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1. Introduction

All graphs in this paper are simple and finite. Circuits have no repeated vertices or
edges; the girth of a graph is the length of the shortest circuit. If G is a graph and
X CV(G),dc(X) or §(X) denotes the set of edges with one end in X and the other in
V(G) \ X. We say a cubic graph G is cyclically k-connected, for k > 1 an integer, if G
has girth > k, and [0 (X)| > k for every X C V(G) such that both X and V(G) \ X
include the vertex set of a circuit of G.

A homeomorphic embedding of a graph G in a graph H is a function 7 such that

o for each v € V(G), n(v) is a vertex of H, and n(v1) # n(ve) for all distinct v1,ve €
V(G);

o for each e € E(G), n(e) is a path of H with ends n(v1) and n(vs2), where e has ends
v1,v2 in G; and no edge or internal vertex of 7(e;) belongs to n(ez), for all distinct
e1, ez € E(G); and

o forall v € V(G) and e € E(G), n(v) belongs to n(e) if and only if v is an end of e
in G.

We denote by 7(G) the subgraph of H consisting of all the vertices n(v) (v € V(G)) and
all the paths n(e) (e € E(QG)). We say that H contains G if there is a homeomorphic
embedding of G in H.

Let us say that G is theta-connected if G is cubic and cyclically five-connected, and
|0c(X)| > 6 for all X C V(G) with |X|,|V(G)\ X| > 7. (If G is cubic with girth at
least five, and X C V(G) includes the vertex set of a circuit, then either |dg(X)| > 5 or
| X | > 7; so this definition is equivalent to the condition in the abstract.) We say G is apex
if G\ v is planar for some vertex v (we use \ to denote deletion); and G is doublecross
if it can be drawn in the plane with only two crossings, both on the infinite region. Our
goal in this paper is to give a construction for all theta-connected graphs not containing
Petersen (we define Petersen to be the Petersen graph.) This is motivated by a result
of a previous paper [3], where we showed that to prove Tutte’s conjecture [7] that every
two-edge-connected cubic graph not containing Petersen is three-edge-colourable, it is
enough to prove the same for theta-connected graphs not containing Petersen, and for
apex graphs.

The graph Starfish is shown in Fig. 1. Our main result is the following.

1.1. Let G be theta-connected. Then G does not contain Petersen if and only if either G
is apex, or G is doublecross, or G is isomorphic to Starfish.

The “if” part of 1.1 is easy and we omit it. (It is enough to check that Petersen itself
is not apex or doublecross, and is not contained in Starfish.) The “only if” part is an
immediate consequence of the following three theorems. The graph Jaws is defined in
Fig. 2.
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Fig. 1. Starfish.
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Fig. 2. Jaws.

1.2. Let G be theta-connected, and not contain Petersen. If G contains Starfish then G
is isomorphic to Starfish.

1.3. Let G be theta-connected, and not contain Petersen. If G contains Jaws then G is
doublecross.

1.4. Let G be theta-connected, and not contain Petersen. If G contains neither Jaws nor
Starfish, then G is apez.

1.2, proved in section 17, is an easy consequence of a theorem of a previous paper [4],
and 1.3 is proved in section 18. The main part of the paper is devoted to proving 1.4.
Our approach is as follows.

A graph H is minimal with property P if there is no graph G with property P such
that H contains G, and H is not isomorphic to G. In Figs. 3 and 4 we define four more
graphs, namely Triplezr, Box, Ruby and Dodecahedron.

A theorem of McCuaig [1] asserts
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Fig. 3. Triplex and Box.
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Fig. 4. Ruby and Dodecahedron.
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1.5. Petersen, Triplex, Box, Ruby and Dodecahedron are the only graphs minimal with
the property of being cubic and cyclically five-connected.

We shall prove the following three theorems.

1.6. Petersen, Triplex, Boxr and Ruby are the only graphs minimal with the property of
being cyclically five-connected and non-planar.

If X C V(G), the subgraph of G induced on X is denoted by G[X]. A graph G
is dodecahedrally-connected if it is cubic and cyclically five-connected, and for every
X CV(G) with | X|,|V(G)\ X| > 7 and |d¢(X)| = 5, G[X] cannot be drawn in a closed
disc A such that the five vertices in X with neighbours in V(G) \ X are drawn in the
boundary of A.

1.7. Petersen, Triplex and Boz are the only graphs minimal with the property of being
dodecahedrally-connected and having crossing number at least two.
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We say G is arched if G \ e is planar for some edge e.

1.8. Petersen and Triplex are the only graphs minimal with the property of being
dodecahedrally-connected and not arched.

Then we use 1.8 to find all the graphs minimal with the property of being
dodecahedrally-connected and non-apex (there are six). Let us say G is die-connected if
it is dodecahedrally-connected and |6 (X)| > 6 for every X C V(G) with | X|,|V(G) \
X| > 9. We use the last result to find all graphs minimal with the property of being die-
connected and non-apex (there are nine); and then use that to find the minimal graphs
with the property of being theta-connected and non-apex. There are three, namely Pe-
tersen, Starfish, and Jaws, and from this 1.4 follows.

2. Extensions

It will be convenient to denote by ab or ba an edge with ends a and b (since we do not
permit parallel edges, this is unambiguous). Let ab and cd be distinct edges of a graph G.
They are diverse if a, b, ¢, d are all distinct and a, b are not adjacent to c or d. We denote
by G + (ab, cd) the graph obtained from G as follows: delete ab and cd, and add two new
vertices z and y and five new edges za, xb, yc, yd, xy. We call x,y (in this order) the new
vertices of G+ (ab, cd). Multiple applications of this operation are denoted in the natural
way; for instance, if e, f € E(G) are distinct, and G’ = G + (e, f), and g,h € E(G’) are
distinct, we write G + (e, f) + (g, h) for G’ + (g, h).

Similarly, let ab, cd, ef be distinct edges of G, where a,b,c,d, e, f are all distinct. We
denote by G + (ab,cd,ef) the graph obtained by deleting ab,cd and ef, and adding
four new vertices x, y, z, w, and nine new edges xa, zb, yc, yd, ze, z f, wx, wy, wz; and call
x,y, z,w (in this order) the new vertices of G + (ab, cd, ef).

A path has no “repeated” vertices or edges. Its first and last vertices are its ends, and
its first and last edges are its end-edges. Its other vertices and edges are called internal
vertices and edges. A path with ends s and ¢ is called an (s,t)-path. If P is a path
and s,t € V(P), the subpath of P with ends s and ¢ is denoted by P[s,t]. Let n be a
homeomorphic embedding of G in H. An n-path in H is a path P with distinct ends both
in V(n(G)), but with no other vertex or edge in 7(G). Let G, H both be cubic, and let
n and P be as above; and let e, f € E(G), where P has ends s and ¢, with s € V(n(e))
and t € V(n(f)). We can sometimes use P to obtain a new homeomorphic embedding
7 of G in H, equal to n except as follows:

o If e = f, let e = wv, where n(u), s,t,n(v) lie in n(e) in order. Define

1'(e) = n(e)[n(w), s] U P Un(e)lt, n(v)].
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o If e # f but they have a common end, let e = uv and f = vw say, and let g be the
third edge of G incident with v. Define 1’ by:

' (v) =t,

n'(e) = n(e)[n(u),s] U P,
n'(f) = n( )t n(w)],
1'(9) =n(g) Un(f)n(v),1

P
<) s, , f
n@>—§—r—?—%w) 7' (u) --- e 0’ (w)

o If e, f have no common end, but one end of e is adjacent to one end of f, let e = uv,
f = wzx and g = vw say. Let h,i be the third edges at v, w respectively. Define r’ by:

' (v) = s,

U’(w) =1,

n'(e) = n(e)[n(u), s,

n'(f) = n(H)t, n(x)],

n'(9) = P,

1 (h) = n(h) Un(e)[s,n(v)],
' (@) = n(i) Un(f)n(w),t]

nupe—g— g 1 (o) P oo

In the first two cases we say that 1’ is obtained from 1 by rerouting e along P, and in
the third case by rerouting g along P. If 1 is a homeomorphic embedding of G in H, an
n-bridge is a connected subgraph B of H with E(B Nn(G)) = 0, such that either

o |E(B)| =1, E(B) = {e} say, and both ends of e are in V(n(G)); or
o for some component C of H\ V(n(G)), E(B) consists of all edges of H with at least
one end in V(C).

Please cite this article in press as: N. Robertson et al., Excluded minors in cubic graphs, J. Combin.
Theory Ser. B (2019), https://doi.org/10.1016/j.jctb.2019.02.002




YJCTB:3220

N. Robertson et al. / Journal of Combinatorial Theory, Series B s (ssee) sso—see 7

It follows that every edge of H not in n(G) belongs to a unique n-bridge. We say that
an edge e of G is an n-attachment of an n-bridge B if n(e) N B is non-null.

3. Frameworks

We shall often have a cubic graph G, such that G (or sometimes, most of G) is drawn
in a surface, possibly with crossings, and also a homeomorphic embedding n of G in
another cubic graph H; and we wish to show that the drawing of G can be extended
to a drawing of H without introducing any more crossings. For this to be true, one
necessary condition is that for each n-bridge B, all its attachments belong to the same
“region” of G. If G already has some crossings, then we must be careful speaking of its
regions; we mean the arc-wise connected components of the complement of the drawing
in the surface. Each region of the drawing is bounded either by a circuit (if no crossings
involve any edge incident with the region) or by one or more paths; in the latter case,
the internal edges of these paths do not cross any other edges, but the end-edges each
cross a different end-edge of a path (possibly the same path) bounding the same region.
For instance, in Fig. 2, one region is bounded by the path 6-1-2-3-8; and another by two
paths 6-1-13-18 and 15-20-8-3. If we list all these circuits and paths we obtain some set
of subgraphs of G, and it is convenient to work with this set rather than explicitly with
regions of a drawing of G.

Sometimes, the drawing is just of a subgraph G’ of G rather than of all of G, and
therefore all the circuits and paths in the set are subgraphs of G’. In this case we shall
always be able to arrange that 7(e) has only one edge, for every edge e of G not in G'.
This motivates the following definition.

We say (G, F,C) is a framework if G is cubic, F' is a subgraph of G, and C is a set
of subgraphs of G \ E(F), satisfying (F1)—(F7) below. We say distinct edges e, f are
twinned if there exist distinct C1,Cy € C with e, f € E(C; N Cy).

(F1) Each member of C is an induced subgraph of G \ E(F), with at least three edges,
and is either a path or a circuit.

(F2) Every edge of G\ E(F) belongs to some member of C, and for every two edges e, f
of G with a common end not in V(F), there exists C' € C with e, f € E(C).

(F3) If C1,C5 € C are distinct and v € V(Cy N Cy), then either V(Cy N Cy) = {v}, or v
is incident with an edge in Cq, N Cy, or v € V(F).

(F4) If C; € C is a path, then every member of C containing an end-edge of C} is a
path. Moreover, if also Cy € C\ {C1} is a path, then every component of C; N Cy
contains an end of C7, and every edge of C; N Cs is an end-edge of C7.

(F5) If C € C is a circuit then [V(C' N F)| < 1, and every vertex in C' N F' has degree
1in F; and if C € C is a path then every vertex in C'N F' is an end of C' and has
degree 0 or 2 in F.
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(F6) If e, f are twinned and C € C with e € E(C), then |V(C)| < 6, and either
— f € E(C), and C is a circuit, and e, f have a common end in V(F'), and no path
in C contains any vertex of e or f, or
- f € E(C), and C is a path with end-edges e, f, and C'N F' is null, or
- f ¢ E(C), and C is a path with |[E(C)| = 3, and e is an end-edge of C, and no
end of e belongs to V(F).
(F7) Let C € C be a path of length five, with twinned end-edges e, f. Then |E(C")| < 4
for every path C’ € C\{C} containing e. Moreover, let C' have vertices vg-v1--- - vs
in order; then there exists C’ € C with end-edges e and f and with ends vy and vy.

We will prove a theorem that says, roughly, that if we have a framework (G, F, C), and
a homeomorphic embedding of G in H, where H is appropriately cyclically connected,
then either the drawing of G extends to an drawing of the whole of H, or there is some
bounded enlargement of n(G) in H to which the drawing does not extend, and this
enlargement still has high cyclic connectivity.

These seven axioms are a little hard to digest, and before we go on it may help to see
how they will be used. In all our applications of (F1)—(F7) we have some particular graph
G in mind and a drawing of it that defines the framework. We could replace (F1)—(F7)
just by the hypothesis that (G, F,C) arises from one of these particular cases, but there
are nine of these cases, and it seemed clearer to try to abstract the properties that we
really use. Here are three examples that might help.

e The simplest application is to prove 1.6; we take G to be Dodecahedron, and F' null,
and C to be the set of region-bounding circuits in the drawing of G in Fig. 4. Suppose
now some H contains G our result will tell us that either the embedding of G extends
to an embedding of H (and hence H is planar), or H contains a non-planar subgraph,
a bounded enlargement of 7(G) with high cyclic connectivity. We enumerate all the
possibilities for this enlargement, and check they all contain one of Petersen, Ruby,
Box, Triplex. From this, 1.6 will follow.

e When we come to try to understand the graphs that contain Jaws and not Petersen,
we take G to be Jaws, and (G, F, C) to be defined by the drawing in Fig. 2. Thus, F'is
null; C will contain the seven circuits in Fig. 2 that bound regions and do not include
any of the four edges that cross, together with eight paths (four like 6-1-2-3-8; two
like 1-6-5-4-3-8; and two like 6-1-13-18).

e A last example, one with F’ non-null; when we prove 1.8, we take G to be Box, and
(G, F,C) to be defined by the drawing in Fig. 3, and E(F) = {f} where f is the edge
13-14. In this case, take the drawing of Box given in Fig. 3, and delete the edge f,
and we get a drawing of G \ f without crossings; let C be the set of circuits that
bound regions in this drawing. The only twinned edges are 2-13 with 5-13, and 8-14
with 11-14.

(F1)—(F7) have a number of easy consequences, for instance, the following four results.
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3.1. Let (G, F,C) be a framework.

e F' is an induced subgraph of G.

o Let e € E(G) \ E(F). Then e belongs to at least two members of C, and to more
than two if and only if e is an end-edge of a path in C and neither end of e is in
V(F); and in this case e belongs to exactly four members of C, all paths, and it is
an end-edge of each of them.

o For every two edges e, f of G with a common end with degree three in G \ E(F),
there is at most one C € C with e, f € E(C).

Proof. Let e = uv be an edge of E(G) \ E(F). We claim that |{u,v} NV (F)| < 1. For
by (F2) there exists C € C with e € E(C). If C is a circuit the claim follows from (F5),
and if C is a path then one of u,v is internal to C, and again it follows from (F5). Thus
the first claim holds.

For the second claim, again let e = wv be an edge of F(G) \ E(F). We may assume
that u ¢ V(F). Let u be incident with e, ey, es. By (F2) there exist Cy,Cy € C with
e,e; € E(C;) (i =1,2). Hence Cy # Ca, so e belongs to at least two members of C.

No other member of C contains e and either e; or ea, by (F6), since v ¢ V(F'). Hence
every other C' € C containing e is a path with one end w. If e is not an end-edge of any
path in C the second claim is therefore true, so we assume it is. Hence by (F4), C and Cy
are both paths with end-edge e, and both have one end v. If v € V(F'), there is no path
in C containing e with one end u, by (F5), so we may assume that v ¢ V(F). Let v be
incident with e, es, e4; then by (F2) there exist C3,Cy € C with e,e; € E(C;) (i = 3,4);
and C5, Cy both have one end u. Hence C1, ..., Cy are all distinct, and no other member
of C contains e. This proves the second claim.

For the third claim, let v € V(G) be incident with edges e, f,g € E(G) \ E(F).
Suppose there exist distinct C,C’ € C both containing e, f. Thus e, f are twinned. If C
is a circuit, then by (F6) v € V(F), and by (F5) v has degree one in F, a contradiction.
Thus C is a path. By (F6) both e, f are end-edges of C, and hence C has length two, a
contradiction. This proves the third claim, and hence proves 3.1. O

3.2. Let C1,Cs € C be distinct. Then |E(C1 NCy)| < 2, and if equality holds, then either

o C1,Cy are both circuits, and C1 N Cy is a 2-edge path with middle vertex v in V(F),
and v has degree one in F'; or

e (C1,C5 are both paths with the same end-edges e, f say, and C1 N Cy consists of the
disjoint edges e, f and their ends, and C1,Cy are disjoint from F.

Proof. Let e, f € E(Cy N Cy) be distinct. If C; is a path then by (F6) and (F4), so
is Cq, and both C7 and Cs have end-edges e, f, and no end of e or f is in V(F'), and
by (F5) Ci,C5 are disjoint from F. But then by (F6) |E(Cy N Cy)| = 2 (for any third
edge in E(Cy NCs) would also have to be an end-edge of Cy, which is impossible); and if
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v € V(C1NCy) is not incident with e or f, then v is internal to both paths and hence is
incident with an edge of C; N Cs, a contradiction. Thus in this case the theorem holds.
We may assume then that C; and Cy are both circuits. By (F6), e, f have a common
end, v say, in V(F'). By (F5) no other vertex of C; or Cy is in V/(F), and v has degree one
in F. By (F6), E(C1 N C3) = {e, f}, and hence the theorem holds. This proves 3.2. O

3.3. Let C1,Cs € C be distinct with |E(Cy N Cy)| > 2. Then |E(Cy)| > 4.

Proof. Suppose that C is a circuit. If |E(C7)| = 3, then since Cs is an induced subgraph
of G\E(F) and |E(C1NC3)| > 2 it follows that C} is a subgraph of Cy which is impossible.
Hence the result holds if C; is a circuit. Now let Cy be a path. Let e, f € E(Cy N Cs)
be distinct; then by (F6), e and f are end-edges of Ci, and by (F4) Cs is a path with
end-edges e, f. Hence again C] is not a subgraph of Cs, and so since Cs is an induced
subgraph of G \ E(F) it follows that |E(C7)| > 4. This proves 3.3. O

3.4. Let (G, F,C) be a framework, and let e, f1, fo € E(G) be distinct. If e, f1 are twinned
then e, fo are not twinned.

Proof. Let C1,Cf € C be distinct with e, fi € E(C; NCY), and suppose that there exist
Cy, Ch € C, distinct, with e, fo € E(CoNCY). At least three of Cy, Cy, Co, C4 are distinct,
and they all contain e, and so by 3.1 all of Cy, C7, Cs, C} are paths and e is an end-edge of
each of them. By (F6) C; has end-edges e and f1, and fo ¢ E(C4). Since e, f; € E(Cy),
by 3.3 |[E(Cy)| > 4; but since fo ¢ E(C1), by (F6) |E(Cy)| < 3, a contradiction. This
proves 3.4. O

Let F,G, H be graphs, where F' is a subgraph of G, and let {,7 be homeomorphic
embeddings of F, G into H respectively. We say that n extends ¢ if n(e) = ((e) for all
e € E(F) and n(v) = ¢(v) for all v € V(F).

Let (G, F,C) be a framework, let nr be a homeomorphic embedding of F' into H, and
let J be the subgraph of F' obtained by deleting all vertices with degree one in F. Let
G’ be a cubic graph with J a subgraph of G’. A homeomorphic embedding 1 of G’ in H
is said to respect np if n extends the restriction of ng to J.

Again, let (G, F,C) be a framework, and let nr be a homeomorphic embedding of
F into H. Below is a number of conditions on the framework, H and ng. The goal of
the first half of this paper, reached in section 7, is to prove that, if these conditions are
satisfied, and there is a homeomorphic embedding of G in H extending ng, then the
natural drawing of G\ E(F') (where the members of C define the region-boundaries) can
be extended to one of H\ E(np(F')). The conditions are the following, called (E1)—(E7):

(E1) H is cubic and cyclically four-connected, and if (G, F,C) has any twinned edges,
then H is cyclically five-connected. Also, nr(e) has only one edge for every
e € E(F).
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Let e, f € E(G)\ E(F) be distinct. If there is a homeomorphic embedding of
G + (e, f) in H respecting np, then there exists C € C with e, f € E(C).

If e, f,g are distinct edges of E(G) such that no member of C contains all of e, f, g,

but one contains e, f, one contains e, g and one contains f, g, we call {e, f, g} a trinity.

A trinity is diverse if every two edges in it are diverse in G \ E(F).

(E3)

(E4)

For every diverse trinity {e, f,g} there is no homeomorphic embedding of G +
(e, f,g) in H extending np.

Let v have degree one in F', incident with g € E(F'). Let Cy, C3 be the two members
of C containing v. For all e; € E(C;) \ E(C2) and ez € E(C3) \ E(Cy) such
that e; and e; have no common end, there is no homeomorphic embedding of
G + (e1,9) + (e2,vy) in H respecting ng, where G + (e1, g) has new vertices z, y.

Let v have degree one in F', incident with ¢ € E(F). Let u be a neighbour of
vin G\ E(F) (and so u ¢ V(F), since F is an induced subgraph by 3.1). Let
Co be the (unique, by 3.1) member of C that contains u and not v. Let u have
neighbours v, wy, wy. Let G’ = G + (uwy, g) with new vertices x1,y1; and let G” =
G’ + (uwq, vyy) with new vertices x2,y2. Let i =1 or 2, and let e = ux;. Let f be
an edge of Cy not incident with w; or wg, and with no end adjacent to w;. (This is
vacuous unless |E(Cy)| > 6.) There is no homeomorphic embedding of G” + (e, f)
in H respecting ng.

Two edges of G\ E(F) are distant if they are diverse in G and not twinned. Let C' € C.
We shall speak of a sequence of vertices and/or edges of C' as being in order in C, with

the natural meaning (that is, if C' is a path, in order as C' is traversed from one end, and

if C'is a circuit, in order as C' is traversed from some starting point).

o If e, f,g,h are distinct edges of C, in order, and e, g are distant and so are f,h, we
call G + (e, g) + (f,h) a cross extension (of G, over C) of the first kind.
e If e,uv, f are distinct edges of C, and either e, u,v, f are in order, or f,e,u,v are

in order, and e, uv are distant and so are uv, f, we call G + (e, uv) + (uy, f) a cross

extension of the second kind, where G + (e, uv) has new vertices z, y.

o If uyvy and ugvo are distant edges of C' and uq,v1,us,vo are in order, we call G +

(urv1,ugvg) + (zv1,yv2) a cross extension of the third kind, where G + (ujv1, ugvs)

has new vertices z, y.

(E6)

(E7)

For each C' € C and every cross extension G’ of G over C of the first, second or
third kinds, there is no homeomorphic embedding of G’ in H extending 7p.

Let C € C be a path with |E(C)| = 5, with vertices wvg-- - - - vs in order, and let
vov1 and v4vs be twinned. Let G; = G + (vov1,v4v5) with new vertices 1, y1; let
G2 = Gy + (v1v2, y1v5) with new vertices zo, y2; and let G3 = Ga + (vox1, Y2us).
There is no homeomorphic embedding of G5 in H extending 7.
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In the proofs to come, when we need to apply (E1)—(ET7), it is often cumbersome to
indicate the full homeomorphic embedding involved, and we use some shortcuts. For
instance, when we apply (E2), with e, f,7 as in (E2), let g be the new edge of G+ (e, f),
and let H' be the graph obtained from n(G + (e, f)) by deleting the interior of the path
1(g); we normally say “by (E2) applied to H' with edges e, f”, and leave the reader to
figure out the appropriate homeomorphic embedding and the path 7(g).

Whenever we wish to apply our main theorem, we have to verify directly that
(E1)—(ET7) hold, and this can be a lot of case-checking. We have therefore tried to design
(E1)—(ET) to be as easily checked as possible consistent with implying the main result.
Nevertheless, there is still a great deal of case-checking, and we have omitted almost all
the details. We are making available in [5] both the case-checking and all the graphs of
the paper in computer-readable form.

4. Degenerate trinities

Now (E3) was a statement about diverse trinities; our first objective is to prove the
same statement about non-diverse trinities.

A trinity is a Y-trinity if some two edges in it (say e and f) have a common end u, the
third edge in it (g say) is not incident with u, and if i denotes the third edge incident with
u then there exist C1,Cy € C with e, g,h € E(Cy) and f, g, h € E(C3). (Consequently g, h
are twinned.) It is circuit-type or path-type depending whether g and h have a common
end or not.

4.1. Let (G, F,C) be a framework and let H,np satisfy (E1)—(ET). For every path-type
Y -trinity {e, f, g} there is no homeomorphic embedding of G+ (e, f,g) in H extending n.

Proof. Let u, h,Ci,Cs be as above. Since the twinned edges g, h have no common end,
it follows from (F6) that C; and Cy are both paths with end-edges g, h, and both are
vertex-disjoint from F. Let e = wwi, f = wws. Suppose that 1 is a homeomorphic
embedding of G into H extending g, and e, f, g are all n-attachments of some n-bridge B.

By 3.3, |[E(C1)| > 4, and so g is not incident with wq, and similarly not with ws. By
(F7), at least one of C7, C5 has length at most four, and so we may assume that the edges
of C1 in order are h, €, g1, g say. Let ' be obtained from 7 by rerouting g; along an n-path
in B from 7n(g) to n(e). Then 7' extends np, and ¢g; and f are both n’-attachments of
an n’-bridge. By (E2) with edges g1, f, there exists C € C with g1, f € E(C), and hence
with e € E(C) since C is an induced subgraph of G\ E(F). But then e,¢9; € E(CNCY),
and C; # C, so e, g1 are twinned edges, and yet their common end w; is not in V(F),
contrary to (F6). There is therefore no such 7. This proves 4.1. O

Let {e, f, g} be a circuit-type Y-trinity, where e = zw;, f = zws and g = vws, where
v, w3 # x and v, x are adjacent in G. Let h = vz, and let wy be the third neighbour of v.
Since g, h are twinned and share an end, 3.1 implies that vwy € E(F). Hence wy # w1, wa,
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w1 w2 w2 w3 w1 w3 w1 w2
x T2 x3 I I3 T T2
Y1 Y2 Y1 Y2 Y1 Y2
v x1 T4 T2 Ta xs3 ez
ws wWa w1 wa w2 W4 ws w4

Fig. 5. A circuit-type Y-trinity, and its three expansions.

since no member of C contains both v, wy. (See Fig. 5.) We wish to consider three rather
similar graphs G, G, G3 called expansions of the Y-trinity {e, f, g}. Let G’ be obtained
from G by deleting x and the edge vws, and adding five new vertices x1, z2, 3, Y1, y2 and
nine new edges r1w1, Tawz, xaws and x;y; for 1 <7 <3 and 1 < j < 2. Let Gy1,G2,G3
be obtained from G’ by deleting the edge yoa (where a is x1, 22 and x3 respectively),
and adding two new edges vys, va. Let z4 = v. (The reason we did not just replace v by
a new vertex wy, is that the edge vw, belongs to F and we want to preserve it.) Thus F'
is a subgraph of Gy, Gy and Gs. (See Fig. 5.)

4.2. Let (G, F,C) be a framework, and let H,np satisfy (E1)~(E7). Let {e, f,g} be a
circuit-type Y -trinity, and G1,G2,Gs ils three expansions. Then there is no home-
omorphic embedding of G1,Gs or Gs in H extending ng. In particular, there is no
homeomorphic embedding of G + {e, f,g} in H extending np.

Proof. Let v,z,wy,...,ws be as in Fig. 5 and let G, G2, G3 be labelled as in Fig. 5,
where e = zwy, f = zws, and g = vws.

Suppose that there is a homeomorphic embedding n of some Gy in H extending 7pg.
Let A be the subgraph of Gy, induced on {x1, 2,23, 24,91, Y2}, and B the subgraph of
Gk, induced on the complementary set of vertices. It follows that there is a homeomorphic
embedding ¢ of G in H such that:

o ( extends the restriction of n to B (and in particular, {(z) = n(z) for every vertex
or edge z of F different from x4, w424); and

o ((wyxy) is a path with one end n(w4) containing the one-edge path n(wszy4).

(To see this, take ¢ = 1.) Let Z; = {(z;w;) for i = 1,...,4. Let us choose k and ¢ such
that

(1) Z1 U Zy U Zs is minimal, and subject to that Zy is minimal.

Since H is cyclically five-connected by (E1) since there are twinned edges in G, there
are five disjoint paths Py, ..., Ps of H from ((A) to ¢((B) = n(B). Choose Py, ..., Ps to
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minimize the number of edges of P, U--- U Ps that do not belong to Z; U--- U Z4. It
follows that each P; has only its first vertex a; say in V(((A)), and only its last vertex b;
say in V(n(B)). Now one of ay,...,as is different from ((x1), ((z2), ((z3), {(x4), say as.
Let a5 € V(¢(h1)), where hy € E(A). From (1) (or the theory of augmenting paths
for network flows) it follows easily that {a1,...,a4} = {{(x1),...,({(z4)}, and we may
assume that a; = ((x;) (1 <i < 4).

Let p be the first vertex (that is, closest to as) in Ps that belongs to n(B)U Z; U Za U
Z3 U Zy (this exists since bs € V(n(B))), and let P = Psas, p].

(2) peVn(B)).

Subproof. Suppose not; then p € V(Z;) for some i. If i = 4, then by replacing Z4[¢(x4), p]
by P we obtain a homeomorphic embedding of some Gy (where possibly k' # k), contra-
dicting (1), since Z4 is replaced by a proper subpath and Z;, Zs, Z5 remain unchanged.
Sol<i<3.

If hq is incident with z;, then by rerouting h; along P we obtain a contradiction to (1).
Now suppose that h; = ab where «a is adjacent to x;. By rerouting ax; along P, we again
obtain a contradiction to (1).

Thus, neither end of h; is adjacent to z;. Consequently, hy # ysz4, and y; is not
incident with hq, since 1 < ¢ < 3. The only remaining possibility is that there is a
four-vertex path of Gy with vertices z;,a,b, z; in order, for some j # i, where {a,b} =
{y2, 24}, and hy = bz;. But then there is a homeomorphic embedding of some G/ in
H mapping G} to the graph obtained from ((G) U P by deleting the interior of {(z;a),
contradicting (1). This proves (2).

Hence p € V(n(hz)) for some hy € E(B). Now we examine the possibilities for hy
and hg. Since n(hz) has an interior vertex, it follows from the choice of ¢ that he ¢ E(F).
We recall that v € V(G)NV(F). Let C1, Cs € C be the two members of C that contain v,
and let Cy € C contain e and f. Thus Cy, Cy, Cs are circuits by (F6), and v is the only
vertex of F'in V(C; U Cs).

(3) ha belongs to at most one of Cy, C1, Cs.

Subproof. By 3.2, E(C1NC%) contains at most two edges, and since it contains both g, vz,
it follows that he ¢ E(Cy N Cq). Since C is a circuit and v € V(F'), (F5) implies that
x,wy ¢ V(F), and so neither end of zw; is in V(F'). Since zw; € E(CyUC1), 3.2 implies
that |[E(Co N Cy)| = 1 and so hy ¢ E(Co N Cy); and similarly he ¢ E(Cy N Cy). This
proves (3).

(4) k=1 or2.

Please cite this article in press as: N. Robertson et al., Excluded minors in cubic graphs, J. Combin.
Theory Ser. B (2019), https://doi.org/10.1016/j.jctb.2019.02.002




YJCTB:3220

N. Robertson et al. / Journal of Combinatorial Theory, Series B s (ssee) sso—see 15

Subproof. Suppose that k = 3. First, suppose that h; is incident with y;. By restricting
¢ to Gz \ y1 we obtain a homeomorphic embedding 1’ of G in H respecting np, such
that e, f, g and hg are all n’-attachments in F(G) \ E(F) of some 7/-bridge. Since C1, Cs
are the only members of C containing g, it follows from (E2), applied to #'(G) with
the edges g, ha, that hy € E(C; U Cs). Since C7 and Cj are the only members of C
containing e it follows from (E2) (with the edges e, hs) that hy € E(Cpo U Cy), and
similarly hy € E(Cy U Cq). Thus hg belongs to two of Cy, Cq, Cy, contrary to (3). This
proves that hy is not incident with y;.

Suppose next that hy is incident with ys. By restricting n to Gs \ y2 we obtain a
homeomorphic embedding 1’ of G in H respecting np such that e, f and hy are all
n’-attachments of some n’-bridge. So hy € E(Cy U Cy), by (E2) applied to '(G) with
edges e, ho, and similarly hy € E(Cy U Cs). By (3) it follows that hy € E(Cy), and
he ¢ E(Cy UCs). Let H' be the graph obtained from ((G3) by deleting the interiors
of ¢(z1y2) and ((z3y1). There is a homeomorphic embedding of G in H respecting nr,
mapping G onto H'; and from (E2) applied to H' with edges f,h2, we deduce that
hs € E(Cy U Cs), a contradiction. This proves that h; is not incident with ys.

Thus, hy = zzx4. From (E2) applied to the restriction of ¢ to Gz \ y; and the edges
g, ha, it follows that he € E(C; U Cy); and from the symmetry between Cy, Cy, we may
assume that hy € FE(Cy) without loss of generality. By 3.2, wy; ¢ V(C2), and it follows
that ho, e are disjoint edges of G. From (E4) applied to the restriction of ¢ to G\ y2, we
obtain from the paths ((z1y2) U ((24y2) and P that hy ¢ E(C5), a contradiction. This
proves (4).

From (4) and the symmetry between wy and wy (exchanging G; and Gs2) we may
therefore assume that £k = 1. There are three homeomorphic embeddings of G in H
respecting F' that we need:

o let H; be the graph obtained from ((G;) by deleting the interiors of ((z1x4) and

C(z3y1);
o let Hy be obtained from ((G1) by deleting the interiors of ((z124) and ((z2y2);
o let Hj3 be obtained from ((G1) by deleting the interiors of {(x3y;) and ((zays).

For ¢ = 1,2,3 there is a homeomorphic embedding 7; of G in H; respecting F', with
n:(2) = n(z) for each vertex and edge z of B.

(5) hg S E(OO U Cl)
Subproof. Suppose not. By (E2) applied to H; and the edges e, hg, it follows that

hi ?é T1Y1,23Y1,T1T4,T2Y1,

and so hy is incident with yo. By (E2) applied to H3 and the edges g, ho, we deduce that
he € E(Cs). Consequently e, hy are disjoint, since wy ¢ V(C2); but then this contradicts
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(E4) applied to Hs and the paths ((z124) and P (extended by a subpath of {(xays) if
necessary).

(6) hy € E(Co U 02)
Subproof. Suppose not. By (E2) applied to Hs and the edges f, hs, it follows that

hi # x1y1, T2y1, T3Y1, T2Yo2,

and so hj is one of x4, T4Yy2, x3y2. By (5), he € E(C1), and so f, he are disjoint, since
wg ¢ V(C1). But this contradicts (E4) applied to Hs and the paths ((x2,y2) and P
(extended by a subpath of ((z124) if necessary).

From (3) and (6), it follows that he € E(Cy), and hy ¢ E(C1UC5). By (E2) applied to
Hj and the edges g, ha, we deduce that hy # x3y1, 3Y2, T2Y2, T4y2; and by (E2) applied
to Hs and the edges vz, ha, we deduce that hy # x124. Thus hq is one of z1y1, T2y1.

We recall that 7y is a homeomorphic embedding of G in Hs. Suppose that ho is
incident with wi. Let 1’ be obtained from 79 by rerouting e along P; then the paths
C(zay2) and ((z1w1) U (x124) violate (E4). Similarly, if hs is incident with we, let i’ be
obtained from 79 by rerouting f along P; then the paths ((z124) and ((22y2) U {(x2ws)
violate (E4).

Thus wy,wy are not incident with ho. Next suppose that hy = x1y; and one end a
say of ho is adjacent to wy. Let 1’ be obtained from 72 by rerouting aw; along P; then
the paths ((x124),((z2y2) violate (E4). Next suppose that hy = z2y; and one end a of
hsy is adjacent to ws. Let 1/ be obtained from 7, by rerouting aws along P; then the
paths ((x124), ((x2ys2) violate (E4). In summary, then, we have shown that hy € E(Cp),
incident with neither of w1, ws, and for ¢ = 1, 2, if h; = x;y; then no end of hs is adjacent
to w;. But this contradicts (E5).

There is therefore no such 7, and the first statement of the theorem holds. The second
statement of the theorem follows from the first, since G + (e, f, g) is isomorphic to G3
(and the isomorphism fixes F'). This proves 4.2. O

4.3. Let (G, F,C) be a framework, and let H,np satisfy (E1)—(ET). Let {e1,ea,e3} be a
trinity such that no vertex is incident with all of e1, ea, e3. Then there is no homeomorphic
embedding of G + (e1, ez, e3) in H extending np.

Proof. For i = 1,2, 3 there exists C; € C with {e1, ea,e3}\ {e;} C E(C;) and e; ¢ E(C;),
since {e1, €2, e3} is a trinity. Suppose first that ey, e; have a common end v say; and let
h be the third edge incident with v. By hypothesis h # es. If v € V(F') then since v has
degree two in C5, Cj is a circuit, and hence by (F4), e; is not an end-edge of Cy; and if
v ¢ V(F) then by (F3) either e; is not an end-edge of Cy, or ey is not an end-edge of
C1, and we may assume the first. Hence in either case e; is not an end-edge of Cs. Since
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e1 € E(Cs) and es ¢ E(Cy), it follows that h € E(Cs). By (F3), since eg € E(C1 N Cy),
it follows that h € E(Cy), since v not in V(F) by (F5); and so {e1, ea, e3} is a Y-trinity,
contrary to 4.1 and 4.2.

Thus, no two of e, es, e3 have a common end. Suppose that there is a homeomorphic
embedding of G + (e1,ea,e3) in H extending np. Then there is a homeomorphic em-
bedding of G in H extending nr, such that eq, eq, es are all n-attachments of the same
n-bridge B say. By (E3), {e1, e2,e3} is not diverse in G \ E(F'), so we may assume that
e1 = arby and ea = agba, where aq,as are adjacent in G\ E(F). Let ajas = eg.

Since ej,e2 € E(C5) and C3 is an induced subgraph of G \ E(F'), it follows that
eo € E(Cs5). Let a; have neighbours by, as, ¢; and as have neighbours ag, ba, ¢o in G.

Since eq is not an end-edge of Cs, it is not an end-edge of Cy or Cs, by (F4). Since
eo and eg are disjoint, and es € E(Cy N Cy), it follows from (F6) that ey ¢ E(C1 N Cy);
we assume that ey ¢ F(C7) without loss of generality. Suppose that ey € E(C3). Since
eo,e1 € E(Cy N Cs), it follows from (F6) that Cy, Cs are both circuits, a1 € V(F) and
aic1 € E(F). Hence azcy € E(C3) (since ez ¢ E(Cy)). Moreover by (F3), az is incident
with an edge in C; N Csy, since E(Cy N Cy) # 0 and ag € V(C; N Cy). Since ey ¢ E(CY)
and es ¢ F(Cy) it follows that asce € E(Ch). Since E(Cy N Cq) contains eg and asce and
C5 is a circuit, it follows from (F6) that c¢o € V(F), and so a1,cz € V(Cy N F) contrary
to (F5). This proves that eq ¢ F(Cs).

If ay € V(F) then ayc; ¢ E(Cs) by (F5), and so e; is an end-edge of Cs. By (F4),
(3 is a path, and a; is an internal vertex of it, contrary to (F5). Hence a; ¢ V(F), and
similarly as ¢ V(F).

Now eq, €9, ez are all n-attachments of B. Let P be an n-path in B with ends in 7(eq)
and n(ez), and let i’ be obtained by rerouting ey along P. Then 7’ is a homeomorphic
embedding of G in H extending np. Since e3 is an n-attachment of B, it follows that
eo and ez are n’-attachments of some 7r’-bridge. By (E2), applied to #'(G) with edges
€o, €3, there exists Cy € C with eg, e3 € E(Cy). Since a; ¢ V(F) it follows from (F6) that
e1 ¢ E(Cy). But from (F4) applied to C5 and Cy, eg is not an end-edge of Cy. By (F3)
applied to Cy and C4, a1¢1 € E(Co N Cy). Since E(Cy N C4) contains both ajc; and es,
it follows that es,aic; are twinned, and similarly so are es, ascs, contrary to 3.4. Thus
there is no such 7. This proves 4.3. O

Next we need the following lemma.

4.4. Let n be a homeomorphic embedding of a cubic graph G in a cyclically four-connected
cubic graph H. Let v € V(G), incident with edges ey, ea, e3, and suppose that ey, ez, e3
are n-attachments of some n-bridge. Then there is a homeomorphic embedding ' of G
in H, such that n'(u) = n(u) for all u € V(G) \ {v}, and n'(e) = n(e) for all e €
E(G) \ {e1,e2,e3}, and such that for some edge ey # e1,ea,e3 of G,e1,ea,e3,e4 are
1’ -attachments of some n'-bridge.
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Proof. For 1 <i < 3, let e; have ends v and v;. Let G’ = G+(ey, ea, e3), with new vertices
21, %2, %3, w. By hypothesis, there is a homeomorphic embedding 1’ of G’ in H such that
7' (u) = n(u) for all uw € V(G) \ {v}, and 7'(e) = n(e) for all e € E(G) \ {e1,e2,e3}.
Choose 1’ such that

' (v1z1) Un' (vaxa) Un' (v3z3)

is minimal. Since H is cyclically four-connected, there is an 7’-path with one end in

UV (va)) UV (n' (we:) : 1 < i < 3)

and the other end, ¢, in

V(n(G\v) Un'(viz1) Un'(vaze) Un' (v3e3)).

From the choice of 7’ it follows that ¢ belongs to none of n'(viz1), n'(vexs), n'(vsxs),
and so it belongs to 7'(es) = n(e4) for some e4 € E(G \ v). This proves 4.4. O

4.5. Let (G, F,C) be a framework, and let H,np satisfy (E1)-(ET). Let {e1,ea,e3} be a
trinity. There is no homeomorphic embedding of G + (e1, ea,e3) in H extending ng.

Proof. By 4.3 we may assume that v € V(G) is incident with e;, ey and es. Suppose
7 is a homeomorphic embedding of G + (e1, ea,e3) in H extending np. By 4.4 there is
an edge eq # e1,eq,e3 of G such that there are homeomorphic embeddings of each of
G+ (ea,e3,e4), G+ (e1,e3,e4), G+ (€1,€2,e4) in H extending np. It follows that ey ¢
E(F). Since no vertex is incident with all of eq, e3, e4, it follows from 4.3 that {es, e3,e4}
is not a trinity; and yet (E2), applied to n(G) with edges each pair of eg, e3, ¢4, implies
that every two of eg,e3,e4 are contained in a member of C. Consequently there exists
Cy € C with e, e3,e4 € E(Cy). Similarly there exist Cy,C3 € C with e1,e3,e4 € E(Cy)
and ej,es,eq € E(C3). Since {e1,ez,e3} is a trinity, e; ¢ E(C;)(1 < i < 3), and so
C4,C5, C5 are all distinct.

Now if e4 is not the end-edge of any path in C, then since Cy N C3 contains e; and ey
it follows from (F6) that e; and e4 have a common end, and similarly so do e; and e4 for
i =1,2,3, which is impossible. Hence e4 is an end-edge of some path in C. By (F4) Cy, Cs
and Cj are all paths. Since e3,eq € E(Cy N Cy), Cy has end-edges ez and ey4; and since
ea,eq € E(C1 N C3), Cq has end-edges ey and ey, a contradiction. This proves 4.5. O

4.6. Let (G, F,C) be a framework, and let H,np satisfy (E1)-(ET). Let n be a homeo-
morphic embedding of G in H extending ngp. For every n-bridge B there exists C € C
such that e € E(C) for every n-attachment e of B.

Proof. Since 7 extends np, it follows that Z C E(G) \ E(F'), where Z is the set of all
n-attachments of B. Suppose, for a contradiction, that there is no C' € C with Z C E(C),
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and choose X C Z minimal such that there is no C € C with X C E(C). By (F2),
|X| > 2; by (E2), applied to n(G) with edges the members of X, |X| # 2; and by 4.5,
|X| # 3. Hence |X| > 4. Let X = {eq,...,er} say, where k > 4. For each i € {1,...,k},
there exists C' € C including X \ {e;}, from the minimality of X. All these members
of C are different, and so every two members of X are twinned, contrary to 3.4. This
proves 4.6. 0O

5. Crossings on a region

Let n extend np, and let B be an n-bridge. Since 71 extends np, it follows that no
n-attachment of B is in E(F), and so by 4.6, there exists C' € C such that every
n-attachment of B belongs to C. If C' is unique, we say that B sits on C.

Our objective in this section is to show that if 1 extends np, then for every C' € C
all the bridges that sit on C' can be simultaneously drawn within the “region” that C
bounds. There may be some bridges that sit on no member of C, but we worry about
them later.

Let C' be a path or circuit in a graph J. We say paths P, Q of J cross with respect
to C, if P,Q are disjoint, and P has distinct ends p1,p2 € V(C), and @ has distinct
ends q1,¢2 € V(C), and no other vertex of P or @ belongs to C, and these ends can
be numbered such that either pi,q1,p2, g2 are in order in C, or ¢;,p1, g2, p2 are in order
in C. We say that J is C-planar if J can be drawn (without crossings) in a closed disc
A such that every vertex and edge of C is drawn in the boundary of A. We shall prove:

5.1. Let (G, F,C) be a framework, and let H, ng satisfy (E1)~(ET). Let nj be a homeo-
morphic embedding of G in H that extends ng, let C € C, and let A be a set of n-bridges
that sit on C. Let J =n(C)UU(B : B € A). Then J is n(C)-planar.

5.1 is a consequence of the following.

5.2. Let (G, F,C) be a framework, and let H,np satisfy (E1)-(ET7). Let n be a homeo-
morphic embedding of G in H that extends ng, and let C € C. Let P, Q be n-paths that
cross with respect to n(C). Then for one of P, Q, the n-bridge that contains it does not
sit on C.

Proof of 5.1, assuming 5.2. Suppose that XY C V(J) with X UY = V(J) and
V(C) C Y, such that |X \ Y| > 2 and no edge of J has one end in X \ Y and the
other in Y\ X. We claim that |[X NY| > 4. For let Y/ = Y U(V(H)\ X); then no edge of
H has one end in X \ Y’ and the other in Y\ X, and X UY’' =V (H), and | X\ Y| > 2,
and so X and Y’ both includes the vertex set of a circuit of H. Since H is cyclically
four-connected, it follows that |[X NY’| > 4, and so [X NY]| > 4 as claimed.

From this and theorems 2.3 and 2.4 of [2], it follows, assuming for a contradiction that
J is not n(C)-planar, that there are n-paths P, @ in J that cross with respect to n(C).
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By 5.2 the n-bridge containing one of P, Q) does not sit on C' and hence does not belong
to A, a contradiction. This proves 5.1. O

Proof of 5.2. We remark, first, that

(1) If B is an n-bridge that sits on C, and e € E(C) is an n-attachment of B, then there
is an n-attachment g € E(C) of B such that g # e and g is not twinned with e.

Subproof. By 3.1 it follows that B has at least two n-attachments. Suppose that every
n-attachment different from e is twinned with e; then by 3.4 there is only one other, say f,
and e, f are twinned, and therefore there exists C’ # C' in C containing all n-attachments
of B, contradicting that B sits on C. This proves (1).

For e, f € E(C), let

3 ife=f,
ele,f)=4¢ 2 ife# f, ande, f are twinned,
0 ife# f, ande, f are not twinned.

Let P have ends p1,p2, and let @ have ends ¢i1,qo; and let By, By be the n-bridges
containing P, Q) respectively. Let p; € V(n(e;)) and ¢; € V(n(f;)) for ¢ = 1,2, and let
N = €(e1,ea2) + €(f1, f2). We prove by induction on N that one of By, Bs does not sit
on C. We assume they both sit on C, for a contradiction.

(2) FEither ey, es are different and not twinned, or f1, fo are different and not twinned.

Subproof. Suppose that e; and ey are equal or twinned, and so are f1, fo. We claim that

{e1,e2, f1, f2}] < 2,

and if this set has two members then they are twinned. For suppose that e; = e5. Since
P, Q cross, it follows that one of fi, fo equals ey, say fi = e;; and since either fo = f;
or fo is twinned with f;, the claim follows. So we may assume that eq, es are twinned,
and similarly so are fi, fo. But by (F5) and (F6), only one pair of edges of C is twinned,
and so again the claim holds.

Since Bj sits on C, by (1) it has an n-attachment g # e; that is not twinned with es;
and so g # e1, ea, f1, fo. Take a minimal path R in By between V(P U Q) and V(n(g)),
and let its end 7 in P U Q be a vertex of S, say, where {S,T} = {P,Q}. Let S’ be a
path consisting of the union of R and a subpath of S from 7 to an appropriate end of 5,
chosen such that S’,T cross. This contradicts the inductive hypothesis on N, and so
proves (2).

(3) e1 # ex and f1 # fo.
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Subproof. Suppose that e; = eq, say. Since P, @ cross, one of fi, fo equals e, say f1 =
e1 = eg; and by (2), fo # f1, and f1, fo are not twinned. By (1), By has an n-attachment
g € E(C) not twinned with e;. Hence there is a minimal path R of B; from V(P) to
V(Q) Un(g). If it meets n(g), we contradict the inductive hypothesis as before, so we
assume R has one end in V(P) and the other in V(Q).

Let fi = wv, and let G' = G + (f1, f2) with new vertices z,y. By adding @ to n(G)
we see that there is a homeomorphic embedding " of G’ in H extending nz such that
uz,vx and zy are all n”-attachments of some n”-bridge (including P U R). From 4.4,
we may choose 7" extending nr such that uz,vz,ry and some fourth edge g are all
n’-attachments of some 7"-bridge. In other words, we may choose a homeomorphic
embedding 7’ of G in H extending np such that there exist

o an n'-path P’ with ends pf,ph in V(' (f1));

e an n'-path Q' with ends ¢}, ¢5 disjoint from P’, where ¢ lies in n/(f1) between p)
and 7, and ¢} € V(7' (£2));

e a path R’ with one end in P’, the other end in Q’, and with no other vertex or edge
inn(G)UP UQ’, and

o a path S’ with one end in P’ U R/, the other end in 7'(g) where g # f1, and with no
other vertex or edge in '(G)UP ' UQ UR'.

Let B’ be the r/-bridge containing P’ U Q' U R’ U S’. By 4.6, there exists C’ € C such
that all n/-attachments of B’ are in F(C’). Now f; # fo and they are not twinned, so
C’' = C, and hence B’ sits on C. Let T be an n/-path in P/ U R’ U S” with one end in
7'(f1) and the other in 7'(g), chosen such that @', T cross with respect to 7'(C). Then
both @', T are contained in B’, and yet B’ sits on C, and €(f1,9) < €(f1, f1), contrary
to the inductive hypothesis. This proves (3).

(4) eq, e are not twinned, and f1, fo are not twinned.

Subproof. Suppose that f1, fo are twinned, say. Let f; = viz1 and fo = vex9 where either
C' is a circuit and v; = vy € V(F), or C is a path with ends vy, ve. By (1), there is an
n-attachment of By different from f1, fo; and so there is a minimal n-path R in Bs from
V(Q) to V(P)UV(n(C\ {f1, f2})). From the inductive hypothesis, R does not meet
n(C\ {f1, f2}), and so it meets P. Let R have ends 1 € V(P) and ry € V(Q), and for
i=1,2,let P, = Plp;,r1] and Q; = Qlq;,72]-

Now for i = 1,2, z; ¢ V(F) by (F5) (since if C is a circuit then v; € V(F) by (F6)).
For i = 1,2, let g; be the edge of G not in C; incident with z;, and let h; be the edge of
C different from f; that is incident with x;.

Now since either C' is a path and f;, fo are end-edges of C, or C is a circuit and f1, f2
have a common end, and since P, (@ cross, we may assume that e; = f1, and p; lies in
n(f1) between ¢; and n(vy). It follows that es # f1, fo by (2).
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Suppose first that either es = hy or x; is adjacent to an end of e;. By rerouting
hi along P, we obtain a homeomorphic embedding 1’ of G in H extending ng, such
that g1, h1 and fy are all n’-attachments of some n/-bridge (containing ) U R). Since no
member of C contains all of g;, h; and fp, this contradicts 4.6. Hence e; # hy and x; is
not adjacent to any end of es.

By (F6), |[V(C)| < 6, so either ez = hg, or C is a circuit and z9 is adjacent to an end
of e. Suppose first that C' is a path; so ea = hy. By rerouting hs along P, U RU Q2 and
adding P; and @)1, we obtain a homeomorphic embedding (in H, extending 7y ) of a cross
extension of G over C of the third kind, contrary to (E6). Thus C is a circuit, and so
vy € V(F), and therefore { f1, g2, ha} is a circuit-type Y-trinity. But then by rerouting hs
along P, U RU Q2 and adding P; and Q)1 we obtain a homeomorphic embedding (in H,
extending ng) of an expansion of this Y-trinity of the first or second type, contrary
to 4.2. This proves (4).

(5) e1,ea have no common end, and f1, fo have no common end.

Subproof. Suppose that ej, es have a common end, v say. Since ej, es are not twinned
by (4), it follows from 3.1 that v has degree three in G\ E(F); and so by (F5), v ¢ V(F).
Since P, Q cross, we may assume that f; = e; and p1, q1,7(v) are in order in n(ey). Let
fse1,e2 be the three edges of G incident with v. Let 1’ be obtained from 7 by rerouting
e1 along P. Then 71’ is a homeomorphic embedding of G in H extending ng, and f, fi
and fo are n'-attachments in E(G)\ E(F) of the n’-bridge containing Q. From 4.6, there
exists C' € C with f, f1, fo € E(C"). Since f ¢ E(C) it follows that C’ # C, and so f1, fo
are twinned, contrary to (4). This proves (5).

Thus ej, e; have no common end, and nor do fi, fo. By (E6), we may assume that
one end of ey is adjacent to one end of es. Since P, (Q cross, we may therefore assume
that for some edge g = uv of C, u is an end of e, v is an end of ey, f1 € {e1,g}, and if
f1 = e then py,q1,n(u) are in order in n(ey). Let u be incident with g, e, g; and v with
9,€2,92.

Suppose that u ¢ V(F). Let  be the homeomorphic embedding obtained from n by
rerouting ¢ along P. By (E2), applied to #'(G) with edges fs,¢1, it follows that there
exists C1 € C with fa,91 € E(Cy). By (F3), C; contains one of e1,g, say h. Hence
h, fo are twinned; and since f1, fo are not twinned, it follows that {e;,g} = {f1,h}. If
h = g, then f; = ep; and since ¢ is not an end-edge of C, (F6) implies that fo = es
and go € E(F). But then {e1, g1, e2} is a Y-type trinity, and adding P and @ provides a
homeomorphic embedding (in H, extending 1) of an expansion of this trinity, contrary
to 4.2. Thus h # g, and so h = e; and f; = g, and fy # e1,g,es. If C is a circuit,
(F6) implies that the end of e; different from u belongs to V(F); but then by (F5),
v ¢ V(F), and the symmetry between u and v implies that the end of ey different from
v belongs to V(F), contrary to (F5). If C is a path, then (F6) implies that e; is an
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end-edge of C, and v ¢ V(F'); but then the symmetry between u,v implies that eq is
also an end-edge of C, a contradiction.

This proves that u € V(F). Consequently v ¢ V(F), and it follows (by exchanging
P,Q, and exchanging ej, es) that fo # ey. Since C contains ey, g, it follows that u is
not an end of C, and so by (F5), g1 € E(F). By (F2) there exists C2 € C containing
g, g2, since v ¢ V(F). Since g1 € E(F), we deduce that e; € E(C2). Since f1, f2 are not
twinned, it follows that fo ¢ F(C2). Thus g2 € E(C3)\E(C), and f2 € E(C)\E(C3), and
f2, g2 have no common end, since fo # eo. But rerouting g along P gives a homeomorphic
embedding of G in H extending np, and adding 7(g) and @ to it contradicts (E4). This
proves 5.2. O

6. The bridges between twins

To apply these results about frameworks, we have to choose a homeomorphic embed-
ding n of G in H, and there is some freedom in how we do so. If we choose it carefully we
can make several problems disappear simultaneously. The most important consideration
is to ensure that each 7-bridge has at least two n-attachments, but that is rather easy.
With more care, we can also discourage 7-bridges from having n-attachments in certain
difficult places. To do so, we proceed as follows.

Let (G, F,C) be a framework, and let 7 be a homeomorphic embedding of G in H
extending np, as usual. An edge e of G is a twin if there exists f such that e, f are
twinned. (Thus, stating that “e, f are twins” does not imply that they are twinned with
each other.) An edge e € E(G) \ E(F) is

e central if it does not belong to any path in C and is not a twin;
e peripheral if e is an internal edge of some path in C;
e critical if either e is a twin or e is an end-edge of some path in C.

By (F4) and (F6), no edge is both peripheral and critical, so every edge of E(G)\ E(F)
is of exactly one of these three kinds.

An edge f € E(H) is said to n-attach to e € E(G) if there is a path P of H with no
internal vertex in V(n(G)) with f € E(P) and with one end a vertex of n(e). (Thus f
n-attaches to e if and only if either f € E(n(e)) or f belongs to an n-bridge for which e
is an n-attachment.) Let

o L1(n) be the set of edges in E(H) that n-attach to some central edge of G;

e Ls(n) be the set of edges in F(H) that n-attach to an edge of G which is either
peripheral or central;

o L3(n) be the set of edges in E(H) that attach to two edges of G that are not twinned
(and possibly to more edges of G); and

o L4(n) be the set of edges in F(H) that attach to at least two edges of G.
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We say that 7 is optimal if it is chosen (among all homeometric embeddings of G in H ex-
tending np) with the four-tuple of cardinalities of these sets lexicographically maximum;
that is, for every homeomorphic embedding 7’ extending np, there exists j € {1,...,5}
such that |L;(n)| = |L;(n')| for 1 <i < j, and |L;(n)| > |L;(n’)| if j < 4. In this section
we study the properties of optimal embeddings.

6.1. Let n be an optimal homeomorphic embedding of G in H extending np. Then every
n-bridge has at least two n-attachments.

Proof. Let ¢ € E(G) \ E(F). Let us say an n-bridge is singular if e is its only
n-attachment, and nonsingular otherwise. Suppose that there is a singular n-bridge. Let
e =uv, let p1,...,p, be the set of vertices of n(e) that belong to nonsingular n-bridges,
and let pg = n(u) and p,41 = n(v), numbered such that pg,p1,...,pr11 are in order
in n(e). For 0 < i < r let P, = n(e)[p:, pi+1]- Choose j with 0 < j < t such that some
singular n-bridge contains a vertex of P; (from the interior of P;, since H is cubic). Since
H is three-connected, there is an n-bridge B containing a vertex b of the interior of P;
and containing a vertex a of n(G) not in P;. From the definition of p1,...,p,, it follows
that B is singular. Hence there exists ¢ # j with 0 < ¢ < r such that a belongs to P;, and
from the symmetry we may assume that ¢ < j. Let P be an n-path in B between a, b.
Let 1’ be obtained from n by rerouting e along P. For every edge f of E(H), every
n-attachment of f is also an n/-attachment. Consequently L;(n) C L;(n’) for 1 <i < 4.
But the edge of P; incident with p; belongs to L4(n’) \ L4(n), contrary to the optimality
of n. This proves 6.1. O

6.2. Let  be an optimal homeomorphic embedding of G in H extending ng. Let C € C
be a path, and suppose that B is an n-bridge and all its n-attachments are edges of C.
Then its n-attachments are pairwise diverse in C.

Proof. We claim first

(1) If e, f are edges of C with a common end v, and g is the third edge of G incident
with v, then v ¢ V(F), and either g is central, or g is peripheral and one of e, f is
an end-edge of C.

Subproof. Certainly v ¢ V(F) by (F5), since C is a path. If g does not belong to any
path of C then it is not a twin by (F6), and so it is central. Thus we may assume that
there is a path C’ € C containing g. By (F4), C’ contains one of e, f, say e, and e is
an end-edge of both C,C’. Now (F1) implies that g is not an end-edge of C’, and so
by (F6), g is not a twin, and by (F4) g is not an end-edge of any path in C, that is, g is
peripheral. This proves (1).

(2) No two n-attachments of B in C have a common end.
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Subproof. Suppose that e, f are n-attachments of B, and they have a common end v. Let
g be the third edge of G incident with v. Choose a path P in B from a vertex a of n(e)
to a vertex b of n(f). Let n’ be obtained from 7 by rerouting f along P. Then 7’ is a
homeomorphic embedding of G in H extending nr (note that g ¢ E(F) since v ¢ V(F)
by (1)). Moreover, since no n-attachment of B is central, it follows that Li(n) C Li(n’),
and therefore equality holds. In particular, the edge of 7(e) incident with n(v) therefore
does not belong to L1 (n'), and so g is not central. We deduce from (1) that g is peripheral
and one of e, f is an end-edge of C', and from the symmetry we may assume that e is an
end-edge of C. Thus f is peripheral, and it follows that La(n) C La(n'), and therefore
equality holds. But the edge of n(e) incident with n(v) belongs to La(n'), and does not
belong to La(n) since e is an end-edge of C, a contradiction. This proves (2).

To complete the proof, suppose that some two n-attachments e, f of B in C' are not
diverse in C. Then by (2), there are consecutive vertices u, v, w, x of C, such that e = uv
and f = wz. Let the third edge of G at v be g and at w be h. Choose a path P in B
from a vertex a of n(e) to a vertex b of n(f). Let n be obtained from 7 by rerouting
vw along P. Then 7’ is a homeomorphic embedding of G in H extending ng. Since no
n-attachment of B is central, it follows that L1 (n) C Li(n’), and therefore equality holds.
In particular, the edge of n(e) incident with n(v) does not belong to Li(n’), and so g is
not central. From (1), it follows that g is peripheral and e is an end-edge of C. Similarly
h is peripheral and f is an end-edge of C. Hence Lo(n) C La(7n'), and therefore equality
holds. But the edge of n(e) incident with n(v) belongs to La(n’) and not to La(n) since
e is an end-edge of C', a contradiction. This proves 6.2. O

If C € C, we denote by A(C) the set of all n-bridges that sit on C. If e, f are twinned
edges of G, we denote by Al(e, f) the set of all n-bridges that have no attachments different
from e, f. Thus, if 7 is optimal, then by 6.1 every bridge belongs to A(C') for some C or to
Ale, f) for some e, f, and to only one such set (except that A(e, f) = A(f,e)). The next
four theorems are all about a pair of twinned edges e, f, and it is convenient first to set
up some notation. Thus, let e, f be twinned edges of G. Let there be r vertices p1,...,p,
of n(e) that belong to an n-bridge with an n-attachment different from e and f, and let
n(e) have ends pg and p,41, numbered such that pyg,...,p,+1 are in order in 7(e). For
0<i<r, let P, =n(e)pipit1]- Let qo,.-.,qs+1 € V(n(f)) and Qo,...,Qs be defined

similarly.

6.3. Let n be an optimal homeomorphic embedding of G in H extending ng, and let e, f
be twinned edges of G. With notation as above, for every B € Ale, f) there exist i and
Jwith0<i<rand0<j<s such that BNn(e) C P, and BNn(f) C Q.

Proof. Suppose that some member B of A(e, f) meets both P, and P;, where 0 < i <
j < r. Let P be an n-path in B between some a € V(F;) and some b € V(P;). Let
1’ be obtained from 7 by rerouting e along P. Since no n-attachment of B is central
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or peripheral, and no edge of B is in L3(n), it follows that L;(n) C L;(n) for i =
1,2,3, and so equality holds in all three. Let B’ be an n-bridge containing p;; then
B’ has an n-attachment different from e, f, say g. Consequently e, g are not twinned,
and in particular, the edge of P; incident with p; is in L3(n’), a contradiction. This
proves 6.3. O

6.4. Let n be an optimal homeomorphic embedding of G in H extending ng, and let e, f
be twinned edges of G. Suppose that e, f have a common end v, and let e = uv and
f=wvw. Then A(e, f) can be numbered as {Bi,..., By}, such that

e B; has only one edge c;d; for1 <i<k;

o n(u),cy,...,ck,n) are in order in n(e), and n(w),dy,...,dg,n(v) are in order in
n(f); and

o forl <i<k, oneof n(e)ci,ciy1], n(f)[di,dit1] contains a vertex of some n-bridge
not in Ale, f).

Proof. Using the notation established earlier, we may assume that n(v) = po = qo.

(1) Suppose that M, N are disjoint n-paths, from m to m’ and from n to n’ respectively,
such that
o n(u),m,n,n(),m n nw) are in order in the path n(e) Un(f); and
e no edge of M UN belongs to La(n).

Then there exist i,7 with 0 < i <71 and 0 < j < s such that m,n belong to P; and m’,n’
belong to Q;.

Subproof. Suppose not; then from the symmetry, we may assume that m is in P; and n
is in P, where 0 < h < i <r. Let

1'(e) = n(e)[n(w),m] U M Un(f)[m’,n(v)

and

' (f) = n(e)n(v),n] UN Un(f)[n', n(w)].

Then 7’ is a homeomorphic embedding of G in H extending nr. Since no edge of the
n-bridges containing M or N belongs to Li(n) or to La(n), and e, f are critical, it follows
that L;(n) C L;(n') for i = 1,2, and so equality holds in both. Let B be the 7-bridge
containing p;. Then there is an n-attachment g # e, f of B. Choose C' € C containing e, g
(this is possible by (E2) applied to n(G) with edges e, g). From (F6), C is a circuit, and
so ¢ is not critical from (F5). Hence ¢ is either central or peripheral, and so the edges of
n(e) incident with p; belongs to La(n'), a contradiction. This proves (1).
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To complete the proof, for 0 < i <rand 0 < j < slet A;; be the set of all B € A(e, f)
with BNn(e) € P; and BNn(f) C Q. From (1), A(e, f) = |J A;j. For each ¢, j let J;; be
the union of all members of A;;. Suppose that some |E(J;;)| > 2. Since H is cyclically
five-connected by (E1), we may assume (by exchanging e and f if necessary) that there
are by, ', by in P;, in order, such that by and ba both belong to J;;, and b" belongs to some
n-bridge B’ ¢ A;;. Since V' # p1,...,p, it follows that B’ € A(e, f), and so B’ € A,
for some j’ # j. In particular, J;; and J;;» are disjoint. By 6.1 it follows that there is a
path M in J;; and a path N in J;;s violating (1) (possibly with M, N exchanged). This
proves that each J;; has at most one edge, and in particular from 6.3, each 7-bridge in
A(e, f) has only one edge. The result follows from (2) applied to the paths of length one
formed by these n-bridges. This proves 6.4. O

6.5. Let n be an optimal homeomorphic embedding of G in H extending ng, and let e, f
be twinned edges of G. Suppose that e, f are disjoint, and there is no path C € C of length
five with end-edges e, f. Then

o there is at most one n-bridge in Ale, f), and any such n-bridge has only one edge;
o no other n-bridge contains any vertex of n(e) Un(f); and
o A(C) =0 for every member of C containing e or f.

Proof. Now there is a path in C with end-edges e, f, and so every member C of C
containing e or f is a path, by (F4). Moreover, if e, f € E(C) then C has length at most
four by hypothesis and (F6), and C has end-edges e, f, and therefore every member of
A(C) has some edge of C different from e, f as an n-attachment. By 6.2, this implies that
A(C) = (. On the other hand, if C' € C contains just one of e, f then C has length three
by (F6), and again A(C) = 0 by 6.2. This proves the third assertion. Consequently,
r = s = 0 (in our previous notation). Since H is cyclically five-connected by (E1),
it follows that the union of all n-bridges in A(e, f) and the paths n(e), n(f) contains no
circuit; and so there is at most one n-bridge in A(e, f) and any such n-bridge has only
one edge. This proves 6.5. O

6.6. Let n be an optimal homeomorphic embedding of G in H extending ng, and let e, f
be twinned edges of G. Suppose that e, f are disjoint, and there exists C € C of length
five with end-edges e, f. Then:

o A(C") is empty for every C' # C in C containing e or f;

e the vertices of C' can be numbered in order as vg-vi---- - vs, such that for each B €
A(C), its only n-attachments are vive and vavs (and we may assume that e = vovy
and f = vqvs, possibly after exchanging e, f);

o Ale, f) can be numbered as {B, ..., By} such that B; has exactly one edge ¢;d; for
1<i <k, where ¢; € V(n(e)) and d; € V(n(f)); and
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o n(vg),c1y...,ck,n(v1) are in order in n(e), and n(vy),dy,...,dk,n(vs) are in order
in1(f)-

Proof. Let C' € C of length five with end-edges e, f.
(1) The first assertion of the theorem is true.

Subproof. By (F7), every other path in C containing e or f has length at most four. If
C’ € C contains both e, f, then A(C’) = @) by 6.2, since each member of A(C”’) has an
n-attachment in C different from e, f; and if C’ € C contains just one of e, f, then it has
length three by (F6), and again A(C") = §) by 6.2. This proves (1).

(2) The second assertion is true.

Subproof. Let C' have vertices vg-vy-- - - v in order, where e = vgv; and f = wvyvs. Let
B € A(C). By 6.2, one of e, f is an n-attachment of B, say f; and since B has two
n-attachments in C' and they are diverse in C' by 6.2, and e, f are twinned, it follows
that the only other n-attachment of B is vivy. Let B’ € A(C) with B’ # B; we claim
that v1ve and v4vs are the n-attachments of B’. For if not, then by the previous argument
vouy and vsvy are n-attachments of B’, contrary to (E6). This proves (2).

In our earlier notation, we may assume that po = n(vg) and go = 7(v4). Suppose that
B is an 7n-bridge not in A(e, f) that meets n(e). Then from 6.1 and 4.6, B € A(C”)
for some C’" € C containing e, and hence B € A(C) from (1); but this contradicts (2).
Consequently r = 0.

(3) Suppose that M, N are disjoint n-paths, from m to m’ and from n to n’ respectively,
where n(vg),m,n,n(v1) are in order in n(e), and n(vy),n',m’,n(vs) are in order
in n(f). Then there exists j with 0 < j < s such that m’,n’ belong to Q;.

Subproof. Suppose not; then there exist distinct 7, 7* with m’ € V(Q;) and n’ € V(Q;/),
and consequently j < j’. Let B be the n-bridge containing g¢;/; then B ¢ A(e, f) from
the definition of ¢, ..., ¢s, and so B has an n-attachment g # e, f. From 4.6, and (1) it
follows that B € A(C), and g = vyve. In particular, B is disjoint from M, N. Choose an
n-path P in B from g¢; to V(n(viv2)); then M, N, P contradict (E7). This proves (3).

For 0 < j < s let A; be the set of all B € A(e, f) with BN n(f) € Q;. From (1),
A(e, f) = U A;j. For each j let J; be the union of all members of A;. Suppose that some
|E(J;)| > 2. Since H is cyclically five-connected by (E1), there are distinct by, ', by in
n(e), in order, such that b; and by both belong to J;, and b’ belongs to some n-bridge
B’ ¢ A;. Since b’ # p1,...,p, it follows that B’ € A(e, f), and so B’ € A;/, for some
j' # j. In particular, J; and J; are disjoint. By 6.1 it follows that there is a path M in
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J; and a path N in Jj/ violating (1) (possibly with M, N exchanged). This proves that
|E(J;)] <1for 0 <j<s. Thus every n-bridge in C(e, f) has only one edge, and no two
of them have ends in the same @;. The result follows from (3) applied to the paths of
length one formed by these 7-bridges. This proves 6.6. O

7. Flattenable graphs

Let (G, F,C) be a framework and let H,np satisfy (E1). We say that H is flattenable
onto (G, F,C) via np if there is

e a homeomorphic embedding n of G in H extending 7np;

o a set of n-bridges B(C'), for each C € C; and

o an edge N(e) of n(e), for each edge e of G\ E(F') such that for some edge f # e, e
and f are twinned and have no common end

with the following properties. For each C' € C, if C is a circuit let P(C) be n(C), and
if C' is a path let P(C) be the maximal subpath of n(C) that contains n(g) for every
g € E(C) that is not an end-edge of C, and does not contain any edge N(e). Then we
require:

o every 7-bridge belongs to exactly one set B(C);
o if B € B(C) then BNn(G) C P(C); and
o for C€C,P(C)U(B: B e B(C)) is P(C)-planar.

The main result, that everything so far has been directed towards, and of which all
the other results in the paper will be a consequence, is the following.

7.1. Let (G, F,C) be a framework, and let H,ng satisfy (E1)-(ET7). Suppose that there is
a homeomorphic embedding of G in H extending ng. Then H is flattenable onto (G, F,C)

via NF.

Proof. Since there is a homeomorphic embedding of G in H extending ng, there is an
optimal one, say 1. We will prove that ) provides the required flattening. We begin with

(1) Ife, f € E(G) are twinned and have a common end, there exists C € C containing
e, f such that

n(C)U U(B : Be A(C)U Ale, f))
is n(C)-planar.

Subproof. Let Cp,Cy be the two members of C that contain v, where v is the common
end of e and f. Let e = uv and f = vw, and let ¢1dy, ..., cpdg be the edges of H with

Please cite this article in press as: N. Robertson et al., Excluded minors in cubic graphs, J. Combin.
Theory Ser. B (2019), https://doi.org/10.1016/j.jctb.2019.02.002




YJCTB:3220

30 N. Robertson et al. / Journal of Combinatorial Theory, Series B s (ssee) sso—ses

one end in n(e) and the other in n(f) (these are the edges of the bridges in A(e, f))
numbered as in 6.4). By 5.1 we may assume that k£ > 1. Now

n(C)ulJB: Be A, f)

is n(C;)-planar for ¢ = 1,2. We claim that for either ¢ = 1 or ¢ = 2, no member of A(C;)
meets n(e) Un(f) between ¢; and d;. For if not, there are disjoint n-paths Ry, Ry such
that for ¢ = 1,2, R; has one end r; in n(e) Un(f) between ¢; and d;, and its other end s;
is in n(C;) and not in n(e) Un(f). Let s; € V(n(g:)) (¢ = 1,2). If g1, g2 have no common
end, this contradicts (E4), and if they have a common end, this contradicts 4.2. (To see
this, in each case delete an appropriate end-edge of the subpath of n(e) Un(f) between
¢1,dy1.) We may therefore assume that no member of A(C7) meets n(e) U n(f) between
¢1 and d;. But then by 5.1, the claim holds. This proves (1).

For edges e, f as in (1), let D(e, f) be some C € C satisfying (1).

(2) Lete, f be twinned, with no common end. Then there are edges N (e) of n(e) and N(f)
of n(f), and distinct paths C1,Cy € C, both with end-edges e, f and with the following
property, where for i = 1,2, P(C;) denotes the component of n(C;) \ {N(e), N(f)}
containing 1(g) for each internal edge g of C.

o A(C) =0 for all C € C containing either e or f and different from C4;
e BNn(G) C P(Cy) for all B € A(C4); and
e BNn(G) C P(Cy) for all B € A(e, f), and

P(Cy) Ul J(B: B e Ale, f))
is P(C2)-planar.

Subproof. By 3.2 there are at least two paths in C with end-edges e, f, and by (F6) every
such path has length at most five. If there is no path in C with end-edges e, f and with
length exactly five, the claim follows from 6.5, so we assume that some such path has
length five, say Cy. By 6.6, A(C) is empty for every C # C; in C containing e or f, so
the first assertion of the claim holds. Moreover, also by 6.6,

e the vertices of C7 can be numbered in order as wvg-v1----- vy, such that for each
B € A(C), its only n-attachments are v1ve and vsvs (and we may assume that
e = vovy and f = vyvs, possibly after exchanging e, f);

e A(e, f) can be numbered as {Bjy, ..., Bi} such that B; has exactly one edge ¢;d; for
1 < <k, where ¢; € V(n(e)) and d; € V(n(f)); and

e n(vg),c1,...,ck,n(v1) are in order in n(e), and n(vy),ds,...,dg,n(vs) are in order
in n(f).
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Let N (e) be the edge of n(e) incident with n(vy), and N(f) be the edge of n(f) incident
with n(vs). Then BN n(G) C P(C) for all B € A(C), so the second assertion holds.

By (F7) there exists Cy € C with end-edges e and f and with ends v; and vs. It
follows that N(e) and N(f) are the end-edges of Co, and so BN n(G) C P(Cs) for all
B € A(e, f). From the second and third bullets above,

P(Cy) U J(B: B € Ale, )
is P(C3)-planar. So the third assertion holds. This proves (2).

For e, f as in (2), choose C1,Cs as in (2), and define D(e, f) = Cs. For each edge e
that is twinned with an edge disjoint from e, choose N(e) as in (2). Since no edge of e
is twinned with more than one other edge, by 3.4, this is well-defined. For each C' € C,
if C is a circuit let P(C) = C, and if C is a path let P(C) be the maximal subpath of
n(C) that contains 7(g) for every g € E(C) that is not an end-edge of C, and does not
contain any edge N(e).

(3) For every path C € C, BNn(G) C P(C) for each B € A(C).

For let C' € C be a path. If P(C) = C the claim is true, so we may assume that some
edge e of C is twinned with some other edge f disjoint from e, and so N(e) is defined.
Choose C1, Cy satisfying (2), where Co = D(e, f). If C' # C then A(C) = ) and the
claim is trivial, by the first assertion of (2); while if C' = C; then the claim holds by the
second assertion of (2). This proves (3).

For each C € C, let B(C) be the following set of n-bridges:

o if C = D(e, f) for some pair e, f of twinned edges with a common end, let B(C) =
AC)U Ale, f);

o if C = D(e, f) for some pair e, f of twinned edges with no common end, let B(C) =
Ale, f);

 otherwise, let B(C) = A(C).

Now let B be an 7-bridge. We claim that B belongs to exactly one set B(C). For if
B sits on some C’ € C, then for C € C, B € C if and only if C = C’; and otherwise,
B belongs to Ale, f) for a unique pair e, f of twinned edges, and then for C € C,
B € B(C) if and only if C' = D(e, f).

Also, we claim that if B € B(C) then BN n(G) C P(C); for this is trivial if C' is a
circuit, so we assume that C' is a path. By (3) the claim holds if B € A(C), so we may
assume that B = D(e, f) for some pair e, f of disjoint twinned edges, and B € A(e, f).
But then the claim holds by the third assertion of (2).

Finally, we claim that P(C) U (B : B € B(C)) is P(C)-planar for each C € C. If
C = D(e, f) for some pair e, f with a common end, the claim follows from (1) and the
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definition of D(e, f). It C' = D(e, f) for some pair of disjoint twinned edges, the claim
follows from the third assertion of (2) and the definition of D(e, f), since A(C) = 0 from
the first assertion of (2). And otherwise, the claim follows from 5.1. This proves that n
provides a flattening satisfying the theorem, and so proves 7.1. 0O

8. Augmenting paths

We need three more techniques for the second half of the paper, all developed in [4],
and in this section we describe the first. If F' is a subgraph of G and of H, and 7 is a
homeomorphic embedding of G in H, we say it fizes F' if n(e) = e for all e € E(F') and
n(v) =wv for all v € V(F).

Let G be cubic, and let F' be a subgraph of G with minimum degree > 2 (possibly
null). Let X C V(G), such that 6g(X)NE(F) = 0. Let n > 1, let Go = G, and
inductively for 1 < i < nlet G; = G;—1 + (e;, f;) with new vertices u;,v;, where e;, f;
are edges of G;_1 not in E(F). Let 19 be the identity homeomorphic embedding of Gy
to itself; and for 1 < ¢ < n, let n; be obtained from 7;_; by replacing e; and f; by the
corresponding two-edge paths of G;. Thus 7; is a homeomorphic embedding of G in G;;
it fixes F, and n;(v) = v for all v € V(G), and n;(e) = e for every edge e € E(QG) that is
not one of ey, f1,...,¢;, fi. (Not all the latter necessarily belong to E(G).)

Let 6¢(X) = {z1y1,. .., Tryx}, where 1, ...,z € X are all distinct, and y1,...,yx €
V(G)\ X are all distinct. Suppose that in addition:

e e1 € E(G) has both ends in X, and f,, € E(G) has both ends in V(G) \ X;

o for 1 < i < n there exists j € {1,...,k} such that f; is the edge of n;—1(z;y;)
incident with y;, and e;11 is the edge of 1;(x;y;) incident with v; and not with y;;

o if f1 € E(no(x;y;)) (that is, f1 = x;y;) where 1 < j < k, then e; is not incident with
z; in G, and no end of e; is adjacent in G\ E(F) to z;; similarly, if e,, € E(no(x;y;))
then e, is not incident with y; in G, and no end of e, is adjacent in G\ E(F) to y;;
and

o for2<i<n-—1,lete € E(ni—1(z;y;)) and f; € E(n;—1(x;y;)); then j # j, and
x; is not adjacent to z; in G \ E(F), and y; is not adjacent to y;, in G \ E(F).

(See Fig. 6.)

In these circumstances we call G, an X-augmentation of G (modulo F), and
(e1, f1),- .-, (en, fn) an X-augmenting sequence of G (modulo F'). Note that we permit
n = 1. The following is proved in lemma 3.4 of [4], applied to F', H \ E(F) and X.

8.1. Let G be cubic and let F' be a subgraph of G with minimum degree at least two.
Let X C V(G) with §¢(X) N E(F) =0, such that the edges in 6q(X) pairwise have no
common end. Let H be cubic such that F' is a subgraph of H, and let ) be a homeomorphic
embedding of G in H fixing F. Then either
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U1 U2 V1

Fig. 6. An X-augmentation of a graph, with k =4 and n = 5.

o there exists X' C V(H) with |6y (X")| = |d¢(X)|, such that for v € V(G), v € X if
and only if n(v) € X'; or

e there is an X -augmentation G' of G modulo F, and a homeomorphic embedding of
G' in H fizing F.

9. Jumps on a dodecahedron

Now we begin the second part of the paper. First we prove the following variant of 1.5
(equivalent to 1.6).

9.1. Let H be cyclically five-connected and cubic. Then H is non-planar if and only if H
contains one of Petersen, Triplex, Box and Ruby.

Proof. “If” is clear. For “only if”, let H be cyclically five-connected and cubic, and
contain none of the four graphs. By 1.5 it follows that H contains Dodecahedron. Let
G= Dodecahedron, let F' and ng be null, and let C be the set of circuits of G that bound
regions in the drawing in Fig. 4; then (G, F,C) is a framework. We claim that (E1)—(E7)
are satisfied. Most are trivial, because F' is null, and there are no twinned edges, and no
paths in C. Also, (E6) is vacuously true because no member of C has length > 6; so the
only axiom that needs work is (E2).

Let e, f € E(G) such that no member of C contains both e and f; we claim that
G + (e, f) contains one of Petersen, Triplex, Box, Ruby. Up to isomorphism of G there
are five possibilities for e, f, namely (setting e = ab and f = ¢d) (a,b,¢,d) = (1,2,6,15),
(1,2,10,15),(1,2,15,20), (1,2,18,19),(1,2,19,20). In the first three cases G + (e, f)
contains Ruby, and in the last two it contains Box.

Thus, (E2) holds; and so H is planar, by 7.1. This proves 9.1. O

Next, a small repair job. The definition of “dodecahedrally-connected” in [4] differs
from the one in this paper, and our objective of the remainder of this section is to prove
them equivalent. To do so, we essentially have to repeat the proof of 9.1 with slightly
different hypotheses.
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In this section we fix a graph F, and we need to look at several graphs such that F’
is a subgraph of all of them. If G, H are cubic, and F' is a subgraph of them both, and
there is a homeomorphic embedding of G in H fixing F, we say that H F'-contains G.

Let G be cubic, and let F' be a subgraph of GG, such that every vertex in F' has degree
> 2in F. Let C be a circuit of G of length four, with vertices a1, as, az, a4 in order, none
of them in V(F). Let a; be adjacent to b; ¢ V(C) for 1 <i < 4, where by,...,by are all
distinct, and not in V(F'), and are pairwise non-adjacent. A C-leap of G means a graph
G + (e, f), where e € E(C) and f € E(G) \ E(F), with no vertex in V(C).

9.2. Let G be cubic and cyclically four-connected, with |V (G)| > 8. Let F be a subgraph
of G such that every vertex in F has degree > 2 in F'. Let C' be a circuit of G of length 4,
disjoint from F. Let H be a cyclically five-connected cubic graph containing F as a
subgraph, and let H F-contain G. Then H F-contains a C-leap of G.

Proof. Let X = V(C). Then d¢(X)NE(F) = 0 since XNV (F) = 0. Since G is cyclically
four-connected and |V(G)| > 8 it follows that no two members of §¢(X) have a common
end.

Since H F-contains G, we can apply 8.1. Since H is cyclically five-connected, 8.1(i)
does not hold, and so 8.1(ii) holds. Let (ey, f1),...,(€én, fn) be an X-augmenting se-
quence of G, such that there is a homeomorphic embedding of the corresponding X-
augmentation G’ in H fixing F. From the third (bulleted) condition in the definition of
“X-augmenting sequence”, it follows that n =1, and so G’ = G + (ey, f1). Thus G’ is a
C-leap of G, F-contained in H. This proves 9.2. O

It is convenient from now on to make the following convention. When we speak of a
graph G+ (e, f) and the vertices of G are numbered 1, ..., n, the new vertices of G+ (e, f)
will be assumed to be numbered n + 1 and n + 2 (in order), unless we specify otherwise.

Let G be Dodecahedron, and let F be a circuit of G of length five. If e, f € E(G)\E(F),
and at most one of e, f has an end in V(F), and e, f are not incident with the same
region of G, we call G+ (e, f) a hop extension of (G, F'); and if in addition e, f are diverse,
we call G + (e, f) a jump extension of (G, F). We begin with the following lemma.

9.3. Let G be Dodecahedron, and let I be a circuit of G of length five. Let H be a cyclically
five-connected cubic graph, such that F is a subgraph of H. Suppose that

e H F-contains no jump extension of (G, F); and

o for every X C V(H)\ V(F) with [0g(X)| =5 and X # V(H) \ V(F), there is
no homeomorphic embedding n of G in H fizing F such that n(v) € X for all v €
V(G)\V(F).

If e, f are diverse edges of G not in E(F'), then H does not F-contain G + (e, f).
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Proof. Suppose it does. Hence G + (e, f) is not a jump extension of (G, F'), and so both
e, f have ends in V(F'). Let us number the vertices of Dodecahedron as in Fig. 4, and from
the symmetry we may assume that F'is the circuit 1-2-3-4-5-1, e is 2-7 and f is 5-10. Let
G’ = G+ (e, f) with new vertices 21, 22 say. Let X = {6,7,...,20}. From the second bul-
let and 8.1, there is an X-augmenting sequence of G’ modulo F, say (e1, f1),- .., (én, fn),
and a homeomorphic embedding 1" of the corresponding X-augmentation G” in H fix-
ing F'. Now e; (= ajb; say) has both ends in X, but f; does not, so f; is one of 1-6,
2-21, 7-21, 3-8, 4-9, 5-22, 10-22, 21-22; and from the symmetry we may assume that f;
is one of 1-6, 2-21, 7-21, 3-8, 21-22.

Suppose that f; is one of 1-6, 3-8. Then e, f1 are diverse, from the third condition
in the definition of X-augmenting sequence; but then G + (eq, f1) is a jump extension
of (G, F) F-contained in G’ + (e1, f1) and hence in H, a contradiction. Similarly if f; is
7-21 then G + (e1,2-7) is a jump extension F-contained in H. Thus f; is one of 21-22,
2-21, and in particular n = 1. Assume f; is 21-22. Then we may assume that ey, 2-7 are
not diverse in G (for otherwise G + (e1, 2-7) is a jump extension F-contained in H), and
similarly e, 5-10 are not diverse in G. But this is impossible. Finally, assume that f;
is 2-21. We may assume that e;, 2-7 are not diverse in G, and so e; is one of

7-11,7-12,6-11,11-16,8-12, 12-17.

If ey is one of 7-12, 8-12, 12-17, rerouting 7-12 along 21-22 gives a jump extension of
(G,F) F-contained in H; and if e; is one of 7-11, 6-11, 11-16, rerouting 7-11 along
21-22 gives a jump extension of (G, F) F-contained in H, again a contradiction. This
proves 9.3. O

9.4. Let G, F,H be as in 9.3. Then H F-contains no hop extension of (G, F).

Proof. Let £ be the set of all graphs G + (e, f) where e, f are diverse edges of G not
in E(F). By 9.3, H F-contains no member of £. Let G be labelled as in Fig. 4. (We
do not specify the circuit F' at this stage; it is better to preserve the symmetry.) Let
G1 = G + (a,b) be a hop extension of G, and suppose that H F-contains G;. Thus
Gy ¢ L. From the symmetry of G, we may therefore assume that a is 15-20 and b is
16-17. Thus the edges 16-17 and 15-20 are not in E(F'). Since F' is a circuit of length five,
it follows that 16-20 is not in F(F'), and hence 16, 20 are not in V (F). Let C be the circuit
16-20-21-22-16 of G. Then no vertex of C'is in V(F'), and H is cyclically five-connected,
so we can apply 9.2. We deduce that H F-contains some C-leap G5 = G1 + (e, f).

Now e is one of 16-20, 20-21, 21-22, 16-22. Since F' is not yet specified, there is a
symmetry of G; exchanging the edges 16-20 and 21-22; and one exchanging 20-11 and
16-22. Thus we may assume that e is one of 21-22, 20-21.

Now f is an edge of G not incident with either of 16,20. Since e is one of 21-22,
20-21, and f ¢ E(F), H F-contains G + (15-20, f) in G, and so G + (15-20, f) ¢ L.
Consequently f, 15-20 are not diverse, so f is one of

6-15, 10-15, 1-6, 6-11, 5-10, 10-14, 14-19, 18-19.
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Suppose first that e is 21-22. Then by the same argument, f and 16-17 are not diverse
in G, and so f is one of 6-11, 18-19. If f is 6-11, rerouting 6-15 along 24-23-21 gives a
member of £ F-contained in H (in future we just say “works”) and if f is 18-19, rerouting
17-18 along 22-23-24 works. Thus the claim holds if e is 21-22.

Now we assume that e is 20-21. If f is one of 1-6,6-11,6-15 then rerouting 6-15 along
23-24 works; if f is one of 10-15, 5-10, 10-14, rerouting 10-15 along 23-24 works; and if f
is 14-19 or 18-19 then rerouting 19-20 along 23-24 and then rerouting 16-20 along 22-21
works. Thus in each case we have a contradiction. This proves 9.4. O

Next we need another similar lemma.

9.5. Let G be Dodecahedron, labelled as in Fig. 4, let F' be the circuit 1-2-3-4-5-1, let
G1 be G+ (1-6,2-7), and let Go = Gy + (6-21,2-22). (Thus the edge 1-6 of G has been
subdivided to become a path 1-21-23-6 of G2, and 2-7 has become 2-24-22-7.) Let H be
as in 9.3. Then H does not F-contain Go.

Proof. Suppose H F-contains Ga, and let X = {6,7,...,20}. By the second bul-
leted hypothesis in 9.3, and 8.1, there is an X-augmenting sequence of G mod-
ulo F, say (e1, f1),-- -, (én, fn), and a homeomorphic embedding 7’ of the corresponding
X-augmentation G’ in H fixing F'. Now e; (= a1b; say) has both ends in X, but f; does
not, so f; is one of

1-21, 21-23, 6-23, 2-24, 22-24, 7-22, 3-8, 4-9, 5-10, 21-22, 23-24,
and from the symmetry we may assume that f; is one of
1-21, 21-23, 6-23, 5-10, 4-9, 21-22.

If f1 is one of 5-10, 4-9 then by the third condition in the definition of X-augmenting
sequence, it follows that e, f; are diverse in GG, and H contains the jump extension
G + (e1, f1), a contradiction. Similarly if f; is 6-23 then e;, 1-6 are diverse in G, again
a contradiction. Thus f; is one of 1-21, 21-23, 21-22. Hence H F-contains G + (1-6,¢1),
and so by 9.4, G + (1-6, e1) is not a hop extension of (G, F'). Consequently e; is one of
10-15, 6-15, 6-11, 7-11. If ey is one of 6-11, 7-11, then rerouting 1-6 along 25-26 gives a
jump extension of (G, F) F-contained in H; while if e; is one of 6-15, 10-15, rerouting
6-15 along 25-26, and then rerouting 7-11 along 23-24, give the desired jump extension.
(See Fig. 7.) This proves 9.5. O

From these lemmas we deduce a kind of variant of 9.1:

9.6. Let G be Dodecahedron, and let ' be a circuit of G of length five. Let H be a cyclically
five-connected cubic graph, such that F' is a subgraph of H. Suppose that
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3

Fig. 7. The last step in the proof of 9.5. (The edge drawn as 21-15 is actually 25-26, where 25 is a neighbour
of 21, and 26 a neighbour of 15.)

e H F-contains G;

e H F-contains no jump extension of (G, F); and

o for every X C V(H)\ V(F) with [0g(X)| = 5 and X # V(H) \ V(F), there is
no homeomorphic embedding n of G in H fizing F such that n(v) € X for all v €
V(G)\V(F).

Then H is planar, and can be drawn in the plane such that F bounds the infinite region.

Proof. Let C be the set of the following eleven subgraphs of G = Dodecahedron; the six
circuits that bound regions (in the drawing in Fig. 4) that contain no edge incident with
the infinite region, and for each e € E(F), the path C'\ e where C' # F is the boundary
of a region incident with e. Let g be the identity homeomorphic embedding on F'. By
hypothesis there is a homeomorphic embedding of G in H extending ng. We apply 7.1
to (G, F,C) and H,np. There are no twinned edges and all members of C have at most
five edges; so we have to check only (E2) and (E6). (Note that in this case, the paths in
C are not induced subgraphs of G; this is the only one of our applications when this is
so0.) But the truth of (E2) and (E6) follows from the three Lemmas 9.3, 9.4, 9.5 above;
and so by 7.1, the result follows. This proves 9.6. O

As we said earlier, we need this to prove the equivalence of the definitions of
dodecahedrally-connected given in this paper and in [4], and now we turn to that. Let
G be Dodecahedron, and let F' be a circuit of G of length five. Let H be a cubic graph,
and let X C V(H). We say that H is placid on X if

o [V(H)\ X|>17,and dy(X) is a matching of cardinality five;
o {z;y; : 1 <i <5} is an enumeration of §y(X), with z; € X (1 <i < 5);
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e there is a homeomorphic embedding of G in H’' mapping F to the circuit
Y1-Y2-Y3-Ya-ys-y1; and

o there is no homeomorphic embedding of any jump extension of (G, F') in H' mapping
F to y1-y2-y3-ya-ys-y1,

where H' is obtained from H[(X U {y1,¥2,¥3, Y4, y5})] by deleting all edges with both
ends in {y1,y2,Y3, Y4, Y5}, and adding new edges y1y2, y2Ys3, Y3y4, Ya¥s, Y1Ys-

We say that a graph H is strangely connected if H is cubic and cyclically five-
connected, and there is no X C V(H) such that H is placid on X. (This is the definition
of “dodecahedrally-connected” in [4].)

9.7. A graph H is dodecahedrally-connected if and only if it is strangely connected.

Proof. We may assume that H is cubic and cyclically five-connected. Suppose first
that it is not dodecahedrally-connected. Let X C V(H) with |X|,|V(H) \ X| > 7 and
|0 (X)| =5, du(X) = {x111,...,25y5} say where x1,...,x5 € V(H), such that H[X]
can be drawn in a closed disc with x1,...,z5 on the boundary in order. Let us choose
such X with | X| minimum. Since H is cyclically five-connected it follows that x1, ..., z5
are all distinct and so are yi,...,ys5. Also, from the planarity of H[X] it follows that
|X| > 9 (recall that H is cyclically five-connected and hence has girth at least five), and
so from the minimality of X, no two of x1, ..., s are adjacent. Let H' be obtained from
H as in the definition of “placid”, and let F’ be the circuit made by the five new edges.
It follows easily that H’ is cyclically five-connected, and hence from 1.6 contains G =
Dodecahedron. Take a planar drawing of H’, and choose a homeomorphic embedding 7
of G in H' such that the region of n(G) including r is minimal, where r is the region
of H' bounded by F’. It follows easily that F’ C n(G), and so from the symmetry of G
we may choose 1 mapping F' to F’. Hence H is placid on X (the final condition in the
definition of “placid” holds because of the planarity of H') and so H is not strangely
connected, as required.

For the converse, suppose that H is not strangely connected, and let X, z;y; (1 <
i <5), F and H’ be as in the definition of “strangely connected”, such that H is placid
on X via z1y1, ..., 2Z5y5. Choose X minimal. By 9.6, H[X] can be drawn in a closed disc
with z1,...,z5 on the boundary in order; and so H is not dodecahedrally-connected.
This proves 9.7. 0O

10. Adding jumps to repair connectivity

Now that we have reconciled the two definitions of “dodecahedrally-connected”, we
can apply results of [4] about this kind of connectivity.

The idea behind 9.2 is that cyclic five-connectivity is better than cyclic four-
connectivity, and we begin with a graph G that is cyclically five-connected, except for the
circuit C. We use the cyclic five-connectivity of H to prove that if H contains G then H
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also contains a slightly larger graph where the circuit C' has been expanded to a circuit of
length five by adding an edge to G. This can be useful, as we saw in the previous section.
However, it has the defect that the edge we add to G to expand the circuit C' might
create a new circuit of length four, with its own problems. We can apply 9.2 again to
this new circuit, but the process can go on forever. In fact, there is a stronger theorem;
one can expand the circuit C to a longer circuit, without adding any new circuits of
length four, just by adding a bounded number of edges. That is essentially the content
of the next result, proved in [4]. (We also weaken the hypothesis on G, allowing it to
have more than one circuit of length four.) But first we need some definitions.

Let £ be a set of cubic graphs. We say that a graph H is killed by L if there is a
homeomorphic embedding of some G’ € L in H. Let G be cubic, and let C be a circuit
of G of length four, with vertices aj, as, as, as in order. Let a; be adjacent to b; ¢ V(C)
for 1 < i < 4, where by, ...,bs are all distinct and pairwise non-adjacent. We denote by
P(C, L) the set of all pairs (e, f) such that f € F(G) is incident with one of by, ..., by,
say b;, f # a;b;,e € E(C) is incident with a;, and G + (e, f) is not killed by L.

Let e = uv and f = wz be edges of a cubic graph G. If u,v # w, x, and u is adjacent
to w, and no other edge has one end in {u,v} and the other in {w,z}, we denote by
(e, f)* the pair of edges (¢/, f'), where €’ (# e, uw) is incident with v and f’ (# f,uw) is
incident with w.

We shall frequently have to list the members of some set P(C, L) explicitly, and we
can save some writing as follows. Clearly (e, f) € P(C, £) if and only if (e, f)* € P(C, L),
and so we really need only to list half the members of P(C, L). If X is a set of pairs
of edges for which (e, f)* is defined for each (e, f) € X, we denote by X* the set
XU{(e, f)" : (e, f) € X}.

If e € E(C) and e, f are diverse in G, we call G + (e, ) an A-extension of G. Now let
e € E(C) and f € E(G)\ E(C) such that e, f are not diverse in G but have no common
end. Let G’ = G+ (e, f) with new vertices x1, y;. Label the vertices of C as ay,...,a4 in
order, and their neighbours not in V(C) as by, ..., bs respectively, as before, such that
e = ajae and f is incident with by, f = bic; say. If ¢ € E(G), not incident in G with
ay,by,c1,d; (where by is adjacent in G to ay,c1,dy) we call G' + (biy1, g) a B-extension
(of G) via (e, f). If g € E(G) incident with by and not with ¢; or az, we call G'+(x1y1, g)
a C-extension via (e, f) onto g. We call G'+(a121, asbs) a D-extension via (e, f). Finally,
we say (e, f) and (€', f') are C-opposite if e,e’ € E(C) and the labelling can be chosen

= ajaz, [ = bici, € = asaq, and f' = bscs. Let (e, f),(¢/, f) be
C-opposite, with labels as above. Let G” = G’ + (¢/, f') with new vertices x5, y2; then

as before with e

we call G” + (a1x1, azxs) an E-extension via (e, f), (¢/, f').
We say a graph G is quad-connected if

e ( is cubic and cyclically four-connected;
|[V(G)| > 10, and if G has more than one circuit of length four then |V(G)| > 12;
and

o for all X C V(G) with |dg(X)| < 4, one of | X|,|V(G) \ X| < 4.
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The following is a restatement of 9.2 in this language (with F' removed, because we
no longer need it).

10.1. Let G be cubic and cyclically four-connected, with |V (G)| > 8. Let C be a circuit
of G of length 4, and let L be a set of cubic graphs. Suppose that every A-extension of
G is killed by L, and P(C,L) = 0. Let H be a cyclically five-connected cubic graph that
is mot killed by L. Then there is no homeomorphic embedding of G in H.

Here is the strengthening, proved in [4].

10.2. Let G be quad-connected, and let C be a circuit of G of length four. Let L be a set
of cubic graphs, such that

o cvery A-extension of G is killed by L;

o for every (e, f) € P(C, L), every B-extension via (e, f) is killed by L, and so is the
D-extension via (e, f);

o forall(e, f1), (e, f2) € P(C, L) such that f1, fa have no common end, the C-extension
via (e, f1) onto fo is killed by L; and

o for all C-opposite (e1, f1), (e, f2) € P(C, L), the E-extension via (e1, f1), (e2, f2) is
killed by L.

Let H be a dodecahedrally-connected cubic graph such that H is not killed by L. Then
there is no homeomorphic embedding of G in H.

The other result of [4] that we need is the following. Let n > 5 be an integer, with
n > 10 if n is even. The n-biladder is the graph with vertex set {a1,...,an,b1,...,bn},
where for 1 < i < n,a; is adjacent to a;41 and to b;, and b; is adjacent to b; 1o (where
Ap+t1,bnt1, bpro mean aq, by, by). Thus, Petersen is isomorphic to the 5-biladder, and
Dodedahedron to the 10-biladder. The following follows from theorem 1.4 of [4].

10.3. Let G be cubic and cyclically five-connected. Let there be a homeomorphic embedding
of G in H, where H is dodecahedrally-connected. Then either

o there exist e, f € E(QG), diverse in G, such that there is a homeomorphic embedding
of G+ (e, f) in H; or

o G is isomorphic to an n-biladder for some n, and there is a homeomorphic embedding
of the (n + 2)-biladder in H; or

e G is isomorphic to H.

11. Graphs with crossing number at least two

At the end of the proof of 9.1, there were five statements left to the reader to verify,
that five particular graphs contain either Ruby or Box. In the remainder of the paper
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Fig. 8. A counterexample to a strengthening of 11.1.

there will be many more similar statements left to the reader; unfortunately, we see no
way of avoiding this, since there are simply too many of them to include full details
of each. But perhaps 95% of them are of the form that “Graph G contains Petersen”,
where G is cubic and cyclically five-connected; and here is a quick method for checking
such a statement. Choose a circuit C' of G with |E(C)| = 5, arbitrarily (there always
is one, in this paper). Let C have vertices vq,...,v5 in order. Let uq,...,us be vertices
of a 5-circuit of Petersen, in order. Check if there is a homeomorphic embedding 7 of
Petersen in G with n(u;) = v; (1 < i < 5). (This is easy to do by hand.) It is proved in
[6] that such a homeomorphic embedding exists if and only if G contains Petersen.

This makes checking for containment of Petersen much easier. But even so, there are
too many cases to reasonably do them all by hand, and we found it very helpful to
write a simple computer programme to check containment for us. We suggest that the
reader who wants to check these cases should do the same thing. There is a computer
file available online with all the details of the case-checking [5].

In this section, we prove 1.7, which we restate as:

11.1. Let H be dodecahedrally-connected. Then H has crossing number > 2 if and only
if it contains one of Petersen, Triplex or Box.

Dodecahedral connectivity cannot be replaced by cyclic 5-connectivity, because the
graph of Fig. 8 is a counterexample.

The graphs Window, Antibox, and Drape are defined in Fig. 9.

We prove 11.1 in three steps, as follows.

11.2. Let H be a dodecahedrally-connected graph containing Antibox; then H contains
Petersen, Triplex or Boz.

11.3. Let H be a cyclically five-connected cubic graph containing Drape; then H contains
Petersen, Triplex, Box or Antiboz.
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Fig. 9. Window, Drape and Antibox.

11.4. Let H be a cyclically five-connected cubic graph containing Window, but not Pe-
tersen, Triplex, Box, Antibox or Drape. Then H has crossing number < 1.

Proof of 11.1, assuming 11.2, 11.3, 11.4. “If” is clear and we omit it. For “only if”, let H
be dodecahedrally-connected, and contain none of Petersen, Triplex or Box. By 11.2 it
does not contain Antibox, and by 11.3 it does not contain Drape. We may assume from 9.1
that it contains Ruby (in fact it must, for no dodecahedrally-connected graph is planar),
and hence Window, since Ruby contains Window. From 11.4, this proves 11.1. O

Proof of 11.2. We shall apply 10.2, with G = Antibox, C' the quadrangle of G, and £ =
{Petersen, Triplex, Box}. Thus, V(C) = {1,2,3,4}. We find that every A-expansion is
killed by £. In detail, let G’ be G + (ab, cd), where (a,b, ¢, d) is as follows; in each case
G’ contains the specified member of L.

Petersen: (1, 2, 7, 10), (1, 2, 7, 14), (1, 2, 8, 11), (1, 2, 8, 12), (1, 2, 9, 11), (1, 2, 11, 14),
(1,2, 13, 14), (1, 4, 6, 10), (1, 4, 6, 13), (1, 4, 7, 10), (1, 4, 7, 14), (1, 4, 9, 13), (1, 4, 11,
14), (1, 4, 13, 14).

Triplex: (1, 2, 5, 12), (1, 2, 6, 10), (1, 2, 10, 12), (1, 4, 5, 9), (1, 4, 8, 11), (1, 4, 9, 11).
Box: (1, 2,9, 13), (1, 4, 10, 12).

In future we shall omit this kind of detail (because in the future it will get worse). The
full details are in [5].

We find that P(C, L) = {(1-2,5-9), (1-2, 6-13), (3-4, 8-11), (3-4, 7-14) }*. Then we verify
the hypotheses (ii)—(iv) of 10.2. This proves 11.2. O

Proof of 11.3. We apply 10.1, with G = Drape, C' the quadrangle of G with vertex
set {5,12,13,14}, and £ = {Petersen, Triplex, Box, Antibox}. We find that every
A-extension of G is killed by £, and P(C, L) = 0, so from 10.1, this proves 11.3. O

Proof of 11.4. Let G be Window, let F' and nr be null, and let C be the subgraphs of G
induced on the following nine sets:
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Fig. 10. Twinplex.

1,2,3,4;
1,2,5,6,9;
2,3,6,7,10;
3,4,7,8,11;
1,4,5,8,12;
5,9,10,11,12;
6,9,10,11,12;
7,9,10,11,12;
8,9,10,11,12.

Then (G, F,C) is a framework. We claim that (E1)—(E7) hold. The only twinned edges
are 9-11 and 10-12, and again the only axiom that needs work is (E2). But if e, f € E(G)
are not both in some member of C, then G + (e, f) contains one of Petersen, Triplex,
Box, Antibox, Drape, and so (E2) holds. From 7.1, this proves 11.4. O

12. Non-projective-planar graphs

Now we digress, to prove a result that we shall not need; but it is pretty, and follows
easily from the machinery we have already set up.
The graph Twinplez is defined in Fig. 10. We shall show the following.

12.1. Let H be dodecahedrally-connected. Then H cannot be drawn in the projective plane
if and only if H contains one of Triplex, Twinplex, Boz.

Proof. “If” is easy and we omit it. For “only if”, suppose that H contains none of
Triplex, Twinplex, Box; we shall show that it can be drawn in the projective plane. If
H has crossing number < 1 this is true, so by 11.1 we may assume that H contains
Petersen.

Let Gy = Petersen. We may assume that H is not isomorphic to G, so by 10.3 either
there are edges ab, cd of G diverse in Gy and a homeomorphic embedding of Go+ (ab, cd)
in H, or H contains the 7-biladder. The former is impossible, because from the symmetry
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of Gy we may assume that (a,b,c,d) = (4,5,6,8), and then Go+ (ab, cd) is isomorphic to
Twinplex, a contradiction. Hence there is a homeomorphic embedding of G in H, where
G is the 7-biladder. Let V(G) = {a1,...,a7,b1,...,b7}, as in the definition of “biladder”.
Let C be the subgraphs of G induced on the following vertex sets:

b17b2, . .,b7;
ai,az,as, b3a b17
a2, a3, a4, ba, ba;
as, aq, as, bs, bz;
a4, a5, a6, bﬁa b4v
as, ag, ar, bz, bs;
ag, az, ai, by, be;

ar,ar, az, b23 b7'

(These are the face-boundaries of an embedding of G in the projective plane.) Let F' and
nr be null; then (G, F,C) is a framework, and we claim that (E1)—(E7) hold. All except
(E2), (E3) and (E6) are obvious. To check (E2), let G’ = G+ (ab, cd) where ab, cd € E(Q)
are not both in any member of C. There are twelve possibilities for (a,b,c,d) up to
isomorphism of G; in one case G’ contain Box, in three others it contains Twinplex,
and in the other eight it contains Triplex. (As usual, we omit the details; they are also
not in the appendix [5], because we don’t really need the result.) Thus, (E2) holds.
For (E3), the only diverse trinity (up to isomorphism of G) is {ajas,b1bs, bab7}, and
G + (a1az, b1bs, bab7) contains Twinplex. Hence (E3) holds. For (E6), we need only check
cross extensions over the circuit with vertex set {by, ..., b7}, since all other members of C
have only five edges. There are four possibilities (up to isomorphism of G). Let G' = G+
(b1bs, baby) with new vertices x,y; then the possibilities are G’ + (ab, c¢d) where (a, b, ¢, d)
is (b1, z,ba,y), (b1, x,be,br), (b1,bg, b2, b7), (b1,be, bs, b7). The first contains Box, and the
other three contain Triplex. Hence (E6) holds, and from 7.1, this proves 12.1. 0O

13. Arched graphs

We say a graph H is arched if H \ e is planar for some edge e. In this section we
prove 1.8, which we restate as:

13.1. Let H be dodecahedrally-connected. Then H is arched if and only if it does mot
contain Petersen or Triplez.

We start with the following lemma.
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Fig. 11. Superbox.

13.2. Let G be Boz, let G’ be obtained by deleting the edge 13-14, and let C be the set
of circuits of G' that bound regions in the drawing in Fig. 5. Let e, f € E(G), with no
common end, and not both in any member of C. Then either G + (e, f) has a Petersen

or Triplex minor, or (up to exchanging e and f, and automorphisms of G) e is 15-14
and f is 1-2 or 1-4.

We leave the proof to the reader (the details are in the Appendix [5]).

13.3. Let G be Boz, and let H be cyclically five-connected, and not contain Petersen or
Triplex. Let ) be a homeomorphic embedding of G in H such that n(13-14) has only one
edge, g say. Then H \ g is planar, and so H is arched.

Proof. We apply 7.1, taking F' to be the subgraph of G consisting of 13-14 and its ends,
and np the restriction of n to F. Let C be as in 13.2. Then (G, F,C) is a framework, and
we claim that (E1)—(E7) hold. (E2) follows from 13.2; and (E5) and (E6) are vacuously
true, because all members of C have five edges. Also, (E3) and (E7) are vacuously true.
For (E4), it suffices from symmetry to check

G + (1-2,13-14) + (3-6,13-16)
G + (1-2,13-14) + (3-6,14-16)
G + (1-2,13-14) + (5-6,13-16)
G + (1-4,13-14) + (3-6,13-16),

but all four contain Triplex. Hence (E4) holds, so from 7.1, this proves 13.3. O
The graph Superbox is defined in Fig. 11. (It is isomorphic to Box + (1-4,13-14).)

13.4. Let G be Superboz, let G' be obtained by deleting the edge 15-16, and let C be the
set of circuits of G' that bound regions in the drawing in Fig. 11. Let e, f € E(G) with
no common end, and not both in any member of C. Then either G+ (e, ) has a Petersen
or Triplex minor, or (up to exchanging e, f and automorphisms of G) e is 15-16 and f
is 1-2 or 1-11.
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We leave the proof to the reader. (Actually, it follows quite easily from 13.2.)

13.5. Let G be Superboz, and let H be cyclically five-connected, and not contain Petersen
or Triplex. Let n be a homeomorphic embedding of G in H such that n(15-16) has only
one edge, g say. Then H \ g is planar, and so H is arched.

Proof. We apply 7.1 to (G, F,C), where F consists of 15-16 and its ends, and np is the
restriction of n to F', and C is as in 13.4. Because of 13.4, it remains to verify (E4), (E5)
and (E6), because (E3), (E7) are vacuous. Checking (E4) is exactly like in 13.3 (indeed,
by deleting 14-16 from G we obtain Box, so actually we could deduce that (E4) holds
now from the fact that it held in the proof of 13.3). For (E5), we must check

G + (1-11,15-16) + (6-11, 15-18) + (ab, cd)

where (ab, cd) is either (11-17,10-14) or (11-19,5-14); and both contain Triplex. Thus
(E5) holds. For (E6), we need only check cross extensions over the circuit bounding the
infinite region, since all other members of C have length five; and from symmetry, it
suffices to check

G + (1-11,10-14) + (1-17,10-18)
G + (1-11,10-14) + (6-11, 5-14)
G + (1-11,10-14) + (1-5,6-10)
G + (1-5,6-10) + (1-17,10-18).

All four contain Petersen. Hence (E6) holds, and from 7.1, this proves 13.5. O

Proof of 13.1. “Only if” is easy and we omit it. For “if” let H be dodecahedrally-
connected, and not contain Petersen or Triplex. Since graphs of crossing number < 1 are
arched, we may assume from 11.1 that G contains Box. Choose a homeomorphic embed-
ding of G in H, where G is either Box or Superbox, such that |E(S)| is minimum, where
S =n(15-16) if G is Box, and S = 7(17-18) if G is Superbox. We claim that |E(S)| = 1.
For suppose not. Since H is three-connected, there is an n-path P with one end in V(S)
and the other, ¢, in V(n(G)) \ V(S). Let ¢t € n(f) say, and let e = 15-16 if G is Box, and
e = 17-18 if G is Superbox. If e, f have a common end in G, then by rerouting f along P
we contradict the minimality of |F(S)]|. If some edge g of G joins an end of e to an end
of f, then by rerouting g along P we contradict the minimality of |E(S)|. Hence e, f are
diverse in G. By the symmetry we may therefore assume, by 13.2 and 13.4, that either
G is Box and f = 1-4, or G is Superbox and f = 1-2. In the first case, by adding P to
1(G) we obtain a homeomorphic embedding of Superbox contradicting the minimality of
|E(S)|. In the second case, by adding P to (G \ {3-8,6-7}) we obtain a homeomorphic
embedding of Box contradicting the minimality of |E(S)].
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Fig. 12. Drum.
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Fig. 13. Firstapex, Secondapex, Thirdapex and Fourthapex.

This proves our claim that |E(S)| = 1. From 13.3 and 13.5, H is arched. This
proves 13.1. O

14. The children of Drum

The graph Drum is defined in Fig. 12.

14.1. Let H be dodecahedrally-connected, and not isomorphic to Triplex. Then H is
arched if and only if it contains none of Petersen, Drum.

Proof. Since Drum contains Triplex (delete 9-10) “only if” follows from 13.1. For “if”,
let H be dodecahedrally-connected, not isomorphic to Triplex, and not arched, and
suppose that H does not contain Petersen. We must show that H contains Drum. By
13.1, H contains Triplex; and so by 10.3, since Triplex is not a biladder, it follows that
H contains Triplex + (e, f), where e, f are diverse edges of Triplex. But for all such
choices of e, f, Triplex + (e, f) either contains Petersen or is isomorphic to Drum. This
proves 14.1. 0O

In Figs. 13 and 14 we define the graphs Firstapez, Secondapex, Thirdapex, Fourthapez,
and Sailboat. They all contain Drum. We call the first four of them Apez-selectors.
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Fig. 14. Sailboat.

14.2. Let H be dodecahedrally-connected, and not isomorphic to Triplex or Drum. Then
H is arched if and only if it contains none of Petersen, an Apez-selector, or Sailboat.

Proof. Asin 14.1, “only if” is easy, and for “if” we may assume that H contains Drum,
by 14.1. By 10.3 H contains Drum + (e, f) where e, f are diverse edges of Drum. There
are (up to isomorphism of Drum) 26 possibilities for {e, f}; let e = ab, f = ¢d, and G’ =
Drum + (ab,cd). If (a,b,c,d) is one of

(1,2,11,13),(1,3,8,13),(3,7,5,9),(3,11,9,14), (7,14,11,13),

G is isomorphic to Firstapex, Secondapex, Thirdapex, Fourthapex and Sailboat respec-
tively, and in all other cases G contains Petersen. This proves 14.2. O

Let us say H is doubly-apex if it has two vertices u,v such that the graph obtained
from H by identifying u and v is planar. Sailboat is doubly-apex (identify 15 and 16)
but the Apex-selectors are not, and Petersen is not. The main result of this section is
the following.

14.3. Let H be dodecahedrally-connected. Then H is either arched or doubly-apex if and
only if it does not contain Petersen or an Apex-selector.

14.3 follows from the following.

14.4. Let H be dodecahedrally-connected, and contain Sailboat but not Petersen or any
Apez-selector. Then H is doubly-apez.

Proof of 14.3 assuming 14.4. “If” is easy, and we omit it. For “only if”, let H not contain
Petersen or an Apex-selector. If H is isomorphic to Triplex or Drum it is doubly-apex as
required. Otherwise, by 14.2 either it is arched or it contains Sailboat; and in the latter
case by 14.4 it is doubly-apex. This proves 14.3. O
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It remains to prove 14.4. That will require several lemmas. Let C be the set of the
subgraphs of Sailboat induced on the following vertex sets (which bound the regions
when Sailboat is drawn in the plane with 15 and 16 identified):

1,2,3,4,5;
1,2,7,11,6;
2,3,8,12,7;
3,4,9,13,8;
4,5,10,14, 9;
15,6,1,5, 10, 16;
15,6, 11, 16;
16,11,7,12, 15;
15,12, 8,13, 16;
16,13,9, 14, 15;
15, 14, 10, 16.

Let Boat(1),...,Boat(7) be Sailboat + (ab, cd) where respectively (a,b,c,d) is

(2,7,12,15),(7,12,6,15), (1,6, 11, 16), (2,7, 11, 16), (6, 11, 12, 15),
(9,14,12,15), (6,15, 12, 15).

14.5. Let G be Sailboat, and let ab and cd be edges of G such that no member of C
contains them both. Then G + (ab,cd) contains Petersen or an Apezx-selector or one of
Boat(1),...,Boat(7).

Proof. If a = ¢ then since no member of C contains ab and cd it follows that a = 15 or
16, and then G + (ab, cd) is isomorphic to Boat(7). We assume therefore that a,b # ¢, d.

Up to the symmetry of Sailboat and exchanging ab with cd, there are 88 cases to
be checked. Let G' = G + (ab,cd). If (a,b,c,d) is (1, 6, 11, 16) or (6, 15, 7, 11), G’ is
(isomorphic to) Boat(3). If (a,b,c,d) is (7, 12, 6, 11) or (2, 7, 11, 16), G’ is Boat(4).
If (a,b,c,d) is (2, 7, 12, 15) or (7, 11, 8, 12), G’ is Boat(1). If (a,b,¢,d) is (1, 6, 14, 15)
or (6, 11, 12, 15), G’ is Boat(5). If (a,b,c,d) is (7, 12, 6, 15) or (8, 12, 14, 15), G’ is
Boat(2). If (a, b, c,d) is (9, 14, 12, 15) or (10, 14, 6, 15), G’ is Boat(6). If (a,b, ¢, d) = (2,
3, 12, 15), G’ contains Firstapex; if (a,b,c,d) = (1, 6, 10, 14), (3, 8, 12, 15) or (7, 11,
8, 13) it contains Secondapex; if (a,b, ¢,d) is one of

(1,5,6,11),(1,5,14,15), (1,2,6,15), (1,2,11,16), (2,7,6, 15), (8,12, 11, 16)
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G’ contains Thirdapex; and in the remaining 66 cases, G’ contains Petersen. This
proves 14.5. O

14.6. Let H be dodecahedrally-connected, and not contain Petersen or an Apex-selector.
Then H contains none of Boat(1),...,Boat(7).

Proof.
(1) H does not contain Boat(1).

Subproof. Let L1 consist of Petersen and the four Apex-Selectors, and let C' be the quad-
rangle of Boat(1). Then every A-extension of Boat(1) is killed by £1, and P(C, L1) = 0,
so the claim follows from 10.1. This proves (1).

(2) H does not contain Boat(2).

Subproof. Let C be the quadrangle of Boat(2). Then every A-extension of Boat(2) is
killed by L4, and

P(C,L1) = {(17-18,6-11), (17-18, 7-11) }*.
The result follows from 10.2. This proves (2).

(3) H does not contain Boat(3) or Boat(4).

Subproof. Let G be Boat(3) or Boat(4), and L3 = £;U{Boat(2)}. Let C be the quadrangle
of G. Then every A-extension of G is killed by L3, and P(C, L3) = 0, so the result follows
from (2) and 10.1. This proves (3).

(4) H does not contain Boat(5) or Boat(6).
Subproof. Let G be Boat(5) or Boat(6), and let
L4 = L3 U{Boat(3), Boat(4)}.

Let C be the quadrangle of G. Then every A-extension of G is killed by L4, and
P(C, Ly) =0, so the result follows from (2), (3) and 10.1. This proves (4).

(5) H does not contain Boat(7).
Subproof. Let G be Boat(7), and let C' be its circuit of length 3. Let X = V(C'). Suppose

that there is a homeomorphic embedding of G in H; then by 8.1, there is a X-augmenting
sequence (e1, f1), ..., (en, fn) of G such that H contains G+ (e, f1)+. ..+ (en, fn). From
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the definition of “X-augmentation” it follows that n = 1 since |E(C)| = 3; and so H
contains G(eq, f1) for some e; € E(C) and f; € E(G\ X). But for all such ey, f1,G +
(e1, f1) contains a member of £1 or one of Boat(2), Boat(5), Boat(6), a contradiction by
(2) and (4). This proves (5).

From (1)—(5), this proves 14.6. O

Proof of 14.4. Let H be dodecahedrally-connected and not contain Petersen or an Apex-
selector. Let 1 be a homeomorphic embedding of G in H, where G is Sailboat. Let
V(F) = {15,16} and E(F) = 0; and let np be the restriction of n to F. Let C be as
before. Then (G, F,C) is a framework, and we claim that (E1)-(E7) hold. By 14.6 H con-
tains none of Boat(1),..., Boat(7), so by 14.5 (E2) holds. All the others are clear except
for (E6), and for (E6) we need only consider cross-extensions of G on some of the paths
in C, namely the ones with vertex sets

{15,6,1,5,10,16},{16,11,7,12,15},{15,12,8,13,16}
(and two more, that from symmetry we need not consider). We need to examine

G + (6-15,10-16) + (1-6, 16-18)
G + (6-15,10-16) + (6-17,16-18)
G + (6-15,5-10) + (6-17,10-18)
G + (6-15,5-10) + (1-6,10-16)
G + (11-16,12-15) + (11-17, 15-18)
G + (12-15,13-16) + (12-17, 16-18);

they contain Thirdapex, Boat(3), Boat(3), Petersen, Boat(3) and Boat(3) respectively.
Hence (E6) holds, and from 7.1, this proves 14.4. O

15. Dodecahedrally connected non-apex graphs

The graphs Diamond, Concertina and Bigdrum are defined in Figs. 15 and 16.
In this section we prove the following.

15.1. Let H be dodecahedrally-connected. Then H is apex if and only if it contains none
of Petersen, Jaws, Starfish, Diamond, Concertina, Bigdrum.

Let Square(l) be Secondapex + (14-16,11-13). Let Square(2),..., Square(5) be
Fourthapex + (ab, cd) where (a, b, c,d) is

(1,5,10,12), (1,11,6,10), (6, 14,13, 16), (12,13, 15, 16)
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Fig. 16. Bigdrum.

respectively. Let Square(6) and Square(7) be Thirdapex + (ab,cd) where (a,b,c,d) is
(3,15,14,16) and (2, 3,8,9) respectively.

15.2. Let H be dodecahedrally-connected, and not contain any of Petersen, Jaws, Starfish,
Diamond, Concertina, Bigdrum. Then it contains none of Square(1),..., Square(7).

Proof.
(1) H does not contain Square(1).
Subproof. Let G be Square(1), let C be the quadrangle of G, and let
L1 = {Petersen, Jaws, Starfish, Diamond, Concertina, Bigdrum}.
Every A-extension of G is killed by £1 (indeed, by {Petersen, Jaws, Starfish}), and

P(C, L) = {(13-18,5-12), (13-18,10-12), (13-18, 1-11), (13-18, 6-11) }*.
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(Note that G + (13-18, 1-5) is isomorphic to Jaws, and G + (16-17, 3-8) to Starfish.) Then
we verify the hypotheses of 10.2; and find that all the various extensions listed in 10.2
contain Petersen, except for the B-extensions

G + (13-18,12-5) + (12-20, 4-15)
G + (13-18,12-5) + (12-20, 11-18)
G + (13-18,12-5) + (12-20, 15-16)

(which contain Jaws, Diamond, and Concertina respectively) and the C-extension
G + (13-18,12-5) + (19-20, 1-11)
(which contains Jaws), and isomorphic extensions. Hence, from 10.2, this proves (1).

Now let
Lo = {Petersen, Square(1), Diamond, Concertina, Bigdrum}
(Jaws and Starfish are no longer necessary, since they both contain Square(1).)
(2) H does not contain Square(2).

Subproof. We apply 10.1 to the quadrangle C' of Square(2), with £ = L5. All A-extensions
are killed by Ly, and P(C, L) = 0, so the result follows from 10.1. This proves (2).

(3) H does not contain Square(3).

Subproof. Let C be the quadrangle of G = Square(3); we apply 10.2, with £ = L. All
A-extensions are killed by Lo, and

P(C, Ls) = {(6-11,13-16), (6-11, 14-16)}*.
We verify the hypotheses of 10.2. This proves (3).
(4) H does not contain Square(4).

Subproof. Now let L4 = L2U {Square(2), Square(3)}. The result follows from 10.1, applied
to the quadrangle of Square(4) and L4, using (2) and (3). This proves (4).

(5) H does not contain Square(5).

Subproof. Let L5 = L4U {Square(4)}, and C the quadrangle of G = Square(5). Then all
A-extensions are killed by L5, and
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Fig. 17. Extrapex.

P(C, L5) = {(13-17,6-11)};
and we verify the hypotheses of 10.2 to prove (5).
(6) H does not contain Square(6).

Subproof. Let Lg = LsU {Square(5)}, and C,G as usual. All A-extensions are killed
by Lg, and

P(C, Lg) = {(17-18,3-8), (17-18, 8-14) }*;
and again the result follows from 10.2. This proves (6).
(7) H does not contain Square(7).

Subproof. Let L7 = LU {Square(6)}, and C, G as usual. Then all A-extensions are killed
by L7, and P(C, L7) =, so (7) follows from 10.1.

From (1)—(7), this proves 15.2. O

The graph FExtrapex is defined in Fig. 17.
We say that G is an Apex-forcer if either it is an Apex-selector or it is Extrapex. By
the Non-apex family we mean

{Petersen, Diamond, Concertina, Bigdrum, Square(1),..., Square(7)}.

15.3. Let G be an Apex-forcer. Let C be the set of circuits that bound regions in the
planar drawing of G\ 16. If ab and cd are edges of G with a,b # ¢,d, and no member of
C contains them both, then either G+ (ab, cd) contains a member of the Non-apex family,
or one of a,b,c,d is 16 and the other three belong to some member of C.
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We leave the proof to the reader (the details are in the Appendix [5]). If G is an
Apex-forcer, and 7 is a homeomorphic embedding of G in H, we define the spine of 1 to
be 7(13-16) U n(14-16) U n(15-16).

15.4. Let H be cubic and cyclically four-connected, and contain no member of the Non-
apex family. Let H contain some Apex-forcer. Then there is a homeomorphic embedding
n of some Apez-forcer in H such that its spine has only three edges.

Proof. Choose an Apex-forcer G and a homeomorphic embedding n of G in H, such
that its spine is minimal. Suppose its spine has more than three edges; then since H
is cyclically four-connected, there is an 7n-path P with one end in 7(e) and the other
in n(f), where f is one of 13-16, 14-16, 15-16 and e is not incident with 16. If e and f have
a common end then by rerouting e along P we obtain a new homeomorphic embedding
with smaller spine, a contradiction. Similarly, it follows that no edge of G \ 16 joins an
end of e to an end of f. Let C be as in 15.3. By 15.3 there exists C € C such that
e € E(C) and f has an end in V(C). Let e = ab and let f be incident with ¢, 16. Now
we must examine cases.

If G is Firstapex, we may assume that (a,b,c) = (2,8,13) from the symmetry. Then
n(G \ 6-12) U P yields a homeomorphic embedding of Secondapex with smaller spine,
a contradiction. (We apologize for this awkward notation; by G'\ 6-12 we mean the graph
obtained from G by deleting the edge 6-12. We use the same notation below.)

If G is Secondapex, there are three possibilities for (a,b,c) : (1,5,13) (when n(G \
6-10)UP yields a homeomorphic embedding of Firstapex), (1, 11, 14) (when n(G\1-5)UP
yields a homeomorphic embedding of Fourthapex), and (3, 8, 14) (when n(G) U P yields
a homeomorphic embedding of Extrapex), in each case contradicting the minimality of
the spine. If G is Thirdapex, the possibilities for (a,b,c) are: (1, 5, 13) or (2, 3, 14)
(when n(G \ 8-9) U P yields a homeomorphic embedding of Fourthapex), (6, 10, 14)
(when n(G\ 1-11) U P yields a homeomorphic embedding of Thirdapex), and (9, 10, 14)
(when n(G \ 2-7) U P yields a homeomorphic embedding of Firstapex), in each case a
contradiction.

If G is Fourthapex, the possibilities are: (1, 5, 13) (when n(G\ 4-9) U P yields a home-
omorphic embedding of Thirdapex), (6, 10, 13) (when n(G) U P yields a homeomorphic
embedding of Extrapex), (1, 2, 14) (when n(G \ 4-9) U P yields a homeomorphic em-
bedding of Secondapex), and (1, 11, 14) (when n(G \ 10-12) U P yields a homeomorphic
embedding of Thirdapex), in each case a contradiction. (We have used a symmetry of
Fourthapex not evident from the drawing, exchanging 13 with 15 and 1 with 9.)

If G is Extrapex, the possibilities are: (1, 2, 13) (when n(G\ {7-13,1-6}) U P yields a
homeomorphic embedding of Secondapex) and (2, 7, 14) (when n(G \ {2-3,10-11}) U P
yields a homeomorphic embedding of Thirdapex), in each case a contradiction.

Hence the spine has only three edges. This proves 15.4. O
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Proof of 15.1. “Only if” is easy, and we omit it. For “if”, let H be dodecahedrally-
connected, and not contain any of Petersen, Jaws, Starfish, Diamond, Concertina, Big-
drum. By 15.2 it contains none of Square(1l),..., Square(7). We may assume that H
is not arched or doubly-apex, for such graphs are apex; and so by 14.3 H contains an
Apex-selector. By 15.4, there is a homeomorphic embedding 7 of some Apex-forcer G
in H such that its spine has only three edges. Let F' be the subgraph of G induced on
{13, 14,15,16}, and let np be the restriction of n to F. Let C be as in 15.3; then (G, F,C)
is a framework, and H,np satisfy (E1). We claim they satisfy (E2)—(ET7). (E2) follows
from 15.3, and (E3), (E7) are vacuously true. For (E4), (E5) and (E6) a large amount of
case-checking is required, for G = Firstapex, Secondapex, Thirdapex, Fourthapex and
Extrapex, separately. (In the case-checking we use that H contains none of Petersen,
Jaws, Starfish, Diamond, Concertina, Bigdrum, and we could also use that it contains
none of Square(1)-Square(7). In fact we find that we don’t need to use all of the latter;
we just need that H does not contain Square(2).) The details are in the Appendix [5].
From 7.1, this proves 15.1. 0O

16. Die-connected non-apex graphs

Our next real objective in this paper is modify 15.1 to find all the cubic graphs
G minimal with the properties that they are non-apex and dodecahedrally-connected,
and |6(X)| > 6 for all X C V(G) with | X|,|V(G) \ X| > 7. (There are only three such
graphs, namely Petersen, Jaws and Starfish, as we shall see in the next section.) Diamond,
Concertina and Bigdrum all have subsets X with [§(X)| = 5 and | X[, |[V(G) \ X| > 9,
so they are rather far from having the property we require; and a convenient half-way
stage is afforded by “die-connectivity”. We recall that a graph G is die-connected if it is
dodecahedrally-connected (and hence cubic and cyclically five-connected) and |6(X)| > 6
for all X C V(@) with |X|,|V(G) \ X| > 9. In this section we find all minimal graphs
that are non-apex and die-connected.

The graphs Log, Antilog, and Dice(1),..., Dice(4) are defined in Figs. 18 and 19. We
shall show the following.

16.1. Let H be die-connected. Then H is apex if and only if H contains none of Petersen,
Jaws, Starfish, Log, Antilog, Dice(1), Dice(2), Dice(3), Dice(4).

We begin with the following.

16.2. Any die-connected graph that contains Diamond also contains one of Petersen,
Antilog, Dice(4).

Proof. Let H be die-connected, and contain no member of £ = {Petersen, Antilog,
Dice(4)}. We claim first that

(1) H does not contain Diamond +(1-2,10-11).
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Ve i ey

Fig. 18. Log and Antilog.

Fig. 19. Dice(1)-Dice(4).

Subproof. Let C be the quadrangle of G = Diamond +(1-2,10-11). Then all A-extensions
are killed by £, and

P(C, L) = {(2-19,4-5), (11-20, 10-13) }*.

We verify the hypotheses of 10.2 (the E-extension is isomorphic to Dice(4)). This
proves (1).

Now let L = {Petersen, Antilog, Diamond + (1-2,10-11)}, and X = {1,...,9}.
(2) Every X -augmentation of Diamond contains a member of L'.

Subproof. Let (e1, f1), ..., (en, fn) be an X-augmenting sequence, and suppose the corre-
sponding X-augmentation contains no member of £’. In particular, Diamond + (ey, f1)
contains no member of £, and so (by checking all possibilities) it follows that f; is
6-10 and ey is one of 1-2, 1-7, 4-9. In particular, n > 2. Since f; = 6-10 it follows that
ea = 6-20. If eg is 1-7 or 4-9 there is no possibility for fo. Thus e; is 1-2, and then f,
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is 9-12, and n > 3, and e3 is 9-22. Again by checking cases it follows that fs is 7-17,
and hence n > 4 and ey is 7-24; and there is no possibility for fy, a contradiction. This
proves (2).

From (1), (2) and 8.1, the result follows since H is die-connected. This proves 16.2. O

16.3. Every die-connected graph that contains Bigdrum also contains one of Petersen,
Diamond or Dice(2).

Proof. Let H be die-connected, and contain no member of £ = {Petersen, Diamond,
Dice(2)}. We claim first

(1) H does not contain Bigdrum +(3-8,10-11).

Subproof. Let G = Bigdrum + (3-8,10-11), and let C' be the quadrangle of G. Then all
A-extensions are killed by £, and

P(C, L) ={(811,9-13),(19-20,10-14)}*.
The result follows from 10.2 by checking all the various extensions (in particular,
G + (8-19,5-9) + (11-20, 10-14) + (8-21,20-23)
is isomorphic to Dice(2)). This proves (1).

Now let £ = {Petersen, Diamond, Bigdrum + (3-8,10-11)} and X = {1,...,9}. We
claim that

(2) Every X-augmentation of Bigdrum contains a member of L.

Subproof. Let (e1, f1),- .-, (en, fn) be an X-augmenting sequence, such that the corre-
sponding X-augmentation contains no member of £’. Then by checking cases it follows
that (e, f1) is one of (3-8,6-10), (4-7,9-13), and by the symmetry we may assume the
first. Then n > 2, and es is 6-20; and there is no possibility for fs, a contradiction. This
proves (2).

From (1), (2) and 8.1, this proves 16.3. O

16.4. Any die-connected graph that contains Concertina also contains one of Petersen,
Log, Diamond, Bigdrum, Dice(1), Dice(3).

Proof. Let H be a die-connected graph that contains no member of £ = {Petersen, Log,
Diamond, Bigdrum, Dice(1), Dice(3)}. Let Conc(1), Conc(2), Conc(3) be Concertina +
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(e, f) where (e, f) is (4-8,10-11), (6-7,17-18), (8-9,16-17); and let Conc(4) be Concertina
+(23,8-11) + (820, 16-17).

(1) H does not contain Conc(1).

Subproof. Let C' be the quadrangle of G = Conc(1). All A-extensions are killed by L,
and

P(C, L) = {(8-11,9-17), (19-20, 2-10) }*;

and the result follows by verifying the other hypotheses of 10.2. (The E-extension is
isomorphic to Dice(1).) This proves (1).

Let Conc(21) be Conc(2) + (7-19,1-5), let Conc(211) be Conc(21) + (1-2,3-4), and
let Conc(212) be Conc(21) + (1-2,3-7).

(2) H does not contain Conc(211) or Conc(212).

Subproof. Let G = Conc(211) and let C be its quadrangle. Then all A-extensions are
killed by L, and

P(C, L) = {(2-23,1-12) }",
and the result for Conc(211) follows by verifying the other hypotheses of 10.2.
Now let G = Conc(212) and let C be its quadrangle. Again all A-extensions are killed
by L, and again

P(C, L) ={(2-23,1-12) }*

and again the result follows from 10.2. (Conc(212) + (3-24,1-22) is isomorphic to
Dice(3).) This proves (2).

(3) H does not contain Conc(21).

Subproof. Let £1 = £U {Conc(211), Conc(212)}. Let X = {1,2,10, 11,12, 13,14, 15, 16};
we claim that every X-augmentation of Conc(21) contains a member of £;. For suppose
not, and let the corresponding sequence be (e1, f1),. .., (en, fn). By checking cases, e; is
12-16 and f; is 14-18; and so n > 2, and ey is 14-20, and there is no possibility for fs.
Hence (3) follows from 8.1 and (2).

(4) H does not contain Conc(2).
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Subproof. Let Lo = LU {Conc(21)}, G = Conc(2), and C the quadrangle of G. Then all
A-extensions are killed by L5, and

P(C, L) = {(19-20,6-9), (19-20,9-17)}*
and the result follows by verifying the hypotheses of 10.2. This proves (4).

(5) H does not contain Conc(3).

Subproof. Let L3 = LU {Conc(2)}, G = Conc(3), and C the quadrangle of G. Then all
A-extensions are killed by L3, and

P(C, L3) = {(9-19,4-8)}",
and the result follows by verifying the hypotheses of 10.2. This proves (5).

(6) H does not contain Conc(4).

Subproof. Let L4 = LU {Conc(2), Conc(3)}, and X = {3, 4,5, 6,7, 8,9, 17, 18}. We
claim that every X-augmentation of G = Conc(4) contains a member of £4. Suppose not,
and let the corresponding sequence be (e1, f1),. .., (én, fn). By checking cases, ey is 3-7
and f1 is 1-5; so n > 2, and ey is 5-24, and there is no possibility for fs, a contradiction.
Hence (6) follows from 8.1.

Let £5 = £4U {Conc(l), Conc(4)}, and X = {1,...,9}. We claim that every
X-augmentation of G = Concertina contains a member of L. Suppose not, and let
(e1, f1),- .-, (en, fn) be the corresponding sequence. By checking cases (eq, f1) is one of
(2-3,8-11), (4-8,2-10); so n > 2, and in either case there is no possibility for fo. Hence
the result follows from (1), (4), (5), (6) and 8.1. This proves 16.4. O

Proof of 16.1. “Only if” is easy, and we omit it. For “if”, let H contain none of the given
graphs. By 16.2, 16.3, 16.4 it contains none of Diamond, Bigdrum, Concertina; and so
by 15.1 it is apex. This proves 16.1. O

17. Theta-connected non-apex graphs

We recall that G is theta-connected if it is cubic and cyclically five-connected, and
[6(X)] > 6 for all X C V(G) with | X|,|V(G)\ X| > 7 (and hence it is dodecahedrally-
connected). None of the graphs of Figs. 18, 19 are theta-connected, and our next objective
is to make a version of 16.1 for theta-connected graphs. It becomes much simpler:

17.1. Let H be theta-connected. Then H is apex if and only if it contains none of Pe-
tersen, Jaws and Starfish.
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Fig. 20. A domino.

For the proof we use 17.2 below. A domino in a cubic graph H is a subgraph D
with |[V(D)| = 7, consisting of the union of three paths Py, P2, P5 of lengths two, three
and three respectively, which have common ends and otherwise are disjoint. The middle
vertex of P is called the centre of the domino, and the other four vertices of degree two
are its corners; an attachment sequence is some sequence (z1,...,x5) where x1,...,24
are the corners, x5 is the centre, ziz9 is an edge, and x2, x3 have a common neighbour.
(See Fig. 20.)

A domino D in G with attachment sequence (1, ...,x5) is said to be crossed if

e there are two disjoint connected subgraphs P, Q of G, both edge-disjoint from D,
with V(PN D) = {x1,23} and V(Q N D) = {x2, 24, x5}; and

e there are two disjoint connected subgraphs P,Q of G, both edge-disjoint from D,
with V(PN D) = {z1,23, 25} and V(Q N D) = {x2,x4}.

17.2. Let D be a crossed domino with attachment sequence x1,...,xs5, in a cyclically
five-connected cubic graph G with |V(G)| > 14. Let x5 be incident with g ¢ E(D). Let
H be a cubic graph, cyclically five-connected, and let n be a homeomorphic embedding of
G in H. Then either

o there exists X C V(H) with |0 (X)| = 5, such that for allv € V(G), n(v) € X if
and only if v € V(D); or

e H contains Petersen; or

o for some e € E(D) and f € E(G\ V(D)) there is a homeomorphic embedding ' of
G+ (e, f) in H; or

o for some e € {x1xa, 2314}, and for some f € E(G\V (D)) such that f,g are diverse
in G, there is a homeomorphic embedding 1’ of

G+ (eag) + (yx57f)

in H, where x,y are the new vertices of G + (e, g).

Proof. Let X = V(D). We assume that (i) and (ii) are false. Since |V(G)| > 14 and
|0c(X)| = 5, and since (i) is false, it follows from 8.1 that there is an X-augmentation
G’ of G, and a homeomorphic embedding 7" of G’ in G. Let (e1, f1),...,(en, fn) be
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the corresponding sequence. If n = 1 then (iii) is true, so we assume that n > 2. For
1 <4 <5, let ; be adjacent in G to y; € V(G) \ V(D). Let the neighbours of z5 in G
be ys, xg, x7, where x4 is adjacent to x1. Let Gy = G + (eq, f1) with new vertices sy, t1,
and let Dy be the subgraph of G; induced on V(D) U {s1,t1}.

Suppose first that f; = x1y;. Then since e; and f; are diverse in G, it follows that
e1 = a1by say where a1,by € {x3, 24, x5, 27}, that is, ey is one of x3x4, 23207, x527. If fi
is 3-4 or 3-7, let P,@Q be disjoint paths of G; from x5 to x4 and from t; to x5, with
no vertices or edges in Dy except their ends; and let R be a path of G\ V(D) between
V(P) and V(Q) with no internal vertex or edge in P or ). Then D; UPUQ U R is
homeomorphic to Petersen, and so G; and hence H contains Petersen, and (ii) is true,
a contradiction. So e; = x5x7. Let P, @ be disjoint paths of GGy from ¢; to x3 and from
To to x5, with no vertices or edges in D; except their ends, and let R be as before. Then
D; UPUQU R again is homeomorphic to Petersen, a contradiction.

Hence f1 # z1y1, and so by symmetry fi1 # xoyo, x3ys, T4ys; and hence f = z5ys.
Hence e; is 1-2 or 3-4, and by symmetry we may assume the first. Also, e; = x5t1, and
there are (up to the symmetry) three possibilities for fa, namely fo = z1y1, fo = T4a,
and fy € E(G\ V(D)). In the third case the theorem is true, so we assume for a
contradiction that one of the first two cases hold. Let G2 = G1 + (e2, f2), with new
vertices s, te, and let Dy be the subgraph of G induced on V(D) U {s1,t1, 82,2}

If fo = z1y1, let P, @ be disjoint paths of G5 from t5 to x3 and from ¢; to x4 with no
vertices or edges in Dy except their ends; then Do U PUQ is homeomorphic to Petersen,
a contradiction. But if fo = z4y4, let P, Q be disjoint paths of Gs from x5 to ty and t;
to z3, with no vertices or edges in D5 except their ends; then Dy U PUQ is homeomorphic
to Petersen, a contradiction. This proves 17.2. 0O

Proof of 17.1. “Only if” is easy and we omit it. For “if”, let H be theta-connected and
not contain Petersen, Jaws or Starfish.

(1) H does not contain Antilog.

Subproof. Let G be Antilog, let X = {1,...,7}, and let D = G[X]. Then D is a crossed
domino of G. But the following all contain Petersen:

(i) G+ (e, f) foralle € E(D) and f € E(G\ X);
(ii) G + (1-6,5-10) + (5-22, zy) for all zy € E(G \ X) with x,y # 10, 14, 15.

From 17.2, this proves (1).

Let £ = {Petersen, Jaws}.

(2) H does not contain Log.
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Subproof. Let Log(1) be Log + (1-2,8-13), let C' be its quadrangle, and let £, = LU
{Antilog}. All A-extensions are killed by £, and

P(C, L1) = {(21-22,2-9), (21-22,13-9)}*,

and it follows by verifying the hypotheses of 10.2 that H does not contain Log(1).

Let Log(2) be Log + (1-2,9-13), let C be its quadrangle, and L5 = £;U {Log(1)}.
All A-extensions are killed by Lo, and P(C, L) = ), and so by 10.1 H does not contain
Log(2).

Now let G =Log, X =1,...,7, and L3 = L3U {Log(2)}. For any edge e of G[X] and
edge f of G not in G[X] (we permit f to have one end in X), if e, f are diverse then
G+ (e, f) contains a member of £3; and so H does not contain Log, by (1) and 8.1. This
proves (2).

(3) H does not contain Dice(1).

Subproof. Let Dice(11) = Dice(1) + (1-2,20-23), let C be its quadrangle, and £, =
{Petersen, Jaws, Log, Antilog}. All A-extensions are killed by L4, and P(C, Ly4) = 0, so
by 10.1 H does not contain Dice(11).

Now let £5 = £4U {Dice(11)}, let G = Dice(1), X = {1,...,7} and D = G[X]; then
D is a crossed domino in G. For all e € E(D) and f € E(G\ X), G+ (e, f) contains a
member of L£4; and for all zy € E(G\ X) with z,y # 9,10, 11, G+ (1-2,5-10) + (5-28, zy)
contains Petersen. Hence the result follows from 17.2. This proves (3).

(4) H does not contain Dice(2).

Subproof. Let G = Dice(2), X = {1,...,7} and Lg = {Petersen, Antilog, Dice(1)}. For
all e € E(G[X]) and f € E(G) \ E(G[X)), if e, f have no common end then G + (e, f)
contains a member of Lg; so (4) follows from (1), (3) and 8.1.

(5) H does not contain Dice(3).

Subproof. Let Dice(31) = Dice(3) + (3-4,13-14), let C be its quadrangle, and L4 as
before. All A-extensions are killed by £4, and P(C, L) = 0, so by 10.1 H does not
contain Dice(31).

Let £7 = £4U {Dice(31)}. Let G = Dice(3), X = {1,...,7}, and D = G[X]. Then
D is a crossed domino in G. For all e € E(D) and f € E(G\ X), G+ (e, f) contains a
member of £7. Moreover, for all zy € E(G \ X) with =,y # 15, 16, 18,

G + (1-2,5-15) + (5-28, zy)
G + (3-4,5-15) + (5-28, zy)

both contain Petersen or Log. From (1)—(3) and 17.2, this proves (5).
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(6) H does not contain Dice(4).

Subproof. Let G = Dice(4), X = {1,...,7} and D = G[X]. Then D is a crossed domino
in G. But for all e € E(D) and f € E(G\ X), G + (e, f) contains Petersen or Log; and
for all zy € EF(G\ X) with z,y # 16,21, 23,

G+ (1-2,5-21) + (5-28, zy)

G + (3-4,5-21) + (5-28, zy)
both contain Petersen or Log. The result follows from (2) and 17.2. This proves (6).
From (1)—(6) and 16.2, this proves 17.1. O

The reader may have noticed that Starfish hardly ever is needed for anything. There
is an explanation, the following (previously stated as 1.2).

17.3. Every dodecahedrally-connected graph H containing Starfish either is isomorphic
to Starfish or contains Petersen.

Proof. If H “properly” contains G = Starfish, then by 10.3 H contains a graph G’ =
G + (e, f) for some choice of diverse edges e, f of G. But every such graph G’ contains
Petersen. This proves 17.3. O

From 17.3 we obtain a slightly stronger reformulation of 17.1, previously stated as 1.3.

17.4. Let H be theta-connected, and not isomorphic to Starfish. Then H is apex if and
only if it contains neither of Petersen, Jaws.

The proof is clear.
18. Excluding Petersen

In this section we prove 1.3, thereby completing the proof of 1.1. We restate it:

18.1. Let H be theta-connected, and contain Jaws but not Petersen. Then H is double-
cross.

Proof. Let Jaws(1) be Jaws +(1-2,3-4), let Jaws(11) be Jaws(1) +(3-22,1-6), and let
Jaws(12) be Jaws(1) +(21-22, 1-6).

(1) H does not contain Jaws(11) or Jaws(12).
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Subproof. Let G be Jaws(11), and let X = V(G)\ {1, 2, 3, 21, 22, 23, 24}. If ab € E(G[X])
and cd € E(G) \ E(G[X]), with a,b # ¢,d and with a,b non-adjacent to any of ¢,d that
are in X, then G + (ab, cd) contains Petersen. Hence the result follows from 8.1 when G
is Jaws(11).

When G is Jaws(12), the argument is not so simple. Again we apply 8.1 to the same
set X. Let (e, f1),...,(ex, fr) be an augmenting sequence. By checking cases, we find
that fi is not an edge of G\ X (because every choice of e; € E(G[X]) and f1 € E(G\ X)
gives a Petersen), and so k > 2; and having fixed (e, f1), we try all the possibilities for
(e2, f2). Again, there is no case with fo € E(G\ X), and so k > 3, and for each surviving
choice of (ez, f2) we try the possibilities for (es, f3). We find in every case that there is
no choice of (es, f3). (See the Appendix [5].) This proves (1).

(2) H does not contain Jaws(1).

Subproof. Let C be the quadrangle of G = Jaws(1), and let £ = {Petersen, Jaws(11),
Jaws(12)}. Then all A-extensions are killed by £, and P(C,L) = 0, so (2) follows
from 10.1.

Let Jaws(2) be Jaws +(8,3,5,6)+(21, 3,22,6), let Jaws(21) be Jaws(2) +(6,7,11,12),
and let Jaws(22) be Jaws(2) +(7,8, 19, 10).

(3) H does not contain Jaws(21).

We apply 10.2 to the quadrangle {25, 26,12, 7}, taking £ to be {Petersen, Jaws1}. Again,
see the Appendix for details. (Note that Jaws(21) has two circuits of length four, but
it is quad-connected; this was the reason we extended 10.2 to quad-connected graphs
instead of graphs G that were cyclically five-connected except for one circuit of length
four.)

(4) H does not contain Jaws(22).

This is easier; we apply 10.1 to the quadrangle {8,20, 26,25}, taking £ to be {Petersen,
Jawsl, Jaws(21)}.

(5) H does not contain Jaws(2).

Let X = {6,7,8,21,22,23,24}. We apply 8.1 to X, and try all possibilities for the first
three terms of the augmenting sequence; and find in each case contains one of Petersen,
Jaws(1), Jaws(21), Jaws(22). (See the Appendix.)

Now let C; be the set of the seven circuits of Jaws that bound regions in the drawing
in Fig. 2, not containing 1-6, 3-8, 13-18 or 15-20. Let Co be the set of paths of Jaws
induced on the following sets:

Please cite this article in press as: N. Robertson et al., Excluded minors in cubic graphs, J. Combin.
Theory Ser. B (2019), https://doi.org/10.1016/j.jctb.2019.02.002




YJCTB:3220

66 N. Robertson et al. / Journal of Combinatorial Theory, Series B s (ssee) sso—ses

6,1,2,3,8;
8,3,4,5,6,1;
1,6,7,8,3;
3,8,20,15;
15, 20,19, 18, 13:
13,18, 17,16, 15, 20;
20,15, 14, 13, 18;
18,13,1,6.
Let G = Jaws, let F' and nr be null, and let C = C;UCs; then (G, F,C) is a framework. By
hypotheses, there is a homeomorphic embedding n of G in H. We claim that (E1)—(ET7)
hold.

Since F' is null, (E4), (E5) are vacuously true, and (E1), (E3) are obvious. It remains
to check (E2), (E6) and (E7). For (E2) we check that if e, f € E(G), not both in some
member of C, then G+ (e, f) contains either Petersen or Jaws(1); so (E2) follows from (2).
For (E6) it is only necessary to check cross extensions on the circuit with vertex set {4,

5,11, 17, 16, 10} and the path with vertex set {1, 6, 5, 4, 3, 8}, since all the other circuits
and paths are too short or are equivalent by symmetry. Hence we must check

G + (4-5,16-17) + (4-21,17-22)

G + (4-5,16-17) + (4-10,11-17)

G+ (4-10,11-17) + (4-21,17-22)

G + (4-10,11-17) + (10-16, 5-11)
G + (3-8,5-6) + (3-4, 1-6)

G + (3-8,5-6) + (3-21,6-22);

but they all contain Petersen, except the last which contains Jaws(2). Hence (E6) holds.
For (E7) we must check

G + (3-8,5-6) + (3-21,1-6) + (8-21,1-24);
but this contains Petersen. Hence (E7) holds. From 7.1, this proves 18.1. O
Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/
10.1016/j.jctb.2019.02.002.
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