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a b s t r a c t

We prove two results:

1. A graphG on at least seven verticeswith a vertex v such that
G − v is planar and t triangles satisfies |E(G)| ≤ 3|V (G)| −
9 + t/3.

2. For p = 2, 3, . . . , 9, a triangle-free graphG on at least 2p−5
vertices with no Kp-minor satisfies |E(G)| ≤ (p−2)|V (G)|−
(p − 2)2.

© 2018 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

All graphs in this paper are finite and simple. Cycles have no ‘‘repeated’’ vertices. A graph is aminor

of another if the first can be obtained from a subgraph of the second by contracting edges. AnH-minor

is a minor isomorphic to H . Mader [6] proved the following beautiful theorem.

Theorem 1.1. For p = 2, 3, . . . , 7, a graph with no Kp-minor and V ≥ p − 1 vertices has at most

(p − 2)V −
(

p−1

2

)

edges.

For large p however, a graph on V vertices with no Kp-minor can have up toΩ(p
√
log pV ) edges as

shown by several people (Kostochka [4,5], and Fernandez de la Vega [2] based on Bollobás, Catlin and
Erdös [1]). Already for p = 8, 9, there are Kp-minor-free graphs on V vertices with strictly more than

(p − 2)V −
(

p−1

2

)

edges, but the exceptions are known. Given a graph G and a positive integer k, we
define (G, k)-cockades recursively as follows. A graph isomorphic to G is a (G, k)-cockade. Moreover,
any graph isomorphic to one obtained by identifying complete subgraphs of size k of two (G, k)-
cockades is also a (G, k)-cockade, and every (G, k)-cockade is obtained this way. The following is a
theorem of Jørgensen [3].
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Theorem 1.2. A graph on V ≥ 7 vertices with no K8-minor has at most 6V − 21 edges, unless it is a

(K2,2,2,2,2, 5)-cockade.

The next theorem is due to Song and the first author [10].

Theorem 1.3. A graph on V ≥ 8 vertices with no K9-minor has at most 7V − 28 edges, unless it is a

(K1,2,2,2,2,2, 6)-cockade or isomorphic to K2,2,2,3,3.

The first author and Zhu [11] conjecture the following generalization.

Conjecture 1.4. A graph on V ≥ 9 vertices with no K10-minor has at most 8V − 36 edges, unless it is

isomorphic to one of the following graphs:

(1) a (K1,1,2,2,2,2,2, 7)-cockade,
(2) K1,2,2,2,3,3,

(3) K2,2,2,2,2,3,

(4) K2,2,2,2,2,3 with an edge deleted,

(5) K2,3,3,3,3,

(6) K2,3,3,3,3 with an edge deleted,

(7) K2,2,3,3,4, and

(8) the graph obtained from the disjoint union of K2,2,2,2 and C5 by adding all edges joining them.

McCarty and the first author studied the extremal functions for linklessly embeddable graphs: graphs
embeddable in 3-space such that no two disjoint cycles form a non-trivial link. Robertson, Seymour,
and the first author [9] showed that a graph is linklessly embeddable if and only if it has no minor
isomorphic to a graph in the Petersen family, which consists of the seven graphs (including the Petersen
graph) that can be obtained from K6 by ∆Y - or Y∆-transformations. Thus, Mader’s theorem implies
that a linklessly embeddable graph on V vertices has at most 4V − 10 edges. McCarty and the first
author [8] proved the following.

Theorem 1.5. A bipartite linklessly embeddable graph on V ≥ 5 vertices has at most 3V − 10 edges,

unless it is isomorphic to K3,V−3.

In the same paper McCarty and the first author made the following three conjectures.

Conjecture 1.6. A triangle-free linklessly embeddable graph on V ≥ 5 vertices has at most 3V −10 edges,

unless it is isomorphic to K3,V−3.

As a possible approach to Conjecture 1.6 McCarty and the first author proposed the following.

Conjecture 1.7. A linklessly embeddable graph on V ≥ 7 vertices with t triangles has atmost 3V−9+t/3
edges.

The third conjecture of McCarty and the first author is as follows.

Conjecture 1.8. For p = 2, 3, . . . , 8, a bipartite graph on V ≥ 2p − 5 vertices with no Kp-minor has at

most (p − 2)V − (p − 2)2 edges.

1.1. Our results

We first give a partial result to Conjectures 1.6 and 1.7. An apex graph is a graph G with a vertex a

such that G − a is planar. All apex graphs are linklessly embeddable. We show that Conjectures 1.6
and 1.7 hold for apex graphs:

Theorem 1.9. A triangle-free apex graph on V ≥ 5 vertices has at most 3V − 10 edges, unless it is

isomorphic to K3,V−3. Moreover, an apex graph on V ≥ 7 vertices with t triangles has at most 3V −9+t/3
edges.
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Let us remark that the assumption that V ≥ 7 is necessary: let G be the graph obtained from K6 by

deleting a perfect matching. Then G has six vertices, 12 edges and eight triangles; thus |E(G)| = 12 ̸≤
35/3 = 3V − 9 + t/3.

Our second result proves a generalization of Conjecture 1.8 to triangle-free graphs for values of p

up to 9:

Theorem 1.10. For p = 2, 3, . . . , 9, a triangle-free graph with no Kp-minor on V ≥ 2p − 5 vertices has

at most (p − 2)V − (p − 2)2 edges.

We prove Theorem 1.9 in Section 2 and Theorem 1.10 in Section 3.

2. Proof of Theorem 1.9

For an integer V , by V+ we denote max{V , 0}, and we define ψ(V ) := (7 − V )+ + (5 − V )+. We

need the following lemma.

Lemma 2.1. Let V1, V2 ≥ 2 be integers, and let V = V1 + V2 − 1.Then

max{ψ(V1), 1} + max{ψ(V2), 1} ≤ ψ(V ) + 10

with equality if and only if V ≤ 5.

Proof. Assume first that both V1, V2 are at most five. If V ≥ 6, then V1 + V2 ≥ 7 and we have

max{ψ(V1), 1} + max{ψ(V2), 1} = ψ(V1) + ψ(V2) = 7 − V − 1 + 17 − (V1 + V2)

≤ ψ(V ) + 9.

If V ≤ 5, then

max{ψ(V1), 1} + max{ψ(V2), 1} = ψ(V1) + ψ(V2) = 7 − V − 1 + 5 − V − 1 + 12

= ψ(V ) + 10.

Wemay therefore assume that say V2 ≥ 6. Then

max{ψ(V1), 1} + max{ψ(V2), 1} = max{(5 − V1)
+ + (7 − V1)

+, 1} + max{(7 − V2)
+, 1}

≤ 3 + 5 + 1 = 9,

as desired. □

Let G be an apex graph on V vertices and E edges with a vertex a such that G − a is planar. Let

G◦ := G − a be embedded in the plane, and let V ◦ := |V (G◦)| and E◦ := |E(G◦)|. Note that V = V ◦ + 1

and E = E◦ + d(a).

2.1. Triangle-free case

First suppose that G is triangle-free and that V ≥ 5. Then N(a) is an independent set. As G◦ is

triangle-free, planar andhas at least three vertices, it follows fromEuler’s formula that E◦ ≤ 2V ◦−4, so

E = E◦ + d(a) ≤ 2V ◦ − 4 + d(a) = 2V − 6 + d(a)

If d(a) ≤ V − 4, then we are done. As d(a) ≤ V − 1, we just need to check 3 cases:

1. d(a) = V − 1. As N(a) is independent, G◦ is the empty graph on V − 1 vertices, so E = V − 1 ≤
3V − 10, since V ≥ 5.

2. d(a) = V − 2. Then a is adjacent to all but one vertex u in G◦. Since d(u) ≤ V − 2 and N(a) is

independent, it follows that E ≤ 2V − 4 ≤ 3V − 10, unless V = 5, in which case E ≤ 3V − 10,

except when G is isomorphic to K2,3, as desired.
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3. d(a) = V − 3. Then a is adjacent to all but two vertices u, v in G◦. Since G◦ is triangle-free and
N(a) is independent, if u is adjacent to v, then E◦ ≤ V ◦ − 1, in which case E = E◦ + V − 3 ≤
2V − 5 ≤ 3V − 10, since V ≥ 5; and if u is not adjacent to v, then E◦ ≤ 2(V ◦ − 2), in which
case E ≤ E◦ + V − 3 ≤ 3V − 9, with equality if and only if G◦ is isomorphic to K2,V−3 and G is
isomorphic to K3,V−3.

Therefore E ≤ 3V − 10, unless G is isomorphic to K3,V−3, as desired.

2.2. General case

Now suppose that G has t triangles. Let t◦ denote the number of triangular faces of G◦ and let ta
denote the number of triangles of G incident with a. Let t ′ = t◦ + ta. Since t ′ ≤ t , it would suffice to
show that

E ≤ 3V − 9 + t ′/3 (1)

However, this inequality does not always hold. Consider a graph G obtained from K3,V−3 with biparti-
tion ({a, b, c}, {v1, . . . , vV−3}) by adding the edge bc and any subset of the edges {v1v2, v2v3, . . . , vV−4

vV−3}. This gives an apex graph, where G − a is planar, with E = 3V − 9 + t ′/3 + 1/3, violating the
inequality (1). Let us call any graph isomorphic to such a graph exceptional. What we will show is that
every graph G on at least seven vertices satisfies (1), unless G is exceptional. Note that this proves
Theorem 1.9, since an exceptional graph has at least two triangles which are not counted in t ′, and
hence satisfies the inequality in Theorem 1.9.

In fact, we prove a stronger statement, and for the sake of the inductive argument we allow graphs
on fewer than seven vertices. Let F denote the set of faces of G◦. Define

φ(G, a) : =
ta

3
−

∑

f∈F

|f | − 4

3
=

ta

3
+

t◦

3
−

∑

f∈F
|f |≥5

|f | − 4

3
≤

t ′

3
.

We prove the following:

Theorem 2.2. Let G, a, V , E be as before. and let V ≥ 2. Then

(1) if G is exceptional, then E = 3V − 9 + φ(G, a) + 1/3.

Otherwise

(2) E ≤ 3V − 9 + φ(G, a) + ψ(V )/3,
(3) if G − a has at least one non-neighbour of a, then E ≤ 3V − 9 + φ(G, a) + (7 − V )+/3, and
(4) if G − a has at least two non-neighbours of a, then E ≤ 3V − 9 + φ(G, a).

Proof. We proceed by induction on V + E. If V = 2 and E = 0, then

E = 0 = 6 − 9 + 4/3 + (7 − 2)/3 = 3V − 9 + φ(G, a) + (7 − V )+/3.

If V = 2 and E = 1, then

E = 1 = 6 − 9 + 4/3 + (7 − 2)/3 + (5 − 2)/3 = 3V − 9 + φ(G, a) + ψ(V )/3.

We may therefore assume that V ≥ 3 and that the theorem holds for all graphs G′ with |V (G′)| +
|E(G′)| < V + E. We suppose for a contradiction that the theorem does not hold for G. It follows that
G is not exceptional, because exceptional graphs satisfy the theorem. Let G◦ := G− a, V ◦ and E◦ be as
before.

Claim 2.2.1. The graph G◦ has no cut-edges.

Proof. Suppose e = xy is a cut-edge of G◦ incident with a face fe. Let C1 be the connected component
of G◦ − e containing x, and let C2 = G◦ − V (C1). Define Gi := G[V (Ci) ∪ {a}], Vi := |V (Gi)| and
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Ei := |E(Gi)| for i = 1,2. Let Fi denote the set of faces of Ci, let fi denote the face of Ci that contains fe,
and let ta,i denote the number of triangles incident with a in Gi for i = 1,2. Then V = V1 + V2 − 1,
|fe| = |f1|+ |f2|+2,F = ((F1 ∪F2)\ {f1, f2})∪{fe}, and ta,1 + ta,2 ≤ ta − ϵ, where ϵ = 1 if a is adjacent
to every vertex of G − a and ϵ = 0 otherwise, and so

φ(G1, a) + φ(G2, a) =
ta,1 + ta,2

3
−

∑

f∈F1

|f | − 4

3
−

∑

f∈F2

|f | − 4

3

≤
ta

3
−
ϵ

3
−

⎛

⎝

∑

f∈F

|f | − 4

3

⎞

⎠ +
|fe| − 4

3
−

|f1| + |f2| − 8

3

= φ(G, a) + 2 − ϵ/3.

By Lemma 2.1 max{ψ(V1), 1} + max{ψ(V1), 1} ≤ ψ(V ) + 10, with equality if and only if V ≤ 5. Note
that E = E1 + E2 + 1. By the induction hypothesis each Gi satisfies

Ei ≤ 3Vi − 9 + φ(Gi, a) + max{ψ(Vi), 1}/3,
where for Vi ≤ 4 equality holds only if a is adjacent to every vertex of Gi − a; thus

E = E1 + E2 + 1

≤ 3(V1 + V2) − 18 + φ(G1, a) + φ(G2, a) + (max{ψ(V1), 1} + max{ψ(V2), 1})/3 + 1

≤ 3V − 15 + φ(G, a) + 3 + (ψ(V ) + 10 − ϵ)/3.

It follows that E ≤ 3V − 9 + φ(G, a) + ψ(V )/3, a contradiction, because if equality holds in the two
inequalities above, then V ≤ 5, which implies that V1, V2 ≤ 4, and hence a is adjacent to every vertex
of G− a, and consequently ϵ = 1. This proves the claim in the case when either V ≥ 7 or a is adjacent
to every vertex of G − a.

We may therefore assume that V ≤ 6 and that a is not adjacent to every vertex of G − a. Assume
next that a is adjacent to all but one vertex ofG−a. By the symmetrywemay assume that a is adjacent
to every vertex of G1 − a and all but one vertex of G2 − a. Then

ψ(V1) + (7 − V2)
+ = 7 − V − 1 + 12 − V1 ≤ (7 − V )+ + 9,

and hence

E = E1 + E2 + 1

≤ 3(V1 + V2) − 18 + φ(G1, a) + φ(G2, a) + (ψ(V1) + (7 − V2)
+)/3 + 1

≤ 3V − 15 + φ(G, a) + 3 + ((7 − V )+ + 9)/3

≤ 3V − 9 + φ(G, a) + (7 − V )+/3,

a contradiction.
We may therefore assume that a is not adjacent to at least two vertices of G− a. Assume next that

a is not adjacent to at least two vertices of G2 − a. Then

E = E1 + E2 + 1

≤ 3(V1 + V2) − 18 + φ(G1, a) + φ(G2, a) + ψ(V1)/3 + 1

≤ 3V − 15 + φ(G, a) + 3 + 8/3

≤ 3V − 9 + φ(G, a),

a contradiction.
We may therefore assume that a is not adjacent to exactly one vertex of Gi − a for i = 1, 2. We

have

E = E1 + E2 + 1

≤ 3(V1 + V2) − 18 + φ(G1, a) + φ(G2, a) + ((7 − V1)
+ + (7 − V2)

+)/3 + 1

≤ 3V − 15 + φ(G, a) + 3 + 10/3

= 3V − 9 + φ(G, a) + 1/3,
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with equality if and only if V1 = V2 = 2, in which case G is exceptional, in either case a contradiction.
Thus the claim holds. □

Claim 2.2.2. We have that ta = 0; that is, N(a) is independent. In particular, φ(G, a) =
∑

f∈F
4−|f |

3
.

Proof. Suppose there exist adjacent vertices x, y ∈ N(a) As xy is not a cut-edge of G◦ by Claim 2.2.1,
it is incident with two distinct faces f1, f2. Let G

′ := G − xy, let E ′ := |E(G′)| and let f ′ be the new face
obtained in G◦ − xy. Let F ′ denote the set of faces of G◦ − xy and let t ′a denote the number of triangles
of G′ incident with a. Then t ′a = ta − 1, |f1| + |f2| = |f ′| + 2, and F = (F ′ \ {f ′}) ∪ {f1, f2}, so

φ(G′, a) =
t ′a
3

−
∑

f∈F ′

|f | − 4

3

=
ta

3
−

1

3
−

⎛

⎝

∑

f∈F

|f | − 4

3

⎞

⎠ +
|f1| + |f2| − 8

3
−

|f ′| − 4

3

= φ(G, a) − 1

Since G does not satisfy the theorem, it is not exceptional, and so neither is G′. Let x := ψ(V ) if a is
adjacent to every vertex of G − a, let x := (7 − V )+ if a is adjacent to all but one vertex of G − a and
let x := 0 otherwise. By the induction hypothesis

E = E ′ + 1

≤ 3V − 9 + φ(G′, a) + 1 + x

= 3V − 9 + φ(G, a) + x,

a contradiction. □

Claim 2.2.3. The graph G◦ has no isolated vertices.

Proof. Suppose for a contradiction that v is an isolated vertex of G◦. Let G′ = G − v, let V ′ := |V (G′)|
and let E ′ = |E(G′)|. Then φ(G′, a) = φ(G, a). Let x′ := ψ(V ′) and x := ψ(V ) if a is adjacent to every
vertex of G− a, let x′ := (7− V ′)+ and x := (7− V )+ if a is adjacent to all but one vertex of G− a and
let x = x′ := 0 otherwise. If v is adjacent to a, then by the induction hypothesis

E = E ′ + 1

≤ 3V ′ − 9 + φ(G′, a) + 1 + max{x′, 1}/3
≤ 3V − 3 − 9 + φ(G, a) + 1 + x/3 + 2/3

≤ 3V − 9 + φ(G, a) + x/3,

and if v is not adjacent to a, then

E = E ′ ≤ 3V ′ − 9 + φ(G′, a) + max{ψ(V ′), 1}/3
≤ 3V − 3 − 9 + φ(G, a) + 8/3

≤ 3V − 9 + φ(G, a),

a contradiction in either case. □

Claim 2.2.4. If v ∈ N(a), then v has at least three neighbours in G◦; that is, d(v) ≥ 4.

Proof. Since G◦ has no cut-edges by Claim 2.2.1 and no isolated vertices by Claim 2.2.3, v has at least
two neighbours in G◦. Suppose it has exactly two neighbours, and let f1, f2 be the two faces of G◦

incident to v. Let G′ = G− v, let V ′ := |V (G′)|, let E ′ = |E(G′)| and let f ′ denote the new face in G◦ − v.
Then |f1| + |f2| = |f ′| + 4, and

φ(G′, a) = −
∑

f∈F ′

|f | − 4

3
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= −

⎛

⎝

∑

f∈F

|f | − 4

3

⎞

⎠ +
|f1| + |f2| − 8

3
−

|f ′| − 4

3

= φ(G, a)

As G does not satisfy the theorem, it is not exceptional, and hence neither is G′. Furthermore, the
neighbours of v are not adjacent to a by Claim 2.2.2, and so by the induction hypothesis

E = E ′ + 3

≤ 3V ′ − 9 + φ(G′, a) + 3

= 3V − 9 + φ(G, a),

a contradiction. □

We now show an upper bound on the degree of a by a simple discharging argument. Start by
assigning a charge of one to each vertex in N(a), and for each v ∈ N(a) distribute its charge equally to
its incident faces in G◦. Then the sum of the charges of the faces of G◦ is equal to d(a).

By Claim 2.2.4, each v ∈ N(a) is incident to at least three faces, so it gives at most 1/3 charge to
each incident face. By Claim 2.2.2, each face f ∈ F is incident to at most ⌊|f |/2⌋ neighbours of a. Thus
the final charge of face f is at most ⌊|f |/2⌋/3, and

d(a) ≤
∑

f∈F

⌊|f |/2⌋
3

Since ⌊k/2⌋ ≤ k − 2 for all k ≥ 3,

d(a) ≤
∑

f∈F

|f | − 2

3
(2)

The remainder of the proof follows fromarithmetic using Euler’s formula. Let F ◦ denote the number
of faces of G◦. By the handshaking lemma, we have 2E◦ =

∑

f∈F |f |. Since F ◦ =
∑

f∈F1, by Euler’s
formula:

8 ≤ 4V ◦ − 4E◦ + 4F ◦

= 4V ◦ − 2E◦ −
∑

f∈F

(|f | − 4)

Rearranging, we have

E◦ ≤ 2V ◦ − 4 −
∑

f∈F

|f | − 4

2
(3)

Similarly, we have 3F ◦ ≤ 2E◦ ≤ 2V ◦ + 2F ◦ − 4, which gives

F ◦ ≤ 2V ◦ − 4. (4)

Putting (2), (3), and (4) together, we have

E = E◦ + d(a)

≤ V ◦ + F ◦ − 2 +
∑

f∈F

|f | − 2

3

= V ◦ +
1

3
F ◦ +

2

3
E◦ − 2

≤ V ◦ +
1

3
(2V ◦ − 4) +

2

3

⎛

⎝2V ◦ − 4 −
∑

f∈F

|f | − 4

2

⎞

⎠ − 2
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= 3V ◦ − 6 −
∑

f∈F

|f | − 4

3

= 3V − 9 + φ(G, a),

a contradiction. □

3. Proof of Theorem 1.10

We prove the following slightly more general statement from which Theorem 1.10 follows:

Theorem 3.1. Let p ≥ 4 be an integer. Suppose that no graph G with |E(G)| > (p − 2)|V (G)| −
(

p−1

2

)

can be obtained by contracting max{p− 4, 2} edges from a triangle-free graph on at least 2p− 3 vertices

with no Kp-minor. Then every triangle-free graph on V ≥ 2p − 5 vertices with no Kp-minor has at most

(p − 2)V − (p − 2)2 edges.

Let us first show that Theorem 3.1 implies Theorem 1.10:

Proof of Theorem 1.10, assuming Theorem 3.1. For p = 2, 3 Theorem 1.10 is easy. For p = 4, 5, 6, 7,
it follows directly from Theorems 1.1 and 3.1, as there are no graphs G on at least p − 1 vertices with
no Kp-minor and strictly more than (p − 2)|V (G)| −

(

p−1

2

)

edges.
For p = 8, by Theorem 1.2, a graph G on at least seven vertices with no K8-minor and strictly

more than 6|V (G)| − 21 edges is a (K2,2,2,2,2, 5)-cockade. It is easy to see that, given any four vertices
of a (K2,2,2,2,2, 5)-cockade, one can always find a triangle disjoint from those four vertices. Thus a
(K2,2,2,2,2, 5)-cockade cannot be obtained by contracting four edges from a triangle-free graph, and
the result follows by Theorem 3.1.

For p = 9, by Theorem 1.3, a graph G on at least eight vertices with no K9-minor and strictly more
than 7|V (G)|−28 edges is either a (K1,2,2,2,2,2, 6)-cockade or isomorphic to K2,2,2,3,3. Again it is easy to
verify that, given any five vertices of such a graph, one can always find a triangle disjoint from those
five vertices. Therefore neither a (K1,2,2,2,2,2, 6)-cockade nor K2,2,2,3,3 can be obtained by contracting
five edges from a triangle-free graph, and the result follows by Theorem 3.1. □

Let us remark that the same argument shows that Conjecture 1.4 and Theorem 3.1 imply that
Theorem 1.10 holds for p = 10, formally as follows:

Theorem 3.2. If Conjecture 1.4 holds, then every triangle-free graph on V ≥ 15 vertices with no K10-

minor has at most 8V − 64 edges.

3.1. Proof of Theorem 3.1

Let p ≥ 4 be an integer and let G be a counterexample with |V (G)| minimum. Let V = |V (G)|
and E = |E(G)|. We prove by a series of claims that G is a complete bipartite graph. This leads to
a contradiction: suppose G is isomorphic to Kn,V−n with n ≤ V/2. If n ≥ p − 1, then G contains a
Kp-minor, and if n ≤ p − 2, then E = n(V − n) ≤ (p − 2)(V − (p − 2)) as V ≥ 2p − 5.

Claim 3.2.1. The graph G has at least 2p − 3 vertices.

Proof. If V ≤ 2p − 4, then by Mantel’s theorem [7] E ≤ (p − 2)(V − p + 2), contrary to G being a
counterexample. □

Claim 3.2.2. δ(G) > p − 2

Proof. Let v be a vertex of G of minimum degree, and let G′ = G − v. Then |E(G′)| = E − δ(G) and
|V (G′)| = V − 1. Since G is a minimal counterexample and V > 2p − 3 by Claim 3.2.1,

(p − 2)V − (p − 2)2 < E
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= |E(G′)| + δ(G)

≤ (p − 2)|V (G′)| − (p − 2)2 + δ(G)

= (p − 2)V − (p − 2)2 + δ(G) − (p − 2),

and so p − 2 < δ(G), as desired. □

Claim 3.2.3. For 1 ≤ k ≤ p − 2, given any set of k disjoint edges {e1, . . . , ek} in G, we can find another
edge disjoint from each ei, 1 ≤ i ≤ k.

Proof. Let e1, . . . , ek be given, where ei = xiyi. By Claim 3.2.1 there exists a vertex v not equal
to any xi, yi. Since G is triangle-free, v can be adjacent to at most one of {xi, yi} for each i. Since
deg(v) ≥ δ(G) > p − 2 ≥ k by Claim 3.2.2, there is an edge incident with v disjoint from each ei,
as desired. □

Claim 3.2.4. Let e1, e2 be any two disjoint edges of G. Then G[e1 ∪ e2] forms a 4-cycle.

Proof. Since G is triangle-free, there are at most two edges between e1 and e2, and if there are two
edges, G[e1 ∪ e2] forms a 4-cycle. Suppose for a contradiction that there is at most one edge between
e1 and e2. Let k = max{p − 4, 2}. By Claim 3.2.3, we can find pairwise disjoint edges e3, . . . , ek, each
disjoint from both e1 and e2. Let G

′ be the graph obtained by contracting all edges e1, . . . , ek and let
ℓ denote the number of parallel edges identified. Then |E(G′)| = E − k − ℓ, |V (G′)| = V − k, and
|E(G′)| ≤ (p − 2)|V (G′)| −

(

p−1

2

)

by hypothesis as G′ is obtained from the graph G by contracting k

edges. Since there are
(

k

2

)

pairs of edges in {e1, . . . , ek} and there is at most one edge between e1 and

e2, we have ℓ ≤
(

k

2

)

− 1. If p ≤ 5, then let ϵ = 1; otherwise let ϵ = 0. Then

E = |E(G′)| + ℓ+ k

≤
(

(p − 2)|V (G′)| −
(

p − 1

2

))

+
((

k

2

)

− 1

)

+ k

= (p − 2)(V − k) −
(p − 1)(p − 2) − k(k − 1)

2
+ k − 1

= (p − 2)V − (p − 2)2 − ϵ

≤ (p − 2)V − (p − 2)2,

a contradiction since G is a counterexample. □

Claim 3.2.5. G is a complete bipartite graph.

Proof. Let e = xy be an edge and let v ∈ V (G) \ {x, y}. By Claims 3.2.2 and 3.2.4, v is adjacent to
either x or y, but not both as G is triangle-free. Thus V (G) \ {x, y} can be partitioned into two disjoint
sets X ′ ∪ Y ′ where every vertex in X ′ is adjacent to y and every vertex in Y ′ is adjacent to x. Since G is
triangle-free, there are no edges between vertices of X ′ and between vertices of Y ′. Thus G is bipartite
with bipartition X ∪ Y , where X = X ′ ∪ {x} and Y = Y ′ ∪ {y}. Moreover, for any x′ ∈ X ′ and y′ ∈ Y ′,
the two edges xy′ and x′y induce a 4-cycle by Claim 3.2.4. Therefore x′ is adjacent to y′, completing the
proof of the claim. □
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