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In this paper, spectral methods based on conformal mappings are proposed to solve the 

Steklov eigenvalue problem and its related shape optimization problems in two dimen- 

sions. To apply spectral methods, we first reformulate the Steklov eigenvalue problem in 

the complex domain via conformal mappings. The eigenfunctions are expanded in Fourier 

series so the discretization leads to an eigenvalue problem for coefficients of Fourier series. 

For shape optimization problem, we use a gradient ascent approach to find the optimal 

domain which maximizes k th Steklov eigenvalue with a fixed area for a given k . The co- 

efficients of Fourier series of mapping functions from a unit circle to optimal domains are 

obtained for several different k . 
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1. Introduction 

The second order Steklov eigenvalue problem satisfies {
� u (x ) = 0 in �, 

∂u 
∂n 

= λu on ∂�, 
(1)

where � is the Laplace operator acting on the function u ( x ) defined on � ⊂ R 
N , λ is the corresponding eigenvalue, and

∂u 
∂n 

= n · ∇u is the directional derivative in the outward normal direction. Here, we assume that � is a bounded open set

with Lipschitz boundary ∂�. This problem is a simplified version of the mixed Steklov problem which was used to obtain

the sloshing modes and frequencies. See Appendix for the derivation of the mixed Steklov problem. The spectral geometry

of the Steklov problem has been studied for a long time. See a recent review article on American Mathematical Society

(AMS) notice [22] and the references therein. In 2012, Krechetnikov and Mayer were awarded the Ig Nobel prize for fluid

dynamics for their work on the dynamic of liquid sloshing. In [25] , they studied the conditions under which coffee spills for

various walking speeds based on sloshing modes [19] . 

The Steklov problem (1) has a countable infinite set of eigenvalues which are greater than or equal to zero. We ar-

range them as 0 = λ0 (�) ≤ λ1 (�) ≤ λ2 (�) ≤ · · · ≤ λ (�) ≤ · · · → ∞ and denote u as the corresponding eigenfunction in
k k 
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the Sobolev space H 
1 ( �). The Weyl’ s law for Steklov eigenvalues [18] states that λk ∼ 2 π

(
k | B N−1 | | ∂�| 

) 1 
N−1 

where B 
N−1 is the

unit ball in R 
N−1 and | · | denotes the volume of the argument. The variational characterization of the eigenvalues is given

by 

λk (�) = min 
v ∈ H 1 (�) 

{∫ 
� | ∇v | 2 dx ∫ 

∂� v 2 ds 
: 

∫ 
∂�

v u i ds = 0 , i = 0 , . . . , k − 1 

}
. (2) 

The eigenfunctions u k are normalized so that ∫ 
∂�

u 2 k ds = 1 . (3) 

In 1954, Weinstock proved that the disk maximizes the first non-trivial Steklov eigenvalue λ1 among simply-connected

planar domains with a fixed perimeter [17,29] . Furthermore, the k th eigenvalue λk for a simply-connected domain with a

fixed perimeter is maximized in the limit by a sequence of simply-connected domains degenerating to the disjoint union of

k identical disks for any integer k ≥1 [16] . It remains an open question for non-simply-connected bounded planar domains

[18] . For maximizing k th Steklov eigenvalue among planar domains with a fixed area, the existence of the optimal shapes

was proved in [8, Theorem 6.4] for an optimal open set with a topological boundary of finite Hausdorff measure recently. 

Several different numerical approaches were proposed to solve the Steklov eigenvalue problem [1,7] and Wentzell eigen-

value problem [7] which has slightly different boundary conditions. The methods of fundamental solutions were used in

[7] to compute the Steklov spectrum and a theoretical error bound were derived. In [1] , the authors used a boundary in-

tegral method with a single layer potential representation of eigenfunction. Both methods can possibly achieve spectral

convergence. Furthermore, they both studied maximization of λk among star-shaped domains with a fixed area [1,7] . 

Mixed boundary problems were solved in [2,26] via isoparametric finite element method and the virtual element method,

respectively. The error estimates for eigenvalues and eigenfunctions were derived. Another type of Steklov problem which is

formulated as {
−� u (x ) + u (x ) = 0 in �, 

∂u 
∂n 

= λu on ∂�, 

was studied numerically in [5,6,23,30] . In [9] , the authors look for a smooth open subset A ⊂� that minimizes the first

Steklov-like problem { −� u (x ) + u (x ) = 0 in �\ ̄A , 
∂u 
∂n 

= λu on ∂�, 

u = 0 on ∂A, 

by using an algorithm based on finite element methods and shape derivatives. Furthermore, finite element methods have

been also applied to the nonlinear Steklov eigenvalue problems [21] and methods of fundamental solutions were proposed

lately to find a convex shape that has the least biharmonic Steklov eigenvalue [3] . 

The aim of this paper is two-fold. First, we develop numerical approaches to solve the forward problem of the Steklov

eigenvalue problem by using spectral methods for complex formulations via conformal mapping approaches [10,20] for any

given simply-connected planar domain. Second, we aim to find the maximum value of λk with a fixed area among simply-

connected domains in two dimensions via a gradient ascent approach. To find optimal domains, we start with a chosen

initial domain of any shape and deform the domain with the velocity which is obtained by calculating the shape derivative

and choosing the ascent direction. In the complex formulation, the deforming domain is mapped to a fixed unit circle which

allows spectral methods to solve the problem efficiently. 

In Sections 2 and the formulations of the Steklov eigenvalue problem in the real plane R 
2 and the complex plane C

are described, respectively. Some known analytical solutions are provided and optimization of λk 

√ | �| is formulated. In

Section 4 , computational methods based on Fourier series expansion are described. In Section 5 , numerical results are pre-

sented. The summary and discussion are given in Section 6 . 

2. The Steklov eigenvalue problem on � ⊂ R 
2 

In this section, we discuss some known analytical solutions of the Steklov eigenvalue problem on simple geometric

shapes and formulate the maximization of the k th Steklov eigenvalue with a fixed area constraint. 

2.1. Some known analytical solutions 

2.1.1. On a circular domain 

By using the method of separation of variables, it is well known that the Steklov eigenvalues of a unit circle � [18] are

given by 

0 , 1 , 1 , 2 , 2 , . . . , k, k, . . . 
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Fig. 1. The first nine Steklov eigenfunctions on a unit circle. 

 

 

 

 

 

 

 

where λ0 = 0 and its corresponding eigenfunction is a constant function and λ2 k = λ2 k −1 = k for k ≥1 and their correspond-

ing eigenfunctions are 

u 2 k = r k cos (kθ ) , u 2 k −1 = r k sin (kθ ) . 

The first nine eigenfunctions are shown in Fig. 1 . 

2.2. On an annulus 

When � = B (0 , 1) \ B (0 , ε) , the Steklov eigenvalues can be found via the method of separation of variables [14] . The only

eigenfunction which is radial independent satisfies 

u (r) = 

(
−(1 + ε) 

ε ln ε

)
ln (r) + 1 , 

and the corresponding eigenvalue is 

λ = 

1 + ε

ε
ln (1 /ε) . 

The rest of the eigenfunctions are of the form 

u k (r, θ ) = (Ar k + Br −k ) H(kθ ) , k ∈ N (4)

where A and B are constants and H(kθ ) = cos (kθ ) or H(kθ ) = sin (kθ ) . The boundary conditions become 

∂ 

∂ r 
u k (1 , θ ) = λu k (1 , θ ) , 

∂ 

∂ r 
u k (ε, θ ) = −λu k (ε, θ ) , (5)

which can be simplified to the following system [
λεk + kεk −1 λε−k − kε−k −1 

λ − k λ + k 

][
A 
B 

]
= 

[
0 
0 

]
. 

To obtain nontrivial solutions, the determinant of the matrix needs to be zero. Thus Steklov eigenvalues are determined by

the roots of the following polynomial 

p k (λ) = λ2 − λk 
(
ε + 1 

ε

)(
1 + ε2 k 

1 − ε2 k 

)
+ 

1 

ε
k 2 , k ∈ N . (6)

Note that every root corresponds to a double eigenvalue. If ε >0 is smaller enough, for k = 1 , we get the smallest eigen-

value 

λ1 (�) = 

1 

2 ε

1 + ε2 

1 − ε

( 

1 −
√ 

1 − 4 ε
(

1 − ε

1 + ε2 

)2 
) 

. 
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Fig. 2. The perimeter-scaled and area-scaled eigenvalues, λL 
1 and λ

A 
1 , on an annulus, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Shape optimization 

It follows from (2) that the Steklov eigenvalues satisfy the homothety property λk (t�) = t −1 λk (�) . Instead of fixing the

perimeter or the area, one can consider the following shape optimization problems 

λL	 
k = max 

�⊂R 2 
λL 
k (�) where λL 

k (�) = λk (�) | ∂�| (7) 

and 

λA	 
k = max 

�⊂R 2 
λA 
k (�) where λA 

k (�) = λk (�) 
√ 

| �| . (8) 

As mentioned in the Introduction section, the solution of the perimeter-scaled eigenvalue problem (7) is known analytically

for simply-connected domains. Thus, we focus only on the area-scaled eigenvalue problem as described in (8) . 

2.3.1. On an annulus 

In Section 2.2 we get λ1 ( �) on an annulus � = B (0 , 1) \ B (0 , ε) . Thus, λL 
1 

= λ1 [2 π(1 + ε)] is the first scaled eigenvalue

with respect to the perimeter of the domain �. The perimeter scaled eigenvalue is not a monotone function in ε and it

reaches the maximum value 6.8064 when ε = ε∗ ≈ 0 . 1467 [18] as shown in Fig. 2 . On the other hand λA 
1 

= λ1 [ 
√ 

π(1 − ε2 ) ]

is the first scaled eigenvalue with respect to the area of the domain � which turns out to be a monotone decreasing function

in ε and it reaches the maximum value 
√ 

π when ε = 0 as shown in Fig. 2 . 

2.3.2. Shape derivative 

Here we review the concept of the shape derivative and assume regularity of the domain �. For more details, we refer

the readers to [28] . The shape derivative of Steklov eigenvalue has been studied in [1,12] . Here we give the explicit formula

of shape derivative of the area-scaled Steklov eigenvalue λA 
k 
. 

Definition: Let � ⊂ R 
2 be a bounded smooth open set and J be a functional on ��→ J ( �). Consider the perturbation x ∈

� → x + tV ∈ �t where V is a vector field. Then the shape derivative of the functional J at � in the direction of a vector

field V is given by 

( J(�) ) 
′ = dJ(�;V ) = lim 

t↓ 0 
J(�t ) − J(�) 

t 
(9) 

if the limit existed. 

The shape derivative of area-scaled Steklov eigenvalue is given by the following proposition. 

Proposition 1. Consider the perturbation x �→ x + tV where V is a vector field in the Sobolev space W 
3 , ∞ (�, R 

2 ) and denote

V n = V · ˆ n where ˆ n is the outward unit normal vector. Then a simple area-scaled Steklov eigenvalue λA 
k 

satisfies the following

formula 

(
λA 
k (�) 

)′ = 

√ 

| �| 
∫ 
∂�

((| ∇u | 2 − 2 λ2 u 2 − λκu 2 
)

+ λk (�) 
1 

2 | �| 
)
V n ds. (10) 

where κ is the curvature of ∂� and u is the corresponding normalized eigenfunction satisfying (3) . 
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z-plane-plane

Fig. 3. The mapping from a unit circle on ω−plane to a simply-connected domain on z−plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof. By using the product rule, we have (
λA 
k 
(�) 

)′ = 

(
λk (�) ·

√ | �| 
)′ 

= ( λk (�) ) 
′ √ | �| + λk (�) 1 

2 
√ | �| | �| ′ . 

(11)

The shape derivative of Steklov eigenvalue [1,12] is found to be 

( λk (�) ) 
′ = 

∫ 
∂�

(| ∇u | 2 − 2 λ2 u 2 − λκu 2 
)
V n ds (12)

where κ is the curvature of ∂� and the shape derivative of the volume of � [28] is 

| �| ′ = 

∫ 
∂�

V n ds. (13)

Plugging (12) and (13) into (11) concludes the proof. �

Thus the normalized velocity for the ascent direction can be chosen as 

V n = 

(| ∇u | 2 − 2 λ2 u 2 − λκu 2 
)

+ λk (�) 
1 

2 | �| . (14)

Later we will show how to use this velocity V n to find the optimal domain which maximizes the scaled k th Steklov eigen-

value with respect to the area for a given k . 

3. The Steklov eigenvalue problem on the complex plane 

3.1. On a simply-connected domain 

In this section, we reformulate the Steklov eigenvalue problem on the unit circle on the complex plane C instead of on

a simply-connected domain � ⊂ R 
2 . The following proposition provides the formulation. 

Proposition 2. The Steklov eigenvalue problem (1) on a simply-connected domain � ⊂ R 
2 with u which is twice continuously

differentiable is equivalent to the complex formulation 

� { ω�ω } = λ| f ω | � { �} on | ω | = 1 , (15)

where f is the mapping function from the interior of a unit circle on the complex plane C to the interior of � on R 
2 and � is an

analytic function with the real part u. 

Proof. Due to the Riemann Mapping Theorem [4] that guarantees the existence of a conformal mapping between any two

simply-connected domains, we denote f = f (ω) as the mapping function that maps the interior of a unit circle | ω| = 1 ,

where w = re iθ = ξ + iη to the interior of �. Furthermore, on a simply-connected domain, every harmonic function u which

is twice continuously differentiable and satisfies Laplace’s equation is the real part of an analytic function, i.e., u = �{ �}
where � is the complex potential and � { �} denotes the real part of the argument � . 

Parametrizing the boundary of the original domain � with z(θ ) = x (θ ) + iy (θ ) = f (ω ) , | ω | = 1 as shown in Fig. 3 . The

outward unit normal is 

ˆ n = 

( 

˙ y √ 

˙ y 2 + ˙ x 2 
, 

− ˙ x √ 

˙ y 2 + ˙ x 2 

) 

, 

where ˙ x = 
dx 
dθ

, ˙ y = 
dy 
dθ

and the gradient of u is 

∇ z u = u x + iu y . 



790 W. Alhejaili and C.-Y. Kao / Applied Mathematics and Computation 347 (2019) 785–802 

 

 

 

 

 

 

 

Thus the derivative in the normal direction is given by 

ˆ n · ∇ z u = � 

{ 

( 
˙ x + i ̇ y √ 

˙ x 2 + ˙ y 2 
)(u x − iu y ) 

} 

= � 

{
˙ z 

| f ω | ∇ z u 

}
(16) 

where � ( · ) denotes the imaginary part of the argument. Since z = f (w ) , we have ˙ z = f ω ˙ ω = i f ω ω and ∇ z u = �z = �ω / f ω .

Thus, (16) becomes 

ˆ n · ∇ z u = � 

{
i f ω ω 

| f ω | 
�ω 

f ω 

}
= � 

{
ω 

| f ω | �ω 

}
on | ω | = 1 . 

The boundary condition ∂u 
∂n 

= λu in (1) thus becomes 

� { ω�ω } = λ| f ω | � { �} on | ω | = 1 . (17) 

�

Note that λ = 0 is an eigenvalue and its corresponding eigenfunction u = �{ �} is a constant function. In this formulation,

it is not necessary to solve the harmonic equation as the real part of an analytic function is always harmonic. However, it

is required to know the mapping function f ( ω) and solve the Eq. (17) on the unit circle. Sometimes it is not easy to find a

conformal mapping that maps an unit circle to an arbitrary simply-connected domain analytically. When this happens, the

Schwarz–Christoffel transformation [15] can be used to estimate the mapping. 

3.2. Shape optimization problem 

Here we first formulate the velocity in the complex plane C and then derive the equation for the flow in the ascent

direction (14) . 

Proposition 3. Denote f ( ω, t ) as the mapping function from the interior of a unit circle on the complex plane C to the interior

of a simply-connected domain � on R 
2 which is deformed by the normal velocity V n . Then 

V n = � 

{
f t | f w | 
wf w 

}
. 

Proof. By using the fact that | ω | 2 = ω̄ ω = 1 , we obtain 

d 

dt 
( ̄ω ω ) = ω̄ t ω + ω̄ ω t = 2 �{ ̄ω t ω} = 0 . 

Since the mapping function is z = f (ω, t) , we have dz 
d t 

= f t + f ω ω t . The normal component of the velocity is given by 

V n = ˆ n ·V = � 

{
i f ω ω 

| f ω | ( f ω ω t + f t ) 

}
= � 

{
f ω ω 

| f ω | ( f ω ω t + f t ) 

}

= � 

{
f ω ω 

| f ω | ( f ω ω t + f t ) 

}
= � 

{
| f ω | ω ω t + 

f t | f ω | 
ω f ω 

}

= � 

{
f t | f ω | 
ω f ω 

}
. 

�

Therefore, the flow in the ascent direction (14) becomes 

� 

{
f t | f w | 
wf w 

}
= | ∇u | 2 − 2 λ2 u 2 − λκu 2 + 

λ

2 | �| , 

where u is the normalized eigenfunction satisfying ∫ 
∂�

u 2 ds = 

∫ 
| ω| =1 

( � { �} ) 2 | f ω | dω = 1 . (18) 

Thus 

� 

{
f t 

wf w 

}
= R ( f, �) , (19) 
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where the right hand side function R ( f , �) is 

R ( f, �) = 

1 

| f ω | 
(

| �ω | 2 1 

| f ω | 2 
− 2 λ2 � (�) 2 − λκ� (�) 2 + 

λ

2 | �| 
)

, 

| �| is the area of the given domain and the curvature is 

κ = 

� 

{
ω f ω ( ω ( ω f ω ) ω ) 

}
| ω f ω | 3 

. (20)

Now, since f is analytic in | ω| < 1, 

f t 

ω f ω 
is analytic in | ω | < 1 . 

By using the Poisson integral formula [4] , the value of an analytic function in the domain | ω| < 1 can be obtained in term

of its real part evaluated on the unit circle. The Eq. (19) implies that 

f t 

ω f ω 
= 

1 

2 π i 

∮ 
| ω ′ | =1 

1 

ω 
′ 
ω 

′ + ω 

ω 
′ − ω 

R 
(
f 
(
ω 

′ ), �(
ω 

′ ))dω 
′ 

= R ( f ( ω ) , �( ω ) ) + i H { R ( f ( ω ) , �( ω ) ) } 
where 

H [ R 
(
f 
(
e iθ

)
, �

(
e iθ

))
] = 

1 

2 π
p.v. 

∫ π

−π
cot 

(
θ ′ − θ

2 

)
R 
(
f 
(
e iθ

′ )
, �

(
e iθ

′ ))
dθ ′ 

is the Hilbert transform. Thus we have 

f t = ω f ω (� (R ( f ( ω ) , �( ω ) ) ) + i H [ R ( f ( ω ) , �( ω ) ) ]) (21)

which provides the deformation of the domain via the changes of the conformal mapping. 

4. Numerical approaches for solving the Steklov eigenvalue problem 

In this section, we discuss the details of numerical discretization. Assume f and � are represented as series expansions,

i.e. 

f (w ) = 

∞ ∑ 

k = −∞ 

a k ω 
k and � = 

∞ ∑ 

k = −∞ 

c k ω 
k , 

respectively. In Section 4.1 , we discuss how to find Steklov eigenvalues and eigenfunctions on a given domain which is repre-

sented by z = f (ω ) , | ω | ≤1. This requires to find eigenvalues λ and analytic functions � whose real part are eigenfunctions

in Eq. (17) for a given f . In Section 4.2 , we discuss how to discretize Eq. (21) on a unit circle to obtain a system of ordinary

differential equations (ODEs) of the coefficients a k ( t ) of f ( ω, t ) with a given initial guess of a k (0) of f ( ω, 0). 

4.1. Forward solvers 

Given f (w ) = 

∑ ∞ 

k = −∞ 
a k w 

k , we solve (17) numerically on | ω| = 1 by parametrizing the unit circle by using the angle θ

ω = e iθ , θ = [0 , 2 π) . 

Note that a k = 0 for k < 0 as the domain is mapping to the interior of the unit circle, i.e. | ω| ≤1. The derivative of f can be

obtained as 

f ω = 

∞ ∑ 

k = −∞ 

ka k ω 
k −1 

and the magnitude of | f ω | = 

(
f ω f ω 

) 1 
2 can be obtained in a series expansion again. Assume that the series expansion of | f ω |

is 

| f ω | = 

∞ ∑ 

l= −∞ 

d l ω 
l . 

Since | f ω | is real, we must have d l = d −l . Denote the expansion of � as 

� = 

∞ ∑ 

k = −∞ 

c k ω 
k , 
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where c k = 0 for k < 0 too. Plugging these series expansions into (17) , we have 

∞ ∑ 

k = −∞ 

k (c k − c −k ) ω 
k = λ

∞ ∑ 

m = −∞ 

∞ ∑ 

l= −∞ 

(c m + c −m ) d l ω 
m + l . 

We can then use the identity 

∞ ∑ 

m = −∞ 

∞ ∑ 

l= −∞ 

(c m + c −m ) d l ω 
m + l = 

∞ ∑ 

k = −∞ 

∞ ∑ 

m = −∞ 

(c m + c −m ) d k −m 
ω 

k . 

By matching the coefficients of ω 
k , we have 

λ
∞ ∑ 

m = −∞ 

(c m + c −m ) d k −m 
= k (c k − c −k ) (22) 

for all integer k . Denote the real and complex part of c n , d n by c 
r 
n , d 

r 
n and c 

i 
n , d 

i 
n , respectively, we then have 

λ
∞ ∑ 

m = −∞ 

(c r m 
+ ic i m 

+ c r −m 
− ic i −m 

)(d r k −m 
+ id i k −m 

) = k (c r k + ic i k − c r −k + ic i −k ) . 

By comparing real and imaginary parts, we have {
λ

∑ ∞ 

m = −∞ 
c r m 

(d r 
k −m 

+ d r 
k + m 

) + c i m 
(d i 

k + m 
− d i 

k −m 
) = kc r 

k 
, 

λ
∑ ∞ 

m = −∞ 
c r m 

(d i 
k −m 

+ d i 
k + m 

) + c i m 
(d r 

k −m 
− d r 

k + m 
) = kc i 

k 
. 

(23) 

In numerical computation, the series expansion is carried out numerically by truncating the series expansion to finite terms,

and Fast Fourier Transform (FFT) is used to efficiently compute quantities in ω−plane and z−plane. Denote N as the total

positive and negative modes used. We have 

f (ω) ≈
N 2 ∑ 

k = −N 2 

a k ω 
k = 

N 2 ∑ 

k = −N 2 

a k e 
ikθ

and 

f ω = 

N 2 ∑ 

k = −N 2 

ka k ω 
k −1 . 

where N 2 = N /2. Denote 

| f ω | = 

N ∑ 

l= −N 

d l ω 
l , 

where d l , −N ≤ l ≤ N, are obtained by using the pseudo-spectral method. We use inverse Fourier transform (IFFT) to obtain

f ω in physical space and compute | f ω | in physical space, then use FFT to get d l in Fourier space. The aliasing of a nonlinear

product is avoided by adopting the zero-padding. 

The system of infinite Eq. (23) is approximated by the system of finite equations for0: N 2 -modes which gives 

λAC = BC, (24) 

where 

A k +1 ,m +1 = d r k −m 
+ d r k + m 

, for 0 ≤ k ≤ N 2 , 0 ≤ m ≤ N 2 , 

A k +1 ,m + N 2 +1 = −d i k −m 
+ d i k + m 

, for 0 ≤ k ≤ N 2 , 1 ≤ m ≤ N 2 , 

A k + N 2 +1 ,m +1 = d i k −m 
+ d i k + m 

, for 1 ≤ k ≤ N 2 , 0 ≤ m ≤ N 2 , 

A k + N 2 +1 ,m + N 2 +1 = d r k −m 
− d r k + m 

, for 1 ≤ k ≤ N 2 , 1 ≤ m ≤ N 2 , 

and 

B k +1 ,m +1 = kδk,m 
, for 0 ≤ k ≤ N 2 , 0 ≤ m ≤ N 2 , 

B k +1 ,m + N 2 +1 = 0 , for 0 ≤ k ≤ N 2 , 1 ≤ m ≤ N 2 , 

B k + N 2 +1 ,m +1 = 0 , for 1 ≤ k ≤ N 2 , 0 ≤ m ≤ N 2 , 

B k + N 2 +1 ,m + N 2 +1 = kδk,m 
, for 1 ≤ k ≤ N 2 , 1 ≤ m ≤ N 2 , 

and 

C = 

[
C r 

C i 

]
, 
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where 

C r = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c r 0 
c r 1 
c r 2 
. . . 

c r N 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, C i = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c i 0 
c i 1 
c i 2 
. . . 

c i N 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 

By solving the linear system (24) we could find the coefficient vector C and its corresponding eigenvalue λ. We assign zero

values for c r 
k 
and c i 

k 
for k > N 2 . Thus the corresponding eigenfunction will be given by u = �{ �} = �{ ∑ N 2 

−N 2 
c k ω 

k } . 
Now, if we assume that the coefficients d n are real we will be able to reduce the matrix size and solve the problem even

more efficiently. In this case, we have {
λ

∑ N 2 
m =0 

c r m 
(d k −m 

+ d k + m 
) = kc r 

k 
, 

λ
∑ N 2 

m =1 
c i m 

(d k −m 
− d k + m 

) = kc i 
k 
. 

(25)

The 0: N 2 -modes approximation gives 

λA r C r = B r C r , λA i C i = B i C i , 

where 

A r k +1 ,m +1 = d k −m 
+ d k + m 

, B r k +1 ,m +1 = kδk,m 
for 0 ≤ k ≤ N 2 , 0 ≤ m ≤ N 2 , 

A i k,m 
= d k −m 

− d k + m 
, B i k,m 

= kδk,m 
, for 0 ≤ k ≤ N 2 , 0 ≤ m ≤ N 2 , 

and 

C r = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c r 0 
c r 1 
c r 2 
. . . 

c r N 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, C i = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c i 0 
c i 1 
c i 2 
. . . 

c i N 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 

4.2. Optimization solvers 

In this section, we discuss how to solve the dynamic Eq. (21) by method of lines and spectral method in the variable ω.

The Eq. (21) is derived by finding the ascent direction of a simple area-scaled k th Steklov eigenvalue. While Steklov eigenval-

ues are not differentiable when they have multiplicity greater than one, in practice, eigenvalues computed numerically that

approximate the Steklov eigenvalues of a domain are generically simple. In [1] , the problem is reformulated to a minimax

problem. In our implementation, we just pick one of the corresponding eigenfunctions when multiplicity of eigenvalue is

greater than one numerically. 

Given a conformal mapping f (ω, t) = 

∑ N 2 
−N 2 

a k (t) ω 
k , we use the method discussed in Section 4.1 to obtain k th eigen-

value λk , its corresponding eigenfunction u k = �{ �} where �(w, t) = 

∑ N 2 
−N 2 

c k (t) ω 
k . Notice that this eigenfunction is not

normalized. To find the normalization constant, we compute the Fourier coefficient representation of 

( � { �} ) 2 | f ω | = 

N 2 ∑ 

−N 2 

b k (t) ω 
k 

via a pseudo-spectral method and then the normalization condition (18) is approximated by ∫ 
| ω| =1 

( � { �} ) 2 | f ω | dω ≈ 2 πb 0 (t) . 

The normalized eigenfunction u = � 

{
˜ �
}
where 

˜ �(w, t) = 

N 2 ∑ 

−N 2 

1 √ 

2 πb 0 
c k (t) ω 

k = 

N 2 ∑ 

−N 2 

˜ c k (t) ω 
k . 

The curvature term can be computed via the formula (20) by using the following expansions 

ω f ω = 

N 2 ∑ 

−N 2 

ka k (t) ω 
k 
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ω ( ω f ω ) ω = 

N 2 ∑ 

−N 2 

k 2 a k (t) ω 
k . 

The area term is obtained by 

| �| = 

N 2 ∑ 

−N 2 

πk | a k | 2 . 

Plugging 

| f ω | = 

N ∑ 

−N 

d l ω 
l , ˜ �ω = 

N 2 ∑ 

−N 2 

k ̃  c k (t) ω 
k , 

the eigenvalue, the curvature, and the area into the right hand side of (21) , we obtain R ( f, ˜ �) in terms of Fourier series.

All the nonlinear term is obtained by using pseudo-spectral method. We then use discrete Hilbert transform to find the

complex conjugate of R ( f, ˜ �) and then compute the right hand side of (21) . Denote the series expansion of the right hand

side as 

wf w 
(
R 
(
f (ω) , ˜ �(ω) 

)
+ i H 

[
R 
(
f (ω) , ˜ �(ω) 

)])
= 

N 2 ∑ 

−N 2 

r k (t) ω 
k . 

Note that r k depends on time and a k , −N 2 ≤ k ≤ N 2 . Since f t (ω, t) = 

∑ ∞ 

−∞ 
a ′ 
k 
(t) ω 

k , the dynamic Eq. (21) becomes a system

of N + 1 nonlinear ODEs in Fourier Coefficients 

a ′ k (t) = r k (t) , −N 2 ≤ k ≤ N 2 . (26) 

5. Numerical results 

In this section, we report the numerical implementation of aforementioned algorithms based on conformal mappings.

The calculations are done on a 6-core 2.66 GHz Intel Xeon computer with 16 GB of RAM. MATLAB built-in function “fft”

(“ifft”) is used for forward (inverse) Discrete Fourier transform and “eigs” is used with default convergence criteria. The

forward solver takes about 0.01 s to find eigenvalues and eigenfunctions when N = 256 is used for the number of Fourier

modes. It takes about 20 s per 10 0 0 iterations in the optimization solvers which include the time to compute eigenpairs and

solve the system of ODEs. Note that the computational time does not increase when the calculations are done for domains

with really large diameters as mapping functions will scale correspondingly. This is one of the advantages compared to the

approaches based on fundamental solutions, boundary integral methods, or finite element methods. 

5.1. Forward solvers 

Here we first test our forward solvers on various domains to demonstrate the spectral convergence of the numerical

approaches described in Section 4.1 . We verify the accuracy of the code by testing the first 12 eigenvalues on smooth

shapes. 

5.1.1. Steklov eigenvalues on a unit disk 

When we consider the unit circle, the mapping function is f (ω) = ω which gives | f ω | = 1 . Thus d 0 = 1 and d l = 0 for all

l � = 0. The system of Eq. (25) becomes {
λc r 

k 
= kc r 

k 
, k = 0 , 1 , 2 , 3 , . . . 

λc i 
k 

= kc i 
k 
, k = 1 , 2 , 3 , . . . 

(27) 

If λ = 0 , c r 
k 

= c i 
k 

= 0 for all positive integer and c r 
0 
is an arbitrary constant. If λ is a particular integer k 1 , i.e., λ = k 1 , we

must have 

c r k = c i k = 0 for k � = k 1 , 

and c r 
k 1 

and c i 
k 1 

are arbitrary constants. Thus, Steklov eigenvalue for the unit circle are 

0 , 1 , 1 , 2 , 2 , 3 , 3 , . . . , k 1 , k 1 , . . . . 

The scaled eigenvalues λA 
k 
(�) = λ

√ | �| are listed in Table 1 . It is clear that spectral accuracy is observed from the numerical

results and the errors only contain round off errors O (10 −16 ) on double-precision arithmetic. 
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Table 1 

The first 12 eigenvalues λk , k = 0 , . . . , 11 for different numbers of grid points N = 2 n , n = 4 , 5 , 12 on a unit 

circle. 

N 2 4 2 5 2 12 Exact 

λ0 0 0 0 0 

λ1 1.772453850905515 1.772453850905515 1.772453850905515 1.772453850905516 

λ2 1.772453850905515 1.772453850905515 1.772453850905515 1.772453850905516 

λ3 3.544907701811031 3.544907701811031 3.544907701811031 3.544907701811032 

λ4 3.544907701811031 3.544907701811031 3.544907701811031 3.544907701811032 

λ5 5.317361552716547 5.317361552716547 5.317361552716547 5.317361552716548 

λ6 5.317361552716547 5.317361552716547 5.317361552716547 5.317361552716548 

λ7 7.089815403622062 7.089815403622062 7.089815403622062 7.089815403622064 

λ8 7.089815403622062 7.089815403622062 7.089815403622062 7.089815403622064 

λ9 8.862269254527577 8.862269254527577 8.862269254527577 8.862269254527579 

λ10 8.862269254527577 8.862269254527577 8.862269254527577 8.862269254527579 

λ11 10.634723105433094 10.634723105433094 10.634723105433094 10.634723105433096 
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Fig. 4. (a) The 2-fold rotational symmetry shape with f (w ) = w + 0 . 05 w 
3 , | ω| ≤ 1 . (b) The log-log plot of errors for the first 11 non-zero eigenvalues versus 

number of grid points N = 2 n , n = 4 , . . . , 11 . 

Table 2 

The first 12 eigenvalues λk , k = 0 , . . . , 11 for different numbers of grid points N = 2 n , n = 4 , . . . , 10 , 12 on 

f (w ) = w + 0 . 05 w 
3 , | ω| ≤1. 

N 2 4 2 5 2 6 2 7 

λ0 0 0 0 0 

λ1 1.643146123296456 1.643146123280263 1.643146123280263 1.643146123280268 

λ2 1.904409864808107 1.904409864772927 1.904409864772939 1.904409864772950 

λ3 3.509482564053473 3.509482552385534 3.509482552385528 3.5094 8255238554 8 

λ4 3.567218990382545 3.567218976359059 3.567218976359065 3.567218976359050 

λ5 5.298764914769874 5.298764805372437 5.298764805372433 5.298764805372439 

λ6 5.316931803045312 5.316931688027542 5.316931688027550 5.316931688027557 

λ7 7.074710761837761 7.074238491011210 7.074238491011200 7.074238491011197 

λ8 7.079268312074488 7.078792636301956 7.078792636301953 7.078792636301953 

λ9 8.846269410836159 8.844970458352126 8.844970458352138 8.844970458352106 

λ10 8.8475983594 954 87 8.846297249970153 8.846297249970146 8.846297249970162 

λ11 10.793832137331764 10.614565359904542 10.614565359883139 10.614565359883118 

N 2 8 2 9 2 10 2 12 

λ0 0 0 0 0 

λ1 1.643146123296456 1.643146123280306 1.643146123280187 1.643146123280772 

λ2 1.904409864772878 1.904409864772972 1.904409864773167 1.904409864773008 

λ3 3.5094 825523854 97 3.509482552385653 3.509482552385503 3.509482552385095 

λ4 3.567218976359074 3.567218976358907 3.567218976358941 3.567218976358544 

λ5 5.298764805372470 5.298764 8053724 84 5.298764 8053724 94 5.298764805372812 

λ6 5.316931688027525 5.316931688027596 5.3169316 880274 85 5.316931688027425 

λ7 7.074238491011203 7.074238491011272 7.074238491011313 7.074238491011736 

λ8 7.078792636301955 7.078792636302032 7.078792636301965 7.078792636301953 

λ9 8.844970458352119 8.844970458352195 8.844970458352252 8.844970458352078 

λ10 8.846297249970174 8.846297249970114 8.846297249970023 8.846297249969862 

λ11 10.614565359883121 10.614565359883064 10.614565359882992 10.614565359882672 
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Fig. 5. (a) The 5-fold rotational symmetry shape with f (w ) = 8 + 5 w + 0 . 5 w 
6 , | ω| ≤ 1 . (b) The log-log plot of errors for the first 11 non-zero eigenvalues 

versus number of grid points N = 2 n , n = 4 , . . . , 11 . 

Table 3 

The first 12 eigenvalues λk , k = 0 , . . . , 11 for different numbers of grid points N = 2 n , n = 4 , . . . , 10 , 12 . 

N 2 4 2 5 2 6 2 7 

λ0 0 0 0 0 

λ1 1.613981749710263 1.614659735134658 1.614651857980075 1.614651852652450 

λ2 1.615586942999712 1.614659740601958 1.614651863407194 1.614651852652469 

λ3 2.979901447266664 2.977376794062662 2.977377396867629 2.977377367030917 

λ4 2.979920850098075 2.977396410343160 2.977377396867634 2.977377367030926 

λ5 5.757902735512396 5.483423114699104 5.483379266795433 5.483378986137383 

λ6 5.757963817902539 5.483478476088597 5.4 8337926679544 8 5.483378986137454 

λ7 7.091240897150815 6.707817046860952 6.707738934321966 6.707738797445765 

λ8 7.092066936388594 6.707817092425547 6.707738981978962 6.707738797445767 

λ9 8.05353740 0 023426 7.657772022224528 7.657739872866688 7.657739809188358 

λ10 10.114031561463605 9.019776832943990 9.019583333936978 9.019582922824695 

λ11 11.339690354808871 10.150431507211664 10.138974110712084 10.138973824292398 

N 2 8 2 9 2 10 2 12 

λ0 0 0 0 0 

λ1 1.614651852650946 1.614651852650901 1.614651852650762 1.614651852650156 

λ2 1.614651852650962 1.614651852650941 1.614651852650909 1.614651852650308 

λ3 2.977377367029736 2.977377367029755 2.977377367029867 2.977377367029730 

λ4 2.977377367029792 2.977377367029804 2.977377367029905 2.977377367030901 

λ5 5.483378986124044 5.483378986123986 5.483378986124047 5.483378986123992 

λ6 5.483378986124095 5.483378986124115 5.483378986124439 5.483378986124096 

λ7 6.707738797416523 6.707738797416477 6.707738797416426 6.707738797416075 

λ8 6.707738797416656 6.707738797416588 6.707738797416567 6.707738797416147 

λ9 7.657739809178596 7.657739809178618 7.657739809178663 7.657739809178431 

λ10 9.019582922738280 9.019582922738174 9.019582922738246 9.019582922738216 

λ11 10.138973824227390 10.138973824227429 10.138973824227113 10.138973824227044 

 

 

 

 

5.1.2. Steklov eigenvalues on a shape with 2-fold rotational symmetry 

We use the mapping f (w ) = w + 0 . 05 w 
3 to generate a shape with 2-fold rotational symmetry as shown in Fig. 4 (a). In

Table 2 we summarize the numerical results of Steklov eigenvalues. We use the eigenvalues computed by using 2 12 grids as

true eigenvalues and show the log-log plot of errors of the first 12 eigenvalues, i.e. 

error= | λN 
k − λ2 12 

k | , k = 0 , . . . , 11 , 

versus number of grid points N = 2 4 , 2 5 , . . . 2 11 in Fig. 4 (b). It is clear that the spectral accuracy is achieved. 

5.1.3. Steklov eigenvalues on a shape with 5-fold rotational symmetry 

We use the mapping f (w ) = 8 + 5 w + 0 . 5 w 
6 to generate a shape with 5-fold rotational symmetry as shown in Fig. 5 (a).

In Table 3 , we use the eigenvalues computed by using 2 12 grids as true eigenvalues and show the log-log plot of errors of

the first 12 eigenvalues, i.e. 

error= | λN 
k − λ2 12 

k | , k = 0 , . . . , 11 , 

versus number of grid points N = 2 4 , 2 5 , . . . 2 11 in Fig. 5 (b). It is clear that the spectral accuracy is achieved. 
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Fig. 6. (a) Cassini oval shape with f (w ) = αw ( 2 
1+ α2 −(1 −α2 ) w 2 

) 
1 
2 ,| ω| ≤1, and α = 0 . 4 . (b) The log-log plot of errors for the first 11 non-zero eigenvalues 

versus number of grid points N = 2 n , n = 4 , . . . , 10 . 

Table 4 

The first 12 eigenvalues λk , k = 0 , . . . , 11 for different numbers of grid points N = 2 n , n = 4 , . . . , 10 , 12 . 

N 2 4 2 5 2 6 2 7 

λ0 0 0 0 0 

λ1 0.872759997500228 0.827902995301854 0.821644770560566 0.821583902061334 

λ2 2.124401456784662 2.756054635303737 2.886951802792420 2.888537681079042 

λ3 2.571449696110635 3.077030643209814 2.946970106404462 2.944846781799040 

λ4 3.265821414464841 3.136596486946471 3.338218243465505 3.341726009279193 

λ5 4.418763601488365 4.854 8806 86612021 4.562691155962767 4.550749526079698 

λ6 5.378320687602239 4.955570564610835 5.023787664833372 5.036737477441735 

λ7 7.025574559110670 6.548839953593787 6.273463980936640 6.233063933209499 

λ8 7.626882523375537 6.870625350063478 6.299773422917886 6.325481073833819 

λ9 8.263730860061949 8.196071839036918 7.881197306312033 7.805852388999546 

λ10 12.070450297339713 9.144520167848396 7.891680915128140 7.908376668589532 

λ11 15.14 906 804 9247919 10.668830636509751 9.526157620343742 9.404387869498899 

N 2 8 2 9 2 10 2 12 

λ0 0 0 0 0 

λ1 0.821583899177118 0.821583899177077 0.821583899177230 0.821583899176988 

λ2 2.888537785769291 2.888537785769243 2.888537785769405 2.888537785769792 

λ3 2.944 8466154 97959 2.944 8466154 97851 2.944 8466154 98256 2.977377367029730 

λ4 3.341726289664183 3.341726289664230 3.341726289664046 3.341726289664970 

λ5 4.550747949109708 4.55074794 91096 86 4.550747949110111 4.550747949110250 

λ6 5.036739639826136 5.036739639826031 5.036739639826076 5.036739639826476 

λ7 6.233053526961343 6.233053526961285 6.233053526961188 6.233053526962100 

λ8 6.325490988924451 6.325490988924394 6.325490988924508 6.325490988924206 

λ9 7.805807719443767 7.805807719443299 7.805807719443544 7.805807719442640 

λ10 7.908416105951900 7.908416105952249 7.908416105952258 7.908416105952520 

λ11 9.404227647278619 9.404227647275778 9.404227647275357 9.404227647274947 

 

 

 

 

 

 

5.1.4. Steklov eigenvalues on a Cassini Oval. 

All of aforementioned examples have finite terms expansion in ω. Here we show an example with infinite terms ex-

pansion in ω. The mapping f (w ) = αw ( 2 
1+ α2 −(1 −α2 ) w 2 

) 
1 
2 , where α = 0 . 4 is used to generate a Cassini Oval shape which is

shown in Fig. 6 (a). In Table 4 we use the eigenvalues computed by using 2 12 grids as true eigenvalues and show the log-log

plot of errors of the first 12 eigenvalues, i.e. 

error= | λN 
k − λ2 12 

k | , k = 0 , . . . , 11 , 

versus number of grid points N = 2 4 , 2 5 , . . . 2 10 in Fig. 6 (b). It is also clear that the spectral accuracy is achieved. 

5.2. Optimization solvers 

We solve the nonlinear system of ODEs (26) in Section 4.2 by using the forward Euler method with the time step h to

obtain the solution at t + h . We can then repeat this procedure iteratively until it finds the optimal shape. The forward Euler

method is chosen due to its simplicity. One can alternatively use adaptive time steps to integrate this system of ODEs. To
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Fig. 7. Optimization of λA 
2 (�) without and with smoothing k are shown on (a) and (b), respectively. 

Table 5 

The optimization of λA 
n , n = 2 , . . . , 7 for the first 12 eigenvalues. 

λA 
2 λA 

3 λA 
4 

0 0 0 

0.77698693350 0 041 1.079861668314576 1.171320134341248 

2.916071256633050 1.079861668314618 1.171320134341342 

2.916071256753514 4.145300664720734 1.611279604736676 

3.277492771330297 4.145300664720919 5.284432268416950 

4.498623058633566 4.145300672478222 5.284433071016992 

5.041166283776032 4.914601402877488 5.4 4824 4774262810 

6.118061463397883 6.024394262148678 5.4 4824 4774262829 

6.272697585592614 6.024394262148718 6.489865254319582 

7.6936374 84 890079 7.628170417847103 7.335382999100261 

7.809873534891437 7.628170417847109 7.335382999100267 

9.262237946100434 8.953916 82814346 8 8.636733197287754 

λA 
5 λA 

6 λA 
7 

0 0 0 

1.239226322386241 1.265308570439713 1.291290525113730 

1.239226322386290 1.265308570450229 1.291290525113829 

1.945145428557867 2.117586845334797 2.250312782549877 

1.945145428557917 2.117586845350534 2.25031278254 996 8 

6.4964 4 4238784153 2.427189796272854 2.777589136940805 

6.4964 4 4238784278 7.644759577423688 2.777589137507856 

6.4964 4 4784959914 7.644765127633966 8.846228548846659 

6.732142619373287 7.771465908528654 8.846229141938371 

6.732142619373318 7.771465908584982 8.846229145378315 

8.128106267565293 7.979288943927369 9.050146643762274 

8.803176067403113 7.979288943929372 9.050146643762337 

 

 

 

 

 

 

 

 

 

 

 

 

 

prevent the spurious growth of the high-frequency modes generated by round-off error, we use 25th-order Fourier filtering

and also filter out the coefficients which is below 10 −14 as used in [27] after each iteration. 

In Fig. 7 (a), we show the evolution of optimization of λA 
2 
with number of grid points N = 256 . We start with a shape

with a two-fold symmetry f (w ) = w + 0 . 5 w 
3 whose λA 

2 = 1 . 7791 . The algorithm was able to deform the shape and increase

the eigenvalue λA 
2 
up to 2.1193. After that, the shape starts to generate kinks. Due to so-called crowding phenomenon [13] ,

the accuracy of the conformal mapping will be effected and the shape will lose its smoothness. Thus, we avoid this problem

by smoothing the curvature term κ in the z−plane based on the moving average method with span 5. Using this smoothing

technique at each iteration helps us to achieve better results as shown in Fig. 7 (b). In addition to smoothing, we also refine

our time steps. We start with an initial time step h = 0 . 1 and halve the time step for every time period T = 100 and compute

up to 5 T . The optimal eigenvalues λA 
k 
, k = 1 , . . . , 7 are summarized in Table 5 and the optimal shapes which have k -fold

symmetry are shown in Fig. 8 . These results match exactly to the ones reported in [8] which only showed two digits after

the decimal point and are comparable to the ones reported in [1] . As observed in [1] , the domain maximizing the k th Steklov

eigenvalue has k -fold symmetry, and has at least one axis of symmetry. The k -th Steklov eigenvalue has multiplicity 2 if k

is even and multiplicity 3 if k ≥ 3 is odd. The first few nonzero coefficients of the mapping function f (w ) of the optimal

shapes are summarized in Table 6 for λA 
2 

− λA 
7 
. When optimizing λA 

k 
, the optimal coefficients have nonzero values for a 1+ nk 

where n ∈ N . 
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Fig. 8. The optimal shape of maximizing λA 
n , n = 2 , . . . , 7 . The colors on the curve indicate the values of eigenfunctions. 

Table 6 

The first few nonzero coefficients of the mapping function f (w ) of the optimal shapes for 

λA 
2 − λA 

7 . 

λA 
2 λA 

3 λA 
4 

a 1 3.4 826254 88377397 a 1 4.172312832330094 a 1 4.646184610628929 

a 3 1.316760069380197 a 4 1.018987204748702 a 5 0.871201920168631 

a 5 0.754288548863893 a 7 0.514733681728398 a 9 0.426363809028874 

a 7 0.476336 86 8618610 a 12 0.301544250312563 a 13 0.248913034789274 

a 9 0.313178226238119 a 15 0.187629804532372 a 17 0.156013896896941 

a 11 0.210225589908090 a 18 0.120456778256507 a 21 0.101460942653213 

a 13 0.142829963279173 a 21 0.078773331531670 a 25 0.067443016703592 

a 15 0.097776540 0 01909 a 24 0.052126631797892 a 29 0.045465744838959 

λA 
5 λA 

6 λA 
7 

a 1 4.807404499929070 a 1 5.298095057399003 a 1 5.434176 8324 82816 

a 6 0.718033397997455 a 7 0.665755972200186 a 8 0.583992686042936 

a 11 0.339254189743543 a 13 0.310395425069731 a 15 0.267954925737438 

a 16 0.195019993266578 a 19 0.178491217642749 a 22 0.153351975823925 

a 21 0.121279950688959 a 25 0.111622289351001 a 29 0.095872749417195 

a 26 0.078576438618779 a 31 0.072927620185693 a 36 0.062767599076665 

a 31 0.052167793728917 a 37 0.048905352581595 a 43 0.042229353541252 

a 36 0.035185234307276 a 43 0.033346733965258 a 50 0.028892884585296 

 

 

 

 

 

 

 

6. Summary and discussion 

We have developed a spectral method based on conformal mappings to a unit circle to solve Steklov eigenvalue problem

on general simply-connected domains efficiently. Unlike techniques based on finite difference methods or finite elements

methods which requires discretization on the general domains with boundary treatments, the method that we proposed

only requires discretization of the boundary of a unit circle. We use a series expansion to represent eigenfunctions so that

the discretization leads to an eigenvalue problem for Fourier coefficients. In addition, we study the maximization of area-

scaled Steklov eigenvalue λA 
k 
based on shape derivatives and formulate this shape evolution in the complex plane via the

gradient ascent approach. With smoothing technique and choices of time steps, we were able to find the optimal area-scaled

eigenvalues λA 
k 
for a given k . 
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As aforementioned, the optimization of Steklov eigenvalue problems on general non-simply-connected domains is a chal-

lenge open question. This will require robust and efficient forward solvers of Steklov eigenvalues and numerical techniques

to perform shape optimizations which may involve topological changes. In the near future, we plan to explore the possibility

in this direction with Level Set approaches. 
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Appendix A. The derivation of the mixed Steklov problem 

Let us briefly review the derivation of the Steklov eigenvalue problem coming from the sloshing model which neglects the

surface tension [19] . Consider the sloshing problem in a three-dimensional simply-connected container filled with inviscid,

irrotational, and incompressible fluid. Choose Cartesian coordinates ( x , y , z ) so that the mean free surface lies in the ( x ,

y )-plane and the z -axis is directed upwards. Denote ˜ F as the free fluid surface and B as the rigid bottom of the container.

The governing equations in ˜ � of the sloshing model are 

Navier–Stokes equation: ∂V 
∂t 

+ ( V · ∇) V = − 1 
ρ ∇ p − ∇ (gz) , 

Irrotational flow: ∇ × V = 0 , 
Incompressible fluid: ∇ ·V = 0 , 

Velocity potential: V = ∇ 
˜ �, 

where V ( x , y , z , t ) is the fluid velocity, ρ is the density, p is the pressure, g is the gravity, and ˜ �(x, y, z, t) is the velocity

potential. The last two equations lead to Laplace’s equation 

� ̃
 � = 0 in ˜ �. 

The no penetration boundary condition at the rigid bottom of the container is 

∇ 
˜ � · ˆ n B = 0 on B , (28) 

where ˆ n B is the outward unit normal to the boundary B and the dynamic boundary condition at the free surface z = ˜ γ (x, y, t)

is 

˜ γt + ∇ 
˜ � · ∇( ̃  γ − z) = 0 . (29) 

Rewriting the Navier–Stokes equation in terms of ˜ � and using 

( V · ∇ ) V = 

1 

2 
∇ | V | 2 − V × (∇ × V ) = 

1 

2 
∇ | V | 2 , 

we obtain the Bernoulli’s equation 

∇ 

(
˜ �t + 

p 

ρ
+ 

1 

2 

∣∣∇ 
˜ �
∣∣2 + gz 

)
= 0 . (30) 

Thus 

˜ �t + 

p 

ρ
+ 

1 

2 

∣∣∇ 
˜ �
∣∣2 + gz = A (t) (31) 

where A ( t ) is an arbitrary function of t . By using the condition that the pressure p at the free surface equals to the ambient

pressure p atm and choosing A (t) = 
p atm 
ρ , we then have 

˜ �t + 

1 

2 

∣∣∇ 
˜ �
∣∣2 + gz = 0 . 

Therefore, we obtain the following partial differential equations 

� ̃
 � = 0 in ˜ �, 

∇ 
˜ � · ˆ n B = 0 on B, 

˜ γt + ∇ 
˜ � · ∇( ̃  γ − z) = 0 on ˜ F , 

˜ �t + 
1 
2 

∣∣∇ 
˜ �
∣∣2 + gz = 0 on ˜ F . 

(32) 

Assuming the liquid motion is of small amplitude z = ˜ γ (x, y, t) from the undisturbed free surface z = 0 , we consider the

following asymptotic expansion: 

˜ �(x, y, z, t) = �0 + ε ˆ �(x, y, z, t) , 
˜ γ (x, y, t) = γ0 + ε ˆ γ (x, y, t) , 
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where �0 is a constant velocity potential, γ0 = 0 , ˆ �(x, y, z, t) and ˆ γ (x, y, t) represent perturbations, and ε > 0 is a small

parameter. Substituting these expansions in (32) gives 

� ̂
 � = 0 in ˜ �, 

∇ 
ˆ � · ˆ n B = 0 on B, 

ˆ γt + ∇ 
ˆ � · ∇(ε ˆ γ − z) = 0 on ˜ F , 

ˆ �t + ε 1 
2 

∣∣∇ 
ˆ �
∣∣2 + g ̂  γ = 0 on ˜ F . 

(33)

It is well known that the time harmonic solutions of (33) with angular frequency α and phase shift σ are given by 

ˆ �(x, y, z, t) = U(x, y, z) cos (αt + σ ) , 

ˆ γ (x, y, t) = μ(x, y ) sin (αt + σ ) , 

where U ( x , y , z ) is the sloshing velocity potential and μ( x , y ) is the sloshing height. Substitute these expansions into (33) ,

transform the boundary conditions on ˜ F to F and the domain ˜ � to � by using Taylor expansion about z = 0 , and ignore

high order terms. We then obtain 

� U = 0 in �, 

∇U · ˆ n B = 0 on B, 

U Z = αμ on F , 

μ = α U 
g 

on F . 

Thus, we obtain the mixed Steklov eigenvalue problem 

� U = 0 in �, 

∇U · ˆ n B = 0 on B, 

U Z = λU on F , 

where λ = α2 /g. 

When B is an empty set, the mixed Steklov eigenvalue problem is reduced to the classical Steklov eigenvalue problem

(1) . The Steklov spectrum satisfying (1) is also of fundamental interest as it coincides with the spectrum of the Dirichlet-

to-Neumann operator. Consider a steady-state distribution of temperature u in a body �, which is a bounded open set with

Lipschitz boundary ∂�, for given temperature values on the boundary ∂�. The resulting heat flux through the boundary

which is linearly proportional to ∂u 
∂n 

is uniquely determined. This can be described by the Dirichlet-to-Neumann operator � :

H 

1 
2 (∂�) → H 

− 1 
2 (∂�) , given by the formula �u = ∂ n (H u ) , where H u denotes the unique harmonic extension of u ∈ H 

1 
2 (∂�)

to � [11] . Here we use the standard notation that H 
m (M ) is the Sobolev space of functions on M with partial derivatives

of order ≤m in L 2 (M ) for positive integer m . This space is defined also for negative m by duality and for fractional m by

interpolation [24] . 
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