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KeyWOTdS:‘ In this paper, spectral methods based on conformal mappings are proposed to solve the
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sions. To apply spectral methods, we first reformulate the Steklov eigenvalue problem in
the complex domain via conformal mappings. The eigenfunctions are expanded in Fourier
series so the discretization leads to an eigenvalue problem for coefficients of Fourier series.
For shape optimization problem, we use a gradient ascent approach to find the optimal
domain which maximizes kth Steklov eigenvalue with a fixed area for a given k. The co-
efficients of Fourier series of mapping functions from a unit circle to optimal domains are
obtained for several different k.
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1. Introduction

The second order Steklov eigenvalue problem satisfies

AuU(X)=0 in Q, (1)
u_ju  on 9,

where A is the Laplace operator acting on the function u(x) defined on Q c RN, X is the corresponding eigenvalue, and

ga =n-Vu is the directional derivative in the outward normal direction. Here, we assume that €2 is a bounded open set
with Lipschitz boundary d$2. This problem is a simplified version of the mixed Steklov problem which was used to obtain
the sloshing modes and frequencies. See Appendix for the derivation of the mixed Steklov problem. The spectral geometry
of the Steklov problem has been studied for a long time. See a recent review article on American Mathematical Society
(AMS) notice [22] and the references therein. In 2012, Krechetnikov and Mayer were awarded the Ig Nobel prize for fluid
dynamics for their work on the dynamic of liquid sloshing. In [25], they studied the conditions under which coffee spills for
various walking speeds based on sloshing modes [19].

The Steklov problem (1) has a countable infinite set of eigenvalues which are greater than or equal to zero. We ar-

range them as 0= Xp(2) < A1(R2) <A(RQ) <--- < A(R) <--- — oo and denote u;, as the corresponding eigenfunction in
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1
the Sobolev space H'(£2). The Weyl’ s law for Steklov eigenvalues [18] states that A, ~ 27 ( ——K )" where BN-1 is the
k |]BN 1|“’Q|

unit ball in RN-1 and |- | denotes the volume of the argument. The variational characterization of the eigenvalues is given
by

. o | Vu*dx .
A(Q) = min Mij/ vuds =0, i=0, .. k—11. 2)
veH' (@) | [yq V2ds 99
The eigenfunctions u;, are normalized so that
/ uzds = 1. (3)
a0

In 1954, Weinstock proved that the disk maximizes the first non-trivial Steklov eigenvalue A; among simply-connected
planar domains with a fixed perimeter [17,29]. Furthermore, the kth eigenvalue Aj for a simply-connected domain with a
fixed perimeter is maximized in the limit by a sequence of simply-connected domains degenerating to the disjoint union of
k identical disks for any integer k>1 [16]. It remains an open question for non-simply-connected bounded planar domains
[18]. For maximizing kth Steklov eigenvalue among planar domains with a fixed area, the existence of the optimal shapes
was proved in [8, Theorem 6.4] for an optimal open set with a topological boundary of finite Hausdorff measure recently.

Several different numerical approaches were proposed to solve the Steklov eigenvalue problem [1,7] and Wentzell eigen-
value problem [7] which has slightly different boundary conditions. The methods of fundamental solutions were used in
[7] to compute the Steklov spectrum and a theoretical error bound were derived. In [1], the authors used a boundary in-
tegral method with a single layer potential representation of eigenfunction. Both methods can possibly achieve spectral
convergence. Furthermore, they both studied maximization of A, among star-shaped domains with a fixed area [1,7].

Mixed boundary problems were solved in [2,26] via isoparametric finite element method and the virtual element method,
respectively. The error estimates for eigenvalues and eigenfunctions were derived. Another type of Steklov problem which is
formulated as

—AuX)+u(x)=0 in Q,

2 — Au on 9%,
was studied numerically in [5,6,23,30]. In [9], the authors look for a smooth open subset Ac ©2 that minimizes the first
Steklov-like problem

—AuX)+ux)=0 in Q\A,
2 — Au on 9%,

u=~0 on dA,

by using an algorithm based on finite element methods and shape derivatives. Furthermore, finite element methods have
been also applied to the nonlinear Steklov eigenvalue problems [21] and methods of fundamental solutions were proposed
lately to find a convex shape that has the least biharmonic Steklov eigenvalue [3].

The aim of this paper is two-fold. First, we develop numerical approaches to solve the forward problem of the Steklov
eigenvalue problem by using spectral methods for complex formulations via conformal mapping approaches [10,20] for any
given simply-connected planar domain. Second, we aim to find the maximum value of A, with a fixed area among simply-
connected domains in two dimensions via a gradient ascent approach. To find optimal domains, we start with a chosen
initial domain of any shape and deform the domain with the velocity which is obtained by calculating the shape derivative
and choosing the ascent direction. In the complex formulation, the deforming domain is mapped to a fixed unit circle which
allows spectral methods to solve the problem efficiently.

In Sections 2 and the formulations of the Steklov eigenvalue problem in the real plane R? and the complex plane C
are described, respectively. Some known analytical solutions are provided and optimization of Ak\/@ is formulated. In
Section 4, computational methods based on Fourier series expansion are described. In Section 5, numerical results are pre-
sented. The summary and discussion are given in Section 6.

2. The Steklov eigenvalue problem on 2 c R?

In this section, we discuss some known analytical solutions of the Steklov eigenvalue problem on simple geometric
shapes and formulate the maximization of the kth Steklov eigenvalue with a fixed area constraint.

2.1. Some known analytical solutions

2.1.1. On a circular domain
By using the method of separation of variables, it is well known that the Steklov eigenvalues of a unit circle €2 [18] are
given by

0,1,1,2,2,..., kK, ...
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Fig. 1. The first nine Steklov eigenfunctions on a unit circle.

where Ag = 0 and its corresponding eigenfunction is a constant function and A, = A5,_; = k for k>1 and their correspond-
ing eigenfunctions are

Uy = r¥ cos(k0), uy, ¢ = r*sin(ko).

The first nine eigenfunctions are shown in Fig. 1.

2.2. On an annulus

When 2 = B(0, 1) \ B(0, €), the Steklov eigenvalues can be found via the method of separation of variables [14]. The only
eigenfunction which is radial independent satisfies

mn=(1ﬁiﬂ)mw+L

elne

and the corresponding eigenvalue is
1+e€
€
The rest of the eigenfunctions are of the form
u,(r,0) = (Ar* + Br H(kH), keN (4)
where A and B are constants and H(kf) = cos(kf) or H(kf) = sin(kf). The boundary conditions become

ﬁuk(l,e) = )»uk(l,e),
n

A=

In(1/¢).

0
Fuk(€,0) = —Au(€, 0), (5)
.
which can be simplified to the following system
ek 4 kel pek ke k-1 [[A] |0
A—k A+k B~ |0

To obtain nontrivial solutions, the determinant of the matrix needs to be zero. Thus Steklov eigenvalues are determined by
the roots of the following polynomial

2k
p,((k)=kz—kk(6:]><1i>+%k2, kel (6)

1—e2k

Note that every root corresponds to a double eigenvalue. If € >0 is smaller enough, for k =1, we get the smallest eigen-

value
1 1+¢2 1-—€\?
e ey
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Fig. 2. The perimeter-scaled and area-scaled eigenvalues, A} and A4, on an annulus, respectively.

2.3. Shape optimization

It follows from (2) that the Steklov eigenvalues satisfy the homothety property A, (tR2) = t~'A,(R2). Instead of fixing the
perimeter or the area, one can consider the following shape optimization problems

A = maxAb(Q)  where AL(Q)=2(2)]0Q (7)
QCR?

and

M= &aﬂgk’,ﬁ(ﬂ) where A% ()= (2)/|2]. (8)

As mentioned in the Introduction section, the solution of the perimeter-scaled eigenvalue problem (7) is known analytically
for simply-connected domains. Thus, we focus only on the area-scaled eigenvalue problem as described in (8).

2.3.1. On an annulus

In Section 2.2 we get A{(2) on an annulus = B(0, 1) \ B(0, €). Thus, )»% = AM[2m (1 +€)] is the first scaled eigenvalue
with respect to the perimeter of the domain 2. The perimeter scaled eigenvalue is not a monotone function in € and it
reaches the maximum value 6.8064 when € = €* ~ 0.1467 [18] as shown in Fig. 2. On the other hand )Lq‘ =M[V/T(1—€2)]
is the first scaled eigenvalue with respect to the area of the domain €2 which turns out to be a monotone decreasing function
in € and it reaches the maximum value /7T when € = 0 as shown in Fig. 2.

2.3.2. Shape derivative

Here we review the concept of the shape derivative and assume regularity of the domain 2. For more details, we refer
the readers to [28]. The shape derivative of Steklov eigenvalue has been studied in [1,12]. Here we give the explicit formula
of shape derivative of the area-scaled Steklov eigenvalue )”/12-

Definition: Let  c R be a bounded smooth open set and J be a functional on Q—J(2). Consider the perturbation x €
Q — x+tV e Q where V is a vector field. Then the shape derivative of the functional J at €2 in the direction of a vector
field V is given by

(@) = dj:v) = lim/ ) —JED (©)

1

if the limit existed.
The shape derivative of area-scaled Steklov eigenvalue is given by the following proposition.

Proposition 1. Consider the perturbation x — x +tV where V is a vector field in the Sobolev space W3 (2, R?) and denote
Vo =V -l where 1 is the outward unit normal vector. Then a simple area-scaled Steklov eigenvalue )L;;‘ satisfies the following
formula

(A',j(sz))’ =9 /m <(|Vu|2 - 20207 — hieu?) + )\k(Q)z'lQ'>vn ds. (10)

where « is the curvature of 02 and u is the corresponding normalized eigenfunction satisfying (3).
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Fig. 3. The mapping from a unit circle on w—plane to a simply-connected domain on z—plane.

Proof. By using the product rule, we have

(@) = (@@l

(11)
= () V190 + () ;= 19
The shape derivative of Steklov eigenvalue [1,12] is found to be
()Y :/ (IVul? - 2222 - Acu?)Vy ds (12)
Elo’

where « is the curvature of 02 and the shape derivative of the volume of Q2 [28] is
2 = [ vaas (13)
a0
Plugging (12) and (13) into (11) concludes the proof. O

Thus the normalized velocity for the ascent direction can be chosen as
1

2|1

Later we will show how to use this velocity V, to find the optimal domain which maximizes the scaled kth Steklov eigen-

value with respect to the area for a given k.

Vo = (IVul® = 22202 — dcti?) + Ay (R) (14)

3. The Steklov eigenvalue problem on the complex plane
3.1. On a simply-connected domain

In this section, we reformulate the Steklov eigenvalue problem on the unit circle on the complex plane C instead of on
a simply-connected domain € c R2. The following proposition provides the formulation.

Proposition 2. The Steklov eigenvalue problem (1) on a simply-connected domain Q c R? with u which is twice continuously
differentiable is equivalent to the complex formulation

RwWo) = Al fo| (W)  onjw| =1, (15)

where f is the mapping function from the interior of a unit circle on the complex plane C to the interior of Q on R% and W is an
analytic function with the real part u.

Proof. Due to the Riemann Mapping Theorem [4] that guarantees the existence of a conformal mapping between any two
simply-connected domains, we denote f = f(w) as the mapping function that maps the interior of a unit circle |w| =1,
where w = rei® = £ +in to the interior of Q. Furthermore, on a simply-connected domain, every harmonic function u which
is twice continuously differentiable and satisfies Laplace’s equation is the real part of an analytic function, ie., u=%{W¥}
where W is the complex potential and %{W} denotes the real part of the argument W.

Parametrizing the boundary of the original domain Q with z(0) = x(0) +iy(f) = f(w), |w| =1 as shown in Fig. 3. The
outward unit normal is

" y —X
n= , )
( fy2 +x2 \/y? +XZ)
where x = g—g, y= g—g and the gradient of u is

ViU = uy + iuy.
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Thus the derivative in the normal direction is given by

" N X+1y =
n-Vzu_\s{(\/)m)(uX luy)] {|fw| u} (16)

where 3(-) denotes the imaginary part of the argument. Since z = f(w), we have z = f,® = if,w and V,u =¥, = W,/ f,.
Thus, (16) becomes

Vu=3 {lf“’w\p }—‘h{ e } on|w|=1.

lfol fo | fol
The boundary condltlon = Au in (1) thus becomes
MoV} = A|fw|§?t{\P} onjw| = 1. (17)
O

Note that A = 0 is an eigenvalue and its corresponding eigenfunction u = 9%{W} is a constant function. In this formulation,
it is not necessary to solve the harmonic equation as the real part of an analytic function is always harmonic. However, it
is required to know the mapping function flw) and solve the Eq. (17) on the unit circle. Sometimes it is not easy to find a
conformal mapping that maps an unit circle to an arbitrary simply-connected domain analytically. When this happens, the
Schwarz-Christoffel transformation [15] can be used to estimate the mapping.

3.2. Shape optimization problem

Here we first formulate the velocity in the complex plane C and then derive the equation for the flow in the ascent
direction (14).

Proposition 3. Denote flw, t) as the mapping function from the interior of a unit circle on the complex plane C to the interior
of a simply-connected domain 2 on R2 which is deformed by the normal velocity Vy. Then

felfwl
e

Proof. By using the fact that |w|? = @w = 1, we obtain

%(d)a)) = W + Owy = 2R {ww} =

Since the mapping function is z = f(w, t), we have = ft + fow:. The normal component of the velocity is given by

[fol [fol
frlfwl}

Vo=1-V= {lf‘"w(fwwt +ft)} = f’i{f‘” (fowr +ﬁ)}

8_

fow _a
{f(fma)t+ft)}— 1{|fw|wwt+ T

_%{fl |}

Therefore, the flow in the ascent direction (14) becomes

felfwl | _ 2 2,2 A
{ wa —|VU| 2\ —)\.K'U +m

&,’

E“

O

where u is the normalized eigenfunction satisfying
/ 12ds = / U2 foldw = 1. (18)
a0 lw|=1

Thus

w{ f} }:R(f,\l!), (19)
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where the right hand side function R(f, V) is

R(f, W) = |f1w|(|\1a,)|2|f1

|2| is the area of the given domain and the curvature is
. Mo fo(@@fo),)]
= 5 )
| fol
Now, since f is analytic in |w| <1,
S is analytic in|w| < 1.
o fo

By using the Poisson integral formula [4], the value of an analytic function in the domain |w| <1 can be obtained in term
of its real part evaluated on the unit circle. The Eq. (19) implies that

U L?‘{ L O FOpp(0), W () )do!

Ofo 271 Jiw)=1 oo —w

=R(f(w), ¥ (@) + IH{R(f (@), ¥V (@))}

A
932 2 _ \ 2
2R (W) — AkR(W)* + 2|Q|),

2

(20)

where

HIR(f(e?). W(e?))] = %p.v. fﬂ cot (0/ 2_ 0 )R(f(eie'), W(e”))do’
is the Hilbert transform. Thus we have

fr = 0foRR(f (@), ¥ (@))) + H[R(f (@), ¥(@))]) (21)

which provides the deformation of the domain via the changes of the conformal mapping.
4. Numerical approaches for solving the Steklov eigenvalue problem

In this section, we discuss the details of numerical discretization. Assume f and W are represented as series expansions,
ie.

fw)y= > qotand ¥ = > ot
k=—00

k=—00

respectively. In Section 4.1, we discuss how to find Steklov eigenvalues and eigenfunctions on a given domain which is repre-
sented by z = f(w), |w| < 1. This requires to find eigenvalues A and analytic functions W whose real part are eigenfunctions
in Eq. (17) for a given f. In Section 4.2, we discuss how to discretize Eq. (21) on a unit circle to obtain a system of ordinary
differential equations (ODEs) of the coefficients a,(t) of flw, t) with a given initial guess of a;(0) of flw, 0).

4.1. Forward solvers

Given f(w) =7 a,wk, we solve (17) numerically on |w| = 1 by parametrizing the unit circle by using the angle 0
w=¢e? 6=]0,2m).

Note that a, = 0 for k<0 as the domain is mapping to the interior of the unit circle, i.e. |w| <1. The derivative of f can be
obtained as

o0
fo=Y_ kao*!

k=—o0

1
and the magnitude of |f,| = ( fwfw)? can be obtained in a series expansion again. Assume that the series expansion of |f,|
is

|fa)| = Z d](,()’.

I=—c0

Since |f,,| is real, we must have d; = d_,. Denote the expansion of ¥ as

00
V= Z Ckwk,
k=—o00
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where ¢, = 0 for k <0 too. Plugging these series expansions into (17), we have

i k(c, — Tk = A i i (Cm + ) dj0™H,

k=—o0 M=—0 |=—0

We can then use the identity
Z Z (Cn + Cm)dj@™! = Z Z (Cm + Cm) di_me®.
M=—00 |=—c0 k=—00 M=—00
By matching the coefficients of wk, we have
o0
A (en )i = k(e — ) (22)
m=-o0
for all integer k. Denote the real and complex part of ¢, dy by ¢, di and ¢, di,, respectively, we then have

o0
A (chy e + ¢y — i) (dy_y, +idy ) = k(c) +ic, — ¢ +ic ).

m=—-o0

By comparing real and imaginary parts, we have
A Zm——oo Ch (dk m k+m) + o (dk+m I< m) - ka, (23)
A me—oo Ch (dk m k+m) + Cl (dk m_ I<+m) = ka

In numerical computation, the series expansion is carried out numerically by truncating the series expansion to finite terms,
and Fast Fourier Transform (FFT) is used to efficiently compute quantities in w—plane and z—plane. Denote N as the total
positive and negative modes used. We have

flw) ~ Z Qo = Z ae’?

k=-N, k=—N,
and
N
fo=") ke
k=—N,
where N, = N/2. Denote
N
|fol = Z ',
I=—N

where d;, —N <[ < N, are obtained by using the pseudo-spectral method. We use inverse Fourier transform (IFFT) to obtain
fo in physical space and compute |f,,| in physical space, then use FFT to get d; in Fourier space. The aliasing of a nonlinear
product is avoided by adopting the zero-padding.

The system of infinite Eq. (23) is approximated by the system of finite equations forO:N,-modes which gives

)AC = BC, (24)
where
Aitimer = dkm—i-dkm, for 0<k<N;,0<m=<N,,
Aiiminyg i1 = dk m+dk+m, for 0<k<N,,1<m<N,,
AI<+N2+1m+1—dk m+dk+m, for 1<k<N;,0<m<N,,
ANyt 1. miNy1 = A d,er, for 1<k<N;,1<m<N,,
and

Biitms1 = kb, for 0 <k <N;,0<m=<N,,
Biiimin,1 =0, for O0<k<N;,1<m<N,,
Biinytimi1 =0, for 1<k<N;,0<m=<N,,

BiiNy+1.miNyt1 = KO, for 1<k <N, 1<m <Ny,

CT
[

and
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where
&8 <
) q
=% -]
r i
CNZ CNZ

By solving the linear system (24) we could find the coefficient vector C and its corresponding eigenvalue A. We assign zero
values for ¢} and c}‘< for k> N,. Thus the corresponding eigenfunction will be given by u = ®{¥} = m{z’i’?\,z k).

Now, if we assume that the coefficients d,, are real we will be able to reduce the matrix size and solve the problem even
more efficiently. In this case, we have

{A Yo Cn(icm +dim) = ke,

AYN e (dim — dism) kel

The 0:N,-modes approximation gives
MA'CT = B'C", MA'C' = B'C,

where

(25)

Apimir =Akem + diem: Bl 1 =kdkm for 0 <k <N;,0 <m <N,

Ay =i m—dim, By =kSm for 0<k<N,,0<m=<N,,

k.m
and
G G
¢ G
cr CE . (= sz
N, n,

4.2. Optimization solvers

In this section, we discuss how to solve the dynamic Eq. (21) by method of lines and spectral method in the variable w.
The Eq. (21) is derived by finding the ascent direction of a simple area-scaled kth Steklov eigenvalue. While Steklov eigenval-
ues are not differentiable when they have multiplicity greater than one, in practice, eigenvalues computed numerically that
approximate the Steklov eigenvalues of a domain are generically simple. In [1], the problem is reformulated to a minimax
problem. In our implementation, we just pick one of the corresponding eigenfunctions when multiplicity of eigenvalue is
greater than one numerically. .

2

Given a conformal mapping f(w,t) =33 ak(t)a)" we use the method discussed in Section 4.1 to obtain kth eigen-

value A, its corresponding eigenfunction uj, = m{‘l/} where ¥ (w,t) = Z’:’z ¢, (t)wk. Notice that this eigenfunction is not
normalized. To find the normalization constant, we compute the Fourier coefﬁaent representation of

N,
YD1 ful = 3 be(D)o*

-N,

via a pseudo-spectral method and then the normalization condition (18) is approximated by
/| | OHE)1ldo = 2mbo0)
w

The normalized eigenfunction u = %{ ¥} where

N,
¥ (w, t) = ok =Y & (t)wk.
%v 27 bo ‘ % ‘

The curvature term can be computed via the formula (20) by using the following expansions

N,
wfo =Y ka(t)w*

_N2
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Ny
O(Wfw)y =Y KPa ).

—N,

The area term is obtained by

Ny
Q| =) mwkla|*.
,Nz
Plugging
N B N,
Ifol =) diw'. W, =) ke (Do,
-N -N,

the eigenvalue, the curvature, and the area into the right hand side of (21), we obtain R(f, ¥) in terms of Fourier series.
All the nonlinear term is obtained by using pseudo-spectral method. We then use discrete Hilbert transform to find the
complex conjugate of R(f, W) and then compute the right hand side of (21). Denote the series expansion of the right hand
side as

N,
why(R(f(@), ¥ (@)) +iH[R(f(w), ¥ (@))]) = Y n(®)o".

_N2

Note that r, depends on time and a;, —N, < k < N,. Since fi(w,t) = > aL(t)w", the dynamic Eq. (21) becomes a system
of N+ 1 nonlinear ODEs in Fourier Coefficients

a,(t) =1 (t), =N, <k < Ns. (26)

5. Numerical results

In this section, we report the numerical implementation of aforementioned algorithms based on conformal mappings.
The calculations are done on a 6-core 2.66 GHz Intel Xeon computer with 16 GB of RAM. MATLAB built-in function “fft”
(“ifft”) is used for forward (inverse) Discrete Fourier transform and “eigs” is used with default convergence criteria. The
forward solver takes about 0.01 s to find eigenvalues and eigenfunctions when N = 256 is used for the number of Fourier
modes. It takes about 20 s per 1000 iterations in the optimization solvers which include the time to compute eigenpairs and
solve the system of ODEs. Note that the computational time does not increase when the calculations are done for domains
with really large diameters as mapping functions will scale correspondingly. This is one of the advantages compared to the
approaches based on fundamental solutions, boundary integral methods, or finite element methods.

5.1. Forward solvers

Here we first test our forward solvers on various domains to demonstrate the spectral convergence of the numerical
approaches described in Section 4.1. We verify the accuracy of the code by testing the first 12 eigenvalues on smooth
shapes.

5.1.1. Steklov eigenvalues on a unit disk
When we consider the unit circle, the mapping function is f(w) = w which gives |f,| = 1. Thus dy =1 and d; = 0 for all
[+ 0. The system of Eq. (25) becomes

Ach = ket k=0,1,2,3,...
I,C kv E) E) £ £
{)\c;{:kc;(, k=1,2,3,... (27)
IfA=0, ¢, = c;'C =0 for all positive integer and cf is an arbitrary constant. If A is a particular integer k;, i.e,, A =k;, we

must have
Cg=c, =0 for ks#ki,

and c{q and C;<1 are arbitrary constants. Thus, Steklov eigenvalue for the unit circle are
0,1,1,2,2,3,3, ..., k1, ke, ...

The scaled eigenvalues )J,j(Q) = A,/|€2] are listed in Table 1. It is clear that spectral accuracy is observed from the numerical
results and the errors only contain round off errors 0(10~16) on double-precision arithmetic.
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N 24 2° 212 Exact
Ao 0 0 0 0
A 1.772453850905515 1.772453850905515 1.772453850905515 1.772453850905516
A2 1.772453850905515 1.772453850905515 1.772453850905515 1.772453850905516
A3 3.544907701811031 3.544907701811031 3.544907701811031 3.544907701811032
Ay 3.544907701811031 3.544907701811031 3.544907701811031 3.544907701811032
As 5.317361552716547 5.317361552716547 5.317361552716547 5.317361552716548
As 5.317361552716547 5.317361552716547 5.317361552716547 5.317361552716548
Ay 7.089815403622062 7.089815403622062 7.089815403622062 7.089815403622064
Ag 7.089815403622062 7.089815403622062 7.089815403622062 7.089815403622064
Ao 8.862269254527577 8.862269254527577 8.862269254527577 8.862269254527579
Ao 8.862269254527577 8.862269254527577 8.862269254527577 8.862269254527579
An 10.634723105433094  10.634723105433094  10.634723105433094  10.634723105433096
a
05} i
0 L 4
-05 1
-1 -0.5 0 0.5 1 16 32 64 128 256 512 1024

Fig. 4. (a) The 2-fold rotational symmetry shape with f(w) = w 4+ 0.05w3, |@| < 1. (b) The log-log plot of errors for the first 11 non-zero eigenvalues versus
number of grid points N=2"n=4,...,11.

Table 2

The first 12 eigenvalues A, k=0,..., 11 for different numbers of grid points N=2",n=4,...,10,12 on

f(w) =w+0.05w3, || <1.

N 24 25 26 27

Ao 0 0 0 0

M 1.643146123296456 1.643146123280263 1.643146123280263 1.643146123280268
Ay 1.904409864808107 1.904409864772927 1.904409864772939 1.904409864772950
Az 3.509482564053473 3.509482552385534 3.509482552385528 3.509482552385548
Ay 3.567218990382545 3.567218976359059 3.567218976359065 3.567218976359050
As 5.298764914769874 5.298764805372437 5.298764805372433 5.298764805372439
Ag 5.316931803045312 5.316931688027542 5.316931688027550 5.316931688027557
A7 7.074710761837761 7.074238491011210 7.074238491011200 7.074238491011197
Ag 7.079268312074488 7.078792636301956 7.078792636301953 7.078792636301953
Ay 8.846269410836159 8.844970458352126 8.844970458352138 8.844970458352106
Ao 8.847598359495487 8.846297249970153 8.846297249970146 8.846297249970162
Ay 10.793832137331764 10.614565359904542 10.614565359883139 10.614565359883118
N 28 29 210 212

Ao 0 0 0 0

A 1.643146123296456 1.643146123280306 1.643146123280187 1.643146123280772
Ay 1.904409864772878 1.904409864772972 1.904409864773167 1.904409864773008
Az 3.509482552385497 3.509482552385653 3.509482552385503 3.509482552385095
Ay 3.567218976359074 3.567218976358907 3.567218976358941 3.567218976358544
As 5.298764805372470 5.298764805372484 5.298764805372494 5.298764805372812
g 5.316931688027525 5.316931688027596 5.316931688027485 5.316931688027425
Ay 7.074238491011203 7.074238491011272 7.074238491011313 7.074238491011736
Ag 7.078792636301955 7.078792636302032 7.078792636301965 7.078792636301953
Ay 8.844970458352119 8.844970458352195 8.844970458352252 8.844970458352078
Ao 8.846297249970174 8.846297249970114 8.846297249970023 8.846297249969862
A1t 10.614565359883121 10.614565359883064  10.614565359882992  10.614565359882672
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Fig. 5. (a) The 5-fold rotational symmetry shape with f(w) =8 + 5w + 0.5w®, |w| < 1. (b) The log-log plot of errors for the first 11 non-zero eigenvalues

versus number of grid points N = 2", n =4

Table 3

The first 12 eigenvalues A, k=0, ..., 11 for different numbers of grid points N=2"n=4,..., 10,12
N 24 25 26 27
Ao 0 0 0 0
A 1.613981749710263 1.614659735134658 1.614651857980075 1.614651852652450
Ay 1.615586942999712 1.614659740601958 1.614651863407194 1.614651852652469
A3 2.979901447266664 2.977376794062662 2.977377396867629 2.977377367030917
Ay 2.979920850098075 2.977396410343160 2.977377396867634 2.977377367030926
As 5.757902735512396 5.483423114699104 5.483379266795433  5.483378986137383
e 5.757963817902539 5.483478476088597 5.483379266795448  5.483378986137454
Ay 7.091240897150815 6.707817046860952 6.707738934321966 6.707738797445765
Ag 7.092066936388594 6.707817092425547 6.707738981978962 6.707738797445767
Ag 8.053537400023426 7.657772022224528 7.657739872866688 7.657739809188358
Ao 10.114031561463605 9.019776832943990 9.019583333936978 9.019582922824695
A1t 11.339690354808871 10.150431507211664 10.138974110712084 10.138973824292398
N 28 29 210 212
Ao 0 0 0 0
A 1.614651852650946 1.614651852650901 1.614651852650762 1.614651852650156
Ay 1.614651852650962 1.614651852650941 1.614651852650909 1.614651852650308
A3 2.977377367029736 2.977377367029755 2.977377367029867 2.977377367029730
Ay 2.977377367029792 2.977377367029804 2.977377367029905 2.977377367030901
As 5.483378986124044 5.483378986123986 5.483378986124047 5.483378986123992
Ag 5.483378986124095 5.483378986124115 5.483378986124439 5.483378986124096
A7 6.707738797416523 6.707738797416477 6.707738797416426 6.707738797416075
Ag 6.707738797416656 6.707738797416588 6.707738797416567 6.707738797416147
Ag 7.657739809178596 7.657739809178618 7.657739809178663 7.657739809178431
Ao 9.019582922738280 9.019582922738174 9.019582922738246 9.019582922738216
A1t 10.138973824227390  10.138973824227429  10.138973824227113  10.138973824227044

5.1.2. Steklov eigenvalues on a shape with 2-fold rotational symmetry

We use the mapping f(w) = w + 0.05w3 to generate a shape with 2-fold rotational symmetry as shown in Fig. 4(a). In
Table 2 we summarize the numerical results of Steklov eigenvalues. We use the eigenvalues computed by using 212 grids as
true eigenvalues and show the log-log plot of errors of the first 12 eigenvalues, i.e.

error=|AN —A2°| k=0,...,11,
versus number of grid points N =24, 2°,...211 in Fig. 4(b). It is clear that the spectral accuracy is achieved.
5.1.3. Steklov eigenvalues on a shape with 5-fold rotational symmetry
We use the mapping f(w) =8 + 5w+ 0.5w® to generate a shape with 5-fold rotational symmetry as shown in Fig. 5(a).

In Table 3, we use the eigenvalues computed by using 22 grids as true eigenvalues and show the log-log plot of errors of
the first 12 eigenvalues, i.e.

error=|AN —A2°[ k=0,...,11,

versus number of grid points N = 24,25 ...211 in Fig. 5(b). It is clear that the spectral accuracy is achieved.
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Fig. 6. (a) Cassini oval shape with f(w) = aw(m)% Jw| <1, and @ = 0.4. (b) The log-log plot of errors for the first 11 non-zero eigenvalues
versus number of grid points N=2"n=4,...,10

Table 4

The first 12 eigenvalues A, k=0, ..., 11 for different numbers of grid points N=2"n=4,..., 10, 12.
N 24 25 26 27
Ao 0 0 0 0
A 0.872759997500228 0.827902995301854 0.821644770560566  0.821583902061334
Ay 2.124401456784662 2.756054635303737 2.886951802792420 2.888537681079042
Az 2.571449696110635 3.077030643209814 2.946970106404462  2.944846781799040
Ay 3.265821414464841 3.136596486946471 3.338218243465505  3.341726009279193
As 4.418763601488365 4.854880686612021 4.562691155962767 4.550749526079698
g 5.378320687602239 4.955570564610835 5.023787664833372 5.036737477441735
A7 7.025574559110670 6.548839953593787 6.273463980936640  6.233063933209499
Ag 7.626882523375537 6.870625350063478 6.299773422917886 6.325481073833819
Ay 8.263730860061949 8.196071839036918 7.881197306312033 7.805852388999546
Ao 12.070450297339713  9.144520167848396 7.891680915128140 7.908376668589532
A 15.149068049247919  10.668830636509751  9.526157620343742 9.404387869498899
N 28 29 210 212
Ao 0 0 0 0
A 0.821583899177118 0.821583899177077 0.821583899177230 0.821583899176988
Ay 2.888537785769291 2.888537785769243 2.888537785769405 2.888537785769792
Az 2.944846615497959 2.944846615497851 2.944846615498256  2.977377367029730
g 3.341726289664183 3.341726289664230 3.341726289664046  3.341726289664970
As 4.550747949109708 4.550747949109686 4.550747949110111 4.550747949110250
g 5.036739639826136 5.036739639826031 5.036739639826076  5.036739639826476
Ay 6.233053526961343 6.233053526961285 6.233053526961188 6.233053526962100
Ag 6.325490988924451 6.325490988924394 6.325490988924508  6.325490988924206
Ay 7.805807719443767 7.805807719443299 7.805807719443544 7.805807719442640
Ao 7.908416105951900 7.908416105952249 7.908416105952258 7.908416105952520
Ar 9.404227647278619 9.404227647275778 9.404227647275357 9.404227647274947

5.14. Steklov eigenvalues on a Cassini Oval.
All of aforementioned examples have finite terms expansion in w. Here we show an example with infinite terms ex-

pansion in w. The mapping f(w) = aw(

2 1
R R— N )
T+a2—(1-a2)w? )

, where o = 0.4 is used to generate a Cassini Oval shape which is

shown in Fig. 6(a). In Table 4 we use the eigenvalues computed by using 2'2 grids as true eigenvalues and show the log-log

plot of errors of the first 12 eigenvalues, i.e.

error=[AN —A2°[ k=0,...,11,

k

versus number of grid points N = 24,25 ...210 in Fig. 6(b). It is also clear that the spectral accuracy is achieved.

5.2. Optimization solvers

We solve the nonlinear system of ODEs (26) in Section 4.2 by using the forward Euler method with the time step h to
obtain the solution at t + h. We can then repeat this procedure iteratively until it finds the optimal shape. The forward Euler
method is chosen due to its simplicity. One can alternatively use adaptive time steps to integrate this system of ODEs. To
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Fig. 7. Optimization of A4(€2) without and with smoothing k are shown on (a) and (b), respectively.

Table 5
The optimization of A4, n =2, ..., 7 for the first 12 eigenvalues.

» A4 A
0 0 0
0.776986933500041 1.079861668314576 1.171320134341248
2.916071256633050 1.079861668314618 1.171320134341342
2.916071256753514 4.145300664720734  1.611279604736676
3.277492771330297 4.145300664720919  5.284432268416950
4.498623058633566  4.145300672478222  5.284433071016992
5.041166283776032 4.914601402877488 5.448244774262810
6.118061463397883 6.024394262148678  5.448244774262829
6.272697585592614 6.024394262148718  6.489865254319582
7.693637484890079 7.628170417847103 7.335382999100261
7.809873534891437 7.628170417847109 7.335382999100267
9.262237946100434  8.953916828143468  8.636733197287754
pya Al A4

5 6 7
0 0 0
1.239226322386241 1.265308570439713 1.291290525113730
1.239226322386290  1.265308570450229  1.291290525113829
1.945145428557867 2.117586845334797 2.250312782549877
1.945145428557917 2.117586845350534  2.250312782549968
6.496444238784153  2.427189796272854  2.777589136940805
6.496444238784278  7.644759577423688  2.777589137507856
6.496444784959914  7.644765127633966 8.846228548846659
6.732142619373287 7.771465908528654  8.846229141938371
6.732142619373318 7.771465908584982  8.846229145378315
8.128106267565293 7.979288943927369  9.050146643762274
8.803176067403113 7.979288943929372  9.050146643762337

prevent the spurious growth of the high-frequency modes generated by round-off error, we use 25th-order Fourier filtering
and also filter out the coefficients which is below 10-1# as used in [27] after each iteration.

In Fig. 7(a), we show the evolution of optimization of )\/2* with number of grid points N = 256. We start with a shape
with a two-fold symmetry f(w) = w + 0.5w> whose )»'3 = 1.7791. The algorithm was able to deform the shape and increase
the eigenvalue )LQ up to 2.1193. After that, the shape starts to generate kinks. Due to so-called crowding phenomenon [13],
the accuracy of the conformal mapping will be effected and the shape will lose its smoothness. Thus, we avoid this problem
by smoothing the curvature term « in the z—plane based on the moving average method with span 5. Using this smoothing
technique at each iteration helps us to achieve better results as shown in Fig. 7(b). In addition to smoothing, we also refine
our time steps. We start with an initial time step h = 0.1 and halve the time step for every time period T = 100 and compute
up to 5T. The optimal eigenvalues Ai‘,k =1,...,7 are summarized in Table 5 and the optimal shapes which have k-fold
symmetry are shown in Fig. 8. These results match exactly to the ones reported in [8] which only showed two digits after
the decimal point and are comparable to the ones reported in [1]. As observed in [1], the domain maximizing the kth Steklov
eigenvalue has k-fold symmetry, and has at least one axis of symmetry. The k-th Steklov eigenvalue has multiplicity 2 if k
is even and multiplicity 3 if k > 3 is odd. The first few nonzero coefficients of the mapping function f(w) of the optimal
shapes are summarized in Table 6 for A’z‘ - )u74. When optimizing )u,‘j, the optimal coefficients have nonzero values for a;
where n e N.
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Fig. 8. The optimal shape of maximizing A4, n=2,..., 7. The colors on the curve indicate the values of eigenfunctions.
Table 6
The first few nonzero coefficients of the mapping function f(w) of the optimal shapes for
A =24,
A4 e A4

a; 3.482625488377397 a; 4.172312832330094 a; 4.646184610628929
as 1.316760069380197 ay 1.018987204748702 as 0.871201920168631
as 0.754288548863893 a; 0.514733681728398 dg 0.426363809028874
az 0.476336868618610 ap 0.301544250312563 a3 0.248913034789274
dg 0.313178226238119 ass 0.187629804532372 a7 0.156013896896941
an 0.210225589908090 aig 0.120456778256507 ay 0.101460942653213
as 0.142829963279173 a 0.078773331531670 ays 0.067443016703592
ais 0.097776540001909 [ 0.052126631797892 dag 0.045465744838959
Py by, Py,

a; 4.807404499929070 a; 5.298095057399003 a; 5.434176832482816
ag 0.718033397997455 a 0.665755972200186 ag 0.583992686042936
an 0.339254189743543 ass 0.310395425069731 ass 0.267954925737438
a6 0.195019993266578 [ 0.178491217642749 ax 0.153351975823925
ay 0.121279950688959 axs 0.111622289351001 ay9 0.095872749417195
ay 0.078576438618779 as 0.072927620185693 asg 0.062767599076665
as; 0.052167793728917 asy 0.048905352581595 43 0.042229353541252
asg 0.035185234307276 Q43 0.033346733965258 asg 0.028892884585296

6. Summary and discussion

We have developed a spectral method based on conformal mappings to a unit circle to solve Steklov eigenvalue problem
on general simply-connected domains efficiently. Unlike techniques based on finite difference methods or finite elements
methods which requires discretization on the general domains with boundary treatments, the method that we proposed
only requires discretization of the boundary of a unit circle. We use a series expansion to represent eigenfunctions so that
the discretization leads to an eigenvalue problem for Fourier coefficients. In addition, we study the maximization of area-
scaled Steklov eigenvalue )«2 based on shape derivatives and formulate this shape evolution in the complex plane via the
gradient ascent approach. With smoothing technique and choices of time steps, we were able to find the optimal area-scaled
eigenvalues )‘Q for a given k.
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As aforementioned, the optimization of Steklov eigenvalue problems on general non-simply-connected domains is a chal-
lenge open question. This will require robust and efficient forward solvers of Steklov eigenvalues and numerical techniques
to perform shape optimizations which may involve topological changes. In the near future, we plan to explore the possibility
in this direction with Level Set approaches.
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Appendix A. The derivation of the mixed Steklov problem

Let us briefly review the derivation of the Steklov eigenvalue problem coming from the sloshing model which neglects the
surface tension [19]. Consider the sloshing problem in a three-dimensional simply-connected container filled with inviscid,
irrotational, and incompressible fluid. Choose Cartesian coordinates (X, y, z) so that the mean free surface lies in the (x,
y)-plane and the z-axis is directed upwards. Denote F as the free fluid surface and B as the rigid bottom of the container.
The governing equations in €2 of the sloshing model are

Navier-Stokes equation: ¥ + (V- V)V = —1Vp—V(g),

Irrotational flow: VxV=0,
Incompressible fluid: V.V =0,
Velocity potential: V=Vo,

where V(x, y, z, t) is the fluid velocity, p is the density, p is the pressure, g is the gravity, and ®(x,y,z, t) is the velocity
potential. The last two equations lead to Laplace’s equation

Ad=0 in Q.

The no penetration boundary condition at the rigid bottom of the container is

V®.ig=0 on B, (28)
where fig is the outward unit normal to the boundary B and the dynamic boundary condition at the free surface z = 7 (x, y, t)
is

#+VE.-V(-2)=0. (29)
Rewriting the Navier-Stokes equation in terms of & and using

1 2 1 2

V-V)V= jV|V| -Vx (VxV)= jV|V| ,

we obtain the Bernoulli’s equation
~ 1 <12

v(¢t+%+§\vq>] +gz) =0. (30)
Thus

= 1 ~ 12

®t+%+§|v®| +8=A(t) (31)

where A(t) is an arbitrary function of t. By using the condition that the pressure p at the free surface equals to the ambient
pressure pgmm and choosing A(t) = ”ﬂ%, we then have

- 1 ~ (2
& + j|VCI>| +gz=0.
Therefore, we obtain the following partial differential equations
AD =0 in
Vo .1y =0 on
#+VD.V(y—-2)=0 on
<T>f+%‘Vd~>’2+gz:0 on F.

s

(32)

o Or

Assuming the liquid motion is of small amplitude z = y (x,y,t) from the undisturbed free surface z =0, we consider the
following asymptotic expansion:
d(x,y.z.t) = Do+ €D(x,y,2.t),
Pxyt) =y +€P(x,y,t),
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where @ is a constant velocity potential, yy =0, d(x,y,z,t) and 7 (x,y,t) represent perturbations, and € >0 is a small
parameter. Substituting these expansions in (32) gives

Ad =0 in

Vo .1z =0 on

H+VD.V(ey-2)=0 on

®t+e%|Vd3|2+g)7=O on

(33)

™o KOr

It is well known that the time harmonic solutions of (33) with angular frequency « and phase shift o are given by

d(x,y,2,t) =U(x, y,z)cos(at + o),

Py, t) = u(x,y)sin(at + o),

where U(x, y, z) is the sloshing velocity potential and w(x, y) is~the sloshing height. Substitute these expansions into (33),

transform the boundary conditions on F to F and the domain €2 to € by using Taylor expansion about z =0, and ignore
high order terms. We then obtain

AU =0 in Q,
VU -1 =0 on B,
U; =au on F,
n=al on F.

Thus, we obtain the mixed Steklov eigenvalue problem

AU =0 in €,
VU - =0 on B,
Uy = AU on F,

where A = a2/g.

When B is an empty set, the mixed Steklov eigenvalue problem is reduced to the classical Steklov eigenvalue problem
(1). The Steklov spectrum satisfying (1) is also of fundamental interest as it coincides with the spectrum of the Dirichlet-
to-Neumann operator. Consider a steady-state distribution of temperature u in a body €2, which is a bounded open set with
Lipschitz boundary 92, for given temperature values on the boundary dS2. The resulting heat flux through the boundary
which is linearly proportional to % is uniquely determined. This can be described by the Dirichlet-to-Neumann operator I" :

H? 0R2) — H % (02), given by the formula I'u = 9, (Hu), where Hu denotes the unique harmonic extension of u € H? (0Q2)
to Q [11]. Here we use the standard notation that H™ (M) is the Sobolev space of functions on M with partial derivatives
of order <m in L, (M) for positive integer m. This space is defined also for negative m by duality and for fractional m by
interpolation [24].
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