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are at least six edges between X and Y . We prove that if there 
is no homeomorphic embedding of the Petersen graph in G, 
and G is not one particular 20-vertex graph, then either

• G \ v is planar for some vertex v; or
• G can be drawn with crossings in the plane, but with only 

two crossings, both on the infinite region.

We also prove several other theorems of the same kind.
© 2019 Elsevier Inc. All rights reserved.

E-mail address: pds@math.princeton.edu (P. Seymour).
1 Research partially supported by DIMACS, and by ONR grant N00014-92-J-1965, and by NSF grant 

DMS-8903132, and partially performed under a consulting agreement with Bellcore.
2 This research was partially performed while Seymour was employed at Bellcore in Morristown, New 

Jersey, and partially supported by ONR grant N00014-10-1-0680, and NSF grants DMS-1265563 and 
DMS-1800053.

3 Research partially supported by DIMACS, by ONR grant N00014-93-1-0325, and by NSF grants 
DMS-9303761, DMS-1202640, and DMS-1700157, and partially performed under a consulting agreement 
with Bellcore.

https://doi.org/10.1016/j.jctb.2019.02.002
0095-8956/© 2019 Elsevier Inc. All rights reserved.



JID:YJCTB AID:3220 /FLA [m1L; v1.252; Prn:19/02/2019; 11:25] P.2 (1-67)

2 N. Robertson et al. / Journal of Combinatorial Theory, Series B ••• (••••) •••–•••

1. Introduction

All graphs in this paper are simple and finite. Circuits have no repeated vertices or 

edges; the girth of a graph is the length of the shortest circuit. If G is a graph and 

X ⊆ V (G), δG(X) or δ(X) denotes the set of edges with one end in X and the other in 

V (G) \ X. We say a cubic graph G is cyclically k-connected, for k ≥ 1 an integer, if G

has girth ≥ k, and |δG(X)| ≥ k for every X ⊆ V (G) such that both X and V (G) \ X

include the vertex set of a circuit of G.

A homeomorphic embedding of a graph G in a graph H is a function η such that

• for each v ∈ V (G), η(v) is a vertex of H, and η(v1) �= η(v2) for all distinct v1, v2 ∈

V (G);

• for each e ∈ E(G), η(e) is a path of H with ends η(v1) and η(v2), where e has ends 

v1, v2 in G; and no edge or internal vertex of η(e1) belongs to η(e2), for all distinct 

e1, e2 ∈ E(G); and

• for all v ∈ V (G) and e ∈ E(G), η(v) belongs to η(e) if and only if v is an end of e

in G.

We denote by η(G) the subgraph of H consisting of all the vertices η(v) (v ∈ V (G)) and 

all the paths η(e) (e ∈ E(G)). We say that H contains G if there is a homeomorphic 

embedding of G in H.

Let us say that G is theta-connected if G is cubic and cyclically five-connected, and 

|δG(X)| ≥ 6 for all X ⊆ V (G) with |X|, |V (G) \ X| ≥ 7. (If G is cubic with girth at 

least five, and X ⊆ V (G) includes the vertex set of a circuit, then either |δG(X)| ≥ 5 or 

|X| ≥ 7; so this definition is equivalent to the condition in the abstract.) We say G is apex

if G \ v is planar for some vertex v (we use \ to denote deletion); and G is doublecross

if it can be drawn in the plane with only two crossings, both on the infinite region. Our 

goal in this paper is to give a construction for all theta-connected graphs not containing 

Petersen (we define Petersen to be the Petersen graph.) This is motivated by a result 

of a previous paper [3], where we showed that to prove Tutte’s conjecture [7] that every 

two-edge-connected cubic graph not containing Petersen is three-edge-colourable, it is 

enough to prove the same for theta-connected graphs not containing Petersen, and for 

apex graphs.

The graph Starfish is shown in Fig. 1. Our main result is the following.

1.1. Let G be theta-connected. Then G does not contain Petersen if and only if either G

is apex, or G is doublecross, or G is isomorphic to Starfish.

The “if” part of 1.1 is easy and we omit it. (It is enough to check that Petersen itself 

is not apex or doublecross, and is not contained in Starfish.) The “only if” part is an 

immediate consequence of the following three theorems. The graph Jaws is defined in 

Fig. 2.
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Fig. 1. Starfish.

Fig. 2. Jaws.

1.2. Let G be theta-connected, and not contain Petersen. If G contains Starfish then G

is isomorphic to Starfish.

1.3. Let G be theta-connected, and not contain Petersen. If G contains Jaws then G is 

doublecross.

1.4. Let G be theta-connected, and not contain Petersen. If G contains neither Jaws nor 

Starfish, then G is apex.

1.2, proved in section 17, is an easy consequence of a theorem of a previous paper [4], 

and 1.3 is proved in section 18. The main part of the paper is devoted to proving 1.4. 

Our approach is as follows.

A graph H is minimal with property P if there is no graph G with property P such 

that H contains G, and H is not isomorphic to G. In Figs. 3 and 4 we define four more 

graphs, namely Triplex, Box, Ruby and Dodecahedron.

A theorem of McCuaig [1] asserts
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Fig. 3. Triplex and Box.

Fig. 4. Ruby and Dodecahedron.

1.5. Petersen, Triplex, Box, Ruby and Dodecahedron are the only graphs minimal with 

the property of being cubic and cyclically five-connected.

We shall prove the following three theorems.

1.6. Petersen, Triplex, Box and Ruby are the only graphs minimal with the property of 

being cyclically five-connected and non-planar.

If X ⊆ V (G), the subgraph of G induced on X is denoted by G[X]. A graph G

is dodecahedrally-connected if it is cubic and cyclically five-connected, and for every 

X ⊆ V (G) with |X|, |V (G) \ X| ≥ 7 and |δG(X)| = 5, G[X] cannot be drawn in a closed 

disc ∆ such that the five vertices in X with neighbours in V (G) \ X are drawn in the 

boundary of ∆.

1.7. Petersen, Triplex and Box are the only graphs minimal with the property of being 

dodecahedrally-connected and having crossing number at least two.
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We say G is arched if G \ e is planar for some edge e.

1.8. Petersen and Triplex are the only graphs minimal with the property of being 

dodecahedrally-connected and not arched.

Then we use 1.8 to find all the graphs minimal with the property of being 

dodecahedrally-connected and non-apex (there are six). Let us say G is die-connected if 

it is dodecahedrally-connected and |δG(X)| ≥ 6 for every X ⊆ V (G) with |X|, |V (G) \

X| ≥ 9. We use the last result to find all graphs minimal with the property of being die-

connected and non-apex (there are nine); and then use that to find the minimal graphs 

with the property of being theta-connected and non-apex. There are three, namely Pe-

tersen, Starfish, and Jaws, and from this 1.4 follows.

2. Extensions

It will be convenient to denote by ab or ba an edge with ends a and b (since we do not 

permit parallel edges, this is unambiguous). Let ab and cd be distinct edges of a graph G. 

They are diverse if a, b, c, d are all distinct and a, b are not adjacent to c or d. We denote 

by G + (ab, cd) the graph obtained from G as follows: delete ab and cd, and add two new 

vertices x and y and five new edges xa, xb, yc, yd, xy. We call x, y (in this order) the new 

vertices of G +(ab, cd). Multiple applications of this operation are denoted in the natural 

way; for instance, if e, f ∈ E(G) are distinct, and G′ = G + (e, f), and g, h ∈ E(G′) are 

distinct, we write G + (e, f) + (g, h) for G′ + (g, h).

Similarly, let ab, cd, ef be distinct edges of G, where a, b, c, d, e, f are all distinct. We 

denote by G + (ab, cd, ef) the graph obtained by deleting ab, cd and ef , and adding 

four new vertices x, y, z, w, and nine new edges xa, xb, yc, yd, ze, zf, wx, wy, wz; and call 

x, y, z, w (in this order) the new vertices of G + (ab, cd, ef).

A path has no “repeated” vertices or edges. Its first and last vertices are its ends, and 

its first and last edges are its end-edges. Its other vertices and edges are called internal

vertices and edges. A path with ends s and t is called an (s, t)-path. If P is a path 

and s, t ∈ V (P ), the subpath of P with ends s and t is denoted by P [s, t]. Let η be a 

homeomorphic embedding of G in H. An η-path in H is a path P with distinct ends both 

in V (η(G)), but with no other vertex or edge in η(G). Let G, H both be cubic, and let 

η and P be as above; and let e, f ∈ E(G), where P has ends s and t, with s ∈ V (η(e))

and t ∈ V (η(f)). We can sometimes use P to obtain a new homeomorphic embedding 

η′ of G in H, equal to η except as follows:

• If e = f , let e = uv, where η(u), s, t, η(v) lie in η(e) in order. Define

η′(e) = η(e)[η(u), s] ∪ P ∪ η(e)[t, η(v)].
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• If e �= f but they have a common end, let e = uv and f = vw say, and let g be the 

third edge of G incident with v. Define η′ by:

η′(v) = t,

η′(e) = η(e)[η(u), s] ∪ P,

η′(f) = η(f)[t, η(w)],

η′(g) = η(g) ∪ η(f)[η(v), t].

• If e, f have no common end, but one end of e is adjacent to one end of f , let e = uv, 

f = wx and g = vw say. Let h, i be the third edges at v, w respectively. Define η′ by:

η′(v) = s,

η′(w) = t,

η′(e) = η(e)[η(u), s],

η′(f) = η(f)[t, η(x)],

η′(g) = P,

η′(h) = η(h) ∪ η(e)[s, η(v)],

η′(i) = η(i) ∪ η(f)[η(w), t].

In the first two cases we say that η′ is obtained from η by rerouting e along P, and in 

the third case by rerouting g along P. If η is a homeomorphic embedding of G in H, an 

η-bridge is a connected subgraph B of H with E(B ∩ η(G)) = ∅, such that either

• |E(B)| = 1, E(B) = {e} say, and both ends of e are in V (η(G)); or

• for some component C of H \ V (η(G)), E(B) consists of all edges of H with at least 

one end in V (C).
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It follows that every edge of H not in η(G) belongs to a unique η-bridge. We say that 

an edge e of G is an η-attachment of an η-bridge B if η(e) ∩ B is non-null.

3. Frameworks

We shall often have a cubic graph G, such that G (or sometimes, most of G) is drawn 

in a surface, possibly with crossings, and also a homeomorphic embedding η of G in 

another cubic graph H; and we wish to show that the drawing of G can be extended 

to a drawing of H without introducing any more crossings. For this to be true, one 

necessary condition is that for each η-bridge B, all its attachments belong to the same 

“region” of G. If G already has some crossings, then we must be careful speaking of its 

regions; we mean the arc-wise connected components of the complement of the drawing 

in the surface. Each region of the drawing is bounded either by a circuit (if no crossings 

involve any edge incident with the region) or by one or more paths; in the latter case, 

the internal edges of these paths do not cross any other edges, but the end-edges each 

cross a different end-edge of a path (possibly the same path) bounding the same region. 

For instance, in Fig. 2, one region is bounded by the path 6-1-2-3-8; and another by two 

paths 6-1-13-18 and 15-20-8-3. If we list all these circuits and paths we obtain some set 

of subgraphs of G, and it is convenient to work with this set rather than explicitly with 

regions of a drawing of G.

Sometimes, the drawing is just of a subgraph G′ of G rather than of all of G, and 

therefore all the circuits and paths in the set are subgraphs of G′. In this case we shall 

always be able to arrange that η(e) has only one edge, for every edge e of G not in G′. 

This motivates the following definition.

We say (G, F, C) is a framework if G is cubic, F is a subgraph of G, and C is a set 

of subgraphs of G \ E(F ), satisfying (F1)–(F7) below. We say distinct edges e, f are 

twinned if there exist distinct C1, C2 ∈ C with e, f ∈ E(C1 ∩ C2).

(F1) Each member of C is an induced subgraph of G \ E(F ), with at least three edges, 

and is either a path or a circuit.

(F2) Every edge of G \ E(F ) belongs to some member of C, and for every two edges e, f

of G with a common end not in V (F ), there exists C ∈ C with e, f ∈ E(C).

(F3) If C1, C2 ∈ C are distinct and v ∈ V (C1 ∩ C2), then either V (C1 ∩ C2) = {v}, or v

is incident with an edge in C1 ∩ C2, or v ∈ V (F ).

(F4) If C1 ∈ C is a path, then every member of C containing an end-edge of C1 is a 

path. Moreover, if also C2 ∈ C \ {C1} is a path, then every component of C1 ∩ C2

contains an end of C1, and every edge of C1 ∩ C2 is an end-edge of C1.

(F5) If C ∈ C is a circuit then |V (C ∩ F )| ≤ 1, and every vertex in C ∩ F has degree 

1 in F ; and if C ∈ C is a path then every vertex in C ∩ F is an end of C and has 

degree 0 or 2 in F .
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(F6) If e, f are twinned and C ∈ C with e ∈ E(C), then |V (C)| ≤ 6, and either

– f ∈ E(C), and C is a circuit, and e, f have a common end in V (F ), and no path 

in C contains any vertex of e or f , or

– f ∈ E(C), and C is a path with end-edges e, f , and C ∩ F is null, or

– f /∈ E(C), and C is a path with |E(C)| = 3, and e is an end-edge of C, and no 

end of e belongs to V (F ).

(F7) Let C ∈ C be a path of length five, with twinned end-edges e, f . Then |E(C ′)| ≤ 4

for every path C ′ ∈ C \{C} containing e. Moreover, let C have vertices v0-v1- · · · -v5

in order; then there exists C ′ ∈ C with end-edges e and f and with ends v0 and v4.

We will prove a theorem that says, roughly, that if we have a framework (G, F, C), and 

a homeomorphic embedding of G in H, where H is appropriately cyclically connected, 

then either the drawing of G extends to an drawing of the whole of H, or there is some 

bounded enlargement of η(G) in H to which the drawing does not extend, and this 

enlargement still has high cyclic connectivity.

These seven axioms are a little hard to digest, and before we go on it may help to see 

how they will be used. In all our applications of (F1)–(F7) we have some particular graph 

G in mind and a drawing of it that defines the framework. We could replace (F1)–(F7) 

just by the hypothesis that (G, F, C) arises from one of these particular cases, but there 

are nine of these cases, and it seemed clearer to try to abstract the properties that we 

really use. Here are three examples that might help.

• The simplest application is to prove 1.6; we take G to be Dodecahedron, and F null, 

and C to be the set of region-bounding circuits in the drawing of G in Fig. 4. Suppose 

now some H contains G; our result will tell us that either the embedding of G extends 

to an embedding of H (and hence H is planar), or H contains a non-planar subgraph, 

a bounded enlargement of η(G) with high cyclic connectivity. We enumerate all the 

possibilities for this enlargement, and check they all contain one of Petersen, Ruby, 

Box, Triplex. From this, 1.6 will follow.

• When we come to try to understand the graphs that contain Jaws and not Petersen, 

we take G to be Jaws, and (G, F, C) to be defined by the drawing in Fig. 2. Thus, F is 

null; C will contain the seven circuits in Fig. 2 that bound regions and do not include 

any of the four edges that cross, together with eight paths (four like 6-1-2-3-8; two 

like 1-6-5-4-3-8; and two like 6-1-13-18).

• A last example, one with F non-null; when we prove 1.8, we take G to be Box, and 

(G, F, C) to be defined by the drawing in Fig. 3, and E(F ) = {f} where f is the edge 

13-14. In this case, take the drawing of Box given in Fig. 3, and delete the edge f , 

and we get a drawing of G \ f without crossings; let C be the set of circuits that 

bound regions in this drawing. The only twinned edges are 2-13 with 5-13, and 8-14 

with 11-14.

(F1)–(F7) have a number of easy consequences, for instance, the following four results.
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3.1. Let (G, F, C) be a framework.

• F is an induced subgraph of G.

• Let e ∈ E(G) \ E(F ). Then e belongs to at least two members of C, and to more 

than two if and only if e is an end-edge of a path in C and neither end of e is in 

V (F ); and in this case e belongs to exactly four members of C, all paths, and it is 

an end-edge of each of them.

• For every two edges e, f of G with a common end with degree three in G \ E(F ), 

there is at most one C ∈ C with e, f ∈ E(C).

Proof. Let e = uv be an edge of E(G) \ E(F ). We claim that |{u, v} ∩ V (F )| ≤ 1. For 

by (F2) there exists C ∈ C with e ∈ E(C). If C is a circuit the claim follows from (F5), 

and if C is a path then one of u, v is internal to C, and again it follows from (F5). Thus 

the first claim holds.

For the second claim, again let e = uv be an edge of E(G) \ E(F ). We may assume 

that u /∈ V (F ). Let u be incident with e, e1, e2. By (F2) there exist C1, C2 ∈ C with 

e, ei ∈ E(Ci) (i = 1, 2). Hence C1 �= C2, so e belongs to at least two members of C.

No other member of C contains e and either e1 or e2, by (F6), since u /∈ V (F ). Hence 

every other C ∈ C containing e is a path with one end u. If e is not an end-edge of any 

path in C the second claim is therefore true, so we assume it is. Hence by (F4), C1 and C2

are both paths with end-edge e, and both have one end v. If v ∈ V (F ), there is no path 

in C containing e with one end u, by (F5), so we may assume that v /∈ V (F ). Let v be 

incident with e, e3, e4; then by (F2) there exist C3, C4 ∈ C with e, ei ∈ E(Ci) (i = 3, 4); 

and C3, C4 both have one end u. Hence C1, . . . , C4 are all distinct, and no other member 

of C contains e. This proves the second claim.

For the third claim, let v ∈ V (G) be incident with edges e, f, g ∈ E(G) \ E(F ). 

Suppose there exist distinct C, C ′ ∈ C both containing e, f . Thus e, f are twinned. If C

is a circuit, then by (F6) v ∈ V (F ), and by (F5) v has degree one in F , a contradiction. 

Thus C is a path. By (F6) both e, f are end-edges of C, and hence C has length two, a 

contradiction. This proves the third claim, and hence proves 3.1. �

3.2. Let C1, C2 ∈ C be distinct. Then |E(C1 ∩ C2)| ≤ 2, and if equality holds, then either

• C1, C2 are both circuits, and C1 ∩ C2 is a 2-edge path with middle vertex v in V (F ), 

and v has degree one in F ; or

• C1, C2 are both paths with the same end-edges e, f say, and C1 ∩ C2 consists of the 

disjoint edges e, f and their ends, and C1, C2 are disjoint from F .

Proof. Let e, f ∈ E(C1 ∩ C2) be distinct. If C1 is a path then by (F6) and (F4), so 

is C2, and both C1 and C2 have end-edges e, f , and no end of e or f is in V (F ), and 

by (F5) C1, C2 are disjoint from F . But then by (F6) |E(C1 ∩ C2)| = 2 (for any third 

edge in E(C1 ∩ C2) would also have to be an end-edge of C1, which is impossible); and if 
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v ∈ V (C1 ∩ C2) is not incident with e or f , then v is internal to both paths and hence is 

incident with an edge of C1 ∩ C2, a contradiction. Thus in this case the theorem holds. 

We may assume then that C1 and C2 are both circuits. By (F6), e, f have a common 

end, v say, in V (F ). By (F5) no other vertex of C1 or C2 is in V (F ), and v has degree one 

in F . By (F6), E(C1 ∩ C2) = {e, f}, and hence the theorem holds. This proves 3.2. �

3.3. Let C1, C2 ∈ C be distinct with |E(C1 ∩ C2)| ≥ 2. Then |E(C1)| ≥ 4.

Proof. Suppose that C1 is a circuit. If |E(C1)| = 3, then since C2 is an induced subgraph 

of G \E(F ) and |E(C1∩C2)| ≥ 2 it follows that C1 is a subgraph of C2 which is impossible. 

Hence the result holds if C1 is a circuit. Now let C1 be a path. Let e, f ∈ E(C1 ∩ C2)

be distinct; then by (F6), e and f are end-edges of C1, and by (F4) C2 is a path with 

end-edges e, f . Hence again C1 is not a subgraph of C2, and so since C2 is an induced 

subgraph of G \ E(F ) it follows that |E(C1)| ≥ 4. This proves 3.3. �

3.4. Let (G, F, C) be a framework, and let e, f1, f2 ∈ E(G) be distinct. If e, f1 are twinned 

then e, f2 are not twinned.

Proof. Let C1, C ′

1 ∈ C be distinct with e, f1 ∈ E(C1 ∩ C ′

1), and suppose that there exist 

C2, C ′

2 ∈ C, distinct, with e, f2 ∈ E(C2 ∩C ′

2). At least three of C1, C ′

1, C2, C ′

2 are distinct, 

and they all contain e, and so by 3.1 all of C1, C ′

1, C2, C ′

2 are paths and e is an end-edge of 

each of them. By (F6) C1 has end-edges e and f1, and f2 /∈ E(C1). Since e, f1 ∈ E(C1), 

by 3.3 |E(C1)| ≥ 4; but since f2 /∈ E(C1), by (F6) |E(C1)| ≤ 3, a contradiction. This 

proves 3.4. �

Let F, G, H be graphs, where F is a subgraph of G, and let ζ, η be homeomorphic 

embeddings of F, G into H respectively. We say that η extends ζ if η(e) = ζ(e) for all 

e ∈ E(F ) and η(v) = ζ(v) for all v ∈ V (F ).

Let (G, F, C) be a framework, let ηF be a homeomorphic embedding of F into H, and 

let J be the subgraph of F obtained by deleting all vertices with degree one in F . Let 

G′ be a cubic graph with J a subgraph of G′. A homeomorphic embedding η of G′ in H

is said to respect ηF if η extends the restriction of ηF to J .

Again, let (G, F, C) be a framework, and let ηF be a homeomorphic embedding of 

F into H. Below is a number of conditions on the framework, H and ηF . The goal of 

the first half of this paper, reached in section 7, is to prove that, if these conditions are 

satisfied, and there is a homeomorphic embedding of G in H extending ηF , then the 

natural drawing of G \ E(F ) (where the members of C define the region-boundaries) can 

be extended to one of H \ E(ηF (F )). The conditions are the following, called (E1)–(E7):

(E1) H is cubic and cyclically four-connected, and if (G, F, C) has any twinned edges, 

then H is cyclically five-connected. Also, ηF (e) has only one edge for every 

e ∈ E(F ).
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(E2) Let e, f ∈ E(G) \ E(F ) be distinct. If there is a homeomorphic embedding of 

G + (e, f) in H respecting ηF , then there exists C ∈ C with e, f ∈ E(C).

If e, f, g are distinct edges of E(G) such that no member of C contains all of e, f, g, 

but one contains e, f , one contains e, g and one contains f, g, we call {e, f, g} a trinity. 

A trinity is diverse if every two edges in it are diverse in G \ E(F ).

(E3) For every diverse trinity {e, f, g} there is no homeomorphic embedding of G +

(e, f, g) in H extending ηF .

(E4) Let v have degree one in F , incident with g ∈ E(F ). Let C1, C2 be the two members 

of C containing v. For all e1 ∈ E(C1) \ E(C2) and e2 ∈ E(C2) \ E(C1) such 

that e1 and e2 have no common end, there is no homeomorphic embedding of 

G + (e1, g) + (e2, vy) in H respecting ηF , where G + (e1, g) has new vertices x, y.

(E5) Let v have degree one in F , incident with g ∈ E(F ). Let u be a neighbour of 

v in G \ E(F ) (and so u /∈ V (F ), since F is an induced subgraph by 3.1). Let 

C0 be the (unique, by 3.1) member of C that contains u and not v. Let u have 

neighbours v, w1, w2. Let G′ = G + (uw1, g) with new vertices x1, y1; and let G′′ =

G′ + (uw2, vy1) with new vertices x2, y2. Let i = 1 or 2, and let e = uxi. Let f be 

an edge of C0 not incident with w1 or w2, and with no end adjacent to wi. (This is 

vacuous unless |E(C0)| ≥ 6.) There is no homeomorphic embedding of G′′ + (e, f)

in H respecting ηF .

Two edges of G \E(F ) are distant if they are diverse in G and not twinned. Let C ∈ C. 

We shall speak of a sequence of vertices and/or edges of C as being in order in C, with 

the natural meaning (that is, if C is a path, in order as C is traversed from one end, and 

if C is a circuit, in order as C is traversed from some starting point).

• If e, f, g, h are distinct edges of C, in order, and e, g are distant and so are f, h, we 

call G + (e, g) + (f, h) a cross extension (of G, over C) of the first kind.

• If e, uv, f are distinct edges of C, and either e, u, v, f are in order, or f, e, u, v are 

in order, and e, uv are distant and so are uv, f , we call G + (e, uv) + (uy, f) a cross 

extension of the second kind, where G + (e, uv) has new vertices x, y.

• If u1v1 and u2v2 are distant edges of C and u1, v1, u2, v2 are in order, we call G +

(u1v1, u2v2) + (xv1, yv2) a cross extension of the third kind, where G + (u1v1, u2v2)

has new vertices x, y.

(E6) For each C ∈ C and every cross extension G′ of G over C of the first, second or 

third kinds, there is no homeomorphic embedding of G′ in H extending ηF .

(E7) Let C ∈ C be a path with |E(C)| = 5, with vertices v0- · · · -v5 in order, and let 

v0v1 and v4v5 be twinned. Let G1 = G + (v0v1, v4v5) with new vertices x1, y1; let 

G2 = G1 + (v1v2, y1v5) with new vertices x2, y2; and let G3 = G2 + (v0x1, y2v5). 

There is no homeomorphic embedding of G3 in H extending ηF .
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In the proofs to come, when we need to apply (E1)–(E7), it is often cumbersome to 

indicate the full homeomorphic embedding involved, and we use some shortcuts. For 

instance, when we apply (E2), with e, f, η as in (E2), let g be the new edge of G + (e, f), 

and let H ′ be the graph obtained from η(G + (e, f)) by deleting the interior of the path 

η(g); we normally say “by (E2) applied to H ′ with edges e, f”, and leave the reader to 

figure out the appropriate homeomorphic embedding and the path η(g).

Whenever we wish to apply our main theorem, we have to verify directly that 

(E1)–(E7) hold, and this can be a lot of case-checking. We have therefore tried to design 

(E1)–(E7) to be as easily checked as possible consistent with implying the main result. 

Nevertheless, there is still a great deal of case-checking, and we have omitted almost all 

the details. We are making available in [5] both the case-checking and all the graphs of 

the paper in computer-readable form.

4. Degenerate trinities

Now (E3) was a statement about diverse trinities; our first objective is to prove the 

same statement about non-diverse trinities.

A trinity is a Y-trinity if some two edges in it (say e and f) have a common end u, the 

third edge in it (g say) is not incident with u, and if h denotes the third edge incident with 

u then there exist C1, C2 ∈ C with e, g, h ∈ E(C1) and f, g, h ∈ E(C2). (Consequently g, h

are twinned.) It is circuit-type or path-type depending whether g and h have a common 

end or not.

4.1. Let (G, F, C) be a framework and let H, ηF satisfy (E1)–(E7). For every path-type 

Y -trinity {e, f, g} there is no homeomorphic embedding of G +(e, f, g) in H extending ηF .

Proof. Let u, h, C1, C2 be as above. Since the twinned edges g, h have no common end, 

it follows from (F6) that C1 and C2 are both paths with end-edges g, h, and both are 

vertex-disjoint from F . Let e = uw1, f = uw2. Suppose that η is a homeomorphic 

embedding of G into H extending ηF , and e, f, g are all η-attachments of some η-bridge B.

By 3.3, |E(C1)| ≥ 4, and so g is not incident with w1, and similarly not with w2. By 

(F7), at least one of C1, C2 has length at most four, and so we may assume that the edges 

of C1 in order are h, e, g1, g say. Let η′ be obtained from η by rerouting g1 along an η-path 

in B from η(g) to η(e). Then η′ extends ηF , and g1 and f are both η′-attachments of 

an η′-bridge. By (E2) with edges g1, f , there exists C ∈ C with g1, f ∈ E(C), and hence 

with e ∈ E(C) since C is an induced subgraph of G \ E(F ). But then e, g1 ∈ E(C ∩ C1), 

and C1 �= C, so e, g1 are twinned edges, and yet their common end w1 is not in V (F ), 

contrary to (F6). There is therefore no such η. This proves 4.1. �

Let {e, f, g} be a circuit-type Y -trinity, where e = xw1, f = xw2 and g = vw3, where 

v, w3 �= x and v, x are adjacent in G. Let h = vx, and let w4 be the third neighbour of v. 

Since g, h are twinned and share an end, 3.1 implies that vw4 ∈ E(F ). Hence w4 �= w1, w2, 
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Fig. 5. A circuit-type Y -trinity, and its three expansions.

since no member of C contains both v, w4. (See Fig. 5.) We wish to consider three rather 

similar graphs G1, G2, G3 called expansions of the Y -trinity {e, f, g}. Let G′ be obtained 

from G by deleting x and the edge vw3, and adding five new vertices x1, x2, x3, y1, y2 and 

nine new edges x1w1, x2w2, x3w3 and xiyj for 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2. Let G1, G2, G3

be obtained from G′ by deleting the edge y2a (where a is x1, x2 and x3 respectively), 

and adding two new edges vy2, va. Let x4 = v. (The reason we did not just replace v by 

a new vertex w4, is that the edge vw4 belongs to F and we want to preserve it.) Thus F

is a subgraph of G1, G2 and G3. (See Fig. 5.)

4.2. Let (G, F, C) be a framework, and let H, ηF satisfy (E1)–(E7). Let {e, f, g} be a 

circuit-type Y -trinity, and G1, G2, G3 its three expansions. Then there is no home-

omorphic embedding of G1, G2 or G3 in H extending ηF . In particular, there is no 

homeomorphic embedding of G + {e, f, g} in H extending ηF .

Proof. Let v, x, w1, . . . , w4 be as in Fig. 5 and let G1, G2, G3 be labelled as in Fig. 5, 

where e = xw1, f = xw2, and g = vw3.

Suppose that there is a homeomorphic embedding η of some Gk in H extending ηF . 

Let A be the subgraph of Gk induced on {x1, x2, x3, x4, y1, y2}, and B the subgraph of 

Gk induced on the complementary set of vertices. It follows that there is a homeomorphic 

embedding ζ of Gk in H such that:

• ζ extends the restriction of η to B (and in particular, ζ(z) = η(z) for every vertex 

or edge z of F different from x4, w4x4); and

• ζ(w4x4) is a path with one end η(w4) containing the one-edge path η(w4x4).

(To see this, take ζ = η.) Let Zi = ζ(xiwi) for i = 1, . . . , 4. Let us choose k and ζ such 

that

(1) Z1 ∪ Z2 ∪ Z3 is minimal, and subject to that Z4 is minimal.

Since H is cyclically five-connected by (E1) since there are twinned edges in G, there 

are five disjoint paths P1, . . . , P5 of H from ζ(A) to ζ(B) = η(B). Choose P1, . . . , P5 to 
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minimize the number of edges of P1 ∪ · · · ∪ P5 that do not belong to Z1 ∪ · · · ∪ Z4. It 

follows that each Pi has only its first vertex ai say in V (ζ(A)), and only its last vertex bi

say in V (η(B)). Now one of a1, . . . , a5 is different from ζ(x1), ζ(x2), ζ(x3), ζ(x4), say a5. 

Let a5 ∈ V (ζ(h1)), where h1 ∈ E(A). From (1) (or the theory of augmenting paths 

for network flows) it follows easily that {a1, . . . , a4} = {ζ(x1), . . . , ζ(x4)}, and we may 

assume that ai = ζ(xi) (1 ≤ i ≤ 4).

Let p be the first vertex (that is, closest to a5) in P5 that belongs to η(B) ∪ Z1 ∪ Z2 ∪

Z3 ∪ Z4 (this exists since b5 ∈ V (η(B))), and let P = P5[a5, p].

(2) p ∈ V (η(B)).

Subproof. Suppose not; then p ∈ V (Zi) for some i. If i = 4, then by replacing Z4[ζ(x4), p]

by P we obtain a homeomorphic embedding of some Gk′ (where possibly k′ �= k), contra-

dicting (1), since Z4 is replaced by a proper subpath and Z1, Z2, Z3 remain unchanged. 

So 1 ≤ i ≤ 3.

If h1 is incident with xi, then by rerouting h1 along P we obtain a contradiction to (1). 

Now suppose that h1 = ab where a is adjacent to xi. By rerouting axi along P , we again 

obtain a contradiction to (1).

Thus, neither end of h1 is adjacent to xi. Consequently, h1 �= y2x4, and y1 is not 

incident with h1, since 1 ≤ i ≤ 3. The only remaining possibility is that there is a 

four-vertex path of Gk with vertices xi, a, b, xj in order, for some j �= i, where {a, b} =

{y2, x4}, and h1 = bxj . But then there is a homeomorphic embedding of some Gk′ in 

H mapping Gk′ to the graph obtained from ζ(G) ∪ P by deleting the interior of ζ(xia), 

contradicting (1). This proves (2).

Hence p ∈ V (η(h2)) for some h2 ∈ E(B). Now we examine the possibilities for h1

and h2. Since η(h2) has an interior vertex, it follows from the choice of ζ that h2 /∈ E(F ). 

We recall that v ∈ V (G) ∩V (F ). Let C1, C2 ∈ C be the two members of C that contain v, 

and let C0 ∈ C contain e and f . Thus C0, C1, C2 are circuits by (F6), and v is the only 

vertex of F in V (C1 ∪ C2).

(3) h2 belongs to at most one of C0, C1, C2.

Subproof. By 3.2, E(C1 ∩C2) contains at most two edges, and since it contains both g, vx, 

it follows that h2 /∈ E(C1 ∩ C2). Since C1 is a circuit and v ∈ V (F ), (F5) implies that 

x, w1 /∈ V (F ), and so neither end of xw1 is in V (F ). Since xw1 ∈ E(C0 ∪C1), 3.2 implies 

that |E(C0 ∩ C1)| = 1 and so h2 /∈ E(C0 ∩ C1); and similarly h2 /∈ E(C0 ∩ C2). This 

proves (3).

(4) k = 1 or 2.
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Subproof. Suppose that k = 3. First, suppose that h1 is incident with y1. By restricting 

ζ to G3 \ y1 we obtain a homeomorphic embedding η′ of G in H respecting ηF , such 

that e, f, g and h2 are all η′-attachments in E(G) \ E(F ) of some η′-bridge. Since C1, C2

are the only members of C containing g, it follows from (E2), applied to η′(G) with 

the edges g, h2, that h2 ∈ E(C1 ∪ C2). Since C1 and C0 are the only members of C

containing e it follows from (E2) (with the edges e, h2) that h2 ∈ E(C0 ∪ C1), and 

similarly h2 ∈ E(C0 ∪ C2). Thus h2 belongs to two of C0, C1, C2, contrary to (3). This 

proves that h1 is not incident with y1.

Suppose next that h1 is incident with y2. By restricting η to G3 \ y2 we obtain a 

homeomorphic embedding η′ of G in H respecting ηF such that e, f and h2 are all 

η′-attachments of some η′-bridge. So h2 ∈ E(C0 ∪ C1), by (E2) applied to η′(G) with 

edges e, h2, and similarly h2 ∈ E(C0 ∪ C2). By (3) it follows that h2 ∈ E(C0), and 

h2 /∈ E(C1 ∪ C2). Let H ′ be the graph obtained from ζ(G3) by deleting the interiors 

of ζ(x1y2) and ζ(x3y1). There is a homeomorphic embedding of G in H respecting ηF , 

mapping G onto H ′; and from (E2) applied to H ′ with edges f, h2, we deduce that 

h2 ∈ E(C1 ∪ C2), a contradiction. This proves that h1 is not incident with y2.

Thus, h1 = x3x4. From (E2) applied to the restriction of ζ to G3 \ y1 and the edges 

g, h2, it follows that h2 ∈ E(C1 ∪ C2); and from the symmetry between C1, C2, we may 

assume that h2 ∈ E(C2) without loss of generality. By 3.2, w1 /∈ V (C2), and it follows 

that h2, e are disjoint edges of G. From (E4) applied to the restriction of ζ to G3 \ y2, we 

obtain from the paths ζ(x1y2) ∪ ζ(x4y2) and P that h2 /∈ E(C2), a contradiction. This 

proves (4).

From (4) and the symmetry between w1 and w2 (exchanging G1 and G2) we may 

therefore assume that k = 1. There are three homeomorphic embeddings of G in H

respecting F that we need:

• let H1 be the graph obtained from ζ(G1) by deleting the interiors of ζ(x1x4) and 

ζ(x3y1);

• let H2 be obtained from ζ(G1) by deleting the interiors of ζ(x1x4) and ζ(x2y2);

• let H3 be obtained from ζ(G1) by deleting the interiors of ζ(x3y1) and ζ(x2y2).

For i = 1, 2, 3 there is a homeomorphic embedding ηi of G in Hi respecting F , with 

ηi(z) = η(z) for each vertex and edge z of B.

(5) h2 ∈ E(C0 ∪ C1).

Subproof. Suppose not. By (E2) applied to H1 and the edges e, h2, it follows that

h1 �= x1y1, x3y1, x1x4, x2y1,

and so h1 is incident with y2. By (E2) applied to H3 and the edges g, h2, we deduce that 

h2 ∈ E(C2). Consequently e, h2 are disjoint, since w1 /∈ V (C2); but then this contradicts 
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(E4) applied to H2 and the paths ζ(x1x4) and P (extended by a subpath of ζ(x2y2) if 

necessary).

(6) h2 ∈ E(C0 ∪ C2).

Subproof. Suppose not. By (E2) applied to H3 and the edges f, h2, it follows that

h1 �= x1y1, x2y1, x3y1, x2y2,

and so h1 is one of x1x4, x4y2, x3y2. By (5), h2 ∈ E(C1), and so f, h2 are disjoint, since 

w2 /∈ V (C1). But this contradicts (E4) applied to H2 and the paths ζ(x2, y2) and P

(extended by a subpath of ζ(x1x4) if necessary).

From (3) and (6), it follows that h2 ∈ E(C0), and h2 /∈ E(C1 ∪C2). By (E2) applied to 

H3 and the edges g, h2, we deduce that h1 �= x3y1, x3y2, x2y2, x4y2; and by (E2) applied 

to H3 and the edges vx, h2, we deduce that h1 �= x1x4. Thus h1 is one of x1y1, x2y1.

We recall that η2 is a homeomorphic embedding of G in H2. Suppose that h2 is 

incident with w1. Let η′ be obtained from η2 by rerouting e along P ; then the paths 

ζ(x2y2) and ζ(x1w1) ∪ ζ(x1x4) violate (E4). Similarly, if h2 is incident with w2, let η′ be 

obtained from η2 by rerouting f along P ; then the paths ζ(x1x4) and ζ(x2y2) ∪ ζ(x2w2)

violate (E4).

Thus w1, w2 are not incident with h2. Next suppose that h1 = x1y1 and one end a

say of h2 is adjacent to w1. Let η′ be obtained from η2 by rerouting aw1 along P ; then 

the paths ζ(x1x4), ζ(x2y2) violate (E4). Next suppose that h1 = x2y1 and one end a of 

h2 is adjacent to w2. Let η′ be obtained from η2 by rerouting aw2 along P ; then the 

paths ζ(x1x4), ζ(x2y2) violate (E4). In summary, then, we have shown that h2 ∈ E(C0), 

incident with neither of w1, w2, and for i = 1, 2, if h1 = xiy1 then no end of h2 is adjacent 

to wi. But this contradicts (E5).

There is therefore no such η, and the first statement of the theorem holds. The second 

statement of the theorem follows from the first, since G + (e, f, g) is isomorphic to G3

(and the isomorphism fixes F ). This proves 4.2. �

4.3. Let (G, F, C) be a framework, and let H, ηF satisfy (E1)–(E7). Let {e1, e2, e3} be a 

trinity such that no vertex is incident with all of e1, e2, e3. Then there is no homeomorphic 

embedding of G + (e1, e2, e3) in H extending ηF .

Proof. For i = 1, 2, 3 there exists Ci ∈ C with {e1, e2, e3} \ {ei} ⊆ E(Ci) and ei /∈ E(Ci), 

since {e1, e2, e3} is a trinity. Suppose first that e1, e2 have a common end v say; and let 

h be the third edge incident with v. By hypothesis h �= e3. If v ∈ V (F ) then since v has 

degree two in C3, C3 is a circuit, and hence by (F4), e1 is not an end-edge of C2; and if 

v /∈ V (F ) then by (F3) either e1 is not an end-edge of C2, or e2 is not an end-edge of 

C1, and we may assume the first. Hence in either case e1 is not an end-edge of C2. Since 
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e1 ∈ E(C2) and e2 /∈ E(C2), it follows that h ∈ E(C2). By (F3), since e3 ∈ E(C1 ∩ C2), 

it follows that h ∈ E(C1), since v not in V (F ) by (F5); and so {e1, e2, e3} is a Y -trinity, 

contrary to 4.1 and 4.2.

Thus, no two of e1, e2, e3 have a common end. Suppose that there is a homeomorphic 

embedding of G + (e1, e2, e3) in H extending ηF . Then there is a homeomorphic em-

bedding of G in H extending ηF , such that e1, e2, e3 are all η-attachments of the same 

η-bridge B say. By (E3), {e1, e2, e3} is not diverse in G \ E(F ), so we may assume that 

e1 = a1b1 and e2 = a2b2, where a1, a2 are adjacent in G \ E(F ). Let a1a2 = e0.

Since e1, e2 ∈ E(C3) and C3 is an induced subgraph of G \ E(F ), it follows that 

e0 ∈ E(C3). Let a1 have neighbours b1, a2, c1 and a2 have neighbours a1, b2, c2 in G.

Since e0 is not an end-edge of C3, it is not an end-edge of C1 or C2, by (F4). Since 

e0 and e3 are disjoint, and e3 ∈ E(C1 ∩ C2), it follows from (F6) that e0 /∈ E(C1 ∩ C2); 

we assume that e0 /∈ E(C1) without loss of generality. Suppose that e0 ∈ E(C2). Since 

e0, e1 ∈ E(C2 ∩ C3), it follows from (F6) that C2, C3 are both circuits, a1 ∈ V (F ) and 

a1c1 ∈ E(F ). Hence a2c2 ∈ E(C2) (since e2 /∈ E(C2)). Moreover by (F3), a2 is incident 

with an edge in C1 ∩ C2, since E(C1 ∩ C2) �= ∅ and a2 ∈ V (C1 ∩ C2). Since e0 /∈ E(C1)

and e2 /∈ E(C2) it follows that a2c2 ∈ E(C1). Since E(C1 ∩ C2) contains e3 and a2c2 and 

C2 is a circuit, it follows from (F6) that c2 ∈ V (F ), and so a1, c2 ∈ V (C2 ∩ F ) contrary 

to (F5). This proves that e0 /∈ E(C2).

If a1 ∈ V (F ) then a1c1 /∈ E(C2) by (F5), and so e1 is an end-edge of C2. By (F4), 

C3 is a path, and a1 is an internal vertex of it, contrary to (F5). Hence a1 /∈ V (F ), and 

similarly a2 /∈ V (F ).

Now e1, e2, e3 are all η-attachments of B. Let P be an η-path in B with ends in η(e1)

and η(e2), and let η′ be obtained by rerouting e0 along P . Then η′ is a homeomorphic 

embedding of G in H extending ηF . Since e3 is an η-attachment of B, it follows that 

e0 and e3 are η′-attachments of some η′-bridge. By (E2), applied to η′(G) with edges 

e0, e3, there exists C4 ∈ C with e0, e3 ∈ E(C4). Since a1 /∈ V (F ) it follows from (F6) that 

e1 /∈ E(C4). But from (F4) applied to C3 and C4, e0 is not an end-edge of C4. By (F3) 

applied to C2 and C4, a1c1 ∈ E(C2 ∩ C4). Since E(C2 ∩ C4) contains both a1c1 and e3, 

it follows that e3, a1c1 are twinned, and similarly so are e3, a2c2, contrary to 3.4. Thus 

there is no such η. This proves 4.3. �

Next we need the following lemma.

4.4. Let η be a homeomorphic embedding of a cubic graph G in a cyclically four-connected 

cubic graph H. Let v ∈ V (G), incident with edges e1, e2, e3, and suppose that e1, e2, e3

are η-attachments of some η-bridge. Then there is a homeomorphic embedding η′ of G

in H, such that η′(u) = η(u) for all u ∈ V (G) \ {v}, and η′(e) = η(e) for all e ∈

E(G) \ {e1, e2, e3}, and such that for some edge e4 �= e1, e2, e3 of G, e1, e2, e3, e4 are 

η′-attachments of some η′-bridge.
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Proof. For 1 ≤ i ≤ 3, let ei have ends v and vi. Let G′ = G +(e1, e2, e3), with new vertices 

x1, x2, x3, w. By hypothesis, there is a homeomorphic embedding η′ of G′ in H such that 

η′(u) = η(u) for all u ∈ V (G) \ {v}, and η′(e) = η(e) for all e ∈ E(G) \ {e1, e2, e3}. 

Choose η′ such that

η′(v1x1) ∪ η′(v2x2) ∪ η′(v3x3)

is minimal. Since H is cyclically four-connected, there is an η′-path with one end in

⋃

(V (η′(vxi)) ∪ V (η′(wxi)) : 1 ≤ i ≤ 3)

and the other end, t, in

V (η(G \ v) ∪ η′(v1x1) ∪ η′(v2x2) ∪ η′(v3x3)).

From the choice of η′ it follows that t belongs to none of η′(v1x1), η′(v2x2), η′(v3x3), 

and so it belongs to η′(e4) = η(e4) for some e4 ∈ E(G \ v). This proves 4.4. �

4.5. Let (G, F, C) be a framework, and let H, ηF satisfy (E1)–(E7). Let {e1, e2, e3} be a 

trinity. There is no homeomorphic embedding of G + (e1, e2, e3) in H extending ηF .

Proof. By 4.3 we may assume that v ∈ V (G) is incident with e1, e2 and e3. Suppose 

η is a homeomorphic embedding of G + (e1, e2, e3) in H extending ηF . By 4.4 there is 

an edge e4 �= e1, e2, e3 of G such that there are homeomorphic embeddings of each of 

G + (e2, e3, e4), G + (e1, e3, e4), G + (e1, e2, e4) in H extending ηF . It follows that e4 /∈

E(F ). Since no vertex is incident with all of e2, e3, e4, it follows from 4.3 that {e2, e3, e4}

is not a trinity; and yet (E2), applied to η(G) with edges each pair of e2, e3, e4, implies 

that every two of e2, e3, e4 are contained in a member of C. Consequently there exists 

C1 ∈ C with e2, e3, e4 ∈ E(C1). Similarly there exist C2, C3 ∈ C with e1, e3, e4 ∈ E(C2)

and e1, e2, e4 ∈ E(C3). Since {e1, e2, e3} is a trinity, ei /∈ E(Ci)(1 ≤ i ≤ 3), and so 

C1, C2, C3 are all distinct.

Now if e4 is not the end-edge of any path in C, then since C2 ∩ C3 contains e1 and e4

it follows from (F6) that e1 and e4 have a common end, and similarly so do ei and e4 for 

i = 1, 2, 3, which is impossible. Hence e4 is an end-edge of some path in C. By (F4) C1, C2

and C3 are all paths. Since e3, e4 ∈ E(C1 ∩ C2), C1 has end-edges e3 and e4; and since 

e2, e4 ∈ E(C1 ∩ C3), C1 has end-edges e2 and e4, a contradiction. This proves 4.5. �

4.6. Let (G, F, C) be a framework, and let H, ηF satisfy (E1)–(E7). Let η be a homeo-

morphic embedding of G in H extending ηF . For every η-bridge B there exists C ∈ C

such that e ∈ E(C) for every η-attachment e of B.

Proof. Since η extends ηF , it follows that Z ⊆ E(G) \ E(F ), where Z is the set of all 

η-attachments of B. Suppose, for a contradiction, that there is no C ∈ C with Z ⊆ E(C), 
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and choose X ⊆ Z minimal such that there is no C ∈ C with X ⊆ E(C). By (F2), 

|X| ≥ 2; by (E2), applied to η(G) with edges the members of X, |X| �= 2; and by 4.5, 

|X| �= 3. Hence |X| ≥ 4. Let X = {e1, . . . , ek} say, where k ≥ 4. For each i ∈ {1, . . . , k}, 

there exists C ∈ C including X \ {ei}, from the minimality of X. All these members 

of C are different, and so every two members of X are twinned, contrary to 3.4. This 

proves 4.6. �

5. Crossings on a region

Let η extend ηF , and let B be an η-bridge. Since η extends ηF , it follows that no 

η-attachment of B is in E(F ), and so by 4.6, there exists C ∈ C such that every 

η-attachment of B belongs to C. If C is unique, we say that B sits on C.

Our objective in this section is to show that if η extends ηF , then for every C ∈ C

all the bridges that sit on C can be simultaneously drawn within the “region” that C

bounds. There may be some bridges that sit on no member of C, but we worry about 

them later.

Let C be a path or circuit in a graph J . We say paths P, Q of J cross with respect 

to C, if P, Q are disjoint, and P has distinct ends p1, p2 ∈ V (C), and Q has distinct 

ends q1, q2 ∈ V (C), and no other vertex of P or Q belongs to C, and these ends can 

be numbered such that either p1, q1, p2, q2 are in order in C, or q1, p1, q2, p2 are in order 

in C. We say that J is C-planar if J can be drawn (without crossings) in a closed disc 

∆ such that every vertex and edge of C is drawn in the boundary of ∆. We shall prove:

5.1. Let (G, F, C) be a framework, and let H, ηF satisfy (E1)–(E7). Let η be a homeo-

morphic embedding of G in H that extends ηF , let C ∈ C, and let A be a set of η-bridges 

that sit on C. Let J = η(C) ∪
⋃

(B : B ∈ A). Then J is η(C)-planar.

5.1 is a consequence of the following.

5.2. Let (G, F, C) be a framework, and let H, ηF satisfy (E1)–(E7). Let η be a homeo-

morphic embedding of G in H that extends ηF , and let C ∈ C. Let P , Q be η-paths that 

cross with respect to η(C). Then for one of P , Q, the η-bridge that contains it does not 

sit on C.

Proof of 5.1, assuming 5.2. Suppose that X, Y ⊆ V (J) with X ∪ Y = V (J) and 

V (C) ⊆ Y , such that |X \ Y | ≥ 2 and no edge of J has one end in X \ Y and the 

other in Y \X. We claim that |X ∩Y | ≥ 4. For let Y ′ = Y ∪ (V (H) \X); then no edge of 

H has one end in X \ Y ′ and the other in Y ′ \ X, and X ∪ Y ′ = V (H), and |X \ Y ′| ≥ 2, 

and so X and Y ′ both includes the vertex set of a circuit of H. Since H is cyclically 

four-connected, it follows that |X ∩ Y ′| ≥ 4, and so |X ∩ Y | ≥ 4 as claimed.

From this and theorems 2.3 and 2.4 of [2], it follows, assuming for a contradiction that 

J is not η(C)-planar, that there are η-paths P, Q in J that cross with respect to η(C). 
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By 5.2 the η-bridge containing one of P, Q does not sit on C and hence does not belong 

to A, a contradiction. This proves 5.1. �

Proof of 5.2. We remark, first, that

(1) If B is an η-bridge that sits on C, and e ∈ E(C) is an η-attachment of B, then there 

is an η-attachment g ∈ E(C) of B such that g �= e and g is not twinned with e.

Subproof. By 3.1 it follows that B has at least two η-attachments. Suppose that every 

η-attachment different from e is twinned with e; then by 3.4 there is only one other, say f , 

and e, f are twinned, and therefore there exists C ′ �= C in C containing all η-attachments 

of B, contradicting that B sits on C. This proves (1).

For e, f ∈ E(C), let

ε(e, f) =

⎧

⎪

⎨

⎪

⎩

3 if e = f,

2 if e �= f, and e, f are twinned,

0 if e �= f, and e, f are not twinned.

Let P have ends p1, p2, and let Q have ends q1, q2; and let B1, B2 be the η-bridges 

containing P, Q respectively. Let pi ∈ V (η(ei)) and qi ∈ V (η(fi)) for i = 1, 2, and let 

N = ε(e1, e2) + ε(f1, f2). We prove by induction on N that one of B1, B2 does not sit 

on C. We assume they both sit on C, for a contradiction.

(2) Either e1, e2 are different and not twinned, or f1, f2 are different and not twinned.

Subproof. Suppose that e1 and e2 are equal or twinned, and so are f1, f2. We claim that

|{e1, e2, f1, f2}| ≤ 2,

and if this set has two members then they are twinned. For suppose that e1 = e2. Since 

P, Q cross, it follows that one of f1, f2 equals e1, say f1 = e1; and since either f2 = f1

or f2 is twinned with f1, the claim follows. So we may assume that e1, e2 are twinned, 

and similarly so are f1, f2. But by (F5) and (F6), only one pair of edges of C is twinned, 

and so again the claim holds.

Since B1 sits on C, by (1) it has an η-attachment g �= e1 that is not twinned with e1; 

and so g �= e1, e2, f1, f2. Take a minimal path R in B1 between V (P ∪ Q) and V (η(g)), 

and let its end r in P ∪ Q be a vertex of S, say, where {S, T} = {P, Q}. Let S′ be a 

path consisting of the union of R and a subpath of S from r to an appropriate end of S, 

chosen such that S′, T cross. This contradicts the inductive hypothesis on N , and so 

proves (2).

(3) e1 �= e2 and f1 �= f2.
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Subproof. Suppose that e1 = e2, say. Since P, Q cross, one of f1, f2 equals e1, say f1 =

e1 = e2; and by (2), f2 �= f1, and f1, f2 are not twinned. By (1), B1 has an η-attachment 

g ∈ E(C) not twinned with e1. Hence there is a minimal path R of B1 from V (P ) to 

V (Q) ∪ η(g). If it meets η(g), we contradict the inductive hypothesis as before, so we 

assume R has one end in V (P ) and the other in V (Q).

Let f1 = uv, and let G′ = G + (f1, f2) with new vertices x, y. By adding Q to η(G)

we see that there is a homeomorphic embedding η′′ of G′ in H extending ηF such that 

ux, vx and xy are all η′′-attachments of some η′′-bridge (including P ∪ R). From 4.4, 

we may choose η′′ extending ηF such that ux, vx, xy and some fourth edge g are all 

η′′-attachments of some η′′-bridge. In other words, we may choose a homeomorphic 

embedding η′ of G in H extending ηF such that there exist

• an η′-path P ′ with ends p′

1, p′

2 in V (η′(f1));

• an η′-path Q′ with ends q′

1, q′

2 disjoint from P ′, where q′

1 lies in η′(f1) between p′

1

and p′

2, and q′

2 ∈ V (η′(f2));

• a path R′ with one end in P ′, the other end in Q′, and with no other vertex or edge 

in η′(G) ∪ P ′ ∪ Q′, and

• a path S′ with one end in P ′ ∪ R′, the other end in η′(g) where g �= f1, and with no 

other vertex or edge in η′(G) ∪ P ′ ∪ Q′ ∪ R′.

Let B′ be the η′-bridge containing P ′ ∪ Q′ ∪ R′ ∪ S′. By 4.6, there exists C ′ ∈ C such 

that all η′-attachments of B′ are in E(C ′). Now f1 �= f2 and they are not twinned, so 

C ′ = C, and hence B′ sits on C. Let T be an η′-path in P ′ ∪ R′ ∪ S′ with one end in 

η′(f1) and the other in η′(g), chosen such that Q′, T cross with respect to η′(C). Then 

both Q′, T are contained in B′, and yet B′ sits on C, and ε(f1, g) < ε(f1, f1), contrary 

to the inductive hypothesis. This proves (3).

(4) e1, e2 are not twinned, and f1, f2 are not twinned.

Subproof. Suppose that f1, f2 are twinned, say. Let f1 = v1x1 and f2 = v2x2 where either 

C is a circuit and v1 = v2 ∈ V (F ), or C is a path with ends v1, v2. By (1), there is an 

η-attachment of B2 different from f1, f2; and so there is a minimal η-path R in B2 from 

V (Q) to V (P ) ∪ V (η(C \ {f1, f2})). From the inductive hypothesis, R does not meet 

η(C \ {f1, f2}), and so it meets P . Let R have ends r1 ∈ V (P ) and r2 ∈ V (Q), and for 

i = 1, 2, let Pi = P [pi, r1] and Qi = Q[qi, r2].

Now for i = 1, 2, xi /∈ V (F ) by (F5) (since if C is a circuit then v1 ∈ V (F ) by (F6)). 

For i = 1, 2, let gi be the edge of G not in Ci incident with xi, and let hi be the edge of 

C different from fi that is incident with xi.

Now since either C is a path and f1, f2 are end-edges of C, or C is a circuit and f1, f2

have a common end, and since P, Q cross, we may assume that e1 = f1, and p1 lies in 

η(f1) between q1 and η(v1). It follows that e2 �= f1, f2 by (2).
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Suppose first that either e2 = h1 or x1 is adjacent to an end of e2. By rerouting 

h1 along P , we obtain a homeomorphic embedding η′ of G in H extending ηF , such 

that g1, h1 and f2 are all η′-attachments of some η′-bridge (containing Q ∪ R). Since no 

member of C contains all of g1, h1 and f2, this contradicts 4.6. Hence e2 �= h1 and x1 is 

not adjacent to any end of e2.

By (F6), |V (C)| ≤ 6, so either e2 = h2, or C is a circuit and x2 is adjacent to an end 

of e2. Suppose first that C is a path; so e2 = h2. By rerouting h2 along P2 ∪ R ∪ Q2 and 

adding P1 and Q1, we obtain a homeomorphic embedding (in H, extending ηF ) of a cross 

extension of G over C of the third kind, contrary to (E6). Thus C is a circuit, and so 

v1 ∈ V (F ), and therefore {f1, g2, h2} is a circuit-type Y -trinity. But then by rerouting h2

along P2 ∪ R ∪ Q2 and adding P1 and Q1 we obtain a homeomorphic embedding (in H, 

extending ηF ) of an expansion of this Y -trinity of the first or second type, contrary 

to 4.2. This proves (4).

(5) e1, e2 have no common end, and f1, f2 have no common end.

Subproof. Suppose that e1, e2 have a common end, v say. Since e1, e2 are not twinned 

by (4), it follows from 3.1 that v has degree three in G \E(F ); and so by (F5), v /∈ V (F ). 

Since P, Q cross, we may assume that f1 = e1 and p1, q1, η(v) are in order in η(e1). Let 

f, e1, e2 be the three edges of G incident with v. Let η′ be obtained from η by rerouting 

e1 along P . Then η′ is a homeomorphic embedding of G in H extending ηF , and f, f1

and f2 are η′-attachments in E(G) \ E(F ) of the η′-bridge containing Q. From 4.6, there 

exists C ′ ∈ C with f, f1, f2 ∈ E(C ′). Since f /∈ E(C) it follows that C ′ �= C, and so f1, f2

are twinned, contrary to (4). This proves (5).

Thus e1, e2 have no common end, and nor do f1, f2. By (E6), we may assume that 

one end of e1 is adjacent to one end of e2. Since P, Q cross, we may therefore assume 

that for some edge g = uv of C, u is an end of e1, v is an end of e2, f1 ∈ {e1, g}, and if 

f1 = e1 then p1, q1, η(u) are in order in η(e1). Let u be incident with g, e1, g1 and v with 

g, e2, g2.

Suppose that u /∈ V (F ). Let η′ be the homeomorphic embedding obtained from η by 

rerouting g along P . By (E2), applied to η′(G) with edges f2, g1, it follows that there 

exists C1 ∈ C with f2, g1 ∈ E(C1). By (F3), C1 contains one of e1, g, say h. Hence 

h, f2 are twinned; and since f1, f2 are not twinned, it follows that {e1, g} = {f1, h}. If 

h = g, then f1 = e1; and since g is not an end-edge of C, (F6) implies that f2 = e2

and g2 ∈ E(F ). But then {e1, g1, e2} is a Y -type trinity, and adding P and Q provides a 

homeomorphic embedding (in H, extending ηF ) of an expansion of this trinity, contrary 

to 4.2. Thus h �= g, and so h = e1 and f1 = g, and f2 �= e1, g, e2. If C is a circuit, 

(F6) implies that the end of e1 different from u belongs to V (F ); but then by (F5), 

v /∈ V (F ), and the symmetry between u and v implies that the end of e2 different from 

v belongs to V (F ), contrary to (F5). If C is a path, then (F6) implies that e1 is an 
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end-edge of C, and v /∈ V (F ); but then the symmetry between u, v implies that e2 is 

also an end-edge of C, a contradiction.

This proves that u ∈ V (F ). Consequently v /∈ V (F ), and it follows (by exchanging 

P, Q, and exchanging e1, e2) that f2 �= e2. Since C contains e1, g, it follows that u is 

not an end of C, and so by (F5), g1 ∈ E(F ). By (F2) there exists C2 ∈ C containing 

g, g2, since v /∈ V (F ). Since g1 ∈ E(F ), we deduce that e1 ∈ E(C2). Since f1, f2 are not 

twinned, it follows that f2 /∈ E(C2). Thus g2 ∈ E(C2) \E(C), and f2 ∈ E(C) \E(C2), and 

f2, g2 have no common end, since f2 �= e2. But rerouting g along P gives a homeomorphic 

embedding of G in H extending ηF , and adding η(g) and Q to it contradicts (E4). This 

proves 5.2. �

6. The bridges between twins

To apply these results about frameworks, we have to choose a homeomorphic embed-

ding η of G in H, and there is some freedom in how we do so. If we choose it carefully we 

can make several problems disappear simultaneously. The most important consideration 

is to ensure that each η-bridge has at least two η-attachments, but that is rather easy. 

With more care, we can also discourage η-bridges from having η-attachments in certain 

difficult places. To do so, we proceed as follows.

Let (G, F, C) be a framework, and let η be a homeomorphic embedding of G in H

extending ηF , as usual. An edge e of G is a twin if there exists f such that e, f are 

twinned. (Thus, stating that “e, f are twins” does not imply that they are twinned with 

each other.) An edge e ∈ E(G) \ E(F ) is

• central if it does not belong to any path in C and is not a twin;

• peripheral if e is an internal edge of some path in C;

• critical if either e is a twin or e is an end-edge of some path in C.

By (F4) and (F6), no edge is both peripheral and critical, so every edge of E(G) \ E(F )

is of exactly one of these three kinds.

An edge f ∈ E(H) is said to η-attach to e ∈ E(G) if there is a path P of H with no 

internal vertex in V (η(G)) with f ∈ E(P ) and with one end a vertex of η(e). (Thus f

η-attaches to e if and only if either f ∈ E(η(e)) or f belongs to an η-bridge for which e

is an η-attachment.) Let

• L1(η) be the set of edges in E(H) that η-attach to some central edge of G;

• L2(η) be the set of edges in E(H) that η-attach to an edge of G which is either 

peripheral or central;

• L3(η) be the set of edges in E(H) that attach to two edges of G that are not twinned 

(and possibly to more edges of G); and

• L4(η) be the set of edges in E(H) that attach to at least two edges of G.



JID:YJCTB AID:3220 /FLA [m1L; v1.252; Prn:19/02/2019; 11:25] P.24 (1-67)

24 N. Robertson et al. / Journal of Combinatorial Theory, Series B ••• (••••) •••–•••

We say that η is optimal if it is chosen (among all homeometric embeddings of G in H ex-

tending ηF ) with the four-tuple of cardinalities of these sets lexicographically maximum; 

that is, for every homeomorphic embedding η′ extending ηF , there exists j ∈ {1, . . . , 5}

such that |Li(η)| = |Li(η
′)| for 1 ≤ i < j, and |Lj(η)| > |Lj(η′)| if j ≤ 4. In this section 

we study the properties of optimal embeddings.

6.1. Let η be an optimal homeomorphic embedding of G in H extending ηF . Then every 

η-bridge has at least two η-attachments.

Proof. Let e ∈ E(G) \ E(F ). Let us say an η-bridge is singular if e is its only 

η-attachment, and nonsingular otherwise. Suppose that there is a singular η-bridge. Let 

e = uv, let p1, . . . , pr be the set of vertices of η(e) that belong to nonsingular η-bridges, 

and let p0 = η(u) and pr+1 = η(v), numbered such that p0, p1, . . . , pr+1 are in order 

in η(e). For 0 ≤ i ≤ r let Pi = η(e)[pi, pi+1]. Choose j with 0 ≤ j ≤ t such that some 

singular η-bridge contains a vertex of Pj (from the interior of Pj, since H is cubic). Since 

H is three-connected, there is an η-bridge B containing a vertex b of the interior of Pj

and containing a vertex a of η(G) not in Pj . From the definition of p1, . . . , pr, it follows 

that B is singular. Hence there exists i �= j with 0 ≤ i ≤ r such that a belongs to Pi, and 

from the symmetry we may assume that i < j. Let P be an η-path in B between a, b. 

Let η′ be obtained from η by rerouting e along P . For every edge f of E(H), every 

η-attachment of f is also an η′-attachment. Consequently Li(η) ⊆ Li(η
′) for 1 ≤ i ≤ 4. 

But the edge of Pj incident with pj belongs to L4(η′) \ L4(η), contrary to the optimality 

of η. This proves 6.1. �

6.2. Let η be an optimal homeomorphic embedding of G in H extending ηF . Let C ∈ C

be a path, and suppose that B is an η-bridge and all its η-attachments are edges of C. 

Then its η-attachments are pairwise diverse in C.

Proof. We claim first

(1) If e, f are edges of C with a common end v, and g is the third edge of G incident 

with v, then v /∈ V (F ), and either g is central, or g is peripheral and one of e, f is 

an end-edge of C.

Subproof. Certainly v /∈ V (F ) by (F5), since C is a path. If g does not belong to any 

path of C then it is not a twin by (F6), and so it is central. Thus we may assume that 

there is a path C ′ ∈ C containing g. By (F4), C ′ contains one of e, f , say e, and e is 

an end-edge of both C, C ′. Now (F1) implies that g is not an end-edge of C ′, and so 

by (F6), g is not a twin, and by (F4) g is not an end-edge of any path in C, that is, g is 

peripheral. This proves (1).

(2) No two η-attachments of B in C have a common end.
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Subproof. Suppose that e, f are η-attachments of B, and they have a common end v. Let 

g be the third edge of G incident with v. Choose a path P in B from a vertex a of η(e)

to a vertex b of η(f). Let η′ be obtained from η by rerouting f along P . Then η′ is a 

homeomorphic embedding of G in H extending ηF (note that g /∈ E(F ) since v /∈ V (F )

by (1)). Moreover, since no η-attachment of B is central, it follows that L1(η) ⊆ L1(η′), 

and therefore equality holds. In particular, the edge of η(e) incident with η(v) therefore 

does not belong to L1(η′), and so g is not central. We deduce from (1) that g is peripheral 

and one of e, f is an end-edge of C, and from the symmetry we may assume that e is an 

end-edge of C. Thus f is peripheral, and it follows that L2(η) ⊆ L2(η′), and therefore 

equality holds. But the edge of η(e) incident with η(v) belongs to L2(η′), and does not 

belong to L2(η) since e is an end-edge of C, a contradiction. This proves (2).

To complete the proof, suppose that some two η-attachments e, f of B in C are not 

diverse in C. Then by (2), there are consecutive vertices u, v, w, x of C, such that e = uv

and f = wx. Let the third edge of G at v be g and at w be h. Choose a path P in B

from a vertex a of η(e) to a vertex b of η(f). Let η′ be obtained from η by rerouting 

vw along P . Then η′ is a homeomorphic embedding of G in H extending ηF . Since no 

η-attachment of B is central, it follows that L1(η) ⊆ L1(η′), and therefore equality holds. 

In particular, the edge of η(e) incident with η(v) does not belong to L1(η′), and so g is 

not central. From (1), it follows that g is peripheral and e is an end-edge of C. Similarly 

h is peripheral and f is an end-edge of C. Hence L2(η) ⊆ L2(η′), and therefore equality 

holds. But the edge of η(e) incident with η(v) belongs to L2(η′) and not to L2(η) since 

e is an end-edge of C, a contradiction. This proves 6.2. �

If C ∈ C, we denote by A(C) the set of all η-bridges that sit on C. If e, f are twinned 

edges of G, we denote by A(e, f) the set of all η-bridges that have no attachments different 

from e, f . Thus, if η is optimal, then by 6.1 every bridge belongs to A(C) for some C or to 

A(e, f) for some e, f , and to only one such set (except that A(e, f) = A(f, e)). The next 

four theorems are all about a pair of twinned edges e, f , and it is convenient first to set 

up some notation. Thus, let e, f be twinned edges of G. Let there be r vertices p1, . . . , pr

of η(e) that belong to an η-bridge with an η-attachment different from e and f , and let 

η(e) have ends p0 and pr+1, numbered such that p0, . . . , pr+1 are in order in η(e). For 

0 ≤ i ≤ r, let Pi = η(e)[pi, pi+1]. Let q0, . . . , qs+1 ∈ V (η(f)) and Q0, . . . , Qs be defined 

similarly.

6.3. Let η be an optimal homeomorphic embedding of G in H extending ηF , and let e, f

be twinned edges of G. With notation as above, for every B ∈ A(e, f) there exist i and 

j with 0 ≤ i ≤ r and 0 ≤ j ≤ s such that B ∩ η(e) ⊆ Pi and B ∩ η(f) ⊆ Qj.

Proof. Suppose that some member B of A(e, f) meets both Pi and Pj , where 0 ≤ i <

j ≤ r. Let P be an η-path in B between some a ∈ V (Pi) and some b ∈ V (Pj). Let 

η′ be obtained from η by rerouting e along P . Since no η-attachment of B is central 
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or peripheral, and no edge of B is in L3(η), it follows that Li(η) ⊆ Li(η
′) for i =

1, 2, 3, and so equality holds in all three. Let B′ be an η-bridge containing pi; then 

B′ has an η-attachment different from e, f , say g. Consequently e, g are not twinned, 

and in particular, the edge of Pj incident with pj is in L3(η′), a contradiction. This 

proves 6.3. �

6.4. Let η be an optimal homeomorphic embedding of G in H extending ηF , and let e, f

be twinned edges of G. Suppose that e, f have a common end v, and let e = uv and 

f = vw. Then A(e, f) can be numbered as {B1, . . . , Bk}, such that

• Bi has only one edge cidi for 1 ≤ i ≤ k;

• η(u), c1, . . . , ck, η(v) are in order in η(e), and η(w), d1, . . . , dk, η(v) are in order in 

η(f); and

• for 1 ≤ i < k, one of η(e)[ci, ci+1], η(f)[di, di+1] contains a vertex of some η-bridge 

not in A(e, f).

Proof. Using the notation established earlier, we may assume that η(v) = p0 = q0.

(1) Suppose that M, N are disjoint η-paths, from m to m′ and from n to n′ respectively, 

such that

• η(u), m, n, η(v), m′, n′, η(w) are in order in the path η(e) ∪ η(f); and

• no edge of M ∪ N belongs to L2(η).

Then there exist i, j with 0 ≤ i ≤ r and 0 ≤ j ≤ s such that m, n belong to Pi and m′, n′

belong to Qj.

Subproof. Suppose not; then from the symmetry, we may assume that m is in Pi and n

is in Ph where 0 ≤ h < i ≤ r. Let

η′(e) = η(e)[η(u), m] ∪ M ∪ η(f)[m′, η(v)]

and

η′(f) = η(e)[η(v), n] ∪ N ∪ η(f)[n′, η(w)].

Then η′ is a homeomorphic embedding of G in H extending ηF . Since no edge of the 

η-bridges containing M or N belongs to L1(η) or to L2(η), and e, f are critical, it follows 

that Li(η) ⊆ Li(η
′) for i = 1, 2, and so equality holds in both. Let B be the η-bridge 

containing pi. Then there is an η-attachment g �= e, f of B. Choose C ∈ C containing e, g

(this is possible by (E2) applied to η(G) with edges e, g). From (F6), C is a circuit, and 

so g is not critical from (F5). Hence g is either central or peripheral, and so the edges of 

η(e) incident with pi belongs to L2(η′), a contradiction. This proves (1).
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To complete the proof, for 0 ≤ i ≤ r and 0 ≤ j ≤ s let Aij be the set of all B ∈ A(e, f)

with B ∩η(e) ⊆ Pi and B ∩η(f) ⊆ Qj . From (1), A(e, f) =
⋃

Aij . For each i, j let Jij be 

the union of all members of Aij. Suppose that some |E(Jij)| ≥ 2. Since H is cyclically 

five-connected by (E1), we may assume (by exchanging e and f if necessary) that there 

are b1, b′, b2 in Pi, in order, such that b1 and b2 both belong to Jij , and b′ belongs to some 

η-bridge B′ /∈ Aij . Since b′ �= p1, . . . , pr it follows that B′ ∈ A(e, f), and so B′ ∈ Aij′ , 

for some j′ �= j. In particular, Jij and Jij′ are disjoint. By 6.1 it follows that there is a 

path M in Jij and a path N in Jij′ violating (1) (possibly with M, N exchanged). This 

proves that each Jij has at most one edge, and in particular from 6.3, each η-bridge in 

A(e, f) has only one edge. The result follows from (2) applied to the paths of length one 

formed by these η-bridges. This proves 6.4. �

6.5. Let η be an optimal homeomorphic embedding of G in H extending ηF , and let e, f

be twinned edges of G. Suppose that e, f are disjoint, and there is no path C ∈ C of length 

five with end-edges e, f . Then

• there is at most one η-bridge in A(e, f), and any such η-bridge has only one edge;

• no other η-bridge contains any vertex of η(e) ∪ η(f); and

• A(C) = ∅ for every member of C containing e or f .

Proof. Now there is a path in C with end-edges e, f , and so every member C of C

containing e or f is a path, by (F4). Moreover, if e, f ∈ E(C) then C has length at most 

four by hypothesis and (F6), and C has end-edges e, f , and therefore every member of 

A(C) has some edge of C different from e, f as an η-attachment. By 6.2, this implies that 

A(C) = ∅. On the other hand, if C ∈ C contains just one of e, f then C has length three 

by (F6), and again A(C) = ∅ by 6.2. This proves the third assertion. Consequently, 

r = s = 0 (in our previous notation). Since H is cyclically five-connected by (E1), 

it follows that the union of all η-bridges in A(e, f) and the paths η(e), η(f) contains no 

circuit; and so there is at most one η-bridge in A(e, f) and any such η-bridge has only 

one edge. This proves 6.5. �

6.6. Let η be an optimal homeomorphic embedding of G in H extending ηF , and let e, f

be twinned edges of G. Suppose that e, f are disjoint, and there exists C ∈ C of length 

five with end-edges e, f . Then:

• A(C ′) is empty for every C ′ �= C in C containing e or f ;

• the vertices of C can be numbered in order as v0-v1- · · · -v5, such that for each B ∈

A(C), its only η-attachments are v1v2 and v4v5 (and we may assume that e = v0v1

and f = v4v5, possibly after exchanging e, f);

• A(e, f) can be numbered as {B1, . . . , Bk} such that Bi has exactly one edge cidi for 

1 ≤ i ≤ k, where ci ∈ V (η(e)) and di ∈ V (η(f)); and



JID:YJCTB AID:3220 /FLA [m1L; v1.252; Prn:19/02/2019; 11:25] P.28 (1-67)

28 N. Robertson et al. / Journal of Combinatorial Theory, Series B ••• (••••) •••–•••

• η(v0), c1, . . . , ck, η(v1) are in order in η(e), and η(v4), d1, . . . , dk, η(v5) are in order 

in η(f).

Proof. Let C ∈ C of length five with end-edges e, f .

(1) The first assertion of the theorem is true.

Subproof. By (F7), every other path in C containing e or f has length at most four. If 

C ′ ∈ C contains both e, f , then A(C ′) = ∅ by 6.2, since each member of A(C ′) has an 

η-attachment in C different from e, f ; and if C ′ ∈ C contains just one of e, f , then it has 

length three by (F6), and again A(C ′) = ∅ by 6.2. This proves (1).

(2) The second assertion is true.

Subproof. Let C have vertices v0-v1- · · · -v5 in order, where e = v0v1 and f = v4v5. Let 

B ∈ A(C). By 6.2, one of e, f is an η-attachment of B, say f ; and since B has two 

η-attachments in C and they are diverse in C by 6.2, and e, f are twinned, it follows 

that the only other η-attachment of B is v1v2. Let B′ ∈ A(C) with B′ �= B; we claim 

that v1v2 and v4v5 are the η-attachments of B′. For if not, then by the previous argument 

v0v1 and v3v4 are η-attachments of B′, contrary to (E6). This proves (2).

In our earlier notation, we may assume that p0 = η(v0) and q0 = η(v4). Suppose that 

B is an η-bridge not in A(e, f) that meets η(e). Then from 6.1 and 4.6, B ∈ A(C ′)

for some C ′ ∈ C containing e, and hence B ∈ A(C) from (1); but this contradicts (2). 

Consequently r = 0.

(3) Suppose that M, N are disjoint η-paths, from m to m′ and from n to n′ respectively, 

where η(v0), m, n, η(v1) are in order in η(e), and η(v4), n′, m′, η(v5) are in order 

in η(f). Then there exists j with 0 ≤ j ≤ s such that m′, n′ belong to Qj.

Subproof. Suppose not; then there exist distinct j, j′ with m′ ∈ V (Qj) and n′ ∈ V (Qj′), 

and consequently j < j′. Let B be the η-bridge containing qj′ ; then B /∈ A(e, f) from 

the definition of q1, . . . , qs, and so B has an η-attachment g �= e, f . From 4.6, and (1) it 

follows that B ∈ A(C), and g = v1v2. In particular, B is disjoint from M, N . Choose an 

η-path P in B from qj′ to V (η(v1v2)); then M, N, P contradict (E7). This proves (3).

For 0 ≤ j ≤ s let Aj be the set of all B ∈ A(e, f) with B ∩ η(f) ⊆ Qj . From (1), 

A(e, f) =
⋃

Aj . For each j let Jj be the union of all members of Aj. Suppose that some 

|E(Jj)| ≥ 2. Since H is cyclically five-connected by (E1), there are distinct b1, b′, b2 in 

η(e), in order, such that b1 and b2 both belong to Jj , and b′ belongs to some η-bridge 

B′ /∈ Aj . Since b′ �= p1, . . . , pr it follows that B′ ∈ A(e, f), and so B′ ∈ Aj′ , for some 

j′ �= j. In particular, Jj and Jj′ are disjoint. By 6.1 it follows that there is a path M in 
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Jj and a path N in Jj′ violating (1) (possibly with M, N exchanged). This proves that 

|E(Jj)| ≤ 1 for 0 ≤ j ≤ s. Thus every η-bridge in C(e, f) has only one edge, and no two 

of them have ends in the same Qj . The result follows from (3) applied to the paths of 

length one formed by these η-bridges. This proves 6.6. �

7. Flattenable graphs

Let (G, F, C) be a framework and let H, ηF satisfy (E1). We say that H is flattenable 

onto (G, F, C) via ηF if there is

• a homeomorphic embedding η of G in H extending ηF ;

• a set of η-bridges B(C), for each C ∈ C; and

• an edge N(e) of η(e), for each edge e of G \ E(F ) such that for some edge f �= e, e

and f are twinned and have no common end

with the following properties. For each C ∈ C, if C is a circuit let P (C) be η(C), and 

if C is a path let P (C) be the maximal subpath of η(C) that contains η(g) for every 

g ∈ E(C) that is not an end-edge of C, and does not contain any edge N(e). Then we 

require:

• every η-bridge belongs to exactly one set B(C);

• if B ∈ B(C) then B ∩ η(G) ⊆ P (C); and

• for C ∈ C, P (C) ∪
⋃

(B : B ∈ B(C)) is P (C)-planar.

The main result, that everything so far has been directed towards, and of which all 

the other results in the paper will be a consequence, is the following.

7.1. Let (G, F, C) be a framework, and let H, ηF satisfy (E1)–(E7). Suppose that there is 

a homeomorphic embedding of G in H extending ηF . Then H is flattenable onto (G, F, C)

via ηF .

Proof. Since there is a homeomorphic embedding of G in H extending ηF , there is an 

optimal one, say η. We will prove that η provides the required flattening. We begin with

(1) If e, f ∈ E(G) are twinned and have a common end, there exists C ∈ C containing 

e, f such that

η(C) ∪
⋃

(B : B ∈ A(C) ∪ A(e, f))

is η(C)-planar.

Subproof. Let C1, C2 be the two members of C that contain v, where v is the common 

end of e and f . Let e = uv and f = vw, and let c1d1, . . . , ckdk be the edges of H with 
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one end in η(e) and the other in η(f) (these are the edges of the bridges in A(e, f)) 

numbered as in 6.4). By 5.1 we may assume that k ≥ 1. Now

η(Ci) ∪
⋃

(B : B ∈ A(e, f))

is η(Ci)-planar for i = 1, 2. We claim that for either i = 1 or i = 2, no member of A(Ci)

meets η(e) ∪ η(f) between c1 and d1. For if not, there are disjoint η-paths R1, R2 such 

that for i = 1, 2, Ri has one end ri in η(e) ∪ η(f) between c1 and d1, and its other end si

is in η(Ci) and not in η(e) ∪ η(f). Let si ∈ V (η(gi)) (i = 1, 2). If g1, g2 have no common 

end, this contradicts (E4), and if they have a common end, this contradicts 4.2. (To see 

this, in each case delete an appropriate end-edge of the subpath of η(e) ∪ η(f) between 

c1, d1.) We may therefore assume that no member of A(C1) meets η(e) ∪ η(f) between 

c1 and d1. But then by 5.1, the claim holds. This proves (1).

For edges e, f as in (1), let D(e, f) be some C ∈ C satisfying (1).

(2) Let e, f be twinned, with no common end. Then there are edges N(e) of η(e) and N(f)

of η(f), and distinct paths C1, C2 ∈ C, both with end-edges e, f and with the following 

property, where for i = 1, 2, P (Ci) denotes the component of η(Ci) \ {N(e), N(f)}

containing η(g) for each internal edge g of C.

• A(C) = ∅ for all C ∈ C containing either e or f and different from C1;

• B ∩ η(G) ⊆ P (C1) for all B ∈ A(C1); and

• B ∩ η(G) ⊆ P (C2) for all B ∈ A(e, f), and

P (C2) ∪
⋃

(B : B ∈ A(e, f))

is P (C2)-planar.

Subproof. By 3.2 there are at least two paths in C with end-edges e, f , and by (F6) every 

such path has length at most five. If there is no path in C with end-edges e, f and with 

length exactly five, the claim follows from 6.5, so we assume that some such path has 

length five, say C1. By 6.6, A(C) is empty for every C �= C1 in C containing e or f , so 

the first assertion of the claim holds. Moreover, also by 6.6,

• the vertices of C1 can be numbered in order as v0-v1- · · · -v5, such that for each 

B ∈ A(C), its only η-attachments are v1v2 and v4v5 (and we may assume that 

e = v0v1 and f = v4v5, possibly after exchanging e, f);

• A(e, f) can be numbered as {B1, . . . , Bk} such that Bi has exactly one edge cidi for 

1 ≤ i ≤ k, where ci ∈ V (η(e)) and di ∈ V (η(f)); and

• η(v0), c1, . . . , ck, η(v1) are in order in η(e), and η(v4), d1, . . . , dk, η(v5) are in order 

in η(f).
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Let N(e) be the edge of η(e) incident with η(v1), and N(f) be the edge of η(f) incident 

with η(v5). Then B ∩ η(G) ⊆ P (C) for all B ∈ A(C), so the second assertion holds.

By (F7) there exists C2 ∈ C with end-edges e and f and with ends v1 and v5. It 

follows that N(e) and N(f) are the end-edges of C2, and so B ∩ η(G) ⊆ P (C2) for all 

B ∈ A(e, f). From the second and third bullets above,

P (C2) ∪
⋃

(B : B ∈ A(e, f))

is P (C2)-planar. So the third assertion holds. This proves (2).

For e, f as in (2), choose C1, C2 as in (2), and define D(e, f) = C2. For each edge e

that is twinned with an edge disjoint from e, choose N(e) as in (2). Since no edge of e

is twinned with more than one other edge, by 3.4, this is well-defined. For each C ∈ C, 

if C is a circuit let P (C) = C, and if C is a path let P (C) be the maximal subpath of 

η(C) that contains η(g) for every g ∈ E(C) that is not an end-edge of C, and does not 

contain any edge N(e).

(3) For every path C ∈ C, B ∩ η(G) ⊆ P (C) for each B ∈ A(C).

For let C ∈ C be a path. If P (C) = C the claim is true, so we may assume that some 

edge e of C is twinned with some other edge f disjoint from e, and so N(e) is defined. 

Choose C1, C2 satisfying (2), where C2 = D(e, f). If C �= C1 then A(C) = ∅ and the 

claim is trivial, by the first assertion of (2); while if C = C1 then the claim holds by the 

second assertion of (2). This proves (3).

For each C ∈ C, let B(C) be the following set of η-bridges:

• if C = D(e, f) for some pair e, f of twinned edges with a common end, let B(C) =

A(C) ∪ A(e, f);

• if C = D(e, f) for some pair e, f of twinned edges with no common end, let B(C) =

A(e, f);

• otherwise, let B(C) = A(C).

Now let B be an η-bridge. We claim that B belongs to exactly one set B(C). For if 

B sits on some C ′ ∈ C, then for C ∈ C, B ∈ C if and only if C = C ′; and otherwise, 

B belongs to A(e, f) for a unique pair e, f of twinned edges, and then for C ∈ C, 

B ∈ B(C) if and only if C = D(e, f).

Also, we claim that if B ∈ B(C) then B ∩ η(G) ⊆ P (C); for this is trivial if C is a 

circuit, so we assume that C is a path. By (3) the claim holds if B ∈ A(C), so we may 

assume that B = D(e, f) for some pair e, f of disjoint twinned edges, and B ∈ A(e, f). 

But then the claim holds by the third assertion of (2).

Finally, we claim that P (C) ∪
⋃

(B : B ∈ B(C)) is P (C)-planar for each C ∈ C. If 

C = D(e, f) for some pair e, f with a common end, the claim follows from (1) and the 
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definition of D(e, f). If C = D(e, f) for some pair of disjoint twinned edges, the claim 

follows from the third assertion of (2) and the definition of D(e, f), since A(C) = ∅ from 

the first assertion of (2). And otherwise, the claim follows from 5.1. This proves that η

provides a flattening satisfying the theorem, and so proves 7.1. �

8. Augmenting paths

We need three more techniques for the second half of the paper, all developed in [4], 

and in this section we describe the first. If F is a subgraph of G and of H, and η is a 

homeomorphic embedding of G in H, we say it fixes F if η(e) = e for all e ∈ E(F ) and 

η(v) = v for all v ∈ V (F ).

Let G be cubic, and let F be a subgraph of G with minimum degree ≥ 2 (possibly 

null). Let X ⊆ V (G), such that δG(X) ∩ E(F ) = ∅. Let n ≥ 1, let G0 = G, and 

inductively for 1 ≤ i ≤ n let Gi = Gi−1 + (ei, fi) with new vertices ui, vi, where ei, fi

are edges of Gi−1 not in E(F ). Let η0 be the identity homeomorphic embedding of G0

to itself; and for 1 ≤ i ≤ n, let ηi be obtained from ηi−1 by replacing ei and fi by the 

corresponding two-edge paths of Gi. Thus ηi is a homeomorphic embedding of G in Gi; 

it fixes F , and ηi(v) = v for all v ∈ V (G), and ηi(e) = e for every edge e ∈ E(G) that is 

not one of e1, f1, . . . , ei, fi. (Not all the latter necessarily belong to E(G).)

Let δG(X) = {x1y1, . . . , xkyk}, where x1, . . . , xk ∈ X are all distinct, and y1, . . . , yk ∈

V (G) \ X are all distinct. Suppose that in addition:

• e1 ∈ E(G) has both ends in X, and fn ∈ E(G) has both ends in V (G) \ X;

• for 1 ≤ i < n there exists j ∈ {1, . . . , k} such that fi is the edge of ηi−1(xjyj)

incident with yj , and ei+1 is the edge of ηi(xjyj) incident with vi and not with yj ;

• if f1 ∈ E(η0(xjyj)) (that is, f1 = xjyj) where 1 ≤ j ≤ k, then e1 is not incident with 

xj in G, and no end of e1 is adjacent in G \E(F ) to xj ; similarly, if en ∈ E(η0(xjyj))

then en is not incident with yj in G, and no end of en is adjacent in G \ E(F ) to yj ; 

and

• for 2 ≤ i ≤ n − 1, let ei ∈ E(ηi−1(xjyj)) and fi ∈ E(ηi−1(xj′yj′)); then j′ �= j, and 

xj is not adjacent to xj′ in G \ E(F ), and yj is not adjacent to yj′ in G \ E(F ).

(See Fig. 6.)

In these circumstances we call Gn an X-augmentation of G (modulo F ), and 

(e1, f1), . . . , (en, fn) an X-augmenting sequence of G (modulo F ). Note that we permit 

n = 1. The following is proved in lemma 3.4 of [4], applied to F , H \ E(F ) and X.

8.1. Let G be cubic and let F be a subgraph of G with minimum degree at least two. 

Let X ⊆ V (G) with δG(X) ∩ E(F ) = ∅, such that the edges in δG(X) pairwise have no 

common end. Let H be cubic such that F is a subgraph of H, and let η be a homeomorphic 

embedding of G in H fixing F . Then either
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Fig. 6. An X-augmentation of a graph, with k = 4 and n = 5.

• there exists X ′ ⊆ V (H) with |δH(X ′)| = |δG(X)|, such that for v ∈ V (G), v ∈ X if 

and only if η(v) ∈ X ′; or

• there is an X-augmentation G′ of G modulo F , and a homeomorphic embedding of 

G′ in H fixing F .

9. Jumps on a dodecahedron

Now we begin the second part of the paper. First we prove the following variant of 1.5

(equivalent to 1.6).

9.1. Let H be cyclically five-connected and cubic. Then H is non-planar if and only if H

contains one of Petersen, Triplex, Box and Ruby.

Proof. “If” is clear. For “only if”, let H be cyclically five-connected and cubic, and 

contain none of the four graphs. By 1.5 it follows that H contains Dodecahedron. Let 

G= Dodecahedron, let F and ηF be null, and let C be the set of circuits of G that bound 

regions in the drawing in Fig. 4; then (G, F, C) is a framework. We claim that (E1)–(E7) 

are satisfied. Most are trivial, because F is null, and there are no twinned edges, and no 

paths in C. Also, (E6) is vacuously true because no member of C has length ≥ 6; so the 

only axiom that needs work is (E2).

Let e, f ∈ E(G) such that no member of C contains both e and f ; we claim that 

G + (e, f) contains one of Petersen, Triplex, Box, Ruby. Up to isomorphism of G there 

are five possibilities for e, f , namely (setting e = ab and f = cd) (a, b, c, d) = (1, 2, 6, 15), 

(1, 2, 10, 15), (1, 2, 15, 20), (1, 2, 18, 19), (1, 2, 19, 20). In the first three cases G + (e, f)

contains Ruby, and in the last two it contains Box.

Thus, (E2) holds; and so H is planar, by 7.1. This proves 9.1. �

Next, a small repair job. The definition of “dodecahedrally-connected” in [4] differs 

from the one in this paper, and our objective of the remainder of this section is to prove 

them equivalent. To do so, we essentially have to repeat the proof of 9.1 with slightly 

different hypotheses.
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In this section we fix a graph F , and we need to look at several graphs such that F

is a subgraph of all of them. If G, H are cubic, and F is a subgraph of them both, and 

there is a homeomorphic embedding of G in H fixing F , we say that H F -contains G.

Let G be cubic, and let F be a subgraph of G, such that every vertex in F has degree 

≥ 2 in F . Let C be a circuit of G of length four, with vertices a1, a2, a3, a4 in order, none 

of them in V (F ). Let ai be adjacent to bi /∈ V (C) for 1 ≤ i ≤ 4, where b1, . . . , b4 are all 

distinct, and not in V (F ), and are pairwise non-adjacent. A C-leap of G means a graph 

G + (e, f), where e ∈ E(C) and f ∈ E(G) \ E(F ), with no vertex in V (C).

9.2. Let G be cubic and cyclically four-connected, with |V (G)| ≥ 8. Let F be a subgraph 

of G such that every vertex in F has degree ≥ 2 in F . Let C be a circuit of G of length 4, 

disjoint from F . Let H be a cyclically five-connected cubic graph containing F as a 

subgraph, and let H F -contain G. Then H F -contains a C-leap of G.

Proof. Let X = V (C). Then δG(X) ∩E(F ) = ∅ since X ∩V (F ) = ∅. Since G is cyclically 

four-connected and |V (G)| ≥ 8 it follows that no two members of δG(X) have a common 

end.

Since H F -contains G, we can apply 8.1. Since H is cyclically five-connected, 8.1(i) 

does not hold, and so 8.1(ii) holds. Let (e1, f1), . . . , (en, fn) be an X-augmenting se-

quence of G, such that there is a homeomorphic embedding of the corresponding X-

augmentation G′ in H fixing F . From the third (bulleted) condition in the definition of 

“X-augmenting sequence”, it follows that n = 1, and so G′ = G + (e1, f1). Thus G′ is a 

C-leap of G, F -contained in H. This proves 9.2. �

It is convenient from now on to make the following convention. When we speak of a 

graph G +(e, f) and the vertices of G are numbered 1, . . . , n, the new vertices of G +(e, f)

will be assumed to be numbered n + 1 and n + 2 (in order), unless we specify otherwise.

Let G be Dodecahedron, and let F be a circuit of G of length five. If e, f ∈ E(G) \E(F ), 

and at most one of e, f has an end in V (F ), and e, f are not incident with the same 

region of G, we call G +(e, f) a hop extension of (G, F ); and if in addition e, f are diverse, 

we call G + (e, f) a jump extension of (G, F ). We begin with the following lemma.

9.3. Let G be Dodecahedron, and let F be a circuit of G of length five. Let H be a cyclically 

five-connected cubic graph, such that F is a subgraph of H. Suppose that

• H F -contains no jump extension of (G, F ); and

• for every X ⊆ V (H) \ V (F ) with |δH(X)| = 5 and X �= V (H) \ V (F ), there is 

no homeomorphic embedding η of G in H fixing F such that η(v) ∈ X for all v ∈

V (G) \ V (F ).

If e, f are diverse edges of G not in E(F ), then H does not F -contain G + (e, f).
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Proof. Suppose it does. Hence G + (e, f) is not a jump extension of (G, F ), and so both 

e, f have ends in V (F ). Let us number the vertices of Dodecahedron as in Fig. 4, and from 

the symmetry we may assume that F is the circuit 1-2-3-4-5-1, e is 2-7 and f is 5-10. Let 

G′ = G +(e, f) with new vertices 21, 22 say. Let X = {6, 7, . . . , 20}. From the second bul-

let and 8.1, there is an X-augmenting sequence of G′ modulo F , say (e1, f1), . . . , (en, fn), 

and a homeomorphic embedding η′′ of the corresponding X-augmentation G′′ in H fix-

ing F . Now e1 (= a1b1 say) has both ends in X, but f1 does not, so f1 is one of 1-6, 

2-21, 7-21, 3-8, 4-9, 5-22, 10-22, 21-22; and from the symmetry we may assume that f1

is one of 1-6, 2-21, 7-21, 3-8, 21-22.

Suppose that f1 is one of 1-6, 3-8. Then e1, f1 are diverse, from the third condition 

in the definition of X-augmenting sequence; but then G + (e1, f1) is a jump extension 

of (G, F ) F -contained in G′ + (e1, f1) and hence in H, a contradiction. Similarly if f1 is 

7-21 then G + (e1, 2-7) is a jump extension F -contained in H. Thus f1 is one of 21-22, 

2-21, and in particular n = 1. Assume f1 is 21-22. Then we may assume that e1, 2-7 are 

not diverse in G (for otherwise G + (e1, 2-7) is a jump extension F -contained in H), and 

similarly e1, 5-10 are not diverse in G. But this is impossible. Finally, assume that f1

is 2-21. We may assume that e1, 2-7 are not diverse in G, and so e1 is one of

7-11, 7-12, 6-11, 11-16, 8-12, 12-17.

If e1 is one of 7-12, 8-12, 12-17, rerouting 7-12 along 21-22 gives a jump extension of 

(G, F ) F -contained in H; and if e1 is one of 7-11, 6-11, 11-16, rerouting 7-11 along 

21-22 gives a jump extension of (G, F ) F -contained in H, again a contradiction. This 

proves 9.3. �

9.4. Let G, F, H be as in 9.3. Then H F -contains no hop extension of (G, F ).

Proof. Let L be the set of all graphs G + (e, f) where e, f are diverse edges of G not 

in E(F ). By 9.3, H F -contains no member of L. Let G be labelled as in Fig. 4. (We 

do not specify the circuit F at this stage; it is better to preserve the symmetry.) Let 

G1 = G + (a, b) be a hop extension of G, and suppose that H F -contains G1. Thus 

G1 /∈ L. From the symmetry of G, we may therefore assume that a is 15-20 and b is 

16-17. Thus the edges 16-17 and 15-20 are not in E(F ). Since F is a circuit of length five, 

it follows that 16-20 is not in E(F ), and hence 16, 20 are not in V (F ). Let C be the circuit 

16-20-21-22-16 of G1. Then no vertex of C is in V (F ), and H is cyclically five-connected, 

so we can apply 9.2. We deduce that H F -contains some C-leap G2 = G1 + (e, f).

Now e is one of 16-20, 20-21, 21-22, 16-22. Since F is not yet specified, there is a 

symmetry of G1 exchanging the edges 16-20 and 21-22; and one exchanging 20-11 and 

16-22. Thus we may assume that e is one of 21-22, 20-21.

Now f is an edge of G not incident with either of 16, 20. Since e is one of 21-22, 

20-21, and f /∈ E(F ), H F -contains G + (15-20, f) in G2, and so G + (15-20, f) /∈ L. 

Consequently f , 15-20 are not diverse, so f is one of

6-15, 10-15, 1-6, 6-11, 5-10, 10-14, 14-19, 18-19.
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Suppose first that e is 21-22. Then by the same argument, f and 16-17 are not diverse 

in G, and so f is one of 6-11, 18-19. If f is 6-11, rerouting 6-15 along 24-23-21 gives a 

member of L F -contained in H (in future we just say “works”) and if f is 18-19, rerouting 

17-18 along 22-23-24 works. Thus the claim holds if e is 21-22.

Now we assume that e is 20-21. If f is one of 1-6,6-11,6-15 then rerouting 6-15 along 

23-24 works; if f is one of 10-15, 5-10, 10-14, rerouting 10-15 along 23-24 works; and if f

is 14-19 or 18-19 then rerouting 19-20 along 23-24 and then rerouting 16-20 along 22-21 

works. Thus in each case we have a contradiction. This proves 9.4. �

Next we need another similar lemma.

9.5. Let G be Dodecahedron, labelled as in Fig. 4, let F be the circuit 1-2-3-4-5-1, let 

G1 be G + (1-6, 2-7), and let G2 = G1 + (6-21, 2-22). (Thus the edge 1-6 of G has been 

subdivided to become a path 1-21-23-6 of G2, and 2-7 has become 2-24-22-7.) Let H be 

as in 9.3. Then H does not F -contain G2.

Proof. Suppose H F -contains G2, and let X = {6, 7, . . . , 20}. By the second bul-

leted hypothesis in 9.3, and 8.1, there is an X-augmenting sequence of G2 mod-

ulo F , say (e1, f1), . . . , (en, fn), and a homeomorphic embedding η′ of the corresponding 

X-augmentation G′ in H fixing F . Now e1 (= a1b1 say) has both ends in X, but f1 does 

not, so f1 is one of

1-21, 21-23, 6-23, 2-24, 22-24, 7-22, 3-8, 4-9, 5-10, 21-22, 23-24,

and from the symmetry we may assume that f1 is one of

1-21, 21-23, 6-23, 5-10, 4-9, 21-22.

If f1 is one of 5-10, 4-9 then by the third condition in the definition of X-augmenting 

sequence, it follows that e1, f1 are diverse in G, and H contains the jump extension 

G + (e1, f1), a contradiction. Similarly if f1 is 6-23 then e1, 1-6 are diverse in G, again 

a contradiction. Thus f1 is one of 1-21, 21-23, 21-22. Hence H F -contains G + (1-6, e1), 

and so by 9.4, G + (1-6, e1) is not a hop extension of (G, F ). Consequently e1 is one of 

10-15, 6-15, 6-11, 7-11. If e1 is one of 6-11, 7-11, then rerouting 1-6 along 25-26 gives a 

jump extension of (G, F ) F -contained in H; while if e1 is one of 6-15, 10-15, rerouting 

6-15 along 25-26, and then rerouting 7-11 along 23-24, give the desired jump extension. 

(See Fig. 7.) This proves 9.5. �

From these lemmas we deduce a kind of variant of 9.1:

9.6. Let G be Dodecahedron, and let F be a circuit of G of length five. Let H be a cyclically 

five-connected cubic graph, such that F is a subgraph of H. Suppose that
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Fig. 7. The last step in the proof of 9.5. (The edge drawn as 21-15 is actually 25-26, where 25 is a neighbour 
of 21, and 26 a neighbour of 15.)

• H F -contains G;

• H F -contains no jump extension of (G, F ); and

• for every X ⊆ V (H) \ V (F ) with |δH(X)| = 5 and X �= V (H) \ V (F ), there is 

no homeomorphic embedding η of G in H fixing F such that η(v) ∈ X for all v ∈

V (G) \ V (F ).

Then H is planar, and can be drawn in the plane such that F bounds the infinite region.

Proof. Let C be the set of the following eleven subgraphs of G = Dodecahedron; the six 

circuits that bound regions (in the drawing in Fig. 4) that contain no edge incident with 

the infinite region, and for each e ∈ E(F ), the path C \ e where C �= F is the boundary 

of a region incident with e. Let ηF be the identity homeomorphic embedding on F . By 

hypothesis there is a homeomorphic embedding of G in H extending ηF . We apply 7.1

to (G, F, C) and H, ηF . There are no twinned edges and all members of C have at most 

five edges; so we have to check only (E2) and (E6). (Note that in this case, the paths in 

C are not induced subgraphs of G; this is the only one of our applications when this is 

so.) But the truth of (E2) and (E6) follows from the three Lemmas 9.3, 9.4, 9.5 above; 

and so by 7.1, the result follows. This proves 9.6. �

As we said earlier, we need this to prove the equivalence of the definitions of 

dodecahedrally-connected given in this paper and in [4], and now we turn to that. Let 

G be Dodecahedron, and let F be a circuit of G of length five. Let H be a cubic graph, 

and let X ⊆ V (H). We say that H is placid on X if

• |V (H) \ X| ≥ 7, and δH(X) is a matching of cardinality five;

• {xiyi : 1 ≤ i ≤ 5} is an enumeration of δH(X), with xi ∈ X (1 ≤ i ≤ 5);
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• there is a homeomorphic embedding of G in H ′ mapping F to the circuit 

y1-y2-y3-y4-y5-y1; and

• there is no homeomorphic embedding of any jump extension of (G, F ) in H ′ mapping 

F to y1-y2-y3-y4-y5-y1,

where H ′ is obtained from H[(X ∪ {y1, y2, y3, y4, y5})] by deleting all edges with both 

ends in {y1, y2, y3, y4, y5}, and adding new edges y1y2, y2y3, y3y4, y4y5, y1y5.

We say that a graph H is strangely connected if H is cubic and cyclically five-

connected, and there is no X ⊆ V (H) such that H is placid on X. (This is the definition 

of “dodecahedrally-connected” in [4].)

9.7. A graph H is dodecahedrally-connected if and only if it is strangely connected.

Proof. We may assume that H is cubic and cyclically five-connected. Suppose first 

that it is not dodecahedrally-connected. Let X ⊆ V (H) with |X|, |V (H) \ X| ≥ 7 and 

|δH(X)| = 5, δH(X) = {x1y1, . . . , x5y5} say where x1, . . . , x5 ∈ V (H), such that H[X]

can be drawn in a closed disc with x1, . . . , x5 on the boundary in order. Let us choose 

such X with |X| minimum. Since H is cyclically five-connected it follows that x1, . . . , x5

are all distinct and so are y1, . . . , y5. Also, from the planarity of H[X] it follows that 

|X| ≥ 9 (recall that H is cyclically five-connected and hence has girth at least five), and 

so from the minimality of X, no two of x1, . . . , x5 are adjacent. Let H ′ be obtained from 

H as in the definition of “placid”, and let F ′ be the circuit made by the five new edges. 

It follows easily that H ′ is cyclically five-connected, and hence from 1.6 contains G =

Dodecahedron. Take a planar drawing of H ′, and choose a homeomorphic embedding η

of G in H ′ such that the region of η(G) including r is minimal, where r is the region 

of H ′ bounded by F ′. It follows easily that F ′ ⊆ η(G), and so from the symmetry of G

we may choose η mapping F to F ′. Hence H is placid on X (the final condition in the 

definition of “placid” holds because of the planarity of H ′) and so H is not strangely 

connected, as required.

For the converse, suppose that H is not strangely connected, and let X, xiyi (1 ≤

i ≤ 5), F and H ′ be as in the definition of “strangely connected”, such that H is placid 

on X via x1y1, . . . , x5y5. Choose X minimal. By 9.6, H[X] can be drawn in a closed disc 

with x1, . . . , x5 on the boundary in order; and so H is not dodecahedrally-connected. 

This proves 9.7. �

10. Adding jumps to repair connectivity

Now that we have reconciled the two definitions of “dodecahedrally-connected”, we 

can apply results of [4] about this kind of connectivity.

The idea behind 9.2 is that cyclic five-connectivity is better than cyclic four-

connectivity, and we begin with a graph G that is cyclically five-connected, except for the 

circuit C. We use the cyclic five-connectivity of H to prove that if H contains G then H
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also contains a slightly larger graph where the circuit C has been expanded to a circuit of 

length five by adding an edge to G. This can be useful, as we saw in the previous section. 

However, it has the defect that the edge we add to G to expand the circuit C might 

create a new circuit of length four, with its own problems. We can apply 9.2 again to 

this new circuit, but the process can go on forever. In fact, there is a stronger theorem; 

one can expand the circuit C to a longer circuit, without adding any new circuits of 

length four, just by adding a bounded number of edges. That is essentially the content 

of the next result, proved in [4]. (We also weaken the hypothesis on G, allowing it to 

have more than one circuit of length four.) But first we need some definitions.

Let L be a set of cubic graphs. We say that a graph H is killed by L if there is a 

homeomorphic embedding of some G′ ∈ L in H. Let G be cubic, and let C be a circuit 

of G of length four, with vertices a1, a2, a3, a4 in order. Let ai be adjacent to bi /∈ V (C)

for 1 ≤ i ≤ 4, where b1, . . . , b4 are all distinct and pairwise non-adjacent. We denote by 

P(C, L) the set of all pairs (e, f) such that f ∈ E(G) is incident with one of b1, . . . , b4, 

say bi, f �= aibi, e ∈ E(C) is incident with ai, and G + (e, f) is not killed by L.

Let e = uv and f = wx be edges of a cubic graph G. If u, v �= w, x, and u is adjacent 

to w, and no other edge has one end in {u, v} and the other in {w, x}, we denote by 

(e, f)∗ the pair of edges (e′, f ′), where e′ (�= e, uw) is incident with u and f ′ (�= f, uw) is 

incident with w.

We shall frequently have to list the members of some set P(C, L) explicitly, and we 

can save some writing as follows. Clearly (e, f) ∈ P(C, L) if and only if (e, f)∗ ∈ P(C, L), 

and so we really need only to list half the members of P(C, L). If X is a set of pairs 

of edges for which (e, f)∗ is defined for each (e, f) ∈ X, we denote by X∗ the set 

X ∪ {(e, f)∗ : (e, f) ∈ X}.

If e ∈ E(C) and e, f are diverse in G, we call G + (e, f) an A-extension of G. Now let 

e ∈ E(C) and f ∈ E(G) \ E(C) such that e, f are not diverse in G but have no common 

end. Let G′ = G + (e, f) with new vertices x1, y1. Label the vertices of C as a1, . . . , a4 in 

order, and their neighbours not in V (C) as b1, . . . , b4 respectively, as before, such that 

e = a1a2 and f is incident with b1, f = b1c1 say. If g ∈ E(G), not incident in G with 

a1, b1, c1, d1 (where b1 is adjacent in G to a1, c1, d1) we call G′ + (b1y1, g) a B-extension

(of G) via (e, f). If g ∈ E(G) incident with b2 and not with c1 or a2, we call G′ +(x1y1, g)

a C-extension via (e, f) onto g. We call G′ +(a1x1, a3b3) a D-extension via (e, f). Finally, 

we say (e, f) and (e′, f ′) are C-opposite if e, e′ ∈ E(C) and the labelling can be chosen 

as before with e = a1a2, f = b1c1, e′ = a3a4, and f ′ = b3c3. Let (e, f), (e′, f ′) be 

C-opposite, with labels as above. Let G′′ = G′ + (e′, f ′) with new vertices x2, y2; then 

we call G′′ + (a1x1, a3x2) an E-extension via (e, f), (e′, f ′).

We say a graph G is quad-connected if

• G is cubic and cyclically four-connected;

• |V (G)| ≥ 10, and if G has more than one circuit of length four then |V (G)| ≥ 12; 

and

• for all X ⊆ V (G) with |δG(X)| ≤ 4, one of |X|, |V (G) \ X| ≤ 4.
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The following is a restatement of 9.2 in this language (with F removed, because we 

no longer need it).

10.1. Let G be cubic and cyclically four-connected, with |V (G)| ≥ 8. Let C be a circuit 

of G of length 4, and let L be a set of cubic graphs. Suppose that every A-extension of 

G is killed by L, and P(C, L) = ∅. Let H be a cyclically five-connected cubic graph that 

is not killed by L. Then there is no homeomorphic embedding of G in H.

Here is the strengthening, proved in [4].

10.2. Let G be quad-connected, and let C be a circuit of G of length four. Let L be a set 

of cubic graphs, such that

• every A-extension of G is killed by L;

• for every (e, f) ∈ P(C, L), every B-extension via (e, f) is killed by L, and so is the 

D-extension via (e, f);

• for all (e, f1), (e, f2) ∈ P(C, L) such that f1, f2 have no common end, the C-extension 

via (e, f1) onto f2 is killed by L; and

• for all C-opposite (e1, f1), (e2, f2) ∈ P(C, L), the E-extension via (e1, f1), (e2, f2) is 

killed by L.

Let H be a dodecahedrally-connected cubic graph such that H is not killed by L. Then 

there is no homeomorphic embedding of G in H.

The other result of [4] that we need is the following. Let n ≥ 5 be an integer, with 

n ≥ 10 if n is even. The n-biladder is the graph with vertex set {a1, . . . , an, b1, . . . , bn}, 

where for 1 ≤ i ≤ n, ai is adjacent to ai+1 and to bi, and bi is adjacent to bi+2 (where 

an+1, bn+1, bn+2 mean a1, b1, b2). Thus, Petersen is isomorphic to the 5-biladder, and 

Dodedahedron to the 10-biladder. The following follows from theorem 1.4 of [4].

10.3. Let G be cubic and cyclically five-connected. Let there be a homeomorphic embedding 

of G in H, where H is dodecahedrally-connected. Then either

• there exist e, f ∈ E(G), diverse in G, such that there is a homeomorphic embedding 

of G + (e, f) in H; or

• G is isomorphic to an n-biladder for some n, and there is a homeomorphic embedding 

of the (n + 2)-biladder in H; or

• G is isomorphic to H.

11. Graphs with crossing number at least two

At the end of the proof of 9.1, there were five statements left to the reader to verify, 

that five particular graphs contain either Ruby or Box. In the remainder of the paper 
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Fig. 8. A counterexample to a strengthening of 11.1.

there will be many more similar statements left to the reader; unfortunately, we see no 

way of avoiding this, since there are simply too many of them to include full details 

of each. But perhaps 95% of them are of the form that “Graph G contains Petersen”, 

where G is cubic and cyclically five-connected; and here is a quick method for checking 

such a statement. Choose a circuit C of G with |E(C)| = 5, arbitrarily (there always 

is one, in this paper). Let C have vertices v1, . . . , v5 in order. Let u1, . . . , u5 be vertices 

of a 5-circuit of Petersen, in order. Check if there is a homeomorphic embedding η of 

Petersen in G with η(ui) = vi (1 ≤ i ≤ 5). (This is easy to do by hand.) It is proved in 

[6] that such a homeomorphic embedding exists if and only if G contains Petersen.

This makes checking for containment of Petersen much easier. But even so, there are 

too many cases to reasonably do them all by hand, and we found it very helpful to 

write a simple computer programme to check containment for us. We suggest that the 

reader who wants to check these cases should do the same thing. There is a computer 

file available online with all the details of the case-checking [5].

In this section, we prove 1.7, which we restate as:

11.1. Let H be dodecahedrally-connected. Then H has crossing number ≥ 2 if and only 

if it contains one of Petersen, Triplex or Box.

Dodecahedral connectivity cannot be replaced by cyclic 5-connectivity, because the 

graph of Fig. 8 is a counterexample.

The graphs Window, Antibox, and Drape are defined in Fig. 9.

We prove 11.1 in three steps, as follows.

11.2. Let H be a dodecahedrally-connected graph containing Antibox; then H contains 

Petersen, Triplex or Box.

11.3. Let H be a cyclically five-connected cubic graph containing Drape; then H contains 

Petersen, Triplex, Box or Antibox.
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Fig. 9. Window, Drape and Antibox.

11.4. Let H be a cyclically five-connected cubic graph containing Window, but not Pe-

tersen, Triplex, Box, Antibox or Drape. Then H has crossing number ≤ 1.

Proof of 11.1, assuming 11.2, 11.3, 11.4. “If” is clear and we omit it. For “only if”, let H

be dodecahedrally-connected, and contain none of Petersen, Triplex or Box. By 11.2 it 

does not contain Antibox, and by 11.3 it does not contain Drape. We may assume from 9.1

that it contains Ruby (in fact it must, for no dodecahedrally-connected graph is planar), 

and hence Window, since Ruby contains Window. From 11.4, this proves 11.1. �

Proof of 11.2. We shall apply 10.2, with G = Antibox, C the quadrangle of G, and L =

{Petersen, Triplex, Box}. Thus, V (C) = {1, 2, 3, 4}. We find that every A-expansion is 

killed by L. In detail, let G′ be G + (ab, cd), where (a, b, c, d) is as follows; in each case 

G′ contains the specified member of L.

Petersen: (1, 2, 7, 10), (1, 2, 7, 14), (1, 2, 8, 11), (1, 2, 8, 12), (1, 2, 9, 11), (1, 2, 11, 14), 

(1, 2, 13, 14), (1, 4, 6, 10), (1, 4, 6, 13), (1, 4, 7, 10), (1, 4, 7, 14), (1, 4, 9, 13), (1, 4, 11, 

14), (1, 4, 13, 14).

Triplex: (1, 2, 5, 12), (1, 2, 6, 10), (1, 2, 10, 12), (1, 4, 5, 9), (1, 4, 8, 11), (1, 4, 9, 11).

Box: (1, 2, 9, 13), (1, 4, 10, 12).

In future we shall omit this kind of detail (because in the future it will get worse). The 

full details are in [5].

We find that P(C, L) = {(1-2, 5-9), (1-2, 6-13), (3-4, 8-11), (3-4, 7-14)}∗. Then we verify 

the hypotheses (ii)–(iv) of 10.2. This proves 11.2. �

Proof of 11.3. We apply 10.1, with G = Drape, C the quadrangle of G with vertex 

set {5, 12, 13, 14}, and L = {Petersen, Triplex, Box, Antibox}. We find that every 

A-extension of G is killed by L, and P(C, L) = ∅, so from 10.1, this proves 11.3. �

Proof of 11.4. Let G be Window, let F and ηF be null, and let C be the subgraphs of G

induced on the following nine sets:
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Fig. 10. Twinplex.

1, 2, 3, 4;

1, 2, 5, 6, 9;

2, 3, 6, 7, 10;

3, 4, 7, 8, 11;

1, 4, 5, 8, 12;

5, 9, 10, 11, 12;

6, 9, 10, 11, 12;

7, 9, 10, 11, 12;

8, 9, 10, 11, 12.

Then (G, F, C) is a framework. We claim that (E1)–(E7) hold. The only twinned edges 

are 9-11 and 10-12, and again the only axiom that needs work is (E2). But if e, f ∈ E(G)

are not both in some member of C, then G + (e, f) contains one of Petersen, Triplex, 

Box, Antibox, Drape, and so (E2) holds. From 7.1, this proves 11.4. �

12. Non-projective-planar graphs

Now we digress, to prove a result that we shall not need; but it is pretty, and follows 

easily from the machinery we have already set up.

The graph Twinplex is defined in Fig. 10. We shall show the following.

12.1. Let H be dodecahedrally-connected. Then H cannot be drawn in the projective plane 

if and only if H contains one of Triplex, Twinplex, Box.

Proof. “If” is easy and we omit it. For “only if”, suppose that H contains none of 

Triplex, Twinplex, Box; we shall show that it can be drawn in the projective plane. If 

H has crossing number ≤ 1 this is true, so by 11.1 we may assume that H contains 

Petersen.

Let G0 = Petersen. We may assume that H is not isomorphic to G0, so by 10.3 either 

there are edges ab, cd of G0 diverse in G0 and a homeomorphic embedding of G0+(ab, cd)

in H, or H contains the 7-biladder. The former is impossible, because from the symmetry 
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of G0 we may assume that (a, b, c, d) = (4, 5, 6, 8), and then G0 +(ab, cd) is isomorphic to 

Twinplex, a contradiction. Hence there is a homeomorphic embedding of G in H, where 

G is the 7-biladder. Let V (G) = {a1, . . . , a7, b1, . . . , b7}, as in the definition of “biladder”. 

Let C be the subgraphs of G induced on the following vertex sets:

b1, b2, . . . , b7;

a1, a2, a3, b3, b1;

a2, a3, a4, b4, b2;

a3, a4, a5, b5, b3;

a4, a5, a6, b6, b4;

a5, a6, a7, b7, b5;

a6, a7, a1, b1, b6;

a7, a1, a2, b2, b7.

(These are the face-boundaries of an embedding of G in the projective plane.) Let F and 

ηF be null; then (G, F, C) is a framework, and we claim that (E1)–(E7) hold. All except 

(E2), (E3) and (E6) are obvious. To check (E2), let G′ = G +(ab, cd) where ab, cd ∈ E(G)

are not both in any member of C. There are twelve possibilities for (a, b, c, d) up to 

isomorphism of G; in one case G′ contain Box, in three others it contains Twinplex, 

and in the other eight it contains Triplex. (As usual, we omit the details; they are also 

not in the appendix [5], because we don’t really need the result.) Thus, (E2) holds. 

For (E3), the only diverse trinity (up to isomorphism of G) is {a1a2, b1b3, b2b7}, and 

G +(a1a2, b1b3, b2b7) contains Twinplex. Hence (E3) holds. For (E6), we need only check 

cross extensions over the circuit with vertex set {b1, . . . , b7}, since all other members of C

have only five edges. There are four possibilities (up to isomorphism of G). Let G′ = G +

(b1b3, b2b4) with new vertices x, y; then the possibilities are G′ +(ab, cd) where (a, b, c, d)

is (b1, x, b2, y), (b1, x, b2, b7), (b1, b6, b2, b7), (b1, b6, b5, b7). The first contains Box, and the 

other three contain Triplex. Hence (E6) holds, and from 7.1, this proves 12.1. �

13. Arched graphs

We say a graph H is arched if H \ e is planar for some edge e. In this section we 

prove 1.8, which we restate as:

13.1. Let H be dodecahedrally-connected. Then H is arched if and only if it does not 

contain Petersen or Triplex.

We start with the following lemma.
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Fig. 11. Superbox.

13.2. Let G be Box, let G′ be obtained by deleting the edge 13-14, and let C be the set 

of circuits of G′ that bound regions in the drawing in Fig. 3. Let e, f ∈ E(G), with no 

common end, and not both in any member of C. Then either G + (e, f) has a Petersen 

or Triplex minor, or (up to exchanging e and f , and automorphisms of G) e is 13-14 

and f is 1-2 or 1-4.

We leave the proof to the reader (the details are in the Appendix [5]).

13.3. Let G be Box, and let H be cyclically five-connected, and not contain Petersen or 

Triplex. Let η be a homeomorphic embedding of G in H such that η(13-14) has only one 

edge, g say. Then H \ g is planar, and so H is arched.

Proof. We apply 7.1, taking F to be the subgraph of G consisting of 13-14 and its ends, 

and ηF the restriction of η to F . Let C be as in 13.2. Then (G, F, C) is a framework, and 

we claim that (E1)–(E7) hold. (E2) follows from 13.2, and (E5) and (E6) are vacuously 

true, because all members of C have five edges. Also, (E3) and (E7) are vacuously true. 

For (E4), it suffices from symmetry to check

G + (1-2, 13-14) + (3-6, 13-16)

G + (1-2, 13-14) + (3-6, 14-16)

G + (1-2, 13-14) + (5-6, 13-16)

G + (1-4, 13-14) + (3-6, 13-16),

but all four contain Triplex. Hence (E4) holds, so from 7.1, this proves 13.3. �

The graph Superbox is defined in Fig. 11. (It is isomorphic to Box + (1-4, 13-14).)

13.4. Let G be Superbox, let G′ be obtained by deleting the edge 15-16, and let C be the 

set of circuits of G′ that bound regions in the drawing in Fig. 11. Let e, f ∈ E(G) with 

no common end, and not both in any member of C. Then either G +(e, f) has a Petersen 

or Triplex minor, or (up to exchanging e, f and automorphisms of G) e is 15-16 and f

is 1-2 or 1-11.
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We leave the proof to the reader. (Actually, it follows quite easily from 13.2.)

13.5. Let G be Superbox, and let H be cyclically five-connected, and not contain Petersen 

or Triplex. Let η be a homeomorphic embedding of G in H such that η(15-16) has only 

one edge, g say. Then H \ g is planar, and so H is arched.

Proof. We apply 7.1 to (G, F, C), where F consists of 15-16 and its ends, and ηF is the 

restriction of η to F , and C is as in 13.4. Because of 13.4, it remains to verify (E4), (E5) 

and (E6), because (E3), (E7) are vacuous. Checking (E4) is exactly like in 13.3 (indeed, 

by deleting 14-16 from G we obtain Box, so actually we could deduce that (E4) holds 

now from the fact that it held in the proof of 13.3). For (E5), we must check

G + (1-11, 15-16) + (6-11, 15-18) + (ab, cd)

where (ab, cd) is either (11-17, 10-14) or (11-19, 5-14); and both contain Triplex. Thus 

(E5) holds. For (E6), we need only check cross extensions over the circuit bounding the 

infinite region, since all other members of C have length five; and from symmetry, it 

suffices to check

G + (1-11, 10-14) + (1-17, 10-18)

G + (1-11, 10-14) + (6-11, 5-14)

G + (1-11, 10-14) + (1-5, 6-10)

G + (1-5, 6-10) + (1-17, 10-18).

All four contain Petersen. Hence (E6) holds, and from 7.1, this proves 13.5. �

Proof of 13.1. “Only if” is easy and we omit it. For “if”, let H be dodecahedrally-

connected, and not contain Petersen or Triplex. Since graphs of crossing number ≤ 1 are 

arched, we may assume from 11.1 that G contains Box. Choose a homeomorphic embed-

ding of G in H, where G is either Box or Superbox, such that |E(S)| is minimum, where 

S = η(15-16) if G is Box, and S = η(17-18) if G is Superbox. We claim that |E(S)| = 1. 

For suppose not. Since H is three-connected, there is an η-path P with one end in V (S)

and the other, t, in V (η(G)) \ V (S). Let t ∈ η(f) say, and let e = 15-16 if G is Box, and 

e = 17-18 if G is Superbox. If e, f have a common end in G, then by rerouting f along P

we contradict the minimality of |E(S)|. If some edge g of G joins an end of e to an end 

of f , then by rerouting g along P we contradict the minimality of |E(S)|. Hence e, f are 

diverse in G. By the symmetry we may therefore assume, by 13.2 and 13.4, that either 

G is Box and f = 1-4, or G is Superbox and f = 1-2. In the first case, by adding P to 

η(G) we obtain a homeomorphic embedding of Superbox contradicting the minimality of 

|E(S)|. In the second case, by adding P to η(G \ {3-8, 6-7}) we obtain a homeomorphic 

embedding of Box contradicting the minimality of |E(S)|.
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Fig. 12. Drum.

Fig. 13. Firstapex, Secondapex, Thirdapex and Fourthapex.

This proves our claim that |E(S)| = 1. From 13.3 and 13.5, H is arched. This 

proves 13.1. �

14. The children of Drum

The graph Drum is defined in Fig. 12.

14.1. Let H be dodecahedrally-connected, and not isomorphic to Triplex. Then H is 

arched if and only if it contains none of Petersen, Drum.

Proof. Since Drum contains Triplex (delete 9-10) “only if” follows from 13.1. For “if”, 

let H be dodecahedrally-connected, not isomorphic to Triplex, and not arched, and 

suppose that H does not contain Petersen. We must show that H contains Drum. By 

13.1, H contains Triplex; and so by 10.3, since Triplex is not a biladder, it follows that 

H contains Triplex + (e, f), where e, f are diverse edges of Triplex. But for all such 

choices of e, f , Triplex + (e, f) either contains Petersen or is isomorphic to Drum. This 

proves 14.1. �

In Figs. 13 and 14 we define the graphs Firstapex, Secondapex, Thirdapex, Fourthapex, 

and Sailboat. They all contain Drum. We call the first four of them Apex-selectors.
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Fig. 14. Sailboat.

14.2. Let H be dodecahedrally-connected, and not isomorphic to Triplex or Drum. Then 

H is arched if and only if it contains none of Petersen, an Apex-selector, or Sailboat.

Proof. As in 14.1, “only if” is easy, and for “if” we may assume that H contains Drum, 

by 14.1. By 10.3 H contains Drum + (e, f) where e, f are diverse edges of Drum. There 

are (up to isomorphism of Drum) 26 possibilities for {e, f}; let e = ab, f = cd, and G′ =

Drum + (ab, cd). If (a, b, c, d) is one of

(1, 2, 11, 13), (1, 3, 8, 13), (3, 7, 5, 9), (3, 11, 9, 14), (7, 14, 11, 13),

G is isomorphic to Firstapex, Secondapex, Thirdapex, Fourthapex and Sailboat respec-

tively, and in all other cases G contains Petersen. This proves 14.2. �

Let us say H is doubly-apex if it has two vertices u, v such that the graph obtained 

from H by identifying u and v is planar. Sailboat is doubly-apex (identify 15 and 16) 

but the Apex-selectors are not, and Petersen is not. The main result of this section is 

the following.

14.3. Let H be dodecahedrally-connected. Then H is either arched or doubly-apex if and 

only if it does not contain Petersen or an Apex-selector.

14.3 follows from the following.

14.4. Let H be dodecahedrally-connected, and contain Sailboat but not Petersen or any 

Apex-selector. Then H is doubly-apex.

Proof of 14.3 assuming 14.4. “If” is easy, and we omit it. For “only if”, let H not contain 

Petersen or an Apex-selector. If H is isomorphic to Triplex or Drum it is doubly-apex as 

required. Otherwise, by 14.2 either it is arched or it contains Sailboat; and in the latter 

case by 14.4 it is doubly-apex. This proves 14.3. �
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It remains to prove 14.4. That will require several lemmas. Let C be the set of the 

subgraphs of Sailboat induced on the following vertex sets (which bound the regions 

when Sailboat is drawn in the plane with 15 and 16 identified):

1, 2, 3, 4, 5;

1, 2, 7, 11, 6;

2, 3, 8, 12, 7;

3, 4, 9, 13, 8;

4, 5, 10, 14, 9;

15, 6, 1, 5, 10, 16;

15, 6, 11, 16;

16, 11, 7, 12, 15;

15, 12, 8, 13, 16;

16, 13, 9, 14, 15;

15, 14, 10, 16.

Let Boat(1),. . . ,Boat(7) be Sailboat + (ab, cd) where respectively (a, b, c, d) is

(2, 7, 12, 15), (7, 12, 6, 15), (1, 6, 11, 16), (2, 7, 11, 16), (6, 11, 12, 15),

(9, 14, 12, 15), (6, 15, 12, 15).

14.5. Let G be Sailboat, and let ab and cd be edges of G such that no member of C

contains them both. Then G + (ab, cd) contains Petersen or an Apex-selector or one of 

Boat(1),. . . ,Boat(7).

Proof. If a = c then since no member of C contains ab and cd it follows that a = 15 or 

16, and then G + (ab, cd) is isomorphic to Boat(7). We assume therefore that a, b �= c, d.

Up to the symmetry of Sailboat and exchanging ab with cd, there are 88 cases to 

be checked. Let G′ = G + (ab, cd). If (a, b, c, d) is (1, 6, 11, 16) or (6, 15, 7, 11), G′ is 

(isomorphic to) Boat(3). If (a, b, c, d) is (7, 12, 6, 11) or (2, 7, 11, 16), G′ is Boat(4). 

If (a, b, c, d) is (2, 7, 12, 15) or (7, 11, 8, 12), G′ is Boat(1). If (a, b, c, d) is (1, 6, 14, 15) 

or (6, 11, 12, 15), G′ is Boat(5). If (a, b, c, d) is (7, 12, 6, 15) or (8, 12, 14, 15), G′ is 

Boat(2). If (a, b, c, d) is (9, 14, 12, 15) or (10, 14, 6, 15), G′ is Boat(6). If (a, b, c, d) = (2, 

3, 12, 15), G′ contains Firstapex; if (a, b, c, d) = (1, 6, 10, 14), (3, 8, 12, 15) or (7, 11, 

8, 13) it contains Secondapex; if (a, b, c, d) is one of

(1, 5, 6, 11), (1, 5, 14, 15), (1, 2, 6, 15), (1, 2, 11, 16), (2, 7, 6, 15), (8, 12, 11, 16)
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G′ contains Thirdapex; and in the remaining 66 cases, G′ contains Petersen. This 

proves 14.5. �

14.6. Let H be dodecahedrally-connected, and not contain Petersen or an Apex-selector. 

Then H contains none of Boat(1),. . . ,Boat(7).

Proof.

(1) H does not contain Boat(1).

Subproof. Let L1 consist of Petersen and the four Apex-Selectors, and let C be the quad-

rangle of Boat(1). Then every A-extension of Boat(1) is killed by L1, and P(C, L1) = ∅, 

so the claim follows from 10.1. This proves (1).

(2) H does not contain Boat(2).

Subproof. Let C be the quadrangle of Boat(2). Then every A-extension of Boat(2) is 

killed by L1, and

P(C, L1) = {(17-18, 6-11), (17-18, 7-11)}∗.

The result follows from 10.2. This proves (2).

(3) H does not contain Boat(3) or Boat(4).

Subproof. Let G be Boat(3) or Boat(4), and L3 = L1∪{Boat(2)}. Let C be the quadrangle 

of G. Then every A-extension of G is killed by L3, and P(C, L3) = ∅, so the result follows 

from (2) and 10.1. This proves (3).

(4) H does not contain Boat(5) or Boat(6).

Subproof. Let G be Boat(5) or Boat(6), and let

L4 = L3 ∪ {Boat(3), Boat(4)}.

Let C be the quadrangle of G. Then every A-extension of G is killed by L4, and 

P(C, L4) = ∅, so the result follows from (2), (3) and 10.1. This proves (4).

(5) H does not contain Boat(7).

Subproof. Let G be Boat(7), and let C be its circuit of length 3. Let X = V (C). Suppose 

that there is a homeomorphic embedding of G in H; then by 8.1, there is a X-augmenting 

sequence (e1, f1), . . . , (en, fn) of G such that H contains G +(e1, f1) +. . .+(en, fn). From 



JID:YJCTB AID:3220 /FLA [m1L; v1.252; Prn:19/02/2019; 11:25] P.51 (1-67)

N. Robertson et al. / Journal of Combinatorial Theory, Series B ••• (••••) •••–••• 51

the definition of “X-augmentation” it follows that n = 1 since |E(C)| = 3; and so H

contains G(e1, f1) for some e1 ∈ E(C) and f1 ∈ E(G \ X). But for all such e1, f1, G +

(e1, f1) contains a member of L1 or one of Boat(2), Boat(5), Boat(6), a contradiction by 

(2) and (4). This proves (5).

From (1)–(5), this proves 14.6. �

Proof of 14.4. Let H be dodecahedrally-connected and not contain Petersen or an Apex-

selector. Let η be a homeomorphic embedding of G in H, where G is Sailboat. Let 

V (F ) = {15, 16} and E(F ) = ∅; and let ηF be the restriction of η to F . Let C be as 

before. Then (G, F, C) is a framework, and we claim that (E1)–(E7) hold. By 14.6 H con-

tains none of Boat(1),..., Boat(7), so by 14.5 (E2) holds. All the others are clear except 

for (E6), and for (E6) we need only consider cross-extensions of G on some of the paths 

in C, namely the ones with vertex sets

{15, 6, 1, 5, 10, 16}, {16, 11, 7, 12, 15}, {15, 12, 8, 13, 16}

(and two more, that from symmetry we need not consider). We need to examine

G + (6-15, 10-16) + (1-6, 16-18)

G + (6-15, 10-16) + (6-17, 16-18)

G + (6-15, 5-10) + (6-17, 10-18)

G + (6-15, 5-10) + (1-6, 10-16)

G + (11-16, 12-15) + (11-17, 15-18)

G + (12-15, 13-16) + (12-17, 16-18);

they contain Thirdapex, Boat(3), Boat(3), Petersen, Boat(3) and Boat(3) respectively. 

Hence (E6) holds, and from 7.1, this proves 14.4. �

15. Dodecahedrally connected non-apex graphs

The graphs Diamond, Concertina and Bigdrum are defined in Figs. 15 and 16.

In this section we prove the following.

15.1. Let H be dodecahedrally-connected. Then H is apex if and only if it contains none 

of Petersen, Jaws, Starfish, Diamond, Concertina, Bigdrum.

Let Square(1) be Secondapex + (14-16, 11-13). Let Square(2),..., Square(5) be 

Fourthapex + (ab, cd) where (a, b, c, d) is

(1, 5, 10, 12), (1, 11, 6, 10), (6, 14, 13, 16), (12, 13, 15, 16)
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Fig. 15. Diamond and Concertina.

Fig. 16. Bigdrum.

respectively. Let Square(6) and Square(7) be Thirdapex + (ab, cd) where (a, b, c, d) is 

(3, 15, 14, 16) and (2, 3, 8, 9) respectively.

15.2. Let H be dodecahedrally-connected, and not contain any of Petersen, Jaws, Starfish, 

Diamond, Concertina, Bigdrum. Then it contains none of Square(1),..., Square(7).

Proof.

(1) H does not contain Square(1).

Subproof. Let G be Square(1), let C be the quadrangle of G, and let

L1 = {Petersen, Jaws, Starfish, Diamond, Concertina, Bigdrum}.

Every A-extension of G is killed by L1 (indeed, by {Petersen, Jaws, Starfish}), and

P(C, L1) = {(13-18, 5-12), (13-18, 10-12), (13-18, 1-11), (13-18, 6-11)}∗.
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(Note that G +(13-18, 1-5) is isomorphic to Jaws, and G +(16-17, 3-8) to Starfish.) Then 

we verify the hypotheses of 10.2; and find that all the various extensions listed in 10.2

contain Petersen, except for the B-extensions

G + (13-18, 12-5) + (12-20, 4-15)

G + (13-18, 12-5) + (12-20, 11-18)

G + (13-18, 12-5) + (12-20, 15-16)

(which contain Jaws, Diamond, and Concertina respectively) and the C-extension

G + (13-18, 12-5) + (19-20, 1-11)

(which contains Jaws), and isomorphic extensions. Hence, from 10.2, this proves (1).

Now let

L2 = {Petersen, Square(1), Diamond, Concertina, Bigdrum}

(Jaws and Starfish are no longer necessary, since they both contain Square(1).)

(2) H does not contain Square(2).

Subproof. We apply 10.1 to the quadrangle C of Square(2), with L = L2. All A-extensions 

are killed by L2, and P(C, L2) = ∅, so the result follows from 10.1. This proves (2).

(3) H does not contain Square(3).

Subproof. Let C be the quadrangle of G = Square(3); we apply 10.2, with L = L2. All 

A-extensions are killed by L2, and

P(C, L2) = {(6-11, 13-16), (6-11, 14-16)}∗.

We verify the hypotheses of 10.2. This proves (3).

(4) H does not contain Square(4).

Subproof. Now let L4 = L2∪ {Square(2), Square(3)}. The result follows from 10.1, applied 

to the quadrangle of Square(4) and L4, using (2) and (3). This proves (4).

(5) H does not contain Square(5).

Subproof. Let L5 = L4∪ {Square(4)}, and C the quadrangle of G = Square(5). Then all 

A-extensions are killed by L5, and
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Fig. 17. Extrapex.

P(C, L5) = {(13-17, 6-11)}∗;

and we verify the hypotheses of 10.2 to prove (5).

(6) H does not contain Square(6).

Subproof. Let L6 = L5∪ {Square(5)}, and C, G as usual. All A-extensions are killed 

by L6, and

P(C, L6) = {(17-18, 3-8), (17-18, 8-14)}∗;

and again the result follows from 10.2. This proves (6).

(7) H does not contain Square(7).

Subproof. Let L7 = L6∪ {Square(6)}, and C, G as usual. Then all A-extensions are killed 

by L7, and P(C, L7) = ∅, so (7) follows from 10.1.

From (1)–(7), this proves 15.2. �

The graph Extrapex is defined in Fig. 17.

We say that G is an Apex-forcer if either it is an Apex-selector or it is Extrapex. By 

the Non-apex family we mean

{Petersen, Diamond, Concertina, Bigdrum, Square(1),..., Square(7)}.

15.3. Let G be an Apex-forcer. Let C be the set of circuits that bound regions in the 

planar drawing of G \ 16. If ab and cd are edges of G with a, b �= c, d, and no member of 

C contains them both, then either G +(ab, cd) contains a member of the Non-apex family, 

or one of a, b, c, d is 16 and the other three belong to some member of C.
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We leave the proof to the reader (the details are in the Appendix [5]). If G is an 

Apex-forcer, and η is a homeomorphic embedding of G in H, we define the spine of η to 

be η(13-16) ∪ η(14-16) ∪ η(15-16).

15.4. Let H be cubic and cyclically four-connected, and contain no member of the Non-

apex family. Let H contain some Apex-forcer. Then there is a homeomorphic embedding 

η of some Apex-forcer in H such that its spine has only three edges.

Proof. Choose an Apex-forcer G and a homeomorphic embedding η of G in H, such 

that its spine is minimal. Suppose its spine has more than three edges; then since H

is cyclically four-connected, there is an η-path P with one end in η(e) and the other 

in η(f), where f is one of 13-16, 14-16, 15-16 and e is not incident with 16. If e and f have 

a common end then by rerouting e along P we obtain a new homeomorphic embedding 

with smaller spine, a contradiction. Similarly, it follows that no edge of G \ 16 joins an 

end of e to an end of f . Let C be as in 15.3. By 15.3 there exists C ∈ C such that 

e ∈ E(C) and f has an end in V (C). Let e = ab and let f be incident with c, 16. Now 

we must examine cases.

If G is Firstapex, we may assume that (a, b, c) = (2, 8, 13) from the symmetry. Then 

η(G \ 6-12) ∪ P yields a homeomorphic embedding of Secondapex with smaller spine, 

a contradiction. (We apologize for this awkward notation; by G \6-12 we mean the graph 

obtained from G by deleting the edge 6-12. We use the same notation below.)

If G is Secondapex, there are three possibilities for (a, b, c) : (1, 5, 13) (when η(G \

6-10) ∪P yields a homeomorphic embedding of Firstapex), (1, 11, 14) (when η(G \1-5) ∪P

yields a homeomorphic embedding of Fourthapex), and (3, 8, 14) (when η(G) ∪ P yields 

a homeomorphic embedding of Extrapex), in each case contradicting the minimality of 

the spine. If G is Thirdapex, the possibilities for (a, b, c) are: (1, 5, 13) or (2, 3, 14) 

(when η(G \ 8-9) ∪ P yields a homeomorphic embedding of Fourthapex), (6, 10, 14) 

(when η(G \ 1-11) ∪ P yields a homeomorphic embedding of Thirdapex), and (9, 10, 14) 

(when η(G \ 2-7) ∪ P yields a homeomorphic embedding of Firstapex), in each case a 

contradiction.

If G is Fourthapex, the possibilities are: (1, 5, 13) (when η(G \4-9) ∪P yields a home-

omorphic embedding of Thirdapex), (6, 10, 13) (when η(G) ∪ P yields a homeomorphic 

embedding of Extrapex), (1, 2, 14) (when η(G \ 4-9) ∪ P yields a homeomorphic em-

bedding of Secondapex), and (1, 11, 14) (when η(G \ 10-12) ∪ P yields a homeomorphic 

embedding of Thirdapex), in each case a contradiction. (We have used a symmetry of 

Fourthapex not evident from the drawing, exchanging 13 with 15 and 1 with 9.)

If G is Extrapex, the possibilities are: (1, 2, 13) (when η(G \ {7-13, 1-6}) ∪ P yields a 

homeomorphic embedding of Secondapex) and (2, 7, 14) (when η(G \ {2-3, 10-11}) ∪ P

yields a homeomorphic embedding of Thirdapex), in each case a contradiction.

Hence the spine has only three edges. This proves 15.4. �



JID:YJCTB AID:3220 /FLA [m1L; v1.252; Prn:19/02/2019; 11:25] P.56 (1-67)

56 N. Robertson et al. / Journal of Combinatorial Theory, Series B ••• (••••) •••–•••

Proof of 15.1. “Only if” is easy, and we omit it. For “if”, let H be dodecahedrally-

connected, and not contain any of Petersen, Jaws, Starfish, Diamond, Concertina, Big-

drum. By 15.2 it contains none of Square(1),. . . , Square(7). We may assume that H

is not arched or doubly-apex, for such graphs are apex; and so by 14.3 H contains an 

Apex-selector. By 15.4, there is a homeomorphic embedding η of some Apex-forcer G

in H such that its spine has only three edges. Let F be the subgraph of G induced on 

{13, 14, 15, 16}, and let ηF be the restriction of η to F . Let C be as in 15.3; then (G, F, C)

is a framework, and H, ηF satisfy (E1). We claim they satisfy (E2)–(E7). (E2) follows 

from 15.3, and (E3), (E7) are vacuously true. For (E4), (E5) and (E6) a large amount of 

case-checking is required, for G = Firstapex, Secondapex, Thirdapex, Fourthapex and 

Extrapex, separately. (In the case-checking we use that H contains none of Petersen, 

Jaws, Starfish, Diamond, Concertina, Bigdrum, and we could also use that it contains 

none of Square(1)–Square(7). In fact we find that we don’t need to use all of the latter; 

we just need that H does not contain Square(2).) The details are in the Appendix [5]. 

From 7.1, this proves 15.1. �

16. Die-connected non-apex graphs

Our next real objective in this paper is modify 15.1 to find all the cubic graphs 

G minimal with the properties that they are non-apex and dodecahedrally-connected, 

and |δ(X)| ≥ 6 for all X ⊆ V (G) with |X|, |V (G) \ X| ≥ 7. (There are only three such 

graphs, namely Petersen, Jaws and Starfish, as we shall see in the next section.) Diamond, 

Concertina and Bigdrum all have subsets X with |δ(X)| = 5 and |X|, |V (G) \ X| ≥ 9, 

so they are rather far from having the property we require; and a convenient half-way 

stage is afforded by “die-connectivity”. We recall that a graph G is die-connected if it is 

dodecahedrally-connected (and hence cubic and cyclically five-connected) and |δ(X)| ≥ 6

for all X ⊆ V (G) with |X|, |V (G) \ X| ≥ 9. In this section we find all minimal graphs 

that are non-apex and die-connected.

The graphs Log, Antilog, and Dice(1),..., Dice(4) are defined in Figs. 18 and 19. We 

shall show the following.

16.1. Let H be die-connected. Then H is apex if and only if H contains none of Petersen, 

Jaws, Starfish, Log, Antilog, Dice(1), Dice(2), Dice(3), Dice(4).

We begin with the following.

16.2. Any die-connected graph that contains Diamond also contains one of Petersen, 

Antilog, Dice(4).

Proof. Let H be die-connected, and contain no member of L = {Petersen, Antilog, 

Dice(4)}. We claim first that

(1) H does not contain Diamond +(1-2, 10-11).
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Fig. 18. Log and Antilog.

Fig. 19. Dice(1)–Dice(4).

Subproof. Let C be the quadrangle of G = Diamond +(1-2, 10-11). Then all A-extensions 

are killed by L, and

P(C, L) = {(2-19, 4-5), (11-20, 10-13)}∗.

We verify the hypotheses of 10.2 (the E-extension is isomorphic to Dice(4)). This 

proves (1).

Now let L′ = {Petersen, Antilog, Diamond + (1-2, 10-11)}, and X = {1, . . . , 9}.

(2) Every X-augmentation of Diamond contains a member of L′.

Subproof. Let (e1, f1), . . . , (en, fn) be an X-augmenting sequence, and suppose the corre-

sponding X-augmentation contains no member of L′. In particular, Diamond + (e1, f1)

contains no member of L′, and so (by checking all possibilities) it follows that f1 is 

6-10 and e1 is one of 1-2, 1-7, 4-9. In particular, n ≥ 2. Since f1 = 6-10 it follows that 

e2 = 6-20. If e1 is 1-7 or 4-9 there is no possibility for f2. Thus e1 is 1-2, and then f2
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is 9-12, and n ≥ 3, and e3 is 9-22. Again by checking cases it follows that f3 is 7-17, 

and hence n ≥ 4 and e4 is 7-24; and there is no possibility for f4, a contradiction. This 

proves (2).

From (1), (2) and 8.1, the result follows since H is die-connected. This proves 16.2. �

16.3. Every die-connected graph that contains Bigdrum also contains one of Petersen, 

Diamond or Dice(2).

Proof. Let H be die-connected, and contain no member of L = {Petersen, Diamond, 

Dice(2)}. We claim first

(1) H does not contain Bigdrum +(3-8, 10-11).

Subproof. Let G = Bigdrum + (3-8, 10-11), and let C be the quadrangle of G. Then all 

A-extensions are killed by L, and

P(C, L) = {(8-11, 9-13), (19-20, 10-14)}∗.

The result follows from 10.2 by checking all the various extensions (in particular,

G + (8-19, 5-9) + (11-20, 10-14) + (8-21, 20-23)

is isomorphic to Dice(2)). This proves (1).

Now let L′ = {Petersen, Diamond, Bigdrum + (3-8, 10-11)} and X = {1, . . . , 9}. We 

claim that

(2) Every X-augmentation of Bigdrum contains a member of L′.

Subproof. Let (e1, f1), . . . , (en, fn) be an X-augmenting sequence, such that the corre-

sponding X-augmentation contains no member of L′. Then by checking cases it follows 

that (e1, f1) is one of (3-8, 6-10), (4-7, 9-13), and by the symmetry we may assume the 

first. Then n ≥ 2, and e2 is 6-20; and there is no possibility for f2, a contradiction. This 

proves (2).

From (1), (2) and 8.1, this proves 16.3. �

16.4. Any die-connected graph that contains Concertina also contains one of Petersen, 

Log, Diamond, Bigdrum, Dice(1), Dice(3).

Proof. Let H be a die-connected graph that contains no member of L = {Petersen, Log, 

Diamond, Bigdrum, Dice(1), Dice(3)}. Let Conc(1), Conc(2), Conc(3) be Concertina + 
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(e, f) where (e, f) is (4-8, 10-11), (6-7, 17-18), (8-9, 16-17); and let Conc(4) be Concertina 

+ (2-3, 8-11) + (8-20, 16-17).

(1) H does not contain Conc(1).

Subproof. Let C be the quadrangle of G = Conc(1). All A-extensions are killed by L, 

and

P(C, L) = {(8-11, 9-17), (19-20, 2-10)}∗;

and the result follows by verifying the other hypotheses of 10.2. (The E-extension is 

isomorphic to Dice(1).) This proves (1).

Let Conc(21) be Conc(2) + (7-19, 1-5), let Conc(211) be Conc(21) + (1-2, 3-4), and 

let Conc(212) be Conc(21) + (1-2, 3-7).

(2) H does not contain Conc(211) or Conc(212).

Subproof. Let G = Conc(211) and let C be its quadrangle. Then all A-extensions are 

killed by L, and

P(C, L) = {(2-23, 1-12)}∗,

and the result for Conc(211) follows by verifying the other hypotheses of 10.2.

Now let G = Conc(212) and let C be its quadrangle. Again all A-extensions are killed 

by L, and again

P(C, L) = {(2-23, 1-12)}∗

and again the result follows from 10.2. (Conc(212) + (3-24, 1-22) is isomorphic to 

Dice(3).) This proves (2).

(3) H does not contain Conc(21).

Subproof. Let L1 = L∪ {Conc(211), Conc(212)}. Let X = {1, 2, 10, 11, 12, 13, 14, 15, 16}; 

we claim that every X-augmentation of Conc(21) contains a member of L1. For suppose 

not, and let the corresponding sequence be (e1, f1), . . . , (en, fn). By checking cases, e1 is 

12-16 and f1 is 14-18; and so n ≥ 2, and e2 is 14-20, and there is no possibility for f2. 

Hence (3) follows from 8.1 and (2).

(4) H does not contain Conc(2).
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Subproof. Let L2 = L∪ {Conc(21)}, G = Conc(2), and C the quadrangle of G. Then all 

A-extensions are killed by L2, and

P(C, L2) = {(19-20, 6-9), (19-20, 9-17)}∗

and the result follows by verifying the hypotheses of 10.2. This proves (4).

(5) H does not contain Conc(3).

Subproof. Let L3 = L∪ {Conc(2)}, G = Conc(3), and C the quadrangle of G. Then all 

A-extensions are killed by L3, and

P(C, L3) = {(9-19, 4-8)}∗,

and the result follows by verifying the hypotheses of 10.2. This proves (5).

(6) H does not contain Conc(4).

Subproof. Let L4 = L∪ {Conc(2), Conc(3)}, and X = {3, 4, 5, 6, 7, 8, 9, 17, 18}. We 

claim that every X-augmentation of G = Conc(4) contains a member of L4. Suppose not, 

and let the corresponding sequence be (e1, f1), . . . , (en, fn). By checking cases, e1 is 3-7 

and f1 is 1-5; so n ≥ 2, and e2 is 5-24, and there is no possibility for f2, a contradiction. 

Hence (6) follows from 8.1.

Let L5 = L4∪ {Conc(1), Conc(4)}, and X = {1,. . . ,9}. We claim that every 

X-augmentation of G = Concertina contains a member of L. Suppose not, and let 

(e1, f1), . . . , (en, fn) be the corresponding sequence. By checking cases (e1, f1) is one of 

(2-3, 8-11), (4-8, 2-10); so n ≥ 2, and in either case there is no possibility for f2. Hence 

the result follows from (1), (4), (5), (6) and 8.1. This proves 16.4. �

Proof of 16.1. “Only if” is easy, and we omit it. For “if”, let H contain none of the given 

graphs. By 16.2, 16.3, 16.4 it contains none of Diamond, Bigdrum, Concertina; and so 

by 15.1 it is apex. This proves 16.1. �

17. Theta-connected non-apex graphs

We recall that G is theta-connected if it is cubic and cyclically five-connected, and 

|δ(X)| ≥ 6 for all X ⊆ V (G) with |X|, |V (G) \ X| ≥ 7 (and hence it is dodecahedrally-

connected). None of the graphs of Figs. 18, 19 are theta-connected, and our next objective 

is to make a version of 16.1 for theta-connected graphs. It becomes much simpler:

17.1. Let H be theta-connected. Then H is apex if and only if it contains none of Pe-

tersen, Jaws and Starfish.
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Fig. 20. A domino.

For the proof we use 17.2 below. A domino in a cubic graph H is a subgraph D

with |V (D)| = 7, consisting of the union of three paths P1, P2, P3 of lengths two, three 

and three respectively, which have common ends and otherwise are disjoint. The middle 

vertex of P1 is called the centre of the domino, and the other four vertices of degree two 

are its corners; an attachment sequence is some sequence (x1, . . . , x5) where x1, . . . , x4

are the corners, x5 is the centre, x1x2 is an edge, and x2, x3 have a common neighbour. 

(See Fig. 20.)

A domino D in G with attachment sequence (x1, . . . , x5) is said to be crossed if

• there are two disjoint connected subgraphs P, Q of G, both edge-disjoint from D, 

with V (P ∩ D) = {x1, x3} and V (Q ∩ D) = {x2, x4, x5}; and

• there are two disjoint connected subgraphs P, Q of G, both edge-disjoint from D, 

with V (P ∩ D) = {x1, x3, x5} and V (Q ∩ D) = {x2, x4}.

17.2. Let D be a crossed domino with attachment sequence x1, . . . , x5, in a cyclically 

five-connected cubic graph G with |V (G)| ≥ 14. Let x5 be incident with g /∈ E(D). Let 

H be a cubic graph, cyclically five-connected, and let η be a homeomorphic embedding of 

G in H. Then either

• there exists X ⊆ V (H) with |δH(X)| = 5, such that for all v ∈ V (G), η(v) ∈ X if 

and only if v ∈ V (D); or

• H contains Petersen; or

• for some e ∈ E(D) and f ∈ E(G \ V (D)) there is a homeomorphic embedding η′ of 

G + (e, f) in H; or

• for some e ∈ {x1x2, x3x4}, and for some f ∈ E(G \ V (D)) such that f, g are diverse 

in G, there is a homeomorphic embedding η′ of

G + (e, g) + (yx5, f)

in H, where x, y are the new vertices of G + (e, g).

Proof. Let X = V (D). We assume that (i) and (ii) are false. Since |V (G)| ≥ 14 and 

|δG(X)| = 5, and since (i) is false, it follows from 8.1 that there is an X-augmentation 

G′ of G, and a homeomorphic embedding η′ of G′ in G. Let (e1, f1), . . . , (en, fn) be 
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the corresponding sequence. If n = 1 then (iii) is true, so we assume that n ≥ 2. For 

1 ≤ i ≤ 5, let xi be adjacent in G to yi ∈ V (G) \ V (D). Let the neighbours of x5 in G

be y5, x6, x7, where x6 is adjacent to x1. Let G1 = G + (e1, f1) with new vertices s1, t1, 

and let D1 be the subgraph of G1 induced on V (D) ∪ {s1, t1}.

Suppose first that f1 = x1y1. Then since e1 and f1 are diverse in G, it follows that 

e1 = a1b1 say where a1, b1 ∈ {x3, x4, x5, x7}, that is, e1 is one of x3x4, x3x7, x5x7. If f1

is 3-4 or 3-7, let P, Q be disjoint paths of G1 from x2 to x4 and from t1 to x5, with 

no vertices or edges in D1 except their ends; and let R be a path of G \ V (D) between 

V (P ) and V (Q) with no internal vertex or edge in P or Q. Then D1 ∪ P ∪ Q ∪ R is 

homeomorphic to Petersen, and so G1 and hence H contains Petersen, and (ii) is true, 

a contradiction. So e1 = x5x7. Let P, Q be disjoint paths of G1 from t1 to x3 and from 

x2 to x5, with no vertices or edges in D1 except their ends, and let R be as before. Then 

D1 ∪ P ∪ Q ∪ R again is homeomorphic to Petersen, a contradiction.

Hence f1 �= x1y1, and so by symmetry f1 �= x2y2, x3y3, x4y4; and hence f = x5y5. 

Hence e1 is 1-2 or 3-4, and by symmetry we may assume the first. Also, e2 = x5t1, and 

there are (up to the symmetry) three possibilities for f2, namely f2 = x1y1, f2 = x4y4, 

and f4 ∈ E(G \ V (D)). In the third case the theorem is true, so we assume for a 

contradiction that one of the first two cases hold. Let G2 = G1 + (e2, f2), with new 

vertices s2, t2, and let D2 be the subgraph of G2 induced on V (D) ∪ {s1, t1, s2, t2}.

If f2 = x1y1, let P, Q be disjoint paths of G2 from t2 to x3 and from t1 to x4 with no 

vertices or edges in D2 except their ends; then D2 ∪ P ∪ Q is homeomorphic to Petersen, 

a contradiction. But if f2 = x4y4, let P, Q be disjoint paths of G2 from x2 to t2 and t1

to x3, with no vertices or edges in D2 except their ends; then D2∪P ∪Q is homeomorphic 

to Petersen, a contradiction. This proves 17.2. �

Proof of 17.1. “Only if” is easy and we omit it. For “if”, let H be theta-connected and 

not contain Petersen, Jaws or Starfish.

(1) H does not contain Antilog.

Subproof. Let G be Antilog, let X = {1, . . . , 7}, and let D = G[X]. Then D is a crossed 

domino of G. But the following all contain Petersen:

(i) G + (e, f) for all e ∈ E(D) and f ∈ E(G \ X);

(ii) G + (1-6, 5-10) + (5-22, xy) for all xy ∈ E(G \ X) with x, y �= 10, 14, 15.

From 17.2, this proves (1).

Let L = {Petersen, Jaws}.

(2) H does not contain Log.
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Subproof. Let Log(1) be Log + (1-2, 8-13), let C be its quadrangle, and let L1 = L∪

{Antilog}. All A-extensions are killed by L1, and

P(C, L1) = {(21-22, 2-9), (21-22, 13-9)}∗,

and it follows by verifying the hypotheses of 10.2 that H does not contain Log(1).

Let Log(2) be Log + (1-2, 9-13), let C be its quadrangle, and L2 = L1∪ {Log(1)}. 

All A-extensions are killed by L2, and P(C, L2) = ∅, and so by 10.1 H does not contain 

Log(2).

Now let G = Log, X = 1, . . . , 7, and L3 = L2∪ {Log(2)}. For any edge e of G[X] and 

edge f of G not in G[X] (we permit f to have one end in X), if e, f are diverse then 

G + (e, f) contains a member of L3; and so H does not contain Log, by (1) and 8.1. This 

proves (2).

(3) H does not contain Dice(1).

Subproof. Let Dice(11) = Dice(1) + (1-2, 20-23), let C be its quadrangle, and L4 = 

{Petersen, Jaws, Log, Antilog}. All A-extensions are killed by L4, and P(C, L4) = ∅, so 

by 10.1 H does not contain Dice(11).

Now let L5 = L4∪ {Dice(11)}, let G = Dice(1), X = {1,. . . ,7} and D = G[X]; then 

D is a crossed domino in G. For all e ∈ E(D) and f ∈ E(G \ X), G + (e, f) contains a 

member of L4; and for all xy ∈ E(G \X) with x, y �= 9, 10, 11, G +(1-2, 5-10) +(5-28, xy)

contains Petersen. Hence the result follows from 17.2. This proves (3).

(4) H does not contain Dice(2).

Subproof. Let G = Dice(2), X = {1,. . . ,7} and L6 = {Petersen, Antilog, Dice(1)}. For 

all e ∈ E(G[X]) and f ∈ E(G) \ E(G[X]), if e, f have no common end then G + (e, f)

contains a member of L6; so (4) follows from (1), (3) and 8.1.

(5) H does not contain Dice(3).

Subproof. Let Dice(31) = Dice(3) + (3-4, 13-14), let C be its quadrangle, and L4 as 

before. All A-extensions are killed by L4, and P(C, L4) = ∅, so by 10.1 H does not 

contain Dice(31).

Let L7 = L4∪ {Dice(31)}. Let G = Dice(3), X = {1, . . . , 7}, and D = G[X]. Then 

D is a crossed domino in G. For all e ∈ E(D) and f ∈ E(G \ X), G + (e, f) contains a 

member of L7. Moreover, for all xy ∈ E(G \ X) with x, y �= 15, 16, 18,

G + (1-2, 5-15) + (5-28, xy)

G + (3-4, 5-15) + (5-28, xy)

both contain Petersen or Log. From (1)–(3) and 17.2, this proves (5).
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(6) H does not contain Dice(4).

Subproof. Let G = Dice(4), X = {1,. . . ,7} and D = G[X]. Then D is a crossed domino 

in G. But for all e ∈ E(D) and f ∈ E(G \ X), G + (e, f) contains Petersen or Log; and 

for all xy ∈ E(G \ X) with x, y �= 16, 21, 23,

G + (1-2, 5-21) + (5-28, xy)

G + (3-4, 5-21) + (5-28, xy)

both contain Petersen or Log. The result follows from (2) and 17.2. This proves (6).

From (1)–(6) and 16.2, this proves 17.1. �

The reader may have noticed that Starfish hardly ever is needed for anything. There 

is an explanation, the following (previously stated as 1.2).

17.3. Every dodecahedrally-connected graph H containing Starfish either is isomorphic 

to Starfish or contains Petersen.

Proof. If H “properly” contains G = Starfish, then by 10.3 H contains a graph G′ =

G + (e, f) for some choice of diverse edges e, f of G. But every such graph G′ contains 

Petersen. This proves 17.3. �

From 17.3 we obtain a slightly stronger reformulation of 17.1, previously stated as 1.3.

17.4. Let H be theta-connected, and not isomorphic to Starfish. Then H is apex if and 

only if it contains neither of Petersen, Jaws.

The proof is clear.

18. Excluding Petersen

In this section we prove 1.3, thereby completing the proof of 1.1. We restate it:

18.1. Let H be theta-connected, and contain Jaws but not Petersen. Then H is double-

cross.

Proof. Let Jaws(1) be Jaws +(1-2, 3-4), let Jaws(11) be Jaws(1) +(3-22, 1-6), and let 

Jaws(12) be Jaws(1) +(21-22, 1-6).

(1) H does not contain Jaws(11) or Jaws(12).



JID:YJCTB AID:3220 /FLA [m1L; v1.252; Prn:19/02/2019; 11:25] P.65 (1-67)

N. Robertson et al. / Journal of Combinatorial Theory, Series B ••• (••••) •••–••• 65

Subproof. Let G be Jaws(11), and let X = V (G)\ {1, 2, 3, 21, 22, 23, 24}. If ab ∈ E(G[X])

and cd ∈ E(G) \ E(G[X]), with a, b �= c, d and with a, b non-adjacent to any of c, d that 

are in X, then G + (ab, cd) contains Petersen. Hence the result follows from 8.1 when G

is Jaws(11).

When G is Jaws(12), the argument is not so simple. Again we apply 8.1 to the same 

set X. Let (e1, f1), . . . , (ek, fk) be an augmenting sequence. By checking cases, we find 

that f1 is not an edge of G \X (because every choice of e1 ∈ E(G[X]) and f1 ∈ E(G \X)

gives a Petersen), and so k ≥ 2; and having fixed (e1, f1), we try all the possibilities for 

(e2, f2). Again, there is no case with f2 ∈ E(G \X), and so k ≥ 3, and for each surviving 

choice of (e2, f2) we try the possibilities for (e3, f3). We find in every case that there is 

no choice of (e3, f3). (See the Appendix [5].) This proves (1).

(2) H does not contain Jaws(1).

Subproof. Let C be the quadrangle of G = Jaws(1), and let L = {Petersen, Jaws(11), 

Jaws(12)}. Then all A-extensions are killed by L, and P(C, L) = ∅, so (2) follows 

from 10.1.

Let Jaws(2) be Jaws +(8, 3, 5, 6) +(21, 3, 22, 6), let Jaws(21) be Jaws(2) +(6, 7, 11, 12), 

and let Jaws(22) be Jaws(2) +(7, 8, 19, 10).

(3) H does not contain Jaws(21).

We apply 10.2 to the quadrangle {25, 26, 12, 7}, taking L to be {Petersen, Jaws1}. Again, 

see the Appendix for details. (Note that Jaws(21) has two circuits of length four, but 

it is quad-connected; this was the reason we extended 10.2 to quad-connected graphs 

instead of graphs G that were cyclically five-connected except for one circuit of length 

four.)

(4) H does not contain Jaws(22).

This is easier; we apply 10.1 to the quadrangle {8, 20, 26, 25}, taking L to be {Petersen, 

Jaws1, Jaws(21)}.

(5) H does not contain Jaws(2).

Let X = {6, 7, 8, 21, 22, 23, 24}. We apply 8.1 to X, and try all possibilities for the first 

three terms of the augmenting sequence; and find in each case contains one of Petersen, 

Jaws(1), Jaws(21), Jaws(22). (See the Appendix.)

Now let C1 be the set of the seven circuits of Jaws that bound regions in the drawing 

in Fig. 2, not containing 1-6, 3-8, 13-18 or 15-20. Let C2 be the set of paths of Jaws 

induced on the following sets:
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6, 1, 2, 3, 8;

8, 3, 4, 5, 6, 1;

1, 6, 7, 8, 3;

3, 8, 20, 15;

15, 20, 19, 18, 13;

13, 18, 17, 16, 15, 20;

20, 15, 14, 13, 18;

18, 13, 1, 6.

Let G = Jaws, let F and ηF be null, and let C = C1 ∪C2; then (G, F, C) is a framework. By 

hypotheses, there is a homeomorphic embedding η of G in H. We claim that (E1)–(E7) 

hold.

Since F is null, (E4), (E5) are vacuously true, and (E1), (E3) are obvious. It remains 

to check (E2), (E6) and (E7). For (E2) we check that if e, f ∈ E(G), not both in some 

member of C, then G +(e, f) contains either Petersen or Jaws(1); so (E2) follows from (2). 

For (E6) it is only necessary to check cross extensions on the circuit with vertex set {4, 

5, 11, 17, 16, 10} and the path with vertex set {1, 6, 5, 4, 3, 8}, since all the other circuits 

and paths are too short or are equivalent by symmetry. Hence we must check

G + (4-5, 16-17) + (4-21, 17-22)

G + (4-5, 16-17) + (4-10, 11-17)

G + (4-10, 11-17) + (4-21, 17-22)

G + (4-10, 11-17) + (10-16, 5-11)

G + (3-8, 5-6) + (3-4, 1-6)

G + (3-8, 5-6) + (3-21, 6-22);

but they all contain Petersen, except the last which contains Jaws(2). Hence (E6) holds.

For (E7) we must check

G + (3-8, 5-6) + (3-21, 1-6) + (8-21, 1-24);

but this contains Petersen. Hence (E7) holds. From 7.1, this proves 18.1. �

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /

10 .1016 /j .jctb .2019 .02 .002.
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