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Abstract—NAND flash has been widely adopted in storage
systems due to its better read and write performance and lower
power consumption over traditional mechanical hard drives. To
meet the increasing performance demand of modern applica-
tions, recent studies speed up flash accesses by exploiting access
latency variations at the device level. Unfortunately, existing flash
access schedulers are still oblivious to such variations, leading to
suboptimal I/O performance improvements. In this paper, we pro-
pose DLV, a novel flash access scheduler for exploring scheduling
opportunities due to device level access latency variations. DLV
improves flash access speeds based on process variations and data
retention time difference across flash blocks. More importantly,
DLV integrates access speed optimization with access scheduling
such that the average access response time can be effectively
reduced on flash memory storage systems. Our experimental
results show that DLV achieves an average of 41.5% performance
improvement over the state-of-the-art.

Index Terms—Flash memories, low-density parity-check
code (LDPC), out-of-order scheduler, process variation (PV), raw
bit error rate (RBER), retention age (RA).

I. INTRODUCTION

NAND flash memory-based solid-state drives (SSDs), due
to their performance and energy consumption advantages

over traditional hard disk drives, are widely adopted in modern
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computer systems, ranging from mobile devices to servers in
data centers [1]. Over the past decade, the capacity of flash
memory-based SSDs has increased dramatically, as a result of
technology scaling from 65 nm to the latest 10 nm technology
and the bit density improvement from 1 bit per cell to the latest
6 bits per cell [2], [3]. Unfortunately, flash reliability degrades
as flash density increases, that is, there are more retention,
read disturbance, cell-to-cell program interference and pro-
gram/erase (P/E) cycling noises. These noises have led to the
raw bit error rate (RBER) increase and access performance
degradation accordingly. Adopting reliable yet slow write strat-
egy and strong yet expensive error correction code (ECC)
schemes helps to improve access reliability but degrade read
and write performance significantly. It has become a major
challenge to develop high performance flash memory storage
systems to meet the increasing performance demand of modern
applications [4].

The I/O performance improvement is often a tradeoff of
many factors, such as RBER, read speed, and write speed.
Flash read speed and RBER are highly correlated. The higher
the RBER is, the stronger capability the ECC requires, the
higher complexity the ECC scheme has, and the slower the
read requests become. Similarly, there is a close correlation
between RBER and the write speed. Studies [5]–[7] showed
that a smaller program step size �Vp of the incremental step
pulse programming (ISPP) scheme, could decrease RBER at
the cost of write speed degradation.

To achieve further performance improvement, it is beneficial
to differentiate the access latency difference at device level.
There are two typical sources. One comes from the process
variation (PV) in flash memory [5], [8]–[10], i.e., memory
blocks exhibit different RBER under the same P/E cycling.
Instead of adopting PV-oblivious programming strategies that
assume the worst-case block behavior, Shi et al. [5] proposed
to use large �Vp for strong pages that have low RBER and
allocate hot data to these pages. The other device level latency
variation comes from retention age (RA) variation, i.e., a flash
page tends to have high RBER when it was programmed a long
time ago. Cai et al. [4] showed that lower read-out thresh-
olds can be applied as the actual age of the data increase.
Shi et al. [26] proposed to adopt higher programming voltages
for pages with longer retention time. Liu et al. [11] proposed
to use finer �Vp for performance improvement. While exploit-
ing the latency variations at device level helps to improve flash
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access speeds, a limitation of these schemes is that latency
variations are not exposed to the I/O scheduler. Given that
the response time of flash accesses includes cell access time
and queuing time, existing schemes focus mainly on the for-
mer, i.e., reducing the per access service time, which leads to
suboptimal I/O performance improvements.

In this paper, we propose DLV, a novel flash access sched-
uler for exploiting device level access latency variations. The
following summarizes our contributions.

1) DLV employs latency variation-aware I/O scheduling to
reduce the average access response time. In particular,
when prioritizing short flash accesses, DLV evaluates not
only the amount of data to access, but also the latency
variation in reading and writing each flash page. By
exploiting device level latency variation in flash access
scheduling, DLV achieves accurate evaluation of the
access response time, which enables better scheduling
decisions.

2) DLV exploits device level block characteristics for maxi-
mized scheduling benefits. Given that strong flash blocks
in an SSD are often limited, DLV maps hot writes
to strong pages only if doing so helps to reduce the
access response time. DLV also tracks the PV and reten-
tion time of flash blocks to effectively speed up read
accesses.

3) We evaluate the proposed DLV design and compare
it to the state-of-the-art designs. The results show
that, on average, DLV achieves an average of 41.5%
performance improvement over the state-of-the-art.

In the rest of this paper, Section II presents the back-
ground and the motivation. Section III elaborates the details
of DLV. The experimental results are analyzed in Section IV.
We present more related work in Section V and conclude this
paper in Section VI.

II. BACKGROUND AND MOTIVATION

In this section, we briefly discuss the SSD organization and
the design tradeoff among RBER, read speed and write speed
in NAND flash memory-based SSDs. We then present the two
sources that lead to device level access latency variations, and
motivate our design with preliminary studies.

A. Flash-Based SSD Organization

A typical NAND flash memory-based SSD contains the SSD
controller, RAM, NAND flash memory, host interface and flash
interface, as shown in Fig. 1. One SSD often contains sev-
eral channels while each channel connects multiple chips,
each chip consists of one or more dies, and each die consists
of multiple planes. A plane is the smallest unit that can be
accessed independently and concurrently. Each plane is com-
posed of a number of erase units, called blocks, and a block
is usually composed of multiple pages, which are the smallest
unit to read/write. There are four main levels of parallelism
which can be exploited to accelerate the read/write band-
width of SSDs, namely channel-level, chip-level, die-level, and
plane-level parallelism.

Fig. 1. SSD organization.

The SSD controller is responsible for converting the read
and write requests from the host to the I/O operations of the
flash memory. It consists of three main components: 1) flash
translation layer (FTL); 2) wear leveling (WL); and 3) garbage
collection (GC). The FTL residing in the SSD controller pro-
vides logical sector updates by maintaining a mapping table
(MPT) of the logical address (LPN) from upper file system to
a physical address (PPN) on the flash. The LPN to PPN map-
ping schemes can be classified into two categories: 1) static
and 2) dynamic. A static mapping scheme predetermines chan-
nel, chip, die, and plane locations before allocating a logical
page. While adopting a static mapping, the FTL still needs to
determine the block number within the corresponding plane
and the page number within the block at runtime, e.g., map-
ping the LPN to the next available PPN in the corresponding
plane. A dynamic mapping scheme assigns a logical page to
any free physical page at any location across the flash memory
array, which achieves flexible mapping with additional cost.

Commercial SSD products often adopt the static map-
ping because the static mapping achieves consistently better
performance in serving read requests than that of dynamic
ones, and dynamic mapping demands extra space [12], [13]. In
this paper, we adopt the static page mapping with the striping
order being channel-first, chip-second, die-third, and plane-
fourth (CWDP). The CWDP order was proven to be the best
for a wide range of workloads [14].

The GC component reclaims used block(s) when the number
of the prepared free blocks is below the preset threshold value.
If a block containing valid pages is selected as a victim block,
GC reallocates those valid pages to other blocks, and updates
the MPT accordingly. To extend the overall lifetime of NAND

flash memory, WL techniques are often employed to distribute
P/E cycles as evenly as possible among flash blocks.

The RAM in SSD is typically used to temporarily buffer
the write requests or accessed data and the MPT. The host
interface connects the SSD and the host system to transfer
command and data via USB, PCI express, or serial advanced
technology attachment (SATA) interface. The flash interface
connects the SSD controller and the NAND chips to transfer
data between the controller and the page register [15].

Schemes have been proposed to exploit parallelism for
performance improvement. Roh et al. [16] proposed psync I/O
for B+−trees to harvest the internal parallelism in SSDs to
enhance B+−tree performance. Hu et al. [12] showed that
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Fig. 2. Tradeoff between RBER, read speed, and write speed.

SSD performance can be significantly improved by matching
data allocation and priority order to CWDP mapping.

B. Design Tradeoff Among RBER, Write Speed,
and Read Speed

An NAND flash memory-based SSD often seeks to achieve
the best tradeoff among RBER, write speed, and read speed.
To address RBER, each flash page is associated with an
ECC code, e.g., Bose–Chaudhuri–Hocquenghem (BCH), low-
density parity-check code (LDPC). Due to fast technol-
ogy scaling, the NAND flash reliability deteriorates rapidly,
which demands strong ECC protection such as LDPC. LDPC
achieves better error correction capability than BCH through
soft-decision design, and is replacing BCH in modern SSD
products. For example, Macronix 6 bit/cell CT flash chips
support LDPC-based ECC [2], while Samsung 21 nm MLC
flash chips support at least seven quantization levels [17]. In
this paper, we adopt LDPC as the default ECC scheme and
exploits its characteristics to improve read performance.

As shown in Fig. 2, there is a tradeoff between read speed
and ECC complexity, i.e., the error correction capability. This
is due to soft-decision memory sensing, which uses more
than one quantization levels between two adjacent storage
states [7]. On the one hand, as the number of quantization
levels used between two adjacent storage states increases,
the read operations which aim to sense and digitally quan-
tize the threshold voltage of each memory cell are delayed.
On the other hand, the number of sensing levels (SLs) also
affects the error correction strength of LDPC code decoding.
More SLs mean a preciser memory sensing in the context of
NAND flash memory, leading to more accurate input probabil-
ity information of each bit for LDPC code decoding, which
improves its error correction capability. Therefore, the rela-
tionship between error correction capability and read speed
can be explored, leading to strong correlation between RBER
and read speed.

Another tradeoff is between RBER and the program speed,
in particular, the program step size �Vp. Flash programming
widely adopts ISPP scheme, that is, it uses Fowler–Nordheim
tunneling to increase the threshold voltage Vth of flash
memory cells by a certain step size, i.e., �Vp, where �Vp

directly affects write speed and RBER. On the one hand,
larger �Vp means fewer steps to the desired level and thus
shorter write latency. On the other hand, the margin for tol-
erating retention errors is reduced as �Vp gets larger, leading
to higher RBER.

Given that the expected RBER has to be within the error
correction capability of the deployed LDPC code, an SSD has
to make the tradeoff among RBER, read speed, and write
speed before being released. Table I shows an example of

TABLE I
EXAMPLE OF THE DESIGN TRADEOFFS

three cases based on the NAND flash memory device model
described in [18]. The parameters used in the model are trained
by the public datasets in [19]. Accordingly, Monte Carlo sim-
ulations are carried out to obtain the cell threshold voltage
distribution with various �Vp values. We then determine the
tradeoff among RBER and the read speeds for the correspond-
ing LDPC [7]. From the table, for one page, we may either
improve the write speed (i.e., the case A in the table, when the
case B is the normal case) or the read speed (i.e., the case C
in the table).

In this paper, we focus on read and write latency variation
for SSD performance improvement. To the best of our knowl-
edge, this is the first study for the tradeoff among RBER,
write speed, and read speed. We believe that it will broaden
the design space for optimizing flash I/O performance and
endurance.

C. Sources of Device Level Latency Variations

In this paper, we exploit two types of device level variations
for performance improvement.

1) Process Variation in NAND Flash Memory: The first
type is hardware PVs, i.e., fabricating flash chips at nano-scale
exhibits non-negligible oxide thickness and gate width/length
variations. Given flash pages from different memory blocks:
1) they may have different RBER at programming time even
if they have the same P/E cycling; 2) they may have different
P/E cycling endurance when they are protected with an ECC
to correct a fixed number of errors; and 3) they may have
different charge leaking rates. As a result, two pages, even if
they have the same P/E cycling and are programmed with the
same RBER, may still have different RBER at read-out time
after the same duration time.

Pan et al. [8] showed that the RBER of flash blocks fol-
lows a log Gaussian distribution. Due to PVs, we classify the
flash blocks into strong and normal ones, which accumulate
bit errors at slow and normal speeds, respectively.

2) Retention Age Variation in NAND Flash Memory: The
second type is RA variation. RA is the length of time since
a flash cell was programmed [4]. The intervals between page
programming time and reading time differ significantly for dif-
ferent read operations. Since a flash page keeps leaking charge
after being programmed, the longer the RA is, the higher the
RBER is, and the slower the read speed is. Data retention error
is one of the dominant errors in SSDs.

For flash memory-based SSDs, incoming data are often
sequentially programmed in the physical pages of the active
blocks. Given that SSDs usually keep only a small num-
ber active blocks, i.e., one to four active blocks [20], [21],
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(a) (b)

Fig. 3. Maximum, average, and minimum request sizes over 150 s for hm0. The requests are measured in the number of pages with each page being 4 kB.
Maximum, average, and minimum (a) request sizes and (b) write sub-request sizes.

the pages in one block are of close RA. We are to exploit this
property in latency aware scheduling.

D. Motivation

We next study the characteristics of workloads and motivate
the design of variation-aware I/O scheduling schemes.

An I/O request sent to the SSD control is a quadruple
(ArrivalTime, LPN, Size, Read/Write), where ArrivalTime is
the arrival time of the request, LPN is the starting logical
page number of the user data, and Size is the length of the
data, i.e., the number of flash pages. The SSD controller
dispatches the data into the read/write request queue for pro-
cessing. Writes are preferably assigned to idle or less busy
flash planes while reads have to fetch from the target pages.
The requests may span multiple planes to exploit parallelism
for improved performance. In this case, the access in each
plane is referred to as a subrequest.

We first compare the request lengths at runtime. Fig. 3
reports the average, maximum, and minimum number of flash
pages for all the requests and the particular write requests for
the workload hm0 running on a 128 GB SSD with 4 kB flash
page size. The setting details for the simulated SSD can be
found in Section IV. From the figure, there is a significant
variation of request length at runtime. Therefore, we adopt
the scheduling strategy that prioritizes short job, which reduces
the average queuing time. We next study how to exploit device
level latency variations to further reduce the request response
time.

Observation 1: The response time of a write request can
be reduced if its subrequest with longest pending time can be
programmed faster.

If a write request spans across multiple chips, its response
time is determined by the response time of the slowest subre-
quest, even if other subrequests can finish early. The response
time of a request T response

WR consists of the queuing time (i.e.,
waiting to be serviced), the data transfer time (through the
data bus to transfer data from SSD controller to the targeting
data register of corresponding plane, e.g., around 5 μs when
adopting open NAND flash interface/toggle interface), and the
program time of the subrequest (programming the data cells
of the flash, e.g., 600 μs/4 kB page)

T response
WR = Max

(
T response

i

)
, i ∈ [1, M]

and T response
i = Tqueuing

i + T transfer
i + Taccess

i (1)

where M is the total number of subrequests; T response
i is the

response time of the ith subrequest, Tpending
i , T transfer

i , and

(a)

(b)

Fig. 4. Integrating device level latency variation in I/O scheduling helps
to reduce the request response time: when adopting latency (a) variation-
oblivious scheduling and (b) variation-aware scheduling.

Taccess
i are the queuing time, transfer time, and program time

of the ith subrequest, respectively.
Fig. 4 illustrates how device level latency variation can

assist the I/O scheduling. The two write requests A and B
arrive at time T0 and T3 and consist of 3 and 2 subrequests,
respectively. According to CWDP scheduling [14], subrequests
A1-A3 and B1-B2 are mapped to planes 4, 3, 2, and 2, 1,
respectively. The CWDP scheduling cannot predict the exact
finish time of each subrequest.

Assume it takes two time units to service one write subre-
quest without exploiting page access latency variations, or one
time unit when the write data are mapped to a strong page.
When adopting a conventional device level latency-oblivious
scheduling, each write subrequest takes two time units. The
two requests complete at T8 and T10, respectively, as shown in
Fig. 4(a). When adopting device level latency-aware schedul-
ing and having all the subrequests mapped to use strong pages,
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Fig. 5. RA distribution for one week operations.

as shown in Fig. 4(b), the two requests complete at T7 and T9,
respectively. However, servicing all subrequests with strong
pages is unnecessary as servicing only A3 and B2 with strong
pages would result in the same response time reduction. Given
that each plane contains a limited number of strong pages, the
latter scheduling is a better choice as it preserves strong pages
for servicing other requests.

Observation 2: Considering RA variation increases schedul-
ing opportunities for read requests.

Previous studies [4], [22]–[25] have shown that retention-
induced charge leakage is the dominant source of flash
memory errors, which lead to significant RBER variation for
blocks with different RAs. Fig. 5 compares the RA distribu-
tion at read-out time from different workloads within one week
operations. The read subrequests include reads from host and
from GC execution. The figure shows that different workloads
have significant different access patterns. For example, most
accessed data in src21 are within four-day RA.

From our previous discussion, flash pages with short RA
tend to have low RBER and fast read speed. Schemes have
been proposed to exploit this tradeoff to speed up the read
subrequests. Cai et al. [4] showed that lower read-out thresh-
olds can be applied as the actual age of the data increases.
Shi et al. [26] proposed to adopt higher programming volt-
ages for pages with long RA. Liu et al. [11] proposed to use
finer �Vp for performance improvement.

While preceding discussion shows that exploiting the
latency variations at device level helps to improve flash
read/write speeds, a limitation of existing schemes is that
latency variations are not exposed to the access scheduler.
To reduce the average request response time, it is better to
track the RA and prioritize requests that can finish early. That
is, exploiting both the SSD PV and the workload characteris-
tics may expose more scheduling opportunities for better I/O
performance.

III. DETAILS OF DLV

In this section, we first outline the system architecture of
the proposed device level access latency aware I/O scheduling
algorithm (DLV) and then elaborate its major components. At
last, we analyze the overhead for DLV scheduling.

A. Overview

Fig. 6 presents an overview of the DLV-enhanced SSD
organization, where DLV is integrated in the host interface
logic (HIL) at the SSD side. The HIL is responsible for receiv-
ing the I/O requests from the host side kernel I/O scheduler,
buffering and scheduling them before sending them to the

Fig. 6. DLV-enhanced SSD organization. The baseline adopts FIFO-style
I/O scheduler in HIL.

FTL [27]. Comparing to the kernel I/O scheduler, the HIL
scheduler exploits the parallelism in the SSD for optimized I/O
performance. Conventionally, it adopts first-input, first-ouput
(FIFO) scheduling in the HIL. In this paper, we replace the
FIFO scheduler with our proposed DLV scheduler, as shown
in Fig. 6. DLV tracks not only the device level latency varia-
tions, i.e., if there are strong blocks left in a flash plane, but
also the request characteristics, i.e., how many data pages a
host request needs to access.

DLV is composed of two components, a hotness-aware
write scheduling (HWS) and an RA- and hotness-aware read
scheduling (RRS). HWS identifies request hotness based on
their request sizes and serves hot requests with PV-induced
fast flash blocks. RRS reduces page read latency by exploit-
ing block RA and PV in corresponding blocks. Both HWS
and RRS schedule fast requests preferentially to minimize the
access pending latency.

B. Hotness-Aware Write Scheduling

The design goal of HWS is to integrate PV-introduced write
speed variation in I/O scheduling such that the average request
response time can be effectively reduced. Intuitively, HWS
allocates the data of hot writes to strong flash pages and
schedules hot writes with priority.

In this paper, we categorize the hot/cold requests accord-
ing to their read or write data sizes, i.e., small-sized
requests are treated as hot ones. The size-based strategy was
widely adopted to classify hot and cold data in recent stud-
ies [5], [28], [29], [51]. Prioritizing small-sized requests helps
to reduce the request waiting time. In addition, many such
requests process metadata and thus are critical to system
performance. The use of the hot/cold data classification
scheme is orthogonal to the design of HWS. While recent
designs confirmed the effectiveness of this metric, data hot-
ness can be defined differently [30]–[35], which can also be
used to classify hot/cold data in our design.

The HWS scheduling works as follows. To assist I/O
scheduling, HWS keeps a plane MPT (PMT) for each plane
in the SSD, which identifies not only its strong pages but
also those that are available. It keeps two flags (PCnt, IdleT)
for each plane, where PCnt indicates the number of avail-
able strong pages. IdleT indicates the (estimated) time that the
plane becomes idle. HWS scheduling consists of three steps.

1) HWS sets a deadline (ArrivalTime + Td) to each incom-
ing request, where ArrivalTime is the arrival time of the
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Fig. 7. Example of HWS scheduling.

request, and Td is a fixed time duration. The requests
may be scheduled out of order if the current time is
before the deadline; otherwise, the requests from host are
scheduled using the default FIFO scheduling approach.
Given the requests from the host are placed in the queue
in order, if the head of the queue has not reached its
deadline, the following requests should not either. In an
SATA interface, the deadline information is configured
by placing “01b” into the priority field of NCQ com-
mands (READ FPDMA QUEUED and WRITE FPDMA
QUEUED) to mark them as isochronous, and then fill-
ing the corresponding deadline values in the isochronous
command completion (ICC) field [36]. Note that ICC
bit 7 is cleared to zero so that the time interval is
fine-grained. By setting the deadline for each incoming
request, we prevent the out-of-order scheduling adopted
in HWS from starving large requests that write many
pages.

2) HWS adopts greedy estimation to determine the request
finish time. Since we adopt static CWDP mapping, the
target planes are determined by their LPNs. HWS uses
the following equation to evaluate the best finish time for
each subrequest by taking the PMT status of each plane,
i.e., the availability of the strong pages and the next idle
time, into consideration. For each request Ri (1 ≤ i ≤ N,
and N is the total number of write requests to schedule),
its finish time FTRi is estimated by assuming this request
is scheduled the next and all its data are mapped to
strong pages (if available)

FTRi = MAX∀j
(
IdleT

(
p(Rij)

)+ XferT
(
Rij

) + WrT
(
Rij

))

(2)

where 1 ≤ j ≤ M and M is the number of subre-
quests that Ri has; Rij is the jth subrequest of Ri. p(Rij)
maps the subrequest to the corresponding plane index.
XferT() returns the transfer time; and WrT() returns the
programming time of the subrequest. In computing the
programming time, HWS estimates the best finish time
by assuming all available strong pages (from the plane)
can be allocated to service the subrequest. As discussed,
IdleT() indicates the next available time that the hard-
ware can start programming. Clearly, the finish time

of the request is determined by its slowest subrequest.
HWS then determines the request whose finish time is
the earliest. That is, finding k (1 ≤ i, k ≤ N) in the
queue such that

FTk = MIN∀i
(
FTRi

)
. (3)

3) HWS schedules the selected request Rk and updates
the IdleT for all the planes that it needs to access.
In scheduling a subrequest to its corresponding plane,
HWS maps the data to strong pages only if otherwise
the finish time of that plane is later than FTk. After
scheduling each request, HWS updates (PCnt, IdleT)
accordingly. Note, CWDP statically maps a logic page
to the corresponding plane while HWS determines the
page type (i.e., strong or normal) within the plane. It
is the FTL that finally decides the physical page loca-
tion within the plane. To reduce the runtime overhead,
both XferT() and WrT() are computed only once, i.e.,
at the time when it is inserted in the request queue. The
estimation may be optimistic as the number of strong
pages reduces. Our experiments show that the impact is
negligible.

4) There are two exceptions: a) if a plane is being garbage
collected, the write requests that demand this plane are
blocked. HWS skipped blocked requests, even if their
deadlines have passed and b) if a request does not
conflict with any other scheduled requests, i.e., all its
requested planes are idle, HWS immediately schedules
the request and map its data to normal pages.

Fig. 7 presents an example illustrating how HWS works.
We assume there are six write requests arrived at time 0, from
left to right. Each request consists of one or more subrequests.
For example, request W0 needs to write two pages in plane
1 and 2, respectively. The planes are determined by CWDP
scheduling based on the LPN of the request. Assume the SSD
has four channels, and each channel has one plane.

Assume it takes one time unit to write a page at fast speed
and two time units at normal speed. The transfer time is small
and thus is neglected in the estimation. By estimating the finish
time using (2), i.e., FTR0 = 5, FTR2 = 2, HWS preferentially
dispatches the W2 request. As a comparison, the baseline FIFO
scheduler would first dispatch W0, which prolongs the queuing
time for subsequent requests. According to (3), FT2 = 2, and
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Fig. 8. Block timestamp and SL tables used in RRS scheduling.

mapping the write to a normal page in plane 3 would keep
the same finishing time. Therefore, HWS schedules the two
subrequests to a strong page in plane 2 and a normal page in
plane 3, respectively. HWS schedules the following requests
similarly, i.e., in the order of W2, W4, W1, W0, W5, and W3.
In this example, the average request response time is 4.67 time
units when adopting HWS, and 8.33 time units when adopting
the baseline greedy algorithm. In summary, exploiting write
latency variation in write request scheduling helps to reduce
the average request response time.

C. Retention Age-Aware Read Scheduling

The design goal of RRS is to integrate RA- and PV-
introduced read speed variation in I/O scheduling for improved
performance. Since read requests are on the critical path, they
are often scheduled before write requests for reducing the aver-
age read response time. Intuitively, RRS identifies the read
operations that can be further sped up due to RA difference
and schedule them with priorities.

Studies have shown retention errors are dominant errors
for read operations in flash-based SSDs [4]. To mitigate such
errors, modern SSDs widely adopt strong ECC protection, e.g.,
LDPC [7]. An LDPC-based read scheme may need to read the
page multiple times with different SLs. The longer the RA is,
the higher the RBER is, the more times the read has to try,
and thus the slower the read speed is.

We next present how RRS exploits the RA- and PV-
introduced read speed variation. RRS scheduling is built
on top of HWS scheduling, with the difference elaborated
as follows.

1) RRS scheduling is similar to HWS scheduling. A dead-
line is added to each incoming request. Requests can be
scheduled out of order if their deadlines have not passed,
and using FIFO otherwise. Read operations are priori-
tized such that reads are scheduled before writes if they
compete for the same plane.

2) For most SSDs, the pages within one flash block are
programmed in sequential order. Since only few blocks
are kept active in each plane, the pages from one block,
e.g., block i, share the similar RA. RRS approximates
the page RA by tracking the one with the longest RA
in the block. That is, RRS attaches a timestamp TSi to
block i, where TSi is the time when the first page of the
block was written after its last erase. To differentiate the
retention time difference among different block types,
i.e., strong blocks tend to leak charge at a slow speed,

RRS keeps an SL table for each type of blocks. For
example, Fig. 8 uses four SL tables that correspond to
different types of blocks. There are at most six tuples
(Lvl, StartRA) in each SL table—Lvl lists all SLs from
two to seven when seven is the maximal number of SLs
in LDPC; StartRA indicates that for StartRA days or
longer RA, the read operation should try start with more
SLs, instead of from only one level. For example, in
Fig. 8, the second entry of the table 2 is (3, 30). It means
that for a strong page belonged to table 2, whose RA is
30 days or longer, we should start a read try with three
SL. Starting at a large level count reduces the failed tries
for these pages as their read only can succeed with three
or more SLs.

3) RRS updates the SL tables heuristically at runtime. That
is, given a flash page, RRS determines its block type and
RA and find the SLs from the SL table. RRS assists
the LDPC decoding process by providing appropriate
SL information. If the read fails, LDPC tries again with
more SLs till success or fail after reaching a thresh-
old. If the page can be readout with more SLs, the SL
table is updated so that similar pages (of the same PV
and the same RA) do not have to try with fewer lev-
els. For the example in Fig. 8, when reading strong
pages with RA fewer than 30 days, by exploiting the
SL table, LDPC would start the decoding with two lev-
els. If a page with 29 days RA fails with two SLs
but succeeds with three levels, RRS updates the sec-
ond entry to (29, 3) indicating that, from now on, pages
with 29 days or longer RA start with three SLs. For
conventional LDPC implementations, LDPC decoding
always starts with one SL, and try more levels after
failing the decoding with fewer levels. The conventional
LDPC tends to have longer read latency than that of SL
table-assisted LDPC.

4) To prevent an outlier page from setting the SL to a large
count, RRS periodically decrements the count in the
table. As an example, an outlier 27-day-RA page may
succeed after using six SLs, which updates the table and
demands all 27-day or longer RA pages to read with six
SLs. This could be pessimistic as most 27-day-RA pages
can succeed using two or three SLs. RRS addresses this
issue by periodically decrementing the StartRA value,
e.g., after 100 successful reads. This helps to reset the
try count to the appropriate number for most pages in
each setting.
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5) RRS evaluates the request finish time and selects the
one that can finish the earliest as the next one to sched-
ule. Comparing to the baseline that prioritizes short
jobs, RRS utilizes page read latency difference, which
depends on the block type and its corresponding SL in
the table. A benefit of RRS is that it adapts naturally
to read performance degradation with P/E cycling. If a
good WL is adopted, all strong pages shall have sim-
ilar RBER such that we keep one SL table for strong
blocks. Otherwise, we can create two or more SL tables
for strong blocks with different P/E cycling. For the lat-
ter, we use not only the block type and the RA, but also
the P/E cycling estimation to determine the appropriate
starting SLs.

Recently, Du et al. [37] proposed LaLDPC, a read optimiza-
tion that is close to our design. LaLDPC attaches a try count to
each page to record the number of SLs that the last read opera-
tion succeeded. While both LaLDPC and RRS exploit the RA
variation for read performance improvement, there exist two
differences. One is that LaLDPC does not change request order
as RRS does. The other difference is that LaLDPC maintains
the count at page granularity. While it achieves finer control, it
tends to suffer from archive workloads, i.e., when updating a
large number of pages after a long RA (after its last write and
without reads in between), it tends to introduce more retries.

D. Overhead

1) Storage Overhead: The proposed DLV approach needs
extra storage to save the metadata to enable latency varia-
tion aware scheduling. As we show next, the storage overhead
introduced in DLV is negligible.

1) DLV keeps a bitmap that identifies the strong blocks
in the SSD. For the 128 GB SSD simulated in our
experiment, there are 128 K blocks, resulting in 16 kB
bitmap if using two types of blocks (i.e., strong and
normal blocks), or 32 kB bitmap if using four types
(i.e., three types of strong blocks with different RBER
characteristics and one normal type).

2) Each plane keeps one 3B counter for each strong page
type to track the number of strong pages of that type;
and one 3B timestamp to track when the plane becomes
idle. Given that there are 128 planes, we need less than
4 kB when differentiating four block types.

3) Each block type keeps an SL table to track the appropri-
ate SLs when reading pages with different RAs. Since
an LDPC read scheme uses seven SLs in the worst-
case [37], an SL table contains six entries. For the SL
table, we use nine bits to record the StartRA field. Recent
studies showed that the RA of data of enterprise applica-
tions is typically within three months [19], it is sufficient
to use nine bits to record the RA range up to 512 days.
The Lvl field is omitted as it is the same as the entry
index. Thus, the storage overhead is m × 6× (9 + 3)
bits, where m is number of SL tables. We have m being
2 if we just different strong and normal flash blocks,
and being up to 10 in our experiments for finer block
grouping. The storage overhead is negligible.

TABLE II
MAIN CHARACTERISTICS OF BASELINE SSD CONFIGURATION

4) We add a 20-bit timestamp to each flash block in the
SSD. It records the time when it was first written after
its last erase.

2) Computation Overhead: The computation overhead in
DLV comes from out-of-order I/O scheduling, i.e., finding the
next request to schedule. For each request, its page access time,
i.e., reading or writing the device pages on the corresponding
planes, is evaluated only once, DLV then adopts (2) and (3)
to find the next request. While the time complexity is O(N),
where N is the number of queued I/O requests, the computa-
tion is simple and thus is very fast. In our experiments, we
observe less than 1% percentage slowdown due to scheduling
overhead.

IV. EXPERIMENT AND ANALYSIS

In this section, we present the experimental methodology
and the setting details, and then analyze the results with
comparison to the state-of-the-art schemes.

A. Experimental Methodology

We evaluated the proposed scheme using SSDsim, an event-
driven simulator, that was widely adopted in the community.
The accuracy of SSDSim has been validated via hardware pro-
totyping [38]. We simulated a 128 GB SSD with four channels,
each of which is connected to four NAND flash memory chips.
There are total 256 pages in one block, where each page size
is 4 kB. Table II lists the setting details.

Page-level FTL is implemented as the default FTL mapping
scheme, where the priority order of SSD parallelism levels,
CWDP is used for page allocation [12], [14]. And greedy
GC and dynamic WL are also implemented to assist mapping
management. GC is triggered when the number of free blocks
goes below 10% of the total number of blocks. The GC oper-
ations are executed in the background in order to minimize
the influence on the foreground requests. The percentage of
over-provisioning area is set to 7% of the SSD, which is con-
sistent with most SSDs on the market [39]. For the 2 bit/cell
flash-based SSD, the program latency is 600 μs when �Vp is
0.3 V; the sensing and data transfer latencies are 90 μs and
5 μs, respectively, when adopting LDPC with seven reference
voltages [6].

To model the PV of flash memory and its impact on RBER
distribution, we followed the approach in [8], i.e., we mod-
eled using bounded Gaussian distribution with the mean μ
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Fig. 9. Comparing the storage bandwidth using different schemes.

TABLE III
CHARACTERISTICS OF THE EVALUATED I/O WORKLOADS

and the standard deviation σ being 3.7×10−4 and 9×10−5,
respectively.

1) Workloads: We evaluated the proposed scheme using
20 traces from enterprise applications. The benchmark pro-
grams include online transaction processing (OLTP) applica-
tion traces [40], and enterprise servers traces at Microsoft
Research Cambridge [41], [42]. These workloads are widely
used in the previous studies [12], [38], [43], [44]. Table III
summarizes characteristics of our disk traces in terms of write
ratio, read ratio, I/O intensity, and duration.

The traces are classified into three groups: 1) write intensive
group; 2) read intensive group; and 3) balanced group. A trace
is write intensive if its write ratio is greater than 0.75; a trace
is read intensive if the read ratio is greater than 0.75; and other
traces are considered as balanced ones. The RA of most traces
is about one week, with the exception that fin1 and fin2 are
less than one day duration.

2) Schemes for Comparison: To evaluate the overall
performance improvement, we implemented and compared the
following schemes.

3) Baseline: This is the default setting in SSDsim. It uses
FIFO I/O scheduling, CWDP static mapping, and does not
exploit device level latency variations.

4) Write Only Optimization (WOO): The WOO scheme
implements the HWS for wirte requests. The read requests
are handled the same as the baseline. The deadline of write
requests is set to 5 s after arrival.

5) Read Only Optimization (ROO): The ROO scheme
implements RA-aware read scheduling (RRS) for read request.
The write requests are handled the same as the baseline. The
deadline of read requests is set to 500 ms after arrival.

6) DLV: This is the scheme proposed in this paper, which
integrates both WOO and ROO optimizations.

7) Evaluation Metrics: We evaluated DLV by measuring
the storage bandwidth, the I/O operations per second (IOPS),
and the average response time improvement ratio over the
baseline. We also evaluated the sensitivity on different hard-
ware settings by varying queue depth and the number of flash
chip, and the effectiveness of DLV under different buffering
policies.

B. Overall Performance Improvement

1) Bandwidth Comparison: We first compared the storage
bandwidth under different scheduling algorithms and sum-
marized the results in Fig. 9. On average, DLV achieves
81% bandwidth improvement over Basline. The improvements
come from the reduction of sensing time for read operation
and cell programming time for write operations, and the reduc-
tion of the average request queuing time. Similarly, WOO
benefits from reduction in sensing time and queuing while
ROO benefits from reduction in cell programming and queu-
ing. The improvements for WOO and ROO closely correlate
to the read and write ratios in each benchmark. For exam-
ple, WOO achieves better improvement than ROO for proj0
because proj0 is a write intensive workload.

2) IOPS Comparison: We compared the average number
of finished IOPS under different schemes and summarized
the results in Fig. 10. On average, DLV achieves 81% IOPS
improvement over Basline. Similarly as those in Fig. 9, WOO
performs better for write intensive workloads while ROO
performs better for read intensive workloads.

DLV achieves the largest bandwidth and IOPS improve-
ments, i.e., 255.3%, for proj3, and the smallest, i.e., 21.4%,
for hm1.

3) Average Response Time Comparison: Fig. 11 presents
the average response time improvements under different
schemes. The results are normalized to the baseline. Compared
with the traditional baseline, DLV achieves an average of
41.5% improvement. By exploiting strong blocks to reduce
programming latencies and recently programmed blocks to
reduce sensing latencies, DLV prioritizes jobs that can finish
early, which effectively reduces the average response time in
servicing I/O accesses. In summary, DLV outperforms WOO
and ROO by 22.01%, 17.77% on average, respectively.
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Fig. 10. Comparing the average IOPS using different schemes.

Fig. 11. Comparing the average response time improvement.

Fig. 12. CDF of write and read request latency in hm0.

Fig. 13. Analyzing the write latency improvement.

To study the efficiency of DLV, Fig. 12 compares the cumu-
lative distribution function (CDF) of different response time in
servicing write and read requests, respectively, under a typical
workload hm0. From the figure, more requests are serviced
quicker in DLV than they are in other schemes. For exam-
ple, we observed that about 74.3%, 60.1%, 68.9%, and 61.8%
of write requests are serviced with quicker than two millisec-
onds when using DLV, baseline, WOO, and ROO, respectively.
Since about 36% of total requests in hm0 are read, as shown
in Table III, the CDF of read latency in DLV is similar to that
of ROO.

C. Write Performance Improvement

We next analyzed the write improvement in DLV and
compared it to the state-of-the-art.

1) DLV / WOO: This is the one that disables RRS schedul-
ing in DLV, i.e., it is the WOO scheme.

2) PV + reorder: This is the scheme that further disables
the processing of cold subrequests in WOO, i.e., all sub-
requests of prioritized requests are allocated to strong
pages, if applicable.

3) PV + Allocation: This is the scheme in [5]. It does
not reorder I/O requests. However, it allocates strong
blocks to short jobs to reduce the average queuing
time.

Fig. 13 summarizes the normalized write performance
comparison results. Compared with the traditional baseline
scheme, WOO, PV + reorder, and PV + Allocation achieve
34.3%, 33.6%, and 29.3% write latency improvements, respec-
tively. The improvement of PV + Allocation comes from
placing hot data in strong blocks, which shows 17.6% to 79.7%
improvements over the baseline. PV +reorder gains additional
improvement by prioritizing hot write requests. The more the
requests are prioritized, the larger improvement it achieves.
We reported the percentages of prioritized write requests (hot)
from different workloads in Fig. 14(a). From the two figures,
we observed larger the write latency improvements when more
write are prioritized. For example, more than 25% requests
are prioritized in rsrch0 while only a small percentage of
writes are prioritized in mds0. PV + reorder achieves larger
improvement over PV +Allocation for rsrch0 and comparable
improvement for mds0.
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(a) (b)

Fig. 14. Percentage of prioritized requests in DLV. (a) Percentage of prioritized write requests in DLV/WOO. (b) Percentage of prioritized read requests in
DLV/ROO.

Fig. 15. Analyzing the read latency improvement.

Fig. 16. Studying the impact of different queue lengths, ranging from 1 to 512 (normalized to length = 1 setting).

Comparing to PV + reorder, DLV/WOO maps some sub-
requests to normal pages when doing so shall not prolong
the request finish time. By reserving more strong pages for
future requests, DLV/WOO achieves further improvement over
PV + reorder for some workloads, e.g., 2.8% more improve-
ment for proj0. However, as shown in Fig. 13, the impact is
insignificant for most workloads. This is because the available
strong pages are often abundant for one workload. We expect
larger improvements for the system in the long run.

D. Read Performance Improvement

We then analyzed the read improvement in DLV and
compared it to the state-of-the-art.

1) DLV/ROO: This is the scheme that disables HWS
scheduling in DLV, i.e., it is the ROO scheme.

2) LV-LDPC: This is the scheme that further disables the
reorder of incoming read requests in ROO.

3) LaLDPC: This is the scheme in [37], which records the
number of SLs used by the last read.

Fig. 15 compares the normalized read latency improvements
using above schemes. On average, DLV/ROO, LV-LDPC,
LaLDPC improve read performance by 51.8%, 45.5%, and
43.8%, respectively. LaLDPC reduces read sensing time when
reading data that has lower RA. LV-LDPC shares the similar
target but reduces the number of retries by using the knowl-
edge when reading similar pages. When reading flash pages
that have not been accessed for a long interval, LaLDPC needs
more retries to find the appropriate number of SLs. DLV/ROO
reorders read requests to prioritize hot read requests, which is
effective for a number of workloads, e.g., hm0.

To fully understand the read performance improvement in
DLV, Fig. 14(b) reports the percentages of prioritized read
requests. By comparing the results in Figs. 14(b) and 15, we
observed that the improvement is larger when the percentage
of prioritized reads is higher. This is because workloads with
intensive I/Os tend to have larger queuing latency, which was
reduced by DLV by scheduling short read requests. Overall,
the results demonstrate that DLV is effective in reducing the
read response time.

E. Sensitivity Analysis

At last, we studied the sensitivity of DLV by varying the I/O
queue length and the parallelism granularity in the SSD. We
also studied the effectiveness of DLV under different buffering
policies. The buffer size is set to 50 MB in the experiments.

Fig. 16 compares the average response time when vary-
ing the I/O queue length from 1 to 512 in DLV. The results
are normalized to the setting with length = 1. From the fig-
ure, the response time decreases as the length increases. For
example, when the I/O queue length grows from 1 to 16,
the I/O performance in rsrch0 shows 21.3% improvement.
This is because there are more scheduling opportunities with
more requests in the I/O queue. Also from the figure, the
performance improvement saturates when the length reaches
a threshold, i.e., 16 in the experiment.

Fig. 17 compares the average response time when the num-
ber of flash chips varies from 4 to 128. The results are
normalized to the setting with four chips. From the figure, the
average response time decreases when the number of chips
increases. This is because more I/O requests can be serviced
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Fig. 17. Studying the impact of different numbers of flash chips, ranging from 4 to 128 (normalized to 4-chip setting).

Fig. 18. Studying the effectiveness of DLV under different buffering policies.

in parallel when there are more chips, which reduces the queu-
ing time in servicing I/O requests. However, the performance
improvements show large variations. By comparing the results
in Fig. 10, the response time reduction is larger when the
IOPS is lower. For example, for src12, the average response
time reduces by 67.31% from 8–4 chips. It has few IOPS
operations.

Fig. 18 compares the average response time improvement of
the proposed DLV scheme, when adopting different buffering
schemes, i.e., LRU, CFLRU [45], LRU-WSR [46], CCF-
LRU [47], and PT-LRU [48], respectively. The results are
normalized to the baseline. In summary, compared with the
baseline case, on average, the DLV scheme achieves 50.67%,
41.67%, 43.81%, 39.41%, and 37.34% I/O performance
improvement under LRU, CFLRU, LRU-WSR, CCF-LRU,
and PT-LRU schemes, respectively. Thus, the proposed DLV
scheduler remains effective under different buffer policies.

V. RELATED WORK

In this section, we will discuss additional related work in
exploiting the tradeoff between RBER, read speed and write
speed.

1) PV-Introduced Latency Variations: Recent studies
exploited PV in SSDs for better wear-leveling, i.e., use the
strong blocks within SSDs to maximize lifetime. Pan et al. [8]
extended flash memory lifetime by using RBER statistics as
the measurement of memory block wear-out pace for the
wear-leveling algorithm. Woo and Kim [9] introduced a new
measure that predicts the remaining lifetime of a flash block
more accurately than the erase count based on the findings
that all the flash blocks could survive much longer than the
guaranteed numbers and the number of P/E cycles vary sig-
nificantly among blocks. Shi et al. [5] exploited PV for better
tradeoff between RBER and write speed. They used coarser
�Vp for strong pages that do not accumulate errors as fast
as normal pages and allocated strong blocks to hotter data. In
this paper, our HWS algorithm also takes advantage of strong
blocks based on the PV-aware data allocation.

2) RA-Introduced Latency Variations: The impact of
data retention skew on storage system performance has
been exploited to minimize refresh cost. For example,
Luo et al. [32] introduced a write-hotness aware reten-
tion management policy for NAND flash memory to relax
the flash retention time for SSD data that are frequently
written. Di et al. [10] proposed a refresh minimization
method by writing the data of long retention time require-
ment into high endurance blocks. Recent studies adjusted cell
programming/read-out parameters for improved performance.
For example, Cai et al. [4] presented a retention optimized
reading method that periodically learns a tight upper bound
and applies the optimal read reference voltage for each flash
memory block online. Shi et al. [26] proposed a retention
trimming approach for wearing reduction by decreasing pro-
gramming voltages when the estimated retention time is lower.
Liu et al. [11] achieved write response time speedup based on
the estimated retention time, by adapting both the program-
ming step size �Vp and ECC strength. Du et al. [37] proposed
LaLDPC to reduce read sensing time by optimizing sensing
quantization levels, avoiding unnecessary read retries. In this
paper, our retention-aware read scheduling algorithm takes
advantage of data with low RA based on the retention-aware
ECC adaptation.

When using PV-based fast write and RA-based fast read, the
requests are accelerated in varying degrees, which inevitably
lead to the significant read and write latency variations.
I/O scheduler may exploit the speed variations to improve
read/write performance. While most flash-based I/O schedulers
focused on how to reduce the access conflict and improve chip
utilization by exploiting the internal parallelism of SSDs [6],
[27], [49], [50], we focus on the reduction of access latency
by taking advantage of latency variations.

VI. CONCLUSION

In this paper, we proposed a device level latency variation
aware I/O scheduling algorithm DLV for NAND flash-based
SSDs. In addition to exploiting the latency variation among
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blocks to speed up read and write accesses, DLV resched-
ules I/O requests and prioritizes the requests that can finish
early, which effectively reduces the requests pending time and
the I/O requests response time. Our experimental results show
that the proposed technique achieves 41.5% I/O performance
improvement on average.
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