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Abstract— In this paper, we analyze systems with low
throughput human-machine interfaces (such as a brain-
computer interface, single switch interface) from the controls
perspective. We develop some principles for performance im-
provement in such systems based on the parallelization of
inference and robot motion. The proposed principles are used
to design a novel shared position control to navigate a circular
massless holonomic robot in a known environment. The system
is implemented in simulation and integrated with a real robotic
wheelchair. Robot experiments demonstrated the viability of the
proposed navigation method in various modes of operation.

I. INTRODUCTION

The ultimate goal of robotics is to improve human life.
For a wide range of people with limited upper-body mobility,
however, interaction with robots remains a challenging prob-
lem, since robots (wheelchairs, manipulators) are typically
equipped with joystick interfaces often inaccessible for such
users.

A number of nonconventional human-machine interfaces
(HMIs) have been designed to accommodate this audience
[1]. People who maintained some mobility can often op-
erate a single switch interface. It is a button or a sensor
panel accompanied with a “scanning interface” that displays
options one by one. When the desired option is presented,
operator pushes the button. With the Sip-and-Puff system
[2], the operator can send four distinctive commands to the
wheelchair by blowing air in or out of a tube. Another
approach is to use gaze tracking and blink detection[3]. Good
results in navigating a wheelchair have been demonstrated
with Tongue Drive System [4]. Facial expressions [5] and
voice control [6] have also been successfully employed for
navigation tasks.

For people in a more severe condition, such as a Locked-
in Syndrome (LIS), the only control modality is a brain-
computer interface (BCI). LIS patients maintain full cogni-
tive abilities, but are unable to physically interact with the
world due to a trauma or a degenerative disease, such as
Amyotrophic Lateral Sclerosis (ALS). A successful usage of
BCI has been demonstrated in a wide range of applications:
a computer mouse cursor control [7], a typing interface
[8], quadcopter, humanoid, mobile robot [9], and wheelchair
control [10].

The discussed HMIs are commonly known as low
throughput human-machine interfaces (LTI) [11], where the
“throughput” refers to the information transfer rate from

1Department of Electrical and Computer Engineering, Northeastern Uni-
versity, Boston, MA, 02115

the human to the machine. An integration of LTIs with
robots is an open research topic [9]. The simplest and
historically the first method is Direct Control. It maps LTI
commands directly to robot velocities or accelerations, but
it is usually impractical even for basic navigation due to
collisions with obstacles. A more advanced approach is to
combine robot and human intelligence in a Shared Control
unit [12], [13]. For navigation tasks, it can be implemented as
Shared steering control or Shared position control (relevant
terms in the BCI community are process control and goal
selection [14]).

Shared steering control interprets the LTI commands as
steering directions and combines them with obstacle informa-
tion and/or intent prediction to improve the navigation pro-
cess. Various modes of command fusion have been explored:
in [15], the commands that lead to collisions are simply
discarded, in [16] obstacle avoidance is implemented using
predefined zones around the robot, and in [17] it is based
on artificial potential fields. Another approach is opening
selection, when robot identifies valid directions based on
the sensor data, and the operator selects one of them. It
was implemented on a robotic wheelchair [18] and a UAV
[19]. One advantage of shared steering control is that it
naturally parallelizes the inference and navigation processes.
At the same time, it requires the operator’s participation
until the goal is reached and makes it nearly impossible
to achieve a fine control over the destination position. The
shared position control developed in this work does not have
these limitations.

Shared position control systems use LTIs only to infer
the user’s intended destination and perform the navigation
autonomously. The simplest approach is to directly map
the LTI commands to predefined destinations [20]. If there
are too many possible destinations, they can be iteratively
grouped into subsets to identify the goal [21], [22], [23].
The disadvantage of these methods is that the robot starts
moving only when the destination is inferred which increases
the total control time. More intelligent systems incorporate
probabilistic predictions of the destination [24]. At the border
between the steering and position control, there’s a notable
work [25], where navigation and inference were modeled as
a partially observable Markov decision process (POMDP).
Intended trajectory, user commands, and wheelchair actions
are taken as POMDP state, observations and actions respec-
tively. Another use of a POMDP model is demonstrated in
[26] for a wheelchair navigation using speech control. In
their model, POMDP states are the possible destinations,
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observations are taken from the spoken command, while
actions can be either asking a question or commanding a
wheelchair to move. These POMDP-based approaches enable
probabilistic reasoning and certain optimality (in the POMDP
sense), but, as opposed to the method developed in this work,
are limited to a set of predefined destinations.

Another position control approach that parallelizes nav-
igation and inference is proposed in [27] where several
local goals are presented to the operator in a 3D model
of the real environment. Operator selects the local goal,
wheelchair moves there, and a new set of local goals is
presented. In [28], a similar method is implemented, but they
also automatically detect potential points of interest. These
step-by-step techniques suffer from either a low speed of
movement or a low resolution of the goal selection, and can’t
maximize the information transfer rate. In [29], a quatitative
comparison of several previously known wheelchair control
paradigms is presented.

As outlined above, in this work, we propose and develop
a novel approach to LTI navigation that addresses the limita-
tions of all shared navigation methods known to the authors.
It enables navigation to any point on a known map with
accuracy limited by the map resolution, it parallelizes the in-
ference and navigation processes, uses probabilistic inference
and maximizes the information transfer rate, has configurable
policies for waypoint selection, allows for mostly smooth
navigation, accounts for map topology, supports any number
of discrete commands in an HMI, enables sophisticated prob-
abilistic models of user navigation habits that may include
popular areas (not just individual destinations).

We named our approach NoVeLTI as an acronym for
Navigation Via a Low Throughput human-machine Interface.
This is how it works (refer to the video attachement): 1)
we display a navigation map divided into in N regions, 2)
the operator selects the region with his intended destination
using an LTI, 3) the intent estimate probability distribution
is updated 4) a new waypoint location is calculated 5) the
robot starts moving towards the new waypoint 6) the process
repeats from 1) until the destination is inferred and the robot
reaches it.

In Section II we propose a formal definition of control
systems with LTIs and analyze them. Based on the defined
models, in section III we generate principles of optimal
design of Shared Control and exemplify them by developing
a novel Shared position control for a massless holonomic
robot navigating in a known 2D environment. Section IV,
presents results of comparative simulation experiments. In
section V, the designed Shared position control is adopted
for a robotic wheelchair, the results of real robot experiments
are presented to demonstrate the viability of our approach.
Section VI discusses the overall results which are further
summarized in section VII.

II. PROBLEM ANALYSIS

A. Definition of a control system with a LTI

The adjective “low” in the term low throughput HMI
is typically understood w.r.t. the information transfer rates

Fig. 1: Human-interface-object model

of conventional HMIs [11]. From the design perspective,
however, the critical factor is the relation between the average
time Texec of executing a task by a given control system
and the average time Tinf of inferring the task specification
via an LTI. When they are of the same order of magnitude
(Texec ∼ Tinf ), we call such system a control system with
a low throughput HMI. If Texec � Tinf , the inference
delay can be ignored reducing the problem to a standard
control problem, whereas if Texec � Tinf , the system
inertia can be ignored reducing the problem to an information
transfer optimization problem, but when Texec ∼ Tinf , we
can parallelize task inference and task execution, effectively
creating a new type of a control problem.

Using the state space terminology, Texec is the average
time of moving between two states in the state space X or the
output space Y, while Tinf is determined by the information
transfer rate and the amount of information required to
encode a state vector with the desired accuracy.

B. Human-HMI-Object model

Figure 1 demonstrates a general model of human-robot
interaction via an HMI. For a joystick-controlled wheelchair,
Input Device is the joystick itself, Shared Control is a
motor controller translating the joystick position into the
wheelchair velocities, Presentation Device is a static image
with arrows on the joystick panel. In a more sophisticated
example of a BCI-controlled wheelchair, such as in [11,
Chapter 6], Presentation Device modulates propositions to
the users with visual, audio or tactile feedback, the user
can then reply through a BCI which constitutes the Input
Device, the Shared Control block maintains a POMDP model
generates propositions and sends velocity commands to the
wheelchair. We will now discuss our assumptions about each
of the component from .

C. Modeling the plant

In general, a dynamic system can be modeled by:

ẋ = f(x,u),x ∈ X ⊂ Rn,u ∈ U ⊂ Rm (1)

with state vector x and control signals u.
Many concepts discussed in this paper are applicable to

the general system (1). We will present an implementation of
these concepts for a simple Proof-of-Concept system where
a massless holonomic circular robot navigates in a known
2D environment. Mathematically: x = [x, y], u = [Vx, Vy],
f(u) = u, ‖u‖ =

√
V 2
x + V 2

y 6 Vrobot, and state space
constraints are dictated by the environment map modeled as
a 2D grid of free and blocked cells. By inflating obstacles
we can assume a point-size robot.
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To enable optimal pose selection, we assume that, an
optimal control problem for the given system is solved. For
system (1), the standard definition of the problem problem
is formalized as follows: Devise a control signal u(t) such
that it moves the system from its initial state x(t0) = x0 to
a desired state x(t1) = x1 and minimizes a functional:

J
[
x,u,x0,x1

]
=

∫ t1

t0

F (x,u)dt (2)

When F ≡ 1, it turns into a minimum time problem.
A solution to the problem is an optimal control signal
u∗(t) = u∗(t,x0,x1) and an optimal trajectory x∗(t) =
x∗(t,x0,x1).

We can now construct a cost function that assigns an
optimal value of the functional to any (x0,x1):

C(x0,x1) = J
[
x∗(t,x0,x1),u∗(t,x0,x1),x0,x1

]
(3)

Clearly, for most real systems, finding C(x0,x1) is not
practical, but approximations of the function can be utilized.

For the Proof-of-Concept system, we assume F ≡ 1. In
this case, C(x0,x1) ≡ dobst(A,B), where dobst(A,B) is
the obstacle-aware distance, the length of the shortest path
between vertices A and B given the obstacles. A state-of-the-
art algorithm for single-source any-angle path planning has
been developed [30] to calculate dobst(A,B) in real time.

D. Modeling human intent

With a certain level of generality, we assume that 1) At
every moment the user has an intended state (destination) xd

in mind 2) xd changes slow, 3) xd is unknown to the Shared
Control (has to be inferred), 4) Given other constraints,
human wants to reach the intended state as soon as possible.

For the Proof-of-Concept system, we also assume: 1) xd

is a vertex on the grid map, 2) Robot velocity at xd is 0.

E. Modeling human-machine interface

HMIs can be classified by temporal properties [9] into
synchronous (commands are selected at a constant frequency)
and asynchronous (commands are initiated by the operator at
any moment). Any asynchronous interface can be converted
into synchronous by enforcing periodic inquiries to the user.

We assume a discrete LTI that accommodates r options
(commands). By selecting a specific option, the user conveys
their intent to the machine. For most BCIs, r ≤ 4. The
semantics of the commands is discussed in section III.

BCIs are naturally probabilistic due to measured signal
noise. In general, the accuracy of an LTI can often be repre-
sented with an interface matrix that establishes a probabilistic
relation between the detected (D) and intended commands
(I). This conditional probability matrix P (D|I) has the
following structure:

Detected
L1 ... Lr

Intended
L1 P (D1|I1) ... P (Dr|I1)
... ... ... ...
Lr P (D1|Ir) ... P (Dr|Ir)

where L1 ... Lr are permitted commands, P (Di|Ij) is the
probability that command Li is detected given that command
Lj was intended. In this work, we assume: 1) HMI has
a constant update period THMI 2) The alphabet size is r
3) The interface matrix is constant (obtained by repetitive
experiments).

III. SYNTHESIS

A. Intent estimate representation

Differently from other methods of shared position control,
we represent the intent estimate with a probability density
function p(x) over the entire state space. Integrating over a
region in the state space, in this case, yields the probability
that the user’s goal is located in that region. For the Proof-
of-Concept system, the intent estimate becomes a probability
distribution function (PDF) that assigns each vertex a prob-
ability value. The process of learning the PDF is discussed
in Section III-C. At this point we can assume that PDF is
known and updated every THMI s.

B. Intermediate destination state selection

To parallelize the inference and robot motion, Shared
Control unit can utilize the information which comes with
every update of the intent PDF by moving the system into an
intermediate destination state. Clearly, the next intermediate
state must belong to the THMI -reachability area (the set of
states that the robot can reach within THMI s). For the Proof-
of-Concept system, the reachability area (RA) is the set of
vertices P for which dobst(C,P ) 6 Vrobot ·THMI , where C
is the current position. It is calculated using [30].

Now we can explore various approaches to choosing the
intermediate state. In the simplest case (no move-policy), the
robot doesn’t move until a cumulative probability within a
small region exceeds a certain threshold (xd inferred). This
policy, however, results in the total control time Tcontrol =
Tinf + Texec (no parallelization). In this work, we propose
the (opt-policy) that moves the robot to the state that will
probabilistically minimize C(xcur,xd). Consider function:

C̃(x) =

∫
· · ·
∫
X
C(x,x)p(x)dx (4)

It measures the probabilistic cost of reaching the intended
destination from a given state x. Thus, with opt-policy, the
intermediate state is:

xopt = argmin
x∈RA

(C(xcur,x) + C̃(x)) (5)

For the Proof-of-Concept system, the probabilistic cost of
moving from A to the destination reduces to

C̃(A) =
n∑

i=1

dobst(A,Bi)p(Bi) (6)

and the time-optimal intermediate vertex is

Popt = argmin
A∈RA

C̃(A) (7)

To find an optimal robot pose, we need to solve (5), an
optimization problem where a) calculation of C̃(.) is slow,
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b) the gradient of C̃(.) cannot be easily calculated, c) the
constraints are defined by the grid map. These properties
render the direct use of gradient methods and brute-force
search impractical.

For the Proof-of-Concept system, we find a local minimum
by starting at a certain vertex Pstart and iteratively moving
to the the vertex in the 4-neighborhood with the lowest value
of C̃(.) until we reach the minimum. The algorithm we
developed in [30] was utilized for fast calculation of C̃(.).

It can be shown [31] that C̃(.) can have multiple min-
ima with different values. This implies that the algorithm
described above may not always find the global minimum.
At this stage, however, we will consider the local minimum
satisfactory.

One can observe [31] that when probability of a single
vertex is close to 1, all of the following three vertices
converge to the intended destination vertex Pd:
• Pmaxprob vertex with maximum probability in the PDF
• Pcog vertex closest to the PDF center of gravity (COG)

(not always inaccessible);
• Pnear cog accessible vertex that is closest to Pcog in

terms of euclidean distance;
Given that, in addition to no move, we implemented the

following intermediate pose selection policies:
• cog2lopt: finds local minimum in RA as described

above, with Pstart = Pnear cog

• maxprob obst: vertex in RA closest to Pmaxprob in
terms of obstacle-aware distance;

• nearcog obst: vertex in RA closest to Pnear cog in terms
of obstacle-aware distance;

• ra maxprob: vertex in RA with maximum probability
In section IV, we compare the performance of these policies.

C. Intent estimate update (Inference)

To learn the intent PDF, we divide the space into r regions
every THMI s. Each region corresponds to an individual HMI
command. The operator then selects the region their intended
destination state belongs to.

We utilize Bayesian inference to update the PDF. Let

P (Iki ) =

∫
Xk

i

pk(x)dx (8)

be an a priori probability of the user choosing i-th region at
k-th iteration, and let P (Ik) be a vector of such probabilities.
Here Xk

i is the i-th region at the k-th iteration. Now using an
extended Bayes’s rule, we can write the intent update rule:

P (Ik+1) = P (Ik|Dk) = αP (Dk|Ik)P (Ik) (9)

where P (Dk|Ik) is the interface matrix. The initial value
p0(x) can be calculated based on the prediction model or
initialized with a uniform distribution.

The shape and size of Xk
i are up to the designer. To

maximize the information transfer rate, the total a priori
probabilities of the regions should be as close to the optimal
a priori vector as possible. This vector is determined by the
HMI matrix (for example, for a matrix with equal diagonal

elements, the elements in the optimal a priori vector should
be equal).

It can be shown [31], that even when this criterion is sat-
isfied, various space divisions are possible yielding different
performance results. The optimal space division method for
a general system is yet to be identified. For the Proof-of-
Concept system, we implemented several methods of map
division and compared their performance in simulation.

D. Map segmentation

Map segmentation in case of a 2D grid is the process of
assigning each accessible vertex an integer index between 1
and r. Each index corresponds to an HMI command and can
be represented with a color. At every iteration of the HMI-
cycle, the colored map divided is presented to the operator
who then selects the HMI command that corresponds to the
region where their intended destination is located.

As it was discussed in section III-C, the optimal way of di-
viding a 2D map is yet to be identified, certain requirements,
however, are clear:

1) The total a priori probabilities of the regions should be
as close to the optimal a priori vector as possible.

2) If human commands are detected correctly, the map
segmentation process shall guarantee that a probability
of a single vertex converges to 1.0

We developed a simple one-pass map segmentation algo-
rithm [31]. By iterating through accessible grid map vertices
in any given order, the algorithm can generate a segmented
map that satisfies the above requirements. The order of
iteration defines the geometric shapes of the regions. Fig.
2 shows four implemented policies: htile (left-to-right, top-
to-bottom), vtile (top-to-bottom, left-to-right), equidist (first
sorted by distance from a given center vertex C, then by
angle to C), extremal (first sorted angle to a given center
vertex C, then by distance from C), equidist and extremal
are based on the algorithm developed in [30].

Additionally, we implemented two alternating map divi-
sion methods: altertile (alternates vtile and htile), and extre-
dist (alternates extremal and equidist). In the next section,
we compare how different map segmentation policies affect
navigation performance.

IV. SIMULATION EXPERIMENTS

To compare various methods of pose selection and map
segmentation developed for the Proof-of-Concept system,
we designed an automated test framework. For seamless
integration with the real robot system, the framework was
implemented in Robotic Operating System (ROS).

A. Automated test setup

The system consists of the following ROS nodes (Fig. 3):
• best pose finder, inference unit, map divider were dis-

cussed in Sections III-B, III-C, III-D, respectively.
• experimentator publishes the navigation map and ran-

domly pre-generated start and goal poses.
• human model accepts the map divided into four colored

regions, finds what color of the goal vertex is and
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(a) htile (b) vtile

(c) equidist (d) extremal

Fig. 2: Examples of map segmentation policies: each of the
4 colors corresponds to an individual HMI command

Fig. 3: System for automated testing of simulated robot
navigation via LTI

publishes a corresponding intended command. In this
simulation, the region is always picked correctly.

• lti model simulates an LTI by randomizing intended
commands based on the configured interface matrix. We
tested only symmetric matrices with equal diagonal el-
ements and evenly distributed error elements. lti model
also introduced a THMI=1 s interface delay.

• robot model is a simulation of a holonomic massless
point-size robot. Whenever it receives a message with
the new desired position, it starts moving towards it
with constant speed Vrobot=3ms−1 along the shortest
path, publishing its current pose at the rate of 100Hz.
The high value of Vrobot was chosen to speed up
the simulation. It is compensated by a relatively short
THMI .

The intent PDF was initialized with a uniform distribution.
A navigation experiment starts at the moment when the goal
is published. When the probability of a single vertex reaches
99%, the goal vertex is considered inferred. When the robot
reaches the inferred goal, the experiment ends. We used the
same map as shown in Fig. 2 (resolution: 500 × 370, cell
size 10 cm).

B. Simulation experiment results

Four parameters have been varied between the experi-
ments: interface matrix, route (three random routes were
defined), best pose selection policy, map segmentation policy.
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Fig. 4: Results of the automated simulation tests

For each combination, 16 runs were executed. The experi-
ments were run on ThinkPad W520 with Intel(R) Core(TM)
i7-2760QM CPU @ 2.40GHz CPU and took several days
to complete. All experiments were recorded. Fig. 4 shows
results of automated testing.

Despite our attempts to speed up cog2lopt, the calculation
time still noticeably affected the performance, that is why we
show both the actual navigation duration and the navigation
duration with calculation time excluded.

Expectedly, for both HMIs, no move and ra maxprob
resulted in the worse navigation time compared to other
pose selection methods. For the deterministic HMI, cog2lopt
expectedly resulted in the shortest navigation time (calcu-
lation excluded), even though the 20% difference from
nearcog obst is only seen on route 1. For the 70% HMI
matrix, however, there is no visible difference in the perfor-
mance. Surprisingly, the map segmentation policy does not
seem to affect the navigation time in these experiments. With
only three routes tested, however, these observations should
not be deemed as ultimate conculsions.

V. ROBOT EXPERIMENTS

In this section, we discuss an integration of the Shared
Control developed for the Proof-of-Concept system with a
robotic wheelchair and the results of navigation experiments.
The purpose of the experiments reported here was not to
obtain statistically significant results, but to demonstrate
the viability of the proposed solution in various modes
of operation, particularly to validate the advantages of the
NoVeLTI approach listed in Section I. They involved only
one human subject, the designer of the system.

A. Experimental system setup

The semi-autonomous robot (Fig. 7a) was built on top of a
commercially available electric wheelchair CTM HS-2800. It
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Fig. 5: Test framework architecture

is equipped with two Lidars, wheel-on-wheel encoder mod-
ules, and infrared sensors. Using Robotic Operating System
(ROS) packages, the robot is capable of SLAM, localization
(AMCL) and autonomous navigation (ROS navigation stack).

The wheelchair is a differentially-driven platform with
non-zero inertia, and, thus, the Shared Control developed
in section III will not be optimal. Nevertheless, the robot
experiments demonstrated a satisfactory performance. Cir-
cular robot footprint was chosen for two reasons: a) for
easier integration with Shared Control b) move base is more
reliable with circular robots.

The overall navigation system consists of the follow-
ing ROS-nodes (Fig. 5): inference unit, best pose finder,
map divider, and lti model are the same as in section IV.
amcl is a ROS localization package that constantly publishes
robot pose. move base is the standard ROS-package that
implements autonomous navigation. To prevent unnecessary
rotations, the goal orientation tolerance was set to 2π.
mediator ensures smooth goal preemption and eliminates
issues caused by localization errors, rviz visualizer displays
two maps to the user (Fig. 6): Intent Estimate PDF with a
goal marker and a colored Segmented Map. The operator
identifies the color of the map region their goal marker
belonged to, and presses a corresponding key which is
translated by the keyboard selector into intended command.
The goal marker wasn’t displayed on the segmented map
intentionally, since in real life it doesn’t exist. The user had to
refer to the obstacle configuration instead. As it is discussed
below, that became a major challenge for the operator.

A custom environment (27m× 17m) has been con-
structed for navigation tests (Fig. 6). The following parame-
ters have been constant in all experiments: shared control grid
map cell size: 10 cm, robot maximum linear and angular ve-
locities: 0.5m s−1 and 0.6 rad s−1, THMI=3 s, intermediate
pose selection policy: nearcog obst (because it’s fast to cal-
culate and yields almost the same performance as cog2lopt,
map segmentation policy: nearcog extremal (extremal-policy
with the center at Pnear cog). To prevent unwanted stops at
every intermediate vertex, Vrobot was configured to be 30%
higher than the real robot velocity.

B. Robot experiment results

More than 250 point-to-point navigation experiments were
recorded with various modes of operation [31]. Here we
present some of them (refer to Fig. 7 and video attachment):

a) 94%- vs 70%-HMI matrix: demonstrates the ef-
fect of the accuracy of HMI. Here we can see that for
longer routes (door1→livroom1, office1→bathroom1) (ex-
cept 1 try), the inference via 94%-HMI finishes before the

Fig. 6: Robot experiment snapshot: map with Intent PDF,
robot navigation data, and goal marker (top right), zoomed
map divided into colored regions as displayed to the operator
(goal marker is intentionally not displayed) (top left), video
camera snapshot (bottom).

robot arrives to the destination (Texec > Tinf ). On the other
hand, the inference via 70% appears to be 2-4 times slower,
and results in Texec < Tinf . We can also observe from the
distance-to-goal plots, that in the 70%-HMI case, when the
robot almost reaches the goal, it keeps moving around it for
20 s to 100 s. Nevertheless, for longer routes and especially
for 94%-HMI, the parallelization of the inference and motion
makes the robot paths almost indistinguishable from the
shortest paths. On a shorter route (music1→bedroom1),
however, the parallelization can result in an unnecessary
movement of the robot, even more so for the 70%-HMI.

b) Effect of POIs: here, for 95%-HMI matrix, we
compare two cases that differ by the initial value of intent
PDF: 1) PDF is initialized with a uniform distribution over
accessible vertices 2) PDF is initialized with a sum of
gaussians (σ’s vary from 0.8 to 1.3, centers are at the points
of interest (POIs) shown on the map). The second case
demonstrates how prior information about the user preferred
locations can speed up the inference process. Indeed, as we
can see on the PDF entropy plots, the Tinf halved. Interest-
ingly, the total navigation time on routes door1→livroom1,
office1→bathroom1 is longer in the POI-scenario. The ex-
planation is that the concentration of POIs in the top right
corner of the map was higher, and thus, in the beginning, the
robot rotated towards that corner and only after a couple of
detected decision the navigation system would move into the
right direction. From the operator’s perspective, navigation
with predefined POIs felt much easier.

c) Effect of PDF smoothening: Distinguishing indi-
vidual vertices and identifying the color of the intended
destination vertex on a full-size map turned out to be a major
challenge for the operator. We attempted to mitigate this
problem in 2 steps: 1) we zoomed the segmented map view to
display only those vertices whose probability was higher than
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Fig. 7: Robot navigation experimental results and effects of various parameter variations: (a) 94%- vs 70%-HMI matrix;
(b) effect of POIs; (c) effect of PDF smoothening (d) robotic wheelchair used for exepriments; (e) navigation map;

a threshold 2) after every PDF update, the probability value
of every vertex in the vicinity of any region boundary was
set to the average of its r-neighborhood, where r depended
on the zoom factor. The higher zoom factor, the smaller r.

The latter removed stiff slopes that used to appear in the
PDF at the first steps of inference process, and subjectively
made the first choices easier for the operator. The plots
show that in most runs it increased the inference time, but
improved the accuracy of the goal inference. Note how the
reddish curves in the distance-to-goal plot do not reach the
0 at the end. This is a sign that the inferred goal is 10 cm to
20 cm off the intended goal.

VI. DISCUSSION AND FUTURE WORK

As demonstrated by design and robot experiments, the
proposed navigation framework NoVeLTI, regardless of what
pose selection and map segmentation policy is used, has a
set of features, none of the existing shared control methods
has. First, it doesn’t restrict user navigation to a small set of
predefined destinations. It gives the operator the freedom to
go to any vertex on the map. Second, it naturally integrates
the a priori knowledge of human intent (predicted PDF). The
latter is not limited to a set of individual destination, permits
arbitrary shapes of areas of interest without performance
degradation. It implements probabilistic reasoning and max-
imizes information transfer rate, can be adapted for specific
users by reconfiguring interface matrix, supports any number
of commands. An important direction for future work is
to automatically calculate the predicted PDF. It can be a
static PDF as shown in section V, or, more interestingly,

a dynamic 2D function, calculated based on time of the
day and external events. In this case, the inference unit
will be able to suggest the user when to start moving.
The experiments showed that a small distance between start
and end points, results in unnecessary robot motion. This,
however is not a limitation of the presented framework itself.
An intermediate pose selection policy can be modified such
that robot starts moving only when it is probabilistically
certain that the destination is far. Such policy, however, will
not be time-optimal.

In the robot experiments, accurately identifying the col-
ored region with the intended destination was not always
easy and took time. That was the main reason to increase
the THMI to 3 s. When an intended destination is far away,
it is hard to locate it with 10cm accuracy on a map. Such
accuracy becomes reasonable only in the immediate vicinity
of the robot. Zooming and smoothening parameters also
affect the performance. Overall, the subjective perception
of navigation experience by the operator should not un-
derestimated. Sometimes, selecting the destination felt like
fighting and other times it felt rather natural. The method of
visualization may play an important role here. An analysis
of subjective perception of various navigation configurations
by different users is another direction for future work.

Other directions include: speeding up opt-policy calcula-
tions by caching and multithreading, simulation performance
tests on a larger set of routes, development of a Shared
Control for a nonholonomic robot, integration with a BCI.

It shall be noted that a performance comparison between
various shared control methods is a very challenging problem
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Given the number of variable parameters and unpredictable
elements such as humans most of the works on shared control
compare their method to other methods qualitatively, but not
quantitatively.

VII. CONCLUSION

In this paper, we presented an analysis of robotic systems
with low throughput human-machine interfaces from the
controls perspective. We developed a novel method for navi-
gation via an LTI that has a unique set of features compared
to the existing solutions. A detailed analysis and the synthesis
of our method is presented. The method was used to design
a Shared Control unit to navigate a massless holonomic
robot in a known environment. An automated test setup was
developed to simulate the navigation process and observe the
influence of configuration parameters. The Shared Control
was adapted for a real robotic wheelchair. Robot experiments
demonstrated the viability of the proposed solution in various
modes of operation.
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