fully embodied in

a modern SDL system, and formal privacy principles

make this possible.

II. The Roles to be Played by Economists

Amid the sea change in the way confidential data

are made available for research, economists have two

roles to play. As data users, we must gain a clearer

understanding of what these changes mean for our

ability to conduct valid research. The policy deci-

sions made at statistical agencies have the potential

to improve or further compromise inferential validity

on any research question. Economists must be at the

table as these decisions are made.

At a more fundamental level, economists can help

guide policy-makers in deciding how to trade data ac-

curacy off against privacy protection. The database

reconstruction theorem implies that the information

in a confidential database is finite. It can be allocated

between the competing uses of protecting privacy or

publishing more accurate statistics. This problem

is in the economist’s wheelhouse, particularly given

that both uses are public goods.

Abowd and Schmutte (2019) describe this basic

public choice problem, highlighting the key open ar-

eas for research. Fundamentally, we need to under-

stand the social value of accessible, accurate data,

and the social value of protecting the underlying con-

fidential micro-data. Social scientists typically be-

have as if the social benefits of high-quality widely

available data massively exceed the social costs of

any associated privacy loss. This belief is not based

on any rigorous theoretical or empirical evidence that

we have found.1 By contrast, cryptographers and

other privacy experts tend to behave as if the social

costs of privacy loss dwarf the benefits of data qual-

ity. To date, there are some models of the private

demand for privacy (Ghosh and Roth, 2015; Nissim,

Orlandi and Smorodinsky, 2012), as well as a grow-

ing evidence base for the private costs of privacy loss

(e.g. Acquisti, John and Loewenstein, 2013).

1The literature on the value of public data is remarkably thin,

notwithstanding early and important contribution of Spencer (1985),

who developed a framework for modeling optimal data quality, and

Panel on Statistics on Natural Gas (1985), who argued against the log-

ical consistency of standard cost-benefit analysis for public data.
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III. Traditional SDL Is Broken

Some resistance to the modernization of privacy

protection arises from the mistaken belief that tra-

ditional SDL necessarily produces more reliable or

even exact data with trivial re-identification risks

(Ruggles, 2018). Newer methods are unfamiliar,

while there are decades of research using data pro-

duced with traditional SDL. Researchers must re-

place general understanding of formal privacy with

correctly reasoned comparisons of feasible alterna-

tives.

It is important to realize that traditional SDL

presents significant problems for social scientific re-

search. Furthermore, the data demands imposed by

quasi-experimental research designs exacerbate these

flaws. The secrecy surrounding traditional SDL is

a fatal flaw for social science. For example, when

publishing micro-data, statistical agencies commonly

swap records. The swap rate, the algorithm used

to determine whether a record is at risk for swap-

ping, and how the swapping is actually implemented,

are all kept secret because there is no formal model

to demonstrate that “enough” swapping was done.

It might then be possible to undo the confidential-

ity protection afforded by the swapping (Abowd and

Schmutte, 2015).

Aside from the possible biases that swapping and

other methods may introduce, traditional SDL intro-

duces variability into the published data that should

affect our inferences about what the underlying con-

fidential data say about the world. This source of

variability is almost never explicitly addressed in en-

suring that inferences based on SDL-protected data

are valid. Even if we wanted to, because the details

of traditional SDL are kept secret, it is usually not

possible to account for it in estimation and inference.

Traditional SDL can also lead to bias in common

research designs. Abowd and Schmutte (2015) show

that current SDL practices introduce bias into esti-

mates from linear regression models, instrumental

variable models, and regression discontinuity stud-

ies. Analyses based on tabulated data, like the Quar-

terly Census of Employment and Wages (QCEW),

are compromised by SDL rules that require cells in-

fluenced by just a few observations to be suppressed.

The suppression rules are generally vague, and in

most studies, this suppression is nonignorable. Re-

searchers have become comfortable with the practice

of performing the analysis on the available data us-

ing the implicit assumption that suppressed data are

missing at random. We should aspire to do better.

We should aspire to procedures that are provably in-

ference valid.

IV. Formal Privacy Takes, but also Gives

A major concern regarding formal privacy systems

is that they will change the ways in which researchers

can access data, particularly micro-data. Exactly how

formal privacy systems will affect the publication of

detailed micro-data is the subject of extensive current

research. Any change to the way published micro-

data are distorted is a matter of form and degree.

It is natural to mourn the loss of familiar data

summaries, particularly as they may cause a break

in continuity of data releases. But formal privacy

methods also allow publishing new tabulations with

far more detail than traditionally possible. Using

input noise infusion, the Census Bureau publishes

the Quarterly Workforce Indicators (QWI), county-

industry level data on employment and job flows

with demographic details and minimal suppression

(Abowd et al., 2009). In the first official statistical

publication using differential privacy, the Census Bu-

reau publishes LEHD Origin-Destination Employ-

ment Statistics (LODES), complete block-level data

on commuting flows (Machanavajjhala et al., 2008).

The Post-Secondary Employment Outcomes (PSEO)

pilot release (US Census Bureau, 2018) relies on dif-

ferential privacy to publish detailed earnings and em-

ployment outcomes for college and university gradu-

ates by degree level. Most recently, a team of Cen-

sus Bureau and academics published the Opportunity

Atlas (Chetty et al., 2018), which provides inference-

valid tract-level summaries of inter-generational mo-

bility by race and gender—an outcome that is not fea-

sible using traditional SDL.

V. Computer Scientists Are Right about

Re-identification

The cryptographers found a fundamental defect

in the approach statistical agencies have historically

taken to SDL. The database reconstruction theorem

shows that it is always possible to reconstruct part

or all of a confidential database using combinations

of statistics published from that database. Therefore,

even the publication of tabular summaries from, say,

the decennial census or the American Community

Survey is tantamount to a data security breach that

releases all or part of the confidential database. Every

variable in the reconstructed micro-data is a potential

identifier, even if the name and exact address cannot

be reconstructed. Putting aside the legal and ethical
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questions of what constitutes a meaningful breach of

privacy, it is fair to say that if we woke up tomor-

row and learned that 50 percent of decennial census

records, including detailed geography, had been ex-

posed, we would find the statistical system under at-

tack whether or not individuals could be re-identified

from those released data.

Differential privacy does not provide absolute pro-

tection against the disclosure of sensitive informa-

tion. It trades absolute claims for relative ones, ac-

knowledging at its core the impossibility of provid-

ing useful data summaries and complete privacy pro-

tection (Dwork et al., 2006). Formal methods con-

trol the global risk from reconstruction-abetted re-

identification attacks using the privacy-loss budget

ε . An adversary with auxiliary information that in-

cludes traditional identifiers (e.g., name and address)

along with information that matches variables re-

leased via differential privacy, cannot improve the

accuracy of any linkage for any person or any vari-

able by more than a multiplicative factor of e2ε

(see the Online Appendix for details). If a statisti-

cal agency wants to provably limit linkage-based re-

identification attacks with a public degree of confi-

dence, then it has no currently feasible choice except

to adopt formal methods and stand by the privacy-

loss budget it sets.

Traditional SDL also relies on uncertainty about

whether a linkage-based attack produces a reliable

re-identification. But agencies do not discuss the

quantification of this risk—they do not release statis-

tics on putative re-identifications (the number of

records in the confidential database that their inter-

nal experiments were able to re-identify) nor on con-

firmed re-identifications (the number of putative re-

identifications that were correct). If they did, one

could discuss whether such a confirmation rate is

acceptable. If a particular confirmation rate for re-

identifications is acceptable, then formal methods

can insure that the released data are consistent with

a stated level of uncertainty about correct linkage

re-identifications. For example, ε = 1.0 guarantees

that the improvement in the odds of a successful re-

identification never exceeds 7.4 : 1 for any person in

the population when that person’s data are used in

the publications versus when they are deleted or re-

placed with an arbitrary record. An ε = 0.25 guaran-

tees that the improvement in the odds never exceeds

1.65 : 1, and an ε = 0.1 guarantees that the improve-

ment never exceeds 1.2 : 1. Many more examples of

differential privacy’s provable protection against re-

identification can be found in Wood et al. (2018).

VI. Moving Forward

To make progress, we should agree on the prin-

ciples used to evaluate confidentiality protection

mechanisms, whether traditional or formally private.

Three components are essential.

First, agree on a replication protocol that confirms

the provenance and authenticity of public-use inputs

such as particular public-use data releases. Next, it

identifies and confirms the provenance of the compu-

tations applied to those inputs to generate a specific

set of outputs. Finally, the replication protocol con-

firms applying these computations to the public-use

inputs produces the published outputs claimed in a

particular scientific paper.

Second, agree on a validation protocol that con-

firms the provenance and authenticity of the confi-

dential inputs used to produce the versions of the

public-use inputs in the replication protocol. Next, it

certifies the mapping from the computations applied

in the replication protocol to the computations that

must be applied to the confidential inputs to perform

the same statistical analysis. Finally, the validation

protocol produces outputs that are directly compara-

ble to the outputs from the replication protocol.

Third, agree on a comparison protocol. Multiple

candidate and historical public-use products may be

put through the replication and validation protocols.

The comparison protocol specifies how the valida-

tions will be compared, given that the replications are

correct. Only the validations should be compared,

because these establish the properties of the scien-

tific inferences, given the confidential data. There is

no point in directly comparing replications from al-

ternative inputs because such comparisons have no

standard for correctness.

Ideally, an independent panel would conduct this

process. However, such a panel would have difficulty

vetting the validation protocol because curating the

definitive versions of the confidential inputs to par-

ticular public-use products is very resource intensive.

The Census Bureau’s synthetic data program for the

Survey of Income and Program Participation (SIPP)

illustrates the commitment associated with maintain-

ing replication and validation protocols (Benedetto,

Stanley and Totty, 2018).

Statistical agencies must commit resources to the

research program outlined here. Professional orga-

nizations and curators of research data must be pre-

pared to work with the agencies. Going forward, co-

operation in achieving the objectives outlined in this

section would position both the agencies and the re-
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search community to have increased confidence in

the privacy protections and the scientific validity of

all analyses based on the agencies’ data.
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ONLINE APPENDIX

Suppose a Bayesian adversary wants to learn the record R belonging to individual i, from a confidential

database, x. She has auxiliary information E that includes traditional identifiers (e.g., name and address) along

with other variables that can be used to match against data published via differential privacy. The adversary

has prior µ over the space of possible data vectors D . A data custodian uses a bounded ε-differentially private

mechanism M to publish output M(x) = ω . Bounded differential privacy mechanisms treat the total number of

records in the confidential database as public. Unbounded differential privacy mechanisms inject noise into the

total record count as well. The algorithms under consideration for use with the 2020 Census are in the class of

bounded differential privacy mechanisms. Upon observing ω and E, the adversary updates her beliefs about

R, the record of an individual i, using Bayes law. By the law of total probability,

µ(R = r|ω,E) = ∑
z∈D

µ(R = r,z|ω,E)

Note that

µ(R = r,z|ω,E) =
µ(R = r,ω,E|z)µ(z)

µ(ω,E)

=
µ(R = r,E|z)Pr[M(z) = ω]µ(z)

∑y∈D µ(ω,E|y)µ(y)

=
µ(R = r,E|z)Pr[M(z) = ω]µ(z)

∑y∈D µ(E|y)Pr[M(y) = ω]µ(y)
,

where the second equality follows under the assumption that ω is conditionally independent from R and E

given z. The probability of observing ω given z is completely determined by the coin flips of the mechanism.

Hence,

µ(R = r|ω,E) =
∑z∈D µ(R = r,E,z)Pr[M(z) = ω]

∑y∈D µ(E,y)Pr[M(y) = ω]
.

Now consider a hypothetical counterfactual where the mechanism M does not use i’s record, and the ad-

versary knows it. Instead M runs on x̃ = x−i ∪ r f the data vector in which i’s record is removed from x and

replaced by an arbitrary default record, r f . In this case, the adversary’s updated beliefs are:

µ−i(R = r|ω,E) =
∑z∈D µ(R = r,E,z)Pr[M(z̃) = ω]

∑y∈D µ(E,y)Pr[M(ỹ) = ω]
.

The notation µ−i characterizes beliefs over x̃ derived from µ and knowledge that R has been removed and

replaced by r f . We conclude the following:



VOL. NO. ECONOMICS, PRIVACY, AND COMPUTER SCIENCE 7

µ(R = r|ω,E)

µ−i(R = r|ω,E)
=

∑z∈D µ(R = r,E,z)Pr[M(z) = ω]/∑y∈D µ(E,y)Pr[M(y) = ω]

∑z∈D µ(R = r,E,z)Pr[M(z̃) = ω]/∑y∈D µ(E,y)Pr[M(ỹ) = ω]

=
∑z∈D µ(R = r,E,z)Pr[M(z) = ω]/∑z∈D µ(R = r,E,z)Pr[M(z̃) = ω]

∑y∈D µ(E,y)Pr[M(y) = ω]/∑y∈D µ(E,y)Pr[M(ỹ) = ω]

≤
∑z∈D µ(R = r,E,z)eεPr[M(z̃) = ω]/∑z∈D µ(R = r,E,z)Pr[M(z̃) = ω]

∑y∈D µ(E,y)Pr[M(y) = ω]/∑y∈D µ(E,y)Pr[M(ỹ) = ω]

(M is bounded ε-differentially private so Pr[M(z) = ω]≤ eεPr[M(z̃) = ω].)

=
eε ∑z∈D µ(R = r,E,z)Pr[M(z̃) = ω]/∑z∈D µ(R = r,E,z)Pr[M(z̃) = ω]

∑y∈D µ(E,y)Pr[M(y) = ω]/∑y∈D µ(E,y)Pr[M(ỹ) = ω]

(Factor out eε .)

=
eε

∑y∈D µ(E,y)Pr[M(y) = ω]/∑y∈D µ(E,y)Pr[M(ỹ) = ω]

(The summations in the numerator ratio cancel out; i.e., the ratio equals 1.)

≤
eε

∑y∈D µ(E,y)e−εPr[M(ỹ) = ω]/∑y∈D µ(E,y)Pr[M(ỹ) = ω]

(M is bounded ε-differentially private so Pr[M(y) = ω]≥ e−εPr[M(ỹ) = ω].)

=
eε

e−ε ∑y∈D µ(E,y)Pr[M(ỹ) = ω]/∑y∈D µ(E,y)Pr[M(ỹ) = ω]

(Factor out e−ε)

= e2ε

(The summations in the denominator ratio cancel out; i.e., the ratio equals 1.)

Similarly,
µ(R=r|ω,E)

µ−i(R=r|ω,E) ≥ e−2ε .


