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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract 

This paper analyzes effect of directional relationships on chatter vibrations experienced in peripheral milling process. Based on the 
directional relationships, a geometry-based chatter stability index (CSI) is proposed to improve chatter stability of the process. It 
is well-known that chatter stability depends on cutting conditions and tool geometry; whereas it is less known that it also depends 
strongly on the directional relations between the machining process and the flexible directions of the machine. In this research, 
these directional factors affecting chatter stability are extracted from process kinematics and dynamically compliant directions of 
the structure. Three cases are considered and analyzed; namely, 1) if the machine tool/workpiece structure is flexible only in single 
direction, 2) if it is flexible in two orthogonal directions and finally 3) when those flexible directions are not orthogonal. Tool feed 
direction is considered to be the optimization parameter to maximize process stability. Overall, this research aims to present new 
knowledge on the effect of directional relationships for chatter stability and how they can be utilized in a practical manner based 
on a chatter stability index (CSI) that can be computed from geometry, process kinematics and limited knowledge of machine 
dynamics.  
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1. Introduction  

Chatter vibrations have been a major problem in 
various machining operations such as in turning, 
milling, boring and grinding [1]. It causes shorter tool 
life, poor surface quality and low productivity. Many 

researchers have investigated analysis of the self-
excited chatter vibrations and clarified the 
mechanisms at various conditions for various 
operations [2]. It is well known that chatter stability 
depends on cutting conditions and tool geometry such 
as width or depth of cut and the spindle speed. Some 
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researchers applied this knowledge to generate chatter-
free tool paths [3]. On the other hand, it is less known 
that chatter stability also depends on tool path/posture 
relative to the dynamically most compliant direction 
[4]. Authors previously clarified importance of this 
tool path/posture for chatter stability and proposed a 
simple chatter stability index(CSI) for turning process 
to realize a quick and practical tool path/posture 
optimization [5]. This research extends that past work 
and proposes a chatter stability index for relative 
stability of peripheral milling processes.  

In milling, several directions play significant role 
in process stability. Firstly, the feed direction between 
tool and workpiece plays a key role [6]. It controls the 
average force direction [5] jointly with the radial 
immersion [2] of the tool. For instance, if force 
direction is aligned perpendicular to the flexible 
direction of machine/workpiece structure, forced 
vibrations can be minimized attenuating regenerative 
effects and thus overall chatter stability could be 
improved. Thus, the flexible, i.e. compliant, directions 
of machine/workpiece structure are critical. Typically 
structures exhibit one or two dominant flexible 
directions that are orthogonal in conventional CNC 
machines. However, flexibilities on a robotic 
machining system can be non-orthogonal [6,7]. 

This paper tries to utilize geometry-based 
directional relationships to analyze chatter stability in 
milling. The objective is to generate an insight on how 
those directions can be used to optimize tool feed 
direction to maximize the chatter free material 
removal rate. Although, a simple chatter stability 
index (CSI) based on purely geometric relationships 
could be generated for case of milling with single 
dominant flexible direction, in case of 2D orthogonal 
and non-orthogonal flexible structures, the proposed 
formulations provide preliminary insight for 
optimizing feed direction to attain high chatter-free 
material removal. The paper is laid out as follows. 
First, effect of direction relations in milling for the 
case of structures with a single flexible direction is 
considered. A geometry-based asymptotic chatter 
stability index, CSI is then proposed to attenuate 
regenerative chatter vibrations. Next, two orthogonal 
flexible structure is considered and asymptotically 
chatter stability index including mode coupling is 
presented. Finally, in the case of non-orthogonal 
flexibility, the effect of feed direction on maximizing 
chatter stability is investigated. Simulation studies are 
used to validate accuracy of proposed techniques. 

Note that, the proposed chatter stability index (CSI) 

in this paper is based on the asymptotic stability limit 
[2]. Asymptotic stability limit presents the borderline 
depth of cut which guarantees stable cutting regardless 
of spindle speed. In this work, it is used as a measure 
of relative stability. 

2. Geometric chatter stability index in milling 

The literature on chatter stability is extensive 
[8,9,10,11].  Typically, dynamic interaction of milling 
process with a flexible structure can be modeled by 
block diagram shown in Fig. 1 [12].  

 
Fig. 1. Block diagram of milling process with regenerative chatter 

 
The transfer function block contains directional 

frequency response functions. Milling process gain 
block dictates the relationship between chip thickness 
and cutting forces. Due to the kinematics of the 
process, chip thickness varies with spindle rotation so 
as the cutting forces. If directional cutting coefficients 
in milling process are averaged over one tooth period, 
chatter stability lobes would be very similar to the case 
when they are not averaged [2]. As a result, it is 
accustomed that chatter stability in time-varying 
milling process is analyzed by averaging cutting force 
variations [2]. 

2.1. Chatter stability for single degree of freedom 
systems  

Fig. 2 depicts kinematics of peripheral milling. In 
this particular case, the machine/workpiece structure 
is assumed to have only a single dominant flexible 
(compliant) direction. This flexible direction can be 
determined either by experience, measurement, or 
through simulation. If the system has only a single 
flexible direction, it can only vibrate in that direction 
[13]. The well-known example is thin-walled 
workpiece machining [14,15]. Vibrations leave a 
wavy surface with fluctuating cutting area, which is 
called a regenerative effect.  
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researchers applied this knowledge to generate chatter-
free tool paths [3]. On the other hand, it is less known 
that chatter stability also depends on tool path/posture 
relative to the dynamically most compliant direction 
[4]. Authors previously clarified importance of this 
tool path/posture for chatter stability and proposed a 
simple chatter stability index(CSI) for turning process 
to realize a quick and practical tool path/posture 
optimization [5]. This research extends that past work 
and proposes a chatter stability index for relative 
stability of peripheral milling processes.  

In milling, several directions play significant role 
in process stability. Firstly, the feed direction between 
tool and workpiece plays a key role [6]. It controls the 
average force direction [5] jointly with the radial 
immersion [2] of the tool. For instance, if force 
direction is aligned perpendicular to the flexible 
direction of machine/workpiece structure, forced 
vibrations can be minimized attenuating regenerative 
effects and thus overall chatter stability could be 
improved. Thus, the flexible, i.e. compliant, directions 
of machine/workpiece structure are critical. Typically 
structures exhibit one or two dominant flexible 
directions that are orthogonal in conventional CNC 
machines. However, flexibilities on a robotic 
machining system can be non-orthogonal [6,7]. 

This paper tries to utilize geometry-based 
directional relationships to analyze chatter stability in 
milling. The objective is to generate an insight on how 
those directions can be used to optimize tool feed 
direction to maximize the chatter free material 
removal rate. Although, a simple chatter stability 
index (CSI) based on purely geometric relationships 
could be generated for case of milling with single 
dominant flexible direction, in case of 2D orthogonal 
and non-orthogonal flexible structures, the proposed 
formulations provide preliminary insight for 
optimizing feed direction to attain high chatter-free 
material removal. The paper is laid out as follows. 
First, effect of direction relations in milling for the 
case of structures with a single flexible direction is 
considered. A geometry-based asymptotic chatter 
stability index, CSI is then proposed to attenuate 
regenerative chatter vibrations. Next, two orthogonal 
flexible structure is considered and asymptotically 
chatter stability index including mode coupling is 
presented. Finally, in the case of non-orthogonal 
flexibility, the effect of feed direction on maximizing 
chatter stability is investigated. Simulation studies are 
used to validate accuracy of proposed techniques. 

Note that, the proposed chatter stability index (CSI) 

in this paper is based on the asymptotic stability limit 
[2]. Asymptotic stability limit presents the borderline 
depth of cut which guarantees stable cutting regardless 
of spindle speed. In this work, it is used as a measure 
of relative stability. 

2. Geometric chatter stability index in milling 

The literature on chatter stability is extensive 
[8,9,10,11].  Typically, dynamic interaction of milling 
process with a flexible structure can be modeled by 
block diagram shown in Fig. 1 [12].  

 
Fig. 1. Block diagram of milling process with regenerative chatter 

 
The transfer function block contains directional 

frequency response functions. Milling process gain 
block dictates the relationship between chip thickness 
and cutting forces. Due to the kinematics of the 
process, chip thickness varies with spindle rotation so 
as the cutting forces. If directional cutting coefficients 
in milling process are averaged over one tooth period, 
chatter stability lobes would be very similar to the case 
when they are not averaged [2]. As a result, it is 
accustomed that chatter stability in time-varying 
milling process is analyzed by averaging cutting force 
variations [2]. 

2.1. Chatter stability for single degree of freedom 
systems  

Fig. 2 depicts kinematics of peripheral milling. In 
this particular case, the machine/workpiece structure 
is assumed to have only a single dominant flexible 
(compliant) direction. This flexible direction can be 
determined either by experience, measurement, or 
through simulation. If the system has only a single 
flexible direction, it can only vibrate in that direction 
[13]. The well-known example is thin-walled 
workpiece machining [14,15]. Vibrations leave a 
wavy surface with fluctuating cutting area, which is 
called a regenerative effect.  
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Fig. 2. Vibration and feed directions in milling process 

Regenerative effect generates dynamic cutting 
forces with undesired phase lag causing cutting 
process to become unstable. The dynamic cutting area 
due to regenerative effect can be approximated by the 
product of the vibration amplitude projected onto the 
regenerative plane and the axial depth of cut. The 
regenerative plane (See Fig. 3) contains regeneration 
direction vector that is parallel to the radial cutting 
direction and the axial cutting direction vector. Thus, 
if the tool path/posture is rotated to align the 
regeneration plane perpendicular to vibration 
direction, regenerative effect can actually be 
eliminated. As a result, regenerative chatter vibrations 
could be avoided. As shown in Fig. 3, the angle  
between vibration direction and the plane 
perpendicular to the regenerative plane can be used to 
evaluate a relative chatter stability index, which we 
call as the CSI here.  

Let us define a unit displacement vector in the 
vibration direction (flexible direction) as

sin cos sin sin cos
T

i f i f id          , shown in 
Fig. 2. Then, an instantaneous regeneration direction 
vector can be defined as a unit vector 

 sin cos Tn    , where is the angle between 
cutting edge and y-axis as shown in Fig. 4.  

 
Fig. 3. Instantaneous tool edge regenerative direction 

 

 
Fig. 4. Unit vectors to derive regenerative chatter stability 

index in milling process 

The dynamic cutting area A can be expressed by the 
multiplication of axial depth of cut a and the inner 
product of regenerative direction vector with the unit 
vibration vector sinA an d a     . If the 
regeneration direction vector is perpendicular to the 
displacement vector or vibration direction, i.e. 0  ,  
the dynamic cutting area will not change, meaning that 
the regenerative effect can be suppressed.               

The second directional factor affecting chatter 
stability is relation between vibration direction and the 
cutting force direction. As in the first directional factor 
case, if the direction of the resultant cutting force is 
perpendicular to the vibration direction, cutting forces 
cannot excite the structure. As a result, chatter 
vibrations will not grow. The angle  between 
vibration direction and a non-excitation plane, plane 
perpendicular to the resultant cutting force direction, 
can be used to evaluate the relative chatter stability 
index. The angle  is illustrated in Fig. 5.        

For known cutting force coefficient ratios rK  and 

aK  [16], ratio of radial cutting force component and 
axial cutting force component to tangential cutting 
force component, respectively, a unit instantaneous 

 
Fig. 5. Instantaneous resultant cutting force 

4 M. Maulimov, B. Sencer / Procedia Manufacturing 00 (2018) 000–000 

cutting force vector can be defined as 

  2 2/ 1u r a z r af v K n K e K K       and cutting 

forces will be  uf A f  . The instantaneous cutting 
force component in vibration direction becomes

sin sine uf f d A f d a        . If the 
instantaneous cutting force direction is perpendicular 
to the vibration direction, i.e.   chatter vibrations 
will not grow.  

Next, in milling operation, the average regenerative 
effect can be utilized. Average excitation force is 
found by integrating the instantaneous cutting force 
over one revolution, sin sinef a  

  2ex

st
eN f d




   , where N is the number of teeth. 

Finally, the regenerative chatter stability index for 
peripheral milling process can be written as: 

               
1 1

sin sin
rcs

e

I
f a  

                         (1) 

Note that,  and  can be computed based on known 
vibration direction d .   is computed from the average 
cutting force direction as presented above, which can 
be obtained analytically by employing average milling 
force coefficient matrix  0A   [2]. Thus, Eq. (1) can 
also be written as: 

      
0

1
rcsI

a A d
                       (2) 

2.2. Verification of regenerative stability index (CSI) 
for milling with single compliant direction 

This section presents how the CSI index can be 
used to predict the relative stability limit and how 
feed/cutting direction can be used to maximize the 
stable material removal rate (MRR). Simulations 
conditions are summarized in Table 1. In this case the 
structure is assumed to be flexible only in a single 
direction along the vibration direction as depicted in 
Fig. 4. The feed and inclination angles, f and i (See 
Fig. 2), are varied. Analytical results based on the full 
chatter stability model [2] are shown in Fig. 6. The 
color map shows analytically predicted asymptotic 
critical axial depth of cut at each tool inclination and 
feed direction. As observed, when the tool feed and 
inclination directions are altered, asymptotic depth of 
cut could be increased greatly. Next, Fig. 7 presents 
CSI calculated from Eqs. (1) or (2) based on 

Table 1. Simulation conditions for milling process 

Cutting conditions 

Axial depth of cut, a 1 mm for Ircs 
calculations 

Radial immersion 0-π/3 rad (up 
milling) 

Number of teeth 2 

Specific cutting 
force coefficients 

Tangential 2000 MPa 

Radial 1200 MPa 

Axial 440 MPa 

Structural 
flexibility (aligned 
with d ) 

Mass 10 kg 

Static stiffness 10 N/µm 

Damping coefficient 300 N/(m/s) 

Vibration direction Varied 

geometrical relationships without using any transfer 
function data. As seen, the proposed simple CSI index 
accurately captures relative stability. Note that the 
white straight broken lines (A) indicate the directional 
relation where =0, and the white curved broken line 
(B) corresponds to the other relation where =0. Along 
those lines, regenerative chatter vibrations can be  

 
Fig. 6. Analytically predicted gain margin 

 
Fig. 7.  Regenerative chatter stability index 
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Fig. 2. Vibration and feed directions in milling process 
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The dynamic cutting area A can be expressed by the 
multiplication of axial depth of cut a and the inner 
product of regenerative direction vector with the unit 
vibration vector sinA an d a     . If the 
regeneration direction vector is perpendicular to the 
displacement vector or vibration direction, i.e. 0  ,  
the dynamic cutting area will not change, meaning that 
the regenerative effect can be suppressed.               

The second directional factor affecting chatter 
stability is relation between vibration direction and the 
cutting force direction. As in the first directional factor 
case, if the direction of the resultant cutting force is 
perpendicular to the vibration direction, cutting forces 
cannot excite the structure. As a result, chatter 
vibrations will not grow. The angle  between 
vibration direction and a non-excitation plane, plane 
perpendicular to the resultant cutting force direction, 
can be used to evaluate the relative chatter stability 
index. The angle  is illustrated in Fig. 5.        

For known cutting force coefficient ratios rK  and 

aK  [16], ratio of radial cutting force component and 
axial cutting force component to tangential cutting 
force component, respectively, a unit instantaneous 

 
Fig. 5. Instantaneous resultant cutting force 
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cutting force vector can be defined as 

  2 2/ 1u r a z r af v K n K e K K       and cutting 

forces will be  uf A f  . The instantaneous cutting 
force component in vibration direction becomes

sin sine uf f d A f d a        . If the 
instantaneous cutting force direction is perpendicular 
to the vibration direction, i.e.   chatter vibrations 
will not grow.  

Next, in milling operation, the average regenerative 
effect can be utilized. Average excitation force is 
found by integrating the instantaneous cutting force 
over one revolution, sin sinef a  

  2ex

st
eN f d




   , where N is the number of teeth. 

Finally, the regenerative chatter stability index for 
peripheral milling process can be written as: 

               
1 1

sin sin
rcs

e

I
f a  

                         (1) 

Note that,  and  can be computed based on known 
vibration direction d .   is computed from the average 
cutting force direction as presented above, which can 
be obtained analytically by employing average milling 
force coefficient matrix  0A   [2]. Thus, Eq. (1) can 
also be written as: 

      
0

1
rcsI

a A d
                       (2) 

2.2. Verification of regenerative stability index (CSI) 
for milling with single compliant direction 

This section presents how the CSI index can be 
used to predict the relative stability limit and how 
feed/cutting direction can be used to maximize the 
stable material removal rate (MRR). Simulations 
conditions are summarized in Table 1. In this case the 
structure is assumed to be flexible only in a single 
direction along the vibration direction as depicted in 
Fig. 4. The feed and inclination angles, f and i (See 
Fig. 2), are varied. Analytical results based on the full 
chatter stability model [2] are shown in Fig. 6. The 
color map shows analytically predicted asymptotic 
critical axial depth of cut at each tool inclination and 
feed direction. As observed, when the tool feed and 
inclination directions are altered, asymptotic depth of 
cut could be increased greatly. Next, Fig. 7 presents 
CSI calculated from Eqs. (1) or (2) based on 

Table 1. Simulation conditions for milling process 

Cutting conditions 

Axial depth of cut, a 1 mm for Ircs 
calculations 

Radial immersion 0-π/3 rad (up 
milling) 

Number of teeth 2 

Specific cutting 
force coefficients 

Tangential 2000 MPa 

Radial 1200 MPa 

Axial 440 MPa 

Structural 
flexibility (aligned 
with d ) 

Mass 10 kg 

Static stiffness 10 N/µm 

Damping coefficient 300 N/(m/s) 

Vibration direction Varied 

geometrical relationships without using any transfer 
function data. As seen, the proposed simple CSI index 
accurately captures relative stability. Note that the 
white straight broken lines (A) indicate the directional 
relation where =0, and the white curved broken line 
(B) corresponds to the other relation where =0. Along 
those lines, regenerative chatter vibrations can be  

 
Fig. 6. Analytically predicted gain margin 

 
Fig. 7.  Regenerative chatter stability index 
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Fig. 8. Analytical stability lobes for 90 and 110 [deg] feed angles. 

completely eliminated, and the process can achieve 
infinite stability enabling large depth of cuts. Thus, by 
simply altering tool feed and inclination directions the 
MRR can be maximized and proposed CSI can predict 
it accurately. 

Please also note that Figs. 6 and 7 represent 
asymptotic stability limit, i.e. the relative stability. 
Compete stability lobes are also generated in Fig. 8 for 
the feed angles 90 [deg] and 110 [deg] whereas 
inclination angle is set to 120 [deg] and radial 
immersion is fixed to 60 [deg]. As observed from Figs. 
6 and 7, the relative stability increases when feed angle 
is changed from 90 to 110[deg]. The increase in the 
asymptotic depth of cut is calculated as 483.82% from 
Fig. 8. Now, consider cutting at 1100 [rpm] under a 
lobe, when the asymptotic stability limit is increased 
by altering feed direction the maximum stable depth of 
cut is again increased by 483.82% even considering 
the lobe effect (See Fig.8). Thus, this concludes that 
once asymptotic stability limit is increased based on 
CSI, overall chatter free MRR is increased regardless 
of spindle speed. Note that, this case is strictly true 
when chatter vibrations originate from regenerative 
effect. 

 
Fig. 9. Tool-path alignment for maximum chatter-free MRR. 

Finally, Fig. 9 illustrates how feed direction can be 
utilized to maximize MRR. During basic face milling 
operations, the tool-path, i.e. the feed direction, is 
aligned such that regenerative vibrations are 
attenuated. This kind of path-planning strategy can be 
implemented easily in CAD/CAM systems since it is 
purely geometry based.  

3. Definition of CSI for 2DOF systems 

This section analyses directional effects on milling 
chatter stability in a more general case when 
mechanical structure contains flexibilities in two 
different directions [17]. As opposed to the 
approximation made in the previous section where the 
structure contains only a single dominant flexibility, 
most machine tools, or robotic machining systems 
[7,18,19,20] are flexible in two directions as shown in 
Fig. 10. These flexibilities can be attributed to the 
tool/tool-holder/spindle interface [21] or the machine 
and the workpiece [7]. 

The vibration direction is critical in finding 
abovementioned geometry-based relationships. 
However, in 2DOF systems, chatter vibration 
direction cannot be determined in a straightforward 
fashion. The following section first attempts to 
determine the vibration direction during chatter. 

 

 
Fig. 10. Tool/workpiece structure with two orthogonal dynamics 

3.1. Analysis of vibration trajectories for structures 
with two flexible directions 

Firstly, the flexible system is considered to have 
degrees of freedom in X and Y directions, i.e. a set of 
orthogonal modes as shown in Fig. 8. Cutting forces 
excite the structure causing dynamic displacements in 
both X and Y directions. In this case, based on the 
regenerative chatter loop (Fig. 1), closed-loop milling 
dynamics may generate linear or elliptical vibrations 
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[22]. The vibration type and locus can be found from 
eigenvectors of the characteristic equation [23]. If 
eigenvectors are real, the system vibrates linearly in 
the direction of the eigenvectors. On the other hand, 
when the eigenvectors are complex, chatter vibration 
trajectory becomes elliptical. In that case, a major and 
a minor axis of the elliptical vibration locus can be 
determined. 

Milling dynamics during chatter vibration can be 
analyzed by writing the closed loop dynamics from 
Fig. 1 and inspecting the eigenvalues from the 
characteristic equation [2]: 

       0
1det 1 ( ) 0
2 2

ci T
t c

NI aK e A i 


-  - -      
 (3) 

where Kt is the tangential cutting force component, a 
is the axial depth of cut, and  ( )ci  is the complex 

valued frequency response function with ( )xx i  , 
( )xy i  , ( )yx i   and ( )yy i   being direct and 

cross transfer functions. Note that  0A   contains the 
directional cutting force coefficients, 
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       (4) 

where st and ex are the entry and exit immersion 
angles as depicted in Fig. 11. 

 
Fig. 11: Entry and exit angles of tool edge during cutting  

Most machine tool structures are dominated by the 
tool mode, which allows use to assume, 

( ) ( ) 0xy yxi i      and ( ) ( )xx yyi i    . 
These assumptions help simplify the characteristic 
equation from Eq. (3), to: 

         0det 0I A                               (5) 

where  1 ( )
4

ci T
t xx c

N aK e i 


- - -   . Solution of 

Eq. (5) reveals two cases. Eigenvalues are real if the 
determinant of the characteristic equation is real. Or, 
the eigenvalues become complex, which generates 
elliptical vibration trajectory and hence closed-form 
geometric relationships cannot be derived 
conveniently. Therefore, in this paper we first search 
the case in which chatter vibrations occur on a linear 
trajectory, i.e. eigenvalues are real.  

Note that from Eq.5 that the directional coefficients 
 0A   control eigenvalues of the closed loop system. 
Expanding Eq. (5) yields following condition for 
strictly real eigenvalues, i.e. the discriminant of Eq. (5) 
is non-negative: 

            2
4 0xx yy xx yy xy yx      - -              (6) 

Rewriting above inequality by plugging in 
directional coefficients from Eq. (4) reveals that the 
radial immersion ri controls the vibration trajectory, 
i.e. the eigenvalues. By setting ri as: 

                  
2

2 1
sin

ri
r

ri

K



 
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 
                         (7) 

ensures that linear chatter vibrations are observed. 
Note that Kr is the ratio between the radial cutting 
coefficient and the tangential cutting coefficient, and 
ri is the radial immersion, i.e. ri ex st   - .  
Therefore, limiting radial immersion to attain linear 

 
Fig. 12. The limiting radial immersion to attain linear vibration 
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Fig. 8. Analytical stability lobes for 90 and 110 [deg] feed angles. 

completely eliminated, and the process can achieve 
infinite stability enabling large depth of cuts. Thus, by 
simply altering tool feed and inclination directions the 
MRR can be maximized and proposed CSI can predict 
it accurately. 

Please also note that Figs. 6 and 7 represent 
asymptotic stability limit, i.e. the relative stability. 
Compete stability lobes are also generated in Fig. 8 for 
the feed angles 90 [deg] and 110 [deg] whereas 
inclination angle is set to 120 [deg] and radial 
immersion is fixed to 60 [deg]. As observed from Figs. 
6 and 7, the relative stability increases when feed angle 
is changed from 90 to 110[deg]. The increase in the 
asymptotic depth of cut is calculated as 483.82% from 
Fig. 8. Now, consider cutting at 1100 [rpm] under a 
lobe, when the asymptotic stability limit is increased 
by altering feed direction the maximum stable depth of 
cut is again increased by 483.82% even considering 
the lobe effect (See Fig.8). Thus, this concludes that 
once asymptotic stability limit is increased based on 
CSI, overall chatter free MRR is increased regardless 
of spindle speed. Note that, this case is strictly true 
when chatter vibrations originate from regenerative 
effect. 

 
Fig. 9. Tool-path alignment for maximum chatter-free MRR. 

Finally, Fig. 9 illustrates how feed direction can be 
utilized to maximize MRR. During basic face milling 
operations, the tool-path, i.e. the feed direction, is 
aligned such that regenerative vibrations are 
attenuated. This kind of path-planning strategy can be 
implemented easily in CAD/CAM systems since it is 
purely geometry based.  

3. Definition of CSI for 2DOF systems 

This section analyses directional effects on milling 
chatter stability in a more general case when 
mechanical structure contains flexibilities in two 
different directions [17]. As opposed to the 
approximation made in the previous section where the 
structure contains only a single dominant flexibility, 
most machine tools, or robotic machining systems 
[7,18,19,20] are flexible in two directions as shown in 
Fig. 10. These flexibilities can be attributed to the 
tool/tool-holder/spindle interface [21] or the machine 
and the workpiece [7]. 

The vibration direction is critical in finding 
abovementioned geometry-based relationships. 
However, in 2DOF systems, chatter vibration 
direction cannot be determined in a straightforward 
fashion. The following section first attempts to 
determine the vibration direction during chatter. 

 

 
Fig. 10. Tool/workpiece structure with two orthogonal dynamics 

3.1. Analysis of vibration trajectories for structures 
with two flexible directions 

Firstly, the flexible system is considered to have 
degrees of freedom in X and Y directions, i.e. a set of 
orthogonal modes as shown in Fig. 8. Cutting forces 
excite the structure causing dynamic displacements in 
both X and Y directions. In this case, based on the 
regenerative chatter loop (Fig. 1), closed-loop milling 
dynamics may generate linear or elliptical vibrations 
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[22]. The vibration type and locus can be found from 
eigenvectors of the characteristic equation [23]. If 
eigenvectors are real, the system vibrates linearly in 
the direction of the eigenvectors. On the other hand, 
when the eigenvectors are complex, chatter vibration 
trajectory becomes elliptical. In that case, a major and 
a minor axis of the elliptical vibration locus can be 
determined. 

Milling dynamics during chatter vibration can be 
analyzed by writing the closed loop dynamics from 
Fig. 1 and inspecting the eigenvalues from the 
characteristic equation [2]: 

       0
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where Kt is the tangential cutting force component, a 
is the axial depth of cut, and  ( )ci  is the complex 

valued frequency response function with ( )xx i  , 
( )xy i  , ( )yx i   and ( )yy i   being direct and 

cross transfer functions. Note that  0A   contains the 
directional cutting force coefficients, 
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where st and ex are the entry and exit immersion 
angles as depicted in Fig. 11. 

 
Fig. 11: Entry and exit angles of tool edge during cutting  

Most machine tool structures are dominated by the 
tool mode, which allows use to assume, 
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Eq. (5) reveals two cases. Eigenvalues are real if the 
determinant of the characteristic equation is real. Or, 
the eigenvalues become complex, which generates 
elliptical vibration trajectory and hence closed-form 
geometric relationships cannot be derived 
conveniently. Therefore, in this paper we first search 
the case in which chatter vibrations occur on a linear 
trajectory, i.e. eigenvalues are real.  

Note that from Eq.5 that the directional coefficients 
 0A   control eigenvalues of the closed loop system. 
Expanding Eq. (5) yields following condition for 
strictly real eigenvalues, i.e. the discriminant of Eq. (5) 
is non-negative: 
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Rewriting above inequality by plugging in 
directional coefficients from Eq. (4) reveals that the 
radial immersion ri controls the vibration trajectory, 
i.e. the eigenvalues. By setting ri as: 
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ensures that linear chatter vibrations are observed. 
Note that Kr is the ratio between the radial cutting 
coefficient and the tangential cutting coefficient, and 
ri is the radial immersion, i.e. ri ex st   - .  
Therefore, limiting radial immersion to attain linear 

 
Fig. 12. The limiting radial immersion to attain linear vibration 
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vibrations can be plotted for variety of radial cutting 
force ratios as in Fig. 12. For various Kr values the 
immersion must be below the limiting curve.  

The direction of vibration is then determined from 
normalized eigenvectors of the characteristic equation 
(Eq. (5)) as: 
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 
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(8) 

where v1 and v2 are identical, v1  v2, for the same 
eigenvalue . They are identical because when Eq. (5) 
is solved for eigenvalue , the columns of  
   02 2 2 2x x
I A   matrix are linearly dependent. This 

will result in two linearly dependent eigenvector 
equations that will provide two identical eigenvectors 
for each of the eigenvalues of Eq. (5).  

Overall, this section analyzed vibratory behavior of 
milling based on the characteristics equation. It is 
shown that radial immersion controls the vibration 
trajectory. By limiting radial immersion, linear chatter 
vibrations can be generated. Based on this analysis the 
following section tries to generate geometry based 
relative chatter stability index for the 2D case. 

3.2. CSI for orthogonal 2DOF milling case 

Section 2.1. showed that, when the system has a 
single flexible direction, mode coupling [22] is 
avoided, and regenerative chatter vibrations could be 
mitigated by setting vibration direction to be parallel 
to either to the average non-regeneration plane or the 
average non-excitation plane. This can be achieved by 
controlling the feed direction during cutting. However, 
when the structure has two flexible directions, as 
indicated by Eq. (8), vibration direction depends on 
the directional cutting coefficients. A relationship 
between regeneration direction and vibration 
direction, and between the average cutting force 
direction and vibration direction can be found as 
follows.  

Firstly, the relation between average cutting force 
direction and vibration direction is analyzed. Assume 
that the vibration direction vector is a unit vector with 
components x and y  in x  and y  directions. 
Then, the dynamic cutting forces can be written [2] as: 

             
4

x xx xy
t

y yx yy

F xN aK
F y
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               (9) 

Since chatter vibration occurs in the direction of 
eigenvectors v1 = v2, their components are plugged into 

x  and y  in Eq. (9) to rewrite the cutting force as 
follows, 

                  1
4

x
t
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                 (10) 

Similar to Section 2.1, the angle  between vibration 
direction and average non-excitation plane, shown in 
Fig. 13, can be used to evaluate the relative chatter 
stability index. Note from Eq. (10) that is a real 
scalar. Thus, if it is positive valued, the average cutting 
force direction becomes aligned with the vibration 
direction but out of phase as shown in Fig. 13, which 
makes 9. 

 
Fig. 13. Average cutting force, average regeneration and vibration 

directions in orthogonal 2DOF systems 

Similarly, relationship between the average 
regeneration direction and vibration direction can be 
analyzed as follows. The average regeneration 
direction is found by integrating x and y components 
of dynamic chip thickness [2],  

( ) sin( ) cos( )h x y     , shown in Fig. 10, where 
  is defined as the angle between cutting edge and y-
axis. The instantaneous regeneration direction is 

 ( )sin ( )cos Tr h h    .  Then, the average 
regeneration direction is obtained by taking the 
integral of instantaneous regeneration direction over 
one revolution as follows: 
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Here, R  is the average regeneration direction with 

xR  and yR  components in x and y directions, 
respectively. Inserting the dynamic chip thickness into 
instantaneous regeneration direction, r , and 
integrating above equation, Eq. (11) can be rewritten 
as, 
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        -  -      

(12) 

Using Eq. (9), the average cutting force direction can 
be expressed as: 
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x xx xy
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y yx yy

F x yN aK
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              (13) 

and plugging in the cutting coefficients from Eq. (4), 
into Eq. (13) and rearranging Eq. (13) using Eq. (12), 
allows us to re-postulate the average cutting force 
direction in terms of the regeneration direction as: 

                  x y r x
t

y r y x

F R K R
aK

F K R R
- -         -       

                   (14) 

Then, simultaneously solving equations (10) and (14), 
yields the expression for average regeneration 
direction: 

 24 ( 1)
x r

y rr

R K x yN
R x K yK

 -              
    (15) 

Next, the geometric relationship between average 
regeneration and the vibration directions can be 
defined based on Fig. 13 as: 

 cos( / 2)   -R Δx R Δx   (16) 

where R  is the average regeneration vector, i.e. 
T

x yR R   R , Δx  is the vibration direction, i.e. 

 Tx y  Δx , and the   is the angle between 
perpendicular direction to the average regeneration 
vector and vibration direction as shown in Fig. 13. 
Similar to Section 2.1, the angle  can also be used to 
evaluate the relative chatter stability index and  can 
be solved from Eq. (16) as: 

                        
2
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1

r

r

K

K
 


  (17) 

Above relation indicates that 𝛼𝛼 , the directional 
relationship between the vibration and average 
regeneration directions is controlled by the ratio of 
cutting force coefficients, 𝐾𝐾𝑟𝑟 .  Thus, for constant 
radial immersions, changing cutting direction, or 
rotating DOF does not have any effect on the chatter 
stability. 

Please note that cutting forces are calculated as 
multiplication of cutting force coefficient to dynamic 
cutting area. The dynamic cutting area is controlled by 
the regeneration effect, i.e. dynamic chip thickness. 
Average cutting force is average of instantaneous 
cutting forces over one revolution. It indicates that the 
average cutting force magnitude will include 
magnitude of the average regeneration vector. 
Therefore, in chatter stability index calculations, a unit 
average regeneration vector will be used so that only 
its directional effect can be taken into consideration in 
CSI. Let us define a unit average regeneration vector 
to be 𝑹𝑹𝒖𝒖, normalized average regeneration vector or 
normalized version of Eq. (15). Thus, the final 
asymptotic chatter stability index is calculated by 
projecting the average cutting force vector and unit 
average regeneration vector onto the vibration 
direction. Then taking its reciprocal, the chatter 
stability index for 2D orthogonal case becomes, 

                   1
sin sin

CSI
 


uF R

  (18) 

where 
T

x yF F   F is the average cutting force.  
Please also note that above index is very similar to 

the one presented in previous chapter for the case 
when the structure has only single degree of freedom. 
However, in the 2DOF with orthogonal mode case, the 
term sin  is only controlled by the cutting force 
ratio, Kr, which is constant. The angle  is constant and 
90 [deg]. From Eq. (10), the magnitude of the 
cutting force is   / 4 /tNK a F . Thus, 
disregarding the constant terms from Eq. (18), the 
resultant relative asymptotic stability index can be 
simplified to: 

                              CSI
a


   (19) 

where  is eigenvalue of characteristic equation, 
which can be computed from the roots of Eq. (5): 
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vibrations can be plotted for variety of radial cutting 
force ratios as in Fig. 12. For various Kr values the 
immersion must be below the limiting curve.  

The direction of vibration is then determined from 
normalized eigenvectors of the characteristic equation 
(Eq. (5)) as: 
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(8) 

where v1 and v2 are identical, v1  v2, for the same 
eigenvalue . They are identical because when Eq. (5) 
is solved for eigenvalue , the columns of  
   02 2 2 2x x
I A   matrix are linearly dependent. This 

will result in two linearly dependent eigenvector 
equations that will provide two identical eigenvectors 
for each of the eigenvalues of Eq. (5).  

Overall, this section analyzed vibratory behavior of 
milling based on the characteristics equation. It is 
shown that radial immersion controls the vibration 
trajectory. By limiting radial immersion, linear chatter 
vibrations can be generated. Based on this analysis the 
following section tries to generate geometry based 
relative chatter stability index for the 2D case. 

3.2. CSI for orthogonal 2DOF milling case 

Section 2.1. showed that, when the system has a 
single flexible direction, mode coupling [22] is 
avoided, and regenerative chatter vibrations could be 
mitigated by setting vibration direction to be parallel 
to either to the average non-regeneration plane or the 
average non-excitation plane. This can be achieved by 
controlling the feed direction during cutting. However, 
when the structure has two flexible directions, as 
indicated by Eq. (8), vibration direction depends on 
the directional cutting coefficients. A relationship 
between regeneration direction and vibration 
direction, and between the average cutting force 
direction and vibration direction can be found as 
follows.  

Firstly, the relation between average cutting force 
direction and vibration direction is analyzed. Assume 
that the vibration direction vector is a unit vector with 
components x and y  in x  and y  directions. 
Then, the dynamic cutting forces can be written [2] as: 
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               (9) 

Since chatter vibration occurs in the direction of 
eigenvectors v1 = v2, their components are plugged into 

x  and y  in Eq. (9) to rewrite the cutting force as 
follows, 
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4

x
t

y

F xN aK
F y 
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                 (10) 

Similar to Section 2.1, the angle  between vibration 
direction and average non-excitation plane, shown in 
Fig. 13, can be used to evaluate the relative chatter 
stability index. Note from Eq. (10) that is a real 
scalar. Thus, if it is positive valued, the average cutting 
force direction becomes aligned with the vibration 
direction but out of phase as shown in Fig. 13, which 
makes 9. 

 
Fig. 13. Average cutting force, average regeneration and vibration 

directions in orthogonal 2DOF systems 

Similarly, relationship between the average 
regeneration direction and vibration direction can be 
analyzed as follows. The average regeneration 
direction is found by integrating x and y components 
of dynamic chip thickness [2],  

( ) sin( ) cos( )h x y     , shown in Fig. 10, where 
  is defined as the angle between cutting edge and y-
axis. The instantaneous regeneration direction is 

 ( )sin ( )cos Tr h h    .  Then, the average 
regeneration direction is obtained by taking the 
integral of instantaneous regeneration direction over 
one revolution as follows: 
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Here, R  is the average regeneration direction with 

xR  and yR  components in x and y directions, 
respectively. Inserting the dynamic chip thickness into 
instantaneous regeneration direction, r , and 
integrating above equation, Eq. (11) can be rewritten 
as, 
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        -  -      

(12) 

Using Eq. (9), the average cutting force direction can 
be expressed as: 
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              (13) 

and plugging in the cutting coefficients from Eq. (4), 
into Eq. (13) and rearranging Eq. (13) using Eq. (12), 
allows us to re-postulate the average cutting force 
direction in terms of the regeneration direction as: 
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                   (14) 

Then, simultaneously solving equations (10) and (14), 
yields the expression for average regeneration 
direction: 
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Next, the geometric relationship between average 
regeneration and the vibration directions can be 
defined based on Fig. 13 as: 

 cos( / 2)   -R Δx R Δx   (16) 

where R  is the average regeneration vector, i.e. 
T

x yR R   R , Δx  is the vibration direction, i.e. 

 Tx y  Δx , and the   is the angle between 
perpendicular direction to the average regeneration 
vector and vibration direction as shown in Fig. 13. 
Similar to Section 2.1, the angle  can also be used to 
evaluate the relative chatter stability index and  can 
be solved from Eq. (16) as: 
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Above relation indicates that 𝛼𝛼 , the directional 
relationship between the vibration and average 
regeneration directions is controlled by the ratio of 
cutting force coefficients, 𝐾𝐾𝑟𝑟 .  Thus, for constant 
radial immersions, changing cutting direction, or 
rotating DOF does not have any effect on the chatter 
stability. 

Please note that cutting forces are calculated as 
multiplication of cutting force coefficient to dynamic 
cutting area. The dynamic cutting area is controlled by 
the regeneration effect, i.e. dynamic chip thickness. 
Average cutting force is average of instantaneous 
cutting forces over one revolution. It indicates that the 
average cutting force magnitude will include 
magnitude of the average regeneration vector. 
Therefore, in chatter stability index calculations, a unit 
average regeneration vector will be used so that only 
its directional effect can be taken into consideration in 
CSI. Let us define a unit average regeneration vector 
to be 𝑹𝑹𝒖𝒖, normalized average regeneration vector or 
normalized version of Eq. (15). Thus, the final 
asymptotic chatter stability index is calculated by 
projecting the average cutting force vector and unit 
average regeneration vector onto the vibration 
direction. Then taking its reciprocal, the chatter 
stability index for 2D orthogonal case becomes, 

                   1
sin sin

CSI
 


uF R

  (18) 

where 
T

x yF F   F is the average cutting force.  
Please also note that above index is very similar to 

the one presented in previous chapter for the case 
when the structure has only single degree of freedom. 
However, in the 2DOF with orthogonal mode case, the 
term sin  is only controlled by the cutting force 
ratio, Kr, which is constant. The angle  is constant and 
90 [deg]. From Eq. (10), the magnitude of the 
cutting force is   / 4 /tNK a F . Thus, 
disregarding the constant terms from Eq. (18), the 
resultant relative asymptotic stability index can be 
simplified to: 
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where  is eigenvalue of characteristic equation, 
which can be computed from the roots of Eq. (5): 
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where 1  xx yya   and 0  -xx yy xy yxa     . 
Plugging the directional cutting coefficients from 

Eq. (4), into Eq. (20), the eigenvalues become only the 
function of Kr and radial immersion; 
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which concludes that CSI can only be computed from 
immersion and cutting force ratio. 

3.3. CSI for non-orthogonal 2DOF case 

In previous section, it was shown that when the 
system has two orthogonal modes, asymptotic chatter 
stability is only controlled by radial immersion and 
ratio between cutting force coefficients. This section 
considers the case when modes are not orthogonal. 
This case is more typical for 5-axis machine tools or 
in robotic machining [24].   

    
Fig. 14. Tool/workpiece structure with 2 non-orthogonal dynamics 

The two flexible directions of the structure are 
defined by their orientation from the X axis 1 and 2 
as show in Fig. 14 as 1 1 1[cos sin ]Td    and  

2 2 2[cos sin ]Td   . The characteristic equation for 
chatter stability is re-written from Eq. (3) for this case: 

       0
1det 1 ( ) 0
2 2

ci T T
t c

NI aK e A i 

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Q Q (22) 

where 1 2d d   Q contains the flexible directions. 

Note from Eq. (22) that the non-orthogonal modes 
manipulate  0A  matrix: 

                      *
0 0

TA AQ Q                         (23) 

which in return imposes further directional 
relationship to the chatter stability. In other words, 

when the modes are not orthogonal, chatter stability 
can be controlled by changing the cutting, e.g. feed 
direction. This can be confirmed by solving the roots 
of Eq. (22). The eigenvalues from Eq. (22), are 
calculated as: 
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where * *
1  xx yya    and * * * *

0  -xx yy xy yxa     ,  
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In Eq. (25), 1 1cosxd  , 1 1sinyd  , 2 2cosxd   
and 2 2sinyd  . Inserting directional cutting 
coefficients, Eq. (25), into Eq. (24), eigenvalues 
become: 
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 (26) 

where xx, xy, yx and yy are defined in Eq. (4). 
Due to non-orthogonal flexible directions, from Eq. 

(26), it is observed that the eigenvalues are not only 
function of Kr and radial immersion, but also feed 
direction. Therefore, when the modes are not 
orthogonal, chatter stability can be controlled by 
changing the feed direction. 

The relative chatter stability index (CSI) analysis 
can be conducted following the formulations in the 
previous section (Eqs. (9)-(19)) and the final relative 
asymptotic stability index can be postulated as: 

                            
*

CSI
a
                                   (27) 

where  is computed from Eq. (24).  
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4. Verification of 2D asymptotic CSI 

This section focuses on the verification of the 
proposed asymptotic chatter stability index for 2D 
orthogonal and non-orthogonal cases and they are 
compared against the Budak and Altintas’ analytical 
solution from [2].  

Parameters for the 2D orthogonal case, 
( ) ( )xx yyi i   , are given in Table 2. The contour 

plot of the analytically solved asymptotic stability 
limit is shown in Fig. 15 (a) and the contour plot of the 
proposed geometry based asymptotic stability index is 
shown in Fig. 15 (b). Note that, in order to ensure 
linear vibration, the immersion is kept below 54[deg] 
for Kr = 0.6 (See Eq. (7)). From Fig. 15, it can be seen 
that the proposed geometry-based stability index is 
simply a scaled version of analytical stability solution 
from [2]. As the immersion is increased the asymptotic 
depth of cut decreases gradually and the feed direction 
does not have any effect on the stability.  

Next, the non-orthogonal case is studied. In this 
case, one of the flexible directions is aligned with the 
X axis and the other one is rotated 30 [deg] from the X 
axis. The dynamics are kept identical as given in Table 
2. Contour plot of the analytical asymptotic stability 
limit and the CSI index are compared in Fig. 16. In 
Fig. 16 (b), the white (blanked) region indicates that 
vibration is exhibiting an elliptical trajectory and 
proposed CSI does is not capable of predicting the 
relative stability. Nevertheless, in linear vibration 
region, the proposed CSI index can predict relative 
stability accurately. As observed, chatter stability can 
be increased by manipulating the feed direction and 
radial immersion. This is similar to the result obtained 
from Section 2. For instance, Fig. 16 can be used to 
select set of immersion and feed directions jointly to 
maximize the MRR without the need for changing 
spindle speed. Because the approach is geometry-
based, it can be implemented efficiently in CAD/CAM 
systems for process planning. 

Table 2. Process and dynamics coefficients 
x ym m  Mass [kg] 11 

x yc c  Damping coefficient [N( m/s)] 300 

x yk k  Spring coefficient [N/m] 10e6 

tK  Tangential cutting coefficient [MPa] 100 

rK  Ratio between radial and tangential 
cutting coefficient 0.6 

 

a) Analytical asymptotic axial depth of cut [mm] 

b) Proposed asymptotic stability index 
Fig. 15. Analytical and proposed asymptotic stability limit 

 
a) Analytical asymptotic axial depth of cut [mm] 

 
b) Proposed asymptotic stability index 

Fig. 16. Analytical and proposed asymptotic stability limits 
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where 1  xx yya   and 0  -xx yy xy yxa     . 
Plugging the directional cutting coefficients from 

Eq. (4), into Eq. (20), the eigenvalues become only the 
function of Kr and radial immersion; 
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which concludes that CSI can only be computed from 
immersion and cutting force ratio. 

3.3. CSI for non-orthogonal 2DOF case 

In previous section, it was shown that when the 
system has two orthogonal modes, asymptotic chatter 
stability is only controlled by radial immersion and 
ratio between cutting force coefficients. This section 
considers the case when modes are not orthogonal. 
This case is more typical for 5-axis machine tools or 
in robotic machining [24].   

    
Fig. 14. Tool/workpiece structure with 2 non-orthogonal dynamics 

The two flexible directions of the structure are 
defined by their orientation from the X axis 1 and 2 
as show in Fig. 14 as 1 1 1[cos sin ]Td    and  

2 2 2[cos sin ]Td   . The characteristic equation for 
chatter stability is re-written from Eq. (3) for this case: 
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where 1 2d d   Q contains the flexible directions. 

Note from Eq. (22) that the non-orthogonal modes 
manipulate  0A  matrix: 

                      *
0 0

TA AQ Q                         (23) 

which in return imposes further directional 
relationship to the chatter stability. In other words, 

when the modes are not orthogonal, chatter stability 
can be controlled by changing the cutting, e.g. feed 
direction. This can be confirmed by solving the roots 
of Eq. (22). The eigenvalues from Eq. (22), are 
calculated as: 

                   
2

1 1 0*

0

4
2

-  -


a a a
a

                         (24) 

where * *
1  xx yya    and * * * *

0  -xx yy xy yxa     ,  
and xx

*, xy
*, yx

* and yy
*  are controlled by the 

flexible directions: 

 

 

* 2 2
1 1 1 1

*
1 2 1 2 1 2 1 2

*
1 2 1 2 1 2 1 2

* 2 2
2 2 2 2

xx x xx x y xy yx y yy

xy x x xx y x yx x y xy y y yy

yx x x xx x y yx y x xy y y yy

yy x xx x y xy yx y yy

d d d d

d d d d d d d d

d d d d d d d d

d d d d

    

    

    

    

   

    


    


    

(25) 

In Eq. (25), 1 1cosxd  , 1 1sinyd  , 2 2cosxd   
and 2 2sinyd  . Inserting directional cutting 
coefficients, Eq. (25), into Eq. (24), eigenvalues 
become: 

 
  
 

  

2
1 1 0*

0

2 2
1 1 2

1 1 2 2

2 2
1 2

2
0 1 1 2 2

4
2

, cos cos

cos sin cos sin

sin sin

cos sin cos sin

xx

xy yx

yy

xx yy xy yx

a a a
a

here a

and

a



  

     

  

       

-  -




  
   


  


 - - 

 (26) 

where xx, xy, yx and yy are defined in Eq. (4). 
Due to non-orthogonal flexible directions, from Eq. 

(26), it is observed that the eigenvalues are not only 
function of Kr and radial immersion, but also feed 
direction. Therefore, when the modes are not 
orthogonal, chatter stability can be controlled by 
changing the feed direction. 

The relative chatter stability index (CSI) analysis 
can be conducted following the formulations in the 
previous section (Eqs. (9)-(19)) and the final relative 
asymptotic stability index can be postulated as: 

                            
*

CSI
a
                                   (27) 

where  is computed from Eq. (24).  
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4. Verification of 2D asymptotic CSI 

This section focuses on the verification of the 
proposed asymptotic chatter stability index for 2D 
orthogonal and non-orthogonal cases and they are 
compared against the Budak and Altintas’ analytical 
solution from [2].  

Parameters for the 2D orthogonal case, 
( ) ( )xx yyi i   , are given in Table 2. The contour 

plot of the analytically solved asymptotic stability 
limit is shown in Fig. 15 (a) and the contour plot of the 
proposed geometry based asymptotic stability index is 
shown in Fig. 15 (b). Note that, in order to ensure 
linear vibration, the immersion is kept below 54[deg] 
for Kr = 0.6 (See Eq. (7)). From Fig. 15, it can be seen 
that the proposed geometry-based stability index is 
simply a scaled version of analytical stability solution 
from [2]. As the immersion is increased the asymptotic 
depth of cut decreases gradually and the feed direction 
does not have any effect on the stability.  

Next, the non-orthogonal case is studied. In this 
case, one of the flexible directions is aligned with the 
X axis and the other one is rotated 30 [deg] from the X 
axis. The dynamics are kept identical as given in Table 
2. Contour plot of the analytical asymptotic stability 
limit and the CSI index are compared in Fig. 16. In 
Fig. 16 (b), the white (blanked) region indicates that 
vibration is exhibiting an elliptical trajectory and 
proposed CSI does is not capable of predicting the 
relative stability. Nevertheless, in linear vibration 
region, the proposed CSI index can predict relative 
stability accurately. As observed, chatter stability can 
be increased by manipulating the feed direction and 
radial immersion. This is similar to the result obtained 
from Section 2. For instance, Fig. 16 can be used to 
select set of immersion and feed directions jointly to 
maximize the MRR without the need for changing 
spindle speed. Because the approach is geometry-
based, it can be implemented efficiently in CAD/CAM 
systems for process planning. 

Table 2. Process and dynamics coefficients 
x ym m  Mass [kg] 11 

x yc c  Damping coefficient [N( m/s)] 300 

x yk k  Spring coefficient [N/m] 10e6 

tK  Tangential cutting coefficient [MPa] 100 

rK  Ratio between radial and tangential 
cutting coefficient 0.6 

 

a) Analytical asymptotic axial depth of cut [mm] 

b) Proposed asymptotic stability index 
Fig. 15. Analytical and proposed asymptotic stability limit 

 
a) Analytical asymptotic axial depth of cut [mm] 

 
b) Proposed asymptotic stability index 

Fig. 16. Analytical and proposed asymptotic stability limits 
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5. Conclusion 

Overall, this paper analyzed effect of directional 
relationships on chatter stability in peripheral milling. 
The tool feed direction is considered to be an 
optimization parameter for maximizing the stability of 
the milling process. Based on set of directional 
relationships, a geometry based asymptotic chatter 
stability index (CSI) is proposed to improve chatter 
stability. Note that, asymptotic stability limit controls 
relative chatter stability and hence it does not depend 
on spindle speed. It is easier to compute and 
implement in process planning. 

Three cases are analyzed where the structure is 
flexible only in one direction, flexible in two 
orthogonal directions and in two non-orthogonal 
directions. When there is only a single dominant 
flexible direction, it is possible to optimize the feed 
direction to attain significantly higher MRR. In theory, 
unlimited chatter free MRR can be attained. However, 
when the structure exhibits orthogonal modes, 
regeneration cannot be controlled by changing feed 
direction. Finally, if the modes are not orthogonal, 
both feed direction and radial immersion needs to be 
utilized to optimize the MRR.  
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