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Abstract

This article concerns the potential bias in statistical inference on treatment

effects when a large number of covariates are present in a linear or partially

linear model. While the estimation bias in an under-fitted model is well un-

derstood, we address a lesser known bias that arises from an over-fitted model.

The over-fitting bias can be eliminated through data splitting at the cost of

statistical efficiency, and we show that smoothing over random data splits

can be pursued to mitigate the efficiency loss. We also discuss some of the

existing methods for debiased inference and provide insights into their intrin-

sic bias-variance trade-off, which leads to an improvement in bias controls.

Under appropriate conditions we show that the proposed estimators for the

treatment effects are asymptotically normal and their variances can be well

estimated. We discuss the pros and cons of various methods both theoretically

and empirically, and show that the proposed methods are valuable options in

post-selection inference.

Keywords: Data splitting; De-sparsified Lasso; Post selection inference.
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1 Introduction

In the modern era when data collection has become easier, we are often challenged by

high dimensional data with many different characteristics per subject. This article

considers the problem of statistical inference on the treatment effect in the presence

of high dimensional covariates.

Suppose that we have a random sample of n observations from the units indexed

by i = 1, · · · , n. For each unit, let Yi be the outcome and Di be the treatment

variable. In addition, each unit has a vector of features, referred to as potential

confounders denoted by Wi. We consider the parameter of interest α in a model of

the form

Yi = αDi + g(Wi) + εi, E(εi|Di,Wi) = 0, i =, 1 · · · , n, (1.1)

where g(·) is an unknown real-valued function and the εi’s are independent random

errors. When the dimension of the potential confounders is small relative to n, model

(1.1) has been discussed in the literature of treatment effect estimation; see Robinson

(1988), Härdle et al. (2012) and, or more recently Cattaneo et al. (2016). In this

article, we adopt a framework similar to that of Belloni et al. (2014). Formally, we

assume that g(Wi) can be well approximated by a sparse linear combination of the

vector Xi = P (Wi) ∈ Rp, where P (Wi) is a known transformation of Wi, and then

Model (1.1) can be written as

Yi = αDi +XT

i β +Rni + εi, E(εi|Di,Wi) = 0, i = 1, · · · , n, (1.2)

where the Rni’s are approximation errors, which will be assumed to be sufficiently

small, and Xi is referred to as the covariates in the subsequent analysis.

When the dimension p is greater than n, inference about α cannot be made

without regularization or model selection. A major assumption we make in this paper

is the sparsity in β. Formally, we require M0 = supp(β) = {j ∈ {1, . . . , p} : βj 6= 0}
has s0 � n elements. Without loss of generality, we assume in the theoretical

treatment that the response variable and the covariates are all centered so that
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no intercept is included in the model. In the high dimensional regime, when the

approximation errors are small, inference on the treatment effect α is frequently

carried out in two ways: inference after a sufficiently small model is selected, or

debiased inference directly on a regularization method.

In the first part of the paper, we focus on the approach where inference is carried

out on a relatively small model selected by Lasso (Tibshirani, 1996) or the smoothly

clipped absolute deviation penalized maximum likelihood (Fan and Li, 2001), among

many others. When perfect model selection is attained, the resulting estimate of

the treatment effect achieves the oracle property, and post selection inference is

asymptotically valid (Minnier et al., 2011). However, perfect model selection often

relies on some unrealistically strong assumptions and inference procedures based on

the belief of having an oracle estimator may result in substantial biases (Belloni

et al., 2014), and see also Example 1.

Based on a selected model M̂ , a common practice is to refit with the ordinary

least squares (OLS) estimator and then perform inference on α. Since the model

M̂ is randomly chosen, there are two possible sources of bias in the OLS estima-

tor. The first is the under-fitting bias when an active covariate is missing in the

selected model. To a large extent, the under-fitting bias can be reduced by choosing

a larger model that has a high probability of M0 ⊂ M̂ . However, even if the model

selection procedure retains all relevant variables, we demonstrate that the OLS es-

timator suffers from what we will call “over-fitting bias” when irrelevant variables

are selected due to spurious correlation. The over-fitting bias is negligible in low

dimensional problems, but becomes evident when p is large. This issue is not as

much discussed in the literature but is recognized in Fan et al. (2012), Hong et al.

(2018) and Chernozhukov et al. (2018) in a related context. An easy solution to

avoid this over-fitting bias is an old idea of data-splitting. A main contribution of

the paper is to introduce and examine the method of repeated data splitting, which

helps minimize the efficiency loss due to data splitting or cross-estimation.

The repeated data splitting approach is similar in spirit to the bagging of Breiman
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(1996). Data splitting has been used by other researchers for debiased inference. Fan

et al. (2012) used the approach of data splitting and aggregation for estimating the

variance of the noise, and Chernozhukov et al. (2018), Robins et al. (2017) and

Wager et al. (2016) adopted the same approach to estimate the treatment effect. A

key difference with our work is that these methods use non-overlapping sub-samples

for parameter estimation so that the variance of the aggregated estimator is easier

to handle, but the “splitting-and-aggregation” strategy is not pursued to its full

potential for variance reduction. We refer such procedure as cross-estimation. Our

proposed approach results in better efficiency by allowing repeated data splitting

with overlapping sub-samples for estimation.

In the second part of the paper, we discuss another line of work for inference

that relies on “de-sparsifying” via a two-stage selection procedure, which has been

studied in van de Geer et al. (2014), and Zhang and Zhang (2014) for the high-

dimensional models. We show that the de-sparsified Lasso and the post-double-

selection method of Belloni et al. (2014) are asymptotically similar, and they achieve

bias reduction by essentially allowing all the covariates, including the inactive ones in

Model (1.2), to be used to adjust for the treatment variable first, but these approaches

can lead to substantially reduced variability in the post-adjusted treatment variable.

Consequentially, there can be significant efficiency loss in the estimation of α as

compared to a one-stage selection procedure without adjusting for the treatment

variable Di.

While the post-double-selection estimator reduces the under-fitting bias, it does

not completely avoid the risk of over-fitting. Therefore, building upon the post-

double-selection estimator of Belloni et al. (2014), we discuss a projection-assisted

approach to reduce the risks of the under- and over-fitting biases simultaneously.

As each method has its own strength, we provide both theoretical and numerical

comparisons for the those debiased inference methods.

The rest of the paper is structured as follows. In Section 2, we use a motivat-

ing example to illustrate the bias issue for inference on α by refitting the OLS to
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a selected model. In Section 3, we propose repeated data splitting to eliminate the

over-fitting bias. In Section 4, we discuss the relationship between the de-sparsified

Lasso and the post-double-selection, and propose a new projection-assisted approach

to further reduce the over-fitting bias in the post-double-selection estimator. We also

identify the conditions under which the proposed estimators of the treatment effect

are asymptotically normal. In Section 5, we give theoretical and numerical compar-

isons for several methods of debiased inference. In Section 6, we conduct simulation

experiments to show the finite-sample performances of the proposed methods in com-

parison with several others. In Section 7, we illustrate how our proposed methods

can be applied to the NCHS Vital Statistics Natality Birth Data to assess the effect

of smoking on birth weight. Finally, we conclude the paper in Section 8 with some

additional remarks.

2 Bias after model selection

In this section, we first formalize the notations used in the paper, and then discuss

the bias issue of the OLS estimator in a selected model, followed by a special case

study with a binary treatment variable Di ∈ {0, 1}.

2.1 Notations

Suppose that the choice of Xi have been made, whether they are simply equal to

Wi or some basis functions used to approximate g(W ). For i = 1, · · · , n, define

Zi = (Di, X
T
i )T ∈ Rp+1, Xi = (Yi, Di, Xi), and X = {Xi}ni=1. Also let Z =

(ZT
1 , · · · , ZT

n ) ∈ Rn×(p+1), X = (XT
1 , · · · , XT

n ) ∈ Rn×p, D = (D1, · · · , Dn)T, and Rn =

(Rn1, · · · , Rnn)T. Suppose M is a subset of {1, · · · , p}, and for any p-dimensional vec-

tor a, define aM to be the sub-vector of a indexed by M , and a−M to be the sub-vector

of a indexed by M c = {1, · · · , p}\M . Let XM = {X·j, j ∈M}, where X·j is the jth

column of X, for j = 1, · · · , n, and ZM = (D,XM). Let PM = XM(XT
MXM)−1XT

M ,

P ∗M = ZM(ZT
MZM)−1ZT

M be the projection matrices sending vectors in Rn onto the
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space spanned by XM and ZM , respectively. Also let QM = I − PM , where I is

an n-dimensional identity matrix. Let the index matrix ĨM ∈ R(|M |+1)×(p+1) be such

that ĨMZi = Zi,M . Let e1 = (1, 0, · · · , 0)T, whose dimension is context-specific. Fur-

thermore, let Σ̂ = ZTZ/n be the sample covariance matrix, and Σ = E(ZiZ
T
i ) be

the population covariance of the covariates, and similarly let ΣX = E(XiX
T
i ), and

ΣDX = E(DiXi). Define ΣM as the sub-matrix of the population covariance matrix

indexed by set M , i.e. ΣM = E(Zi,MZ
T
i,M). We use the notation x .P y to denote

x = OP (y). We use ; to denote the convergence in distribution. By 1T we denote

the indicator function of an event T .

2.2 Over-fitting and under-fitting bias

Based on a properly chosen data-dependent model M̂ , the OLS estimator is

(α̂OLS, β̂
T

OLS)T = arg min

{
n∑
i=1

(Yi − αDi −XT

i β)2 : α ∈ R, β ∈ Rp, βM̂c = 0

}
. (2.1)

The performance of α̂OLS is evaluated by Belloni and Chernozhukov (2013), which

showed that this estimator has at least the same rate of convergence as Lasso, and

has a smaller bias. To heuristically illustrate the impact of the random model M̂ on

the estimate of α, we decompose α̂OLS as

√
n(α̂OLS − α) = eT1

(
1

n
ZT

M̂
ZM̂

)−1
1√
n
ZT

M̂
ε︸ ︷︷ ︸

:=bn1 (over-fitting)

+

(
1

n
DT(I − PM̂)D

)−1
1√
n
DT(I − PM̂)(Xβ +Rn)︸ ︷︷ ︸

:=bn2( under-fitting)

. (2.2)

Details about this decomposition is provided in Section S.4.1 of the Supplementary

Materials. The first term bn1 labeled “over-fitting” is really due to the correlation

between ZM̂ and ε. When M̂ is not data-dependent, bn1 has mean zero. Otherwise,

we have in general E(ε|ZM̂) 6= 0. In this case the bias of α̂OLS as an estimator of α

is in the same order of 1/
√
n, which would result in biased inference.
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When the approximation error Rn is small, the contributor to the “under-fitting”

bias, bn2, vanishes to zero if M0 ⊆ M̂ . Wasserman and Roeder (2009), for example,

provides sufficient conditions under which P(M0 ⊆ M̂) → 1, as n → ∞, holds for

Lasso. Those conditions are much weaker than the conditions needed for the perfect

model selection in the sense of P(M0 = M̂) → 1 . Therefore, when the estimation

efficiency is not a major concern, selecting a larger model seems to be a simple remedy

to avoid the under-fitting bias. Additional methods to reduce the under-fitting bias

will be discussed in Section 4. Next, we illustrate the over- and under-fitting biases

through an example with a sparse β.

Example 1 (A numerical study with the adaptive Lasso). We start with a simple

simulation study where the adaptive Lasso is used for variable selection. Implemen-

tation details are provided in Section S.11 of the Supplementary Materials. We refer

to this estimator as Alasso+OLS estimator. The data are generated from model (1.2)

with Rn = 0, α = 3, β = (1, 1, 0.5, 0.5, 0 · · · , 0)T ∈ Rp×1, and (n, p) = (100, 500).

We first generate a random matrix Z̃ ∈ Rn×(p+1) where each row is randomly drawn

from N(0,Σ), with Σij = 0.9|i−j|, (1 ≤ i, j ≤ p + 1). Then let Di = 1(Z̃i1 > 0) and

Xij = Z̃ij be the covariates, for i = 1, . . . , n, j = 2, . . . , p + 1. If a model selection

procedure is the oracle, then

P(M̂ = M0)→ 1, σ−1
oracle

√
n(α̂OLS − α) ; N(0, 1),

where σ2
oracle = σ2

ε(Σ
−1
M0

)11, σ2
ε = Var(εi), and (Σ−1

M0
)11 denotes the first diagonal

element of Σ−1
M0

. As the tuning parameter λ decreases from exp(−3) to exp(−2), we

keep track of the selected model M̂ and report the standardized bias of α̂OLS from the

selected model M̂ . In this setting, α is often refereed to as the average treatment

effect (ATE).

The numerical results presented in Figure 1 are evaluated though 1000 Monte

Carlo samples. From Figure 1(a), we see that when λ is greater than exp(1) and

some active covariates are often missed in the refitting step, leading to clear under-
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fitting bias. When the tuning parameter decreases from exp(2) to exp(1), the under-

fitting bias decreases quickly as more covariates are used in the ordinary least squares

estimates. However, as λ decreases further to include more and more covariates in

the selected model, the bias does not vanish but begins to increase in the opposite

direction. By the nature of model selection, the over-selected variables are most

likely highly correlated with Y in each sample. Since they account for the variability

in Y in the data, the estimated coefficient on D is attenuated. In this particular

example, the over-fitting bias can be as significant as the under-fitting bias, and will

lead to invalid statistical inference.

From Figure 1(b), we observe clearly that perfect model selection cannot be

achieved with high probability, but as λ decreases towards exp(−3), the under-fitting

probability decreases rapidly toward 0; and in most of the Monte Carlo samples, the

selected model M̂ contains M0. If we use a small λ in the adaptive Lasso, the main

issue to be concerned with is indeed the over-fitting bias for the estimation of α.

In Section S.2 of the Supplementary Materials, we give a simple example to

illustrate the connection between the over-fitting bias and a better-known concept

of spurious correlation.

3 Repeated data-splitting

The over-fitting bias can be avoided by the idea of data splitting. Data splitting

divides a sample of size n into two parts: the model building part of size n1 and the

estimation part of size n2 = n−n1. The first part of the data is then used for model

selection and the remaining part is used for estimation based on the selected model.

When β is sparse and by selecting a larger model in the first part, we expect the OLS

estimator from the second part of the data to be free of significant bias. Rinaldo

et al. (2018) considered data splitting for debiased inference. However, it is also

clear that data splitting enables debiased inference after model selection at a cost.

As only part of the sample can be used in the estimation step, which means a loss
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of efficiency even if a perfect model has been selected. We consider using repeated

splits and then averaging the estimates of α over those splits. This strategy, similar to

bagging or bootstrap aggregating proposed in Breiman (1996), is a machine learning

ensemble meta-algorithm and can help improve the stability and accuracy over a

single split or a small number of splits. Similar ideas based on bagging are considered

in Meinshausen and Bühlmann (2010) and Meinshausen et al. (2009) for the recovery

of sparse representations. We consider two data splitting schemes, repeated random

splitting (R-Split), which is detailed in the paper, and bootstrap-induced splitting

(B-Split), which is discussed in the Supplementary Materials.

3.1 R-Split

Based on repeated random data splitting, the estimation and inference procedure for

the treatment effect α can be described as follows (Algorithm 1). First, we set an

upper bound of the selected model size to ensure the existence of the OLS estimator

in any given subsample. Next, the choice of model size is subjective but needs to be

large enough for the under-fitting bias to be negligible. In our empirical work, we

use Lasso for model selection, and choose the model size from cross-validation with

an upper bound n2 minus a small number to determine the level of penalization; we

note that this can be done in standard software for regularized regression, such as

the package glmnet in R.

Algorithm 1 R-Split

For b← 1 to B do

Step 1. Randomly split the data {(Yi, Di, Xi)}ni=1 into group T1 of size n1 and

group T2 of size n2 = n− n1, and let vbi = 1(i∈T2), for i = 1, · · · , n.

Step 2. Select a model M̂b to predict Y based on T1.

Step 3. Refit the model with the data in T2 to get

(α̂b, β̂
T
b ) = arg min

∑
j∈T2(Yj − αDj −XT

j,M̂b
β)2,

The final “smoothed” estimate is α̃ = 1
B

∑B
b=1 α̂b.
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In Algorithm 1, any reasonable model selection procedures may be used in Step

2. Our empirical studies suggest that the variance of the aggregated estimator is a

non-increasing function of B, and the decay slows down if B grows larger than 1,000.

Therefore, we recommend using B = 1, 000 as a good balance between computational

load and statistical inference accuracy. In the theoretical investigations, we consider

B to be infinitely large.

Let Vn2 = {V = (V1, · · · , Vn) ∈ Rn : Vi ∈ {0, 1},
∑n

i=1Vi = n2} be the space of

n-tuples with the l1 norm equal to n2. The data splitting weight vb = (vb1, · · · , vbn)

given in Step 1 takes value in Vn2 with equal probability P(V = vb) = 1/
(
n
n2

)
. For

a single split, the selected model can be viewed as a function of the data X =

{Yi, Di, Xi}ni=1 and the random weight V ∈ Vn2 , i.e. M̂ = M(X , V ). The proposed

R-Split estimator can then be defined as the expectation of α̂b given the data, that

is, α̃ = E(α̂b|X ).

Following a strategy proposed in Efron (2014) and the bias corrected version of

Wager et al. (2014), we can estimate the variance of the smoothed estimator through

the nonparametric delta method. The estimated variance takes the following form

with the derivation provided in Section S.8 of the Supplementary Materials:

σ̂2
n = n

∑n

j=1

(
n− 1

n− n2

Ŝj

)2

− n2n
2

B2(n− n2)

∑B

b=1
(α̂b − α̃)2, (3.1)

where Ŝj = 1
B

∑B
b=1(vbj − 1

B

∑B
k=1 vkj)α̂b. In Section 3.3, we prove under certain

conditions, the smoothed estimator α̃ converges to a normal distribution. We can

then construct an approximate (1− q) level confidence interval for α via the normal

approximation.

3.2 Theoretical investigation of R-Split

In this section, we study the theoretical properties of the smoothed estimator. For a

fixed model M and a weight V ∈ Vn2 , define the covariance matrix in the given sub-

sample as Σ̂V,M = n−1
∑n

i=1ViZi,MZ
T
i,M , with the notations that Zi,M = (Di, X

T
i,M)T.

Let ZV = (DV ,XV ) be the design matrix with rows {Zi : Vi = 1, i = 1, · · · , n}
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and gV (W ) = {g(Wi) : Vi = 1, i = 1, · · · , n}. Define the projection matrix

in the given subsample as PV,M = XV,M(XT
V,MXV,M)−1XT

V,M . Furthermore, let

V̆ = (V̆1, · · · , V̆n) ∈ Vn2 be from another split independent of V = (V1, · · · , Vn).

Suppose M̆ = M(X , V̆ ) is the selected model from V̆ , and M̂ = M(X , V ) denotes

the selected model from V , and let

ĥi,n =

{
E
(
Vie

T

1 Σ̂−1

V,M̂
ĨM̂

∣∣∣∣X)− E
(
Vie

T

1 Σ̂−1

V̆ ,M̆
ĨM̆

∣∣∣∣X)}Ziεi,
where the expectations are taken with respect to V and V̆ conditional on the data.

It is helpful to explain the difference between the two expectations in the above

definition. Note that V̆ and V have the same distributions, and the first expectation

E
(
Vie

T

1 Σ̂−1

V,M̂
ĨM̂ |X

)
= E

(
eT1 Σ̂−1

V,M̂
ĨM̂ |X , Vi = 1

)
P(Vi = 1),

so the difference of the two expectations in the definition of ĥi,n is the difference in

the means due to leaving the i-th observation out for the model selection step in

obtaining M̂ but not always so in obtaining M̆ . With a change of possibly one out of

n observations, the distributions of the quantities involved and their means typically

change in the order of 1/n for most model selection methods. Assumption 3 below

formalizes this for technical convenience.

Assumption 1. Data generating process. (a). Suppose {(Yi, Di, Xi)
T}ni=1 is a ran-

dom sample, and the covariates Zi = (Di, Xi) have zero mean and bounded support

‖Zi‖∞ ≤ C for some constant C. (b). The error variable εi is sub-Gaussian with

E(εi|Zi) = 0 and E(ε2
i |Zi) = σ2

ε , for i = 1, · · · , n.

Assumption 2. The split ratio rv = n2/n is a constant in (0, 1). The selected model

sizes in all split are bounded by s with s = o(n).

Assumption 3. For any candidate model M of size up to s and any V ∈ Vn2 , the

matrix Σ̂V,M is non-singular. The quantities ĥi,n’s satisfy
∑n

i=1 ĥi,n/
√
n = oP (1).

11



Assumption 4. There exists a random vector ηn ∈ Rp+1 which is independent of ε,

and ‖ηn‖∞ is bounded in probability, and satisfies∥∥∥∥rvE(eT1 Σ̂−1

V,M̂
ĨM̂

∣∣∣∣X)− ηn∥∥∥∥
1

= oP

(
1/
√

log p
)

Assumption 5. There is negligible amount of under-fitting bias after averaging over

all splits in the sense that

E
(

(DT

V (I − PV,M̂)DV /n)−1 ·DT

V (I − PV,M̂)gV (W )/
√
n|X

)
= oP (1).

Theorem 1 (Asymptotic normality of R-Split estimator). Under Assumptions 1-5,

the smoothed estimator from R-Split has the following representation

√
n(α̃− α) = ηT

n

1√
n

n∑
i=1

εiZi + op(1). (3.2)

Therefore, by letting σ̃n = σε

(
ηT
nΣ̂nηn

)1/2

, we have

σ̃−1
n

√
n(α̃− α) ; N(0, 1). (3.3)

Assumption 1 requires bounded covariates to simplify our theoretical proofs but

it can be relaxed to include sub-Gaussian covariates. Assumption 2 plays a limit on

the sparsity level of the model. This assumption for data splitting is weaker than the

ultra-sparsity assumption needed for the post-double-selection or the de-sparsified

Lasso. Assumption 3 has been discussed following the definitions of ĥi,n and hi,n.

Assumption 4 says that the conditional expectation of matrix Σ̂−1

M̂
for the randomly

selected model M̂ is asymptotically independent of the noise, regardless of which

point in the sample space is conditioned on. The error rate of 1/
√

log p is a weak

requirement for the assumed data generating process. Assumption 5 is a high-level

condition to ensure that the under-fitting bias to be small. We also note that under

our model assumption g(W ) = XM0βM0 + Rn, Assumption 5 implicitly requires

the approximation errors Rn to be small; see Section S.6.1 of the Supplementary

Materials for more details. The proof of the theorem and a cleaner version of the
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influence function for the R-Split estimator are given in Section S.4.1 and Section

S.4.2 of the Supplementary Materials, respectively.

As we mentioned in Section 1, cross-estimation is a limited version of repeated

data splitting. Suppose α̃cv is the estimator obtained from two-fold (or any finitely

many-fold) cross estimation, we show in Section S.4.3 of the Supplementary Mate-

rials that R-Split is more efficient than cross-estimation, that is,

Var(
√
n(α̃cv − α)) > Var(

√
n(α̃− α)). (3.4)

4 A revisit to debiased inference

In this section, we start with a review of two existing methods in the high dimen-

sional debiased inference literature. The first is the post-double-selection estimator

of Belloni et al. (2014), which aims to reduce the under-fitting bias by a two-stage

selection. The second is the de-sparsified Lasso of van de Geer et al. (2014) and

Zhang and Zhang (2014), which removes the penalization bias of Lasso by using an

estimate of the inverse population covariance matrix. In the first subsection, we high-

light the connection between these two methods, and provide a comparison between

their asymptotic variances. In the second subsection, we propose an improvement to

the post-double-selection method by removing moderating covariates first through a

linear projection to further reduce the over-fitting bias.

4.1 Connection between the post-double-selection and the

de-sparsified Lasso

To estimate α without bias one must suppress the effects of extraneous variables that

influence both D and Y . When p < n, we can do so by projecting Y and D on the

the space spanned by X:

(I − P )Y = α(I − P )D + (I − P )ε,
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where P = X(XTX)−1XT. Then the estimate of α is the marginal regression

coefficient by regressing (I − P )Y on (I − P )D:

α̂full = (D̂TD)−1D̂T(Y −Xβ̂full), (4.1)

where D̂ = (I − P )D, and β̂full = (XTX)−1XTY . For the cases with p � n,

the sample covariance matrix is singular, and the de-sparsified Lasso and the post-

double-selection offer two strategies to remove the confounding effects from X.

The post-double-selection estimator of Belloni et al. (2014) goes as follows. First,

a set of control variables, indexed by M̂D, that are useful for predicting D is selected.

Second, the variables indexed by M̂Y are selected to predict Y . Then, α is estimated

by refitting the model M̂ = M̂D ∪ M̂Y with the OLS. The post-double-selection

estimator can be written as

α̂double = (D̂T

M̂
D)−1D̂T

M̂
(Y −Xβ̂M̂), (4.2)

where D̂M̂ = D−X γ̂ = (I−PM̂)D is the residual of D after controlling for the effect

in XM̂ , and γ̂ ∈ Rp is a sparse vector with γ̂M̂ = (XT

M̂
XM̂)−1XM̂D and γ̂−M̂ = 0.

As shown in Section S.5.3.1 of the Supplementary Materials, we have

σ̆−1
n

√
n(α̂double − α) ; N(0, 1), σ̆2

n = σ2
ε

1

‖D −X γ̂‖2
2/n

+ oP (1). (4.3)

The de-sparsified Lasso estimator of α removes the penalization bias by finding

an estimate Θ̂ of the inverse of the population covariance matrix. If we focus only

on the estimation of α, we simply need eT1Θ̂. One way to get there is to let eT1Θ̂ =

ν̂−2(1,−γ̂T
lasso), where ν̂2 = D̂T

lassoD/n,

D̂lasso = D −X γ̂lasso, and γ̂lasso = arg min
γ∈Rp

1

n

∑n

i=1
(Di −XT

i γ)2 + λd‖γ‖1

for some tuning constant λd. As shown in Section S.5.3.1 of the Supplementary

Materials, the de-sparsified Lasso estimator can be written as

α̂desparse = (D̂T

lassoD)−1D̂T

lasso(Y −Xβ̂lasso). (4.4)
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Under certain regularity conditions, as in Remark 2.1 of van de Geer et al. (2014),

we have

σ̈−1
n

√
n(α̂desparse − α) ; N(0, 1), σ̈2

n = σ2
ε

‖D −X γ̂lasso‖2
2/n

(‖D −X γ̂lasso‖2
2/n+ λd‖γ̂lasso‖1)2

.

(4.5)

With a suitable choice λd in the order of
√

log p/n, and with ultra-sparsity of s0 =

o(
√
n/ log p), we have λd‖γ̂lasso‖1 = o(1). Then, the variance σ̈2

n can be compared

with that of the post-double-selection estimator in (4.3).

It follows from (4.2) and (4.4) that the post-double-selection estimator and the de-

sparsified Lasso estimator are similar, except that the residuals of D (after adjusting

for X) are obtained differently. Following Belloni et al. (2014), we find it helpful to

view γ as a regression coefficient of the following model

D = Xγ + ν, E(ν|X) = 0, Cov(ν) = σ2
νI, (4.6)

for some constant σ2
ν . A good estimation of γ helps reduce the under-fitting bias bn2

in (2.2). Moreover, in a special case that p < n, λd = 0 and M̂ = {1, · · · , p}, the

de-sparsified Lasso and the post-double-selection are equivalent to (4.1), which is the

full model OLS estimator. Without loss of generality, we refer to the method that

selects the variables to predict D as a two-stage selection estimator. Usually, the

two-stage selection estimator requires ultra-sparsity to achieve asymptotic normality

of the estimator; see Jankova et al. (2018) for more discussion.

Though a good estimate of γ helps reduce the bias after model selection, it may

increase the variability, and vice versa. To see this, we note that if λd‖γ̂lasso‖1 in

(4.5) is of o(1) and the γ̂lasso ≈ γ̂ under the ultra-sparsity, the de-sparsified Lasso

estimator of α is first-order equivalent to the post-double-selection. However, if we

use a larger penalty term so that λd‖γ̂lasso‖1 is no longer negligible, the de-sparsified

Lasso estimator of α will have a smaller variance. On the other hand, if D̂lasso does

not remove the part of X that correlates with D, the de-sparsified Lasso will then

have a bias. This bias-vaiance trade-off plays an important role in assessing the

quality of inference from the the two-stage selection estimators.
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To further address the bias issue in the two-stage selection method, we propose

to add a projection onto double-selection (PODS) as an enhancement of the post-

double-selection method of Belloni et al. (2014).

4.2 Projection onto double-selection (PODS)

In the post-double-selection method, the selected set of covariates M̂ aims to include

those variables that are correlated with either Y or D to reduce the under-fitting bias,

but it potentially increases the risk of over-fitting. As we observe from the simulation

study in Section 2.2, the over-fitting bias tends to be an increasing function of the

selected model size. We find that a simple remedy based on linear projections can

help, with which the covariates that have spurious correlation with D are less likely

to enter M̂ and thus the risk of over-fitting is reduced.

In the post-double-selection, suppose for the moment that M̂D ∩ M̂Y = ∅ and

M0 = ∅, then the over-fitting term bn1 can be decomposed

bn1 =
1

kn1

1√
n
DT(I − PM̂D

)ε︸ ︷︷ ︸
(I)

+
1

kn1

1

n
DT(I − PM̂D

)XM̂Y︸ ︷︷ ︸
(II)

·(XT

M̂Y
XM̂Y

/n)−1 · 1√
n
XT

M̂Y
(I − PM̂D

)ε︸ ︷︷ ︸
(III)

, (4.7)

where kn1 = DT(I − PM̂)D/n is a scaler. In (4.7), (I) is a random variable of zero

mean since M̂D is selected independent of ε; the product of (II) and (III) captures

the main effect of the over-fitting bias and is generally not centered around 0. A care-

ful examination of the bias decomposition suggests that, if D is uncorrelated with the

over selected variables in M̂Y , the over-fitting bias can be reduced to a smaller scale.

This motivates our proposed method of projection onto double-selection (PODS).

A formal algorithm of PODS is given in Algorithm 2, where we do not specify

the model selection procedure, which is similar to the post-double-selection. In our

empirical studies, we use marginal screening (in an example provided in Section
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S.5.1 of the Supplementary Materials), Lasso, or iterated Lasso, which is a tuning

free method discussed in Belloni et al. (2014). Recall for a fixed model M , we define

P ∗M = ZM(ZT
MZM)−1ZT

M .

Algorithm 2 PODS

Step 1. Select a set of variables M̂D for regressing D on X.

Step 2. Construct the post-projection variables:

Y ∗ = (I − P ∗
M̂D

)Y, X∗ = (I − P ∗
M̂D

)X−M̂D
.

Step 3. Select a model M̂∗
Y for regressing Y ∗ on X∗.

Step 4. Regress Y on D and XM̂∗ = XM̂D∪M̂∗
Y

to get α̂, which is the estimated

coefficient of D.

In Step 1, we select a set of variables M̂D which are associated with D. In Step 2,

to remove the components associated with D, we project (Y,X) onto a space which

is orthogonal to the space spanned by D and XM̂D
. By doing this, the additional

variables selected in Step 3 are expected to have low correlation with D, and then

the over-fitting bias can be controlled.

To better understand the difference between PODS and the post-double-selection,

we provide a simple example that shows the difference between the distributions of

M̂∗
Y and M̂Y in Section S.5.1 of the Supplementary Materials. It is worth noting that

the linear projection approach is also adopted in the correlated projection screening

(CPS) method proposed by Lan et al. (2016). But CPS does not select the controls

for predicting Y , and α is estimated via refitting the model M̂D. Without including

control variables in M̂∗
Y , the estimator of α can be less efficient than PODS.

Next, we provide a theoretical investigation for PODS. Some additional notations

are introduced for convenience. For a model M , define the sample partial covariance

ρ̂D,j(M) = ρ̂D,j − Σ̂D,M Σ̂−1
M Σ̂M,j,

between D and Xj with j /∈ M , where ρ̂D,j = DTXj/n, Σ̂D,M = DTXM/n, Σ̂M =

XT
MXM/n, and Σ̂M,j = XT

MXj/n. If the covariates have zero mean, ρ̂D,j(M) is
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similar to the sample covariance between D and Xj conditional on XM . Additionally,

let M̃D = M̂D ∪ (M0 ∩ M̂∗
Y ), let g(W ) = (g(W1), · · · , g(Wn))T be the vector of

the nonparametric functions g for n individuals, and define the minimal s-sparse

eigenvalue of a semi-positive definite matrix A as

λmin,s(A) = min
1≤‖ν‖0≤s

νTAν

νTν
.

Assumption 6. The selected model from PODS satisfies maxj∈M̂∗
Y \M0

|ρ̂D,j(M̃D)| =
OP (

√
log p/n).

Assumption 7. The cardinality of M̂∗
Y is of the same order as s0, which satisfies

s0 log p = o(
√
n).

Assumption 8. There exists a positive constant κ2 such that limn→∞ P(λmin,sd+s0(X
TX/n) ≥

κ2) = 1, where sd is the cardinality of M̂D.

Assumption 9. The under-fitting bias is small in the sense: DT(I −PM̂∗)g(W) =

op(
√
n).

Theorem 2 (Asymptotic normality of PODS). Under Assumption 1 and Assump-

tions 6-9, we have

√
n(α̂− α) =

(
1

n
DT(I − PM̃D

)D

)−1
1√
n
DT(I − PM̃D

)ε+ oP (1)

and σ̆−1
n

√
n(α̂− α) ; N(0, 1), where σ̆2

n = σ2
ε/(D

T(I − PM̃D
)D/n).

Assumption 6 requires that the maximum sample partial covariance between D

and the over-selected variables be of the order
√

log p/n after controlling for the

effect in M̂D ∪M0. This condition is rather mild since M̂∗
Y is selected after removing

the effect of D and XM̂D
. Assumption 7 restricts the sparsity level of β and the

selected model size. Assumption 8 is quite plausible for many designs of interest. For

example as shown in Rudelson and Zhou (2012), when the Xi’s are i.i.d. bounded

centered random vectors, then the sample covariance has minimal (s log n)-sparse
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eigenvalues that are bounded above by a positive constant with probability goes to

1. This assumption says that, unlike the treatment in Belloni et al. (2014), PODS

no longer requires (4.6) to be true or γ to be ultra-sparse. Assumption 9 assumes

a negligible under-fitting bias. In a boarder context, Chernozhukov et al. (2018)

assumed a similar condition.

We show in Section S.5.3 of the Supplementary Materials that under some ad-

ditional assumptions, the asymptotic variance of α̂ from PODS can be consistently

estimated by σ̃2
n = σ̂2

ε

‖D−Xγ̂∗‖22/n
, where σ̂2

ε = Y T(I−P ∗
M̂∗)Y ·n/(n−|M̂∗|−1), γ̂∗ ∈ Rp

is a sparse vector with γ̂∗
M̂∗ = (XT

M̂∗XM̂∗)−1XT

M̂∗D and γ̂∗
−M̂∗ = 0. Note that PODS

is an enhancement of the post-double-selection to further reduce the over-fitting bias

by modifying the distribution of M̂∗. As a result, the asymptotic expression in The-

orem 2 and the variance estimation for PODS also apply to the post-double-selection

estimator.

5 Comparison between the one-stage and the two-

stage selection methods

In Sections 3 and 4, we have considered one-stage and two-stage selection methods

for debiased inference. The purpose of this section is to compare the statistical

efficiencies between one- and two-stage selection methods for making inference on

the parameter α. Since various two-stage selection methods have similar asymptotic

representations, we use PODS as a representative in the discussion.

To compare the asymptotic behavior of R-Split with PODS more explicitly, we

provide alternative asymptotic variance expressions of R-Split and PODS estimators

under additional assumptions. First, in R-Split, we assume that on average, the

maximum “correlation” between D and X after controlling for the effects in XM̂ is
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bounded above by
√

log p in probability, or more formally,∥∥∥∥∥E
{
DT
V (I − PV,M̂)XV /n

DT
V (I − PV,M̂)DV /n

∣∣∣∣X
}∥∥∥∥∥
∞

= OP (
√

log p). (5.1)

Second, let the maximal s-sparse eigenvalue of a semi-positive definite matrix A as

λmax,s(A) = max
1≤‖ν‖0≤s

νTAν

νTν
,

and we assume that there exists some constant K0 > 0 such that P(lim supn→∞

λmax,s(X
TX/n) ≤ K0) = 1, λmax,s(Σ) ≤ K0, and the maximum eigenvalue of Σ̂

is bounded by log p in probability. Under Assumptions 1, 4, and 7, and the two

additional assumptions stated above, we show in Section S.4.4 of the Supplementary

Materials that the asymptotic variance of R-Split estimator satisfies

σ̃2
n ≤ σ2

εE
{

(Σ−1

M̂
)11

∣∣∣∣X}+ oP (1), (5.2)

where (Σ−1

M̂
)11 is the first component on the diagonal of Σ−1

M̂
.

As for PODS, under Model (4.6), with the assumption that γ is ultra-sparse and

that the selected model M̂∗ satisfies ‖n1/4(I − PM̂∗)D‖2 = oP (1), the asymptotic

variance of PODS estimator equals

σ̆2
n = σ2

ε(Σ
−1)11 + oP (1) = σ2

ε/σ
2
ν + oP (1). (5.3)

Together with the theoretical results in Theorem 2.3 of van de Geer et al. (2014)

and Theorem 2 of Belloni et al. (2014), PODS, the-desparisified Lasso and the post-

double-selection estimators reach the semi-parametric efficiency bound for estimating

α under homoscedasticity (see Robinson, 1988). However, when σν is small, (5.3) in-

dicates that the two-stage selection method is not very efficient. From the comparison

between (5.2) and (5.3), we find that unless E{‖ΣD,M̂c −ΣD,M̂Σ−1

M̂
ΣM̂,M̂c‖2

2|X} ≈ 0,

the R-Split estimator has the smaller asymptotic variance than the two-stage selec-

tion estimators, which is not surprising since R-Split aims to work with a sparse

model while the two-stage selection estimators are about bias-correction based on all

the covariates.
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To provide some numerical evidence for the comparison between one- and two-

stage selection estimators, consider the following model

Yi = αDi + εi, (5.4)

Di = γ1Xi1 + νi,

where (εi, νi/σν) ∼ N(0, I2) with σν =
√

Var(ν) and I2 the 2 by 2 identity matrix,

and Xi1 is the first component of Xi, for i = 1, · · · , n. Let p = 500, α = 1, γ1 = 1

and (Di, Xi) ∼ N(0,Σ) independent of (εi, νi), and set σ2
ν as an increasing sequence

from 0 to 1. The implementation details of various methods under comparison are

provided in Section 6. For n = 100 and n = 400, we report
√
n times bias and n

times variance evaluated from Monte Carlo samples, and the results are provided in

Figure 2. The variance of the oracle estimator is provided as a benchmark.

The results in Figure 2 indicate that R-Split is not as efficient as the oracle

estimator, but has smaller variance than PODS and the de-sparsified Lasso. While

the performance of R-Split is not sensitive to the change in σ2
ν , the variances of PODS

and the de-sparsified Lasso increase rapidly as σ2
ν becomes smaller. Furthermore, in

the de-sparsified Lasso, we observe that although the penalization helps reduce the

estimation variability, it increases the bias. The numerical results are in-line with

our investigation about the bias-variance trade-off in Section 4.1.

Although R-Split tends to have better estimation efficiency, the fact that only a

fraction of the sample is used for model selection increases the risk of under-fitting.

While the concern of the under-fitting bias can be lessened via the use of the two-

stage selection, the combination of R-Split and PODS or the post-double-selection

may be used as an alternative approach. We summarize the combined approach

by using R-Split in Algorithm S.7.1 that has been provided in Section S.7 of the

Supplementary Materials. However, the combined approach inherits the inflated

variance problem from the two-stage selection when D is highly correlated with

some of the covariates. A similar idea of combining data splitting with the two-stage

selection method has been studied in Chernozhukov et al. (2018), but their proposal
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uses non-overlapping subsamples for parameter estimation so that the variance of

the aggregated estimator can be easily estimated. Consequently, the combination of

R-Split and two-stage selection can have smaller variance than cross-estimation. In

Section 6, we further illustrate this point in a simulation study.

6 Simulation study

This section reports finite sample performances of the proposed methods in com-

parison with several others through Monte Carlo simulations. From an empirical

study provided in Section S.3.1 of the Supplementary Materials, we find R-Split

and B-Split have similar performances whenever rv ∈ [0.6, 0.7], which is typically

a favorable range for rv. In the simulation study, we focus on the performance of

R-Split with rv = 0.7.

6.1 Simulation designs

We compare the performances of the proposed methods with several others in two

different simulation settings where β0 is one of the following vectors,

sparse: (1, 1, 1, 1, 0, · · · , 0), dense: (1, 1/
√

2, · · · , 1/√p),

moderately sparse: (5, · · · , 5︸ ︷︷ ︸
10

, 1, · · · , 1︸ ︷︷ ︸
10

, 0, · · · , 0),

and γ0 is either (0, 0, 0, 0, 1, 1, 1, 1, 0, · · · , 0) or dense as specified later.

Stetting 1. Similar to the classical model used in van de Geer et al. (2014), we have

Yi = a+ αDi +XT
i β + εi for i = 1, · · · , n, where (Di, X

T
i )T ∈ Rp+1 ∼ N(0,Σ),

εi ∼ N(0, 1) are white noise, a = 1 is the intercept, α = 1.5, β = cyβ0 ∈ Rp

with the constant cy ∈ R chosen to achieve R2 = 0.8, and Σ has one of the

following forms:

Independent: Σ = Ip, Toeplitz: Σjk = 0.9|j−k|,

Equal correlation: Σjk = 0.91(j 6=k) or 0.31(j 6=k),
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where Σjk is the (j, k)-th element of the matrix Σ for j = 1, · · · , p + 1 and

k = 1, · · · , p+ 1.

Setting 2. Consider the two-stage model used in Belloni et al. (2014), with Yi =

ay +αDi +XT
i β+ εi, and Di = ad +XT

i γ+ νi, for i = 1, · · · , n, where (νi, εi) ∼
N(0, I2) are 2-dimensional white noise, ay = 1 and ad = 0.5 are the intercepts,

(Di, X
T
i )T ∈ Rp+1 ∼ N(0,Σ) with Σjk = 0.9|i−j|, α = 1.5, β = cyβ0 ∈ Rp and

γ = cdγ0 ∈ Rp, with the constants cy and cd chosen for designed signal-to-noise

ratios of both components in the model as detailed in Table 2.

We include the following methods in the comparisons.

• “Oracle” refers to the oracle estimator based on the true model, and is used

when β is sufficiently sparse.

• “Double” represents the post-double-selection of Belloni et al. (2014) and is

implemented using the R packages hdm.

• “Double-2CV” represents the double-machine with two fold cross-estimation of

Chernozhukov et al. (2018): for each fold, we select the model using the package

hdm, and estimate the treatment effect and its variance from the remaining

data.

• “PODS” refers to the proposed method PODS with the model selected from

the function rlasso in the R package hdm, which is the same function for

model selection used by the post-double-selection in hdm.

• “R-Split” refers to the proposed smoothed estimators from R-Split with B =

1, 000. We select the model by the adaptive Lasso via package glmnet. The

tuning parameter λ is selected by cross-validation with the lamdba.min op-

tion, while the maximum model size (dfmax in glmnet) is at most n2 − 6.

Since R-Split requires a large model to avoid the under-fitting, we also specify
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a minimum model size ŝmin given in Table 1-2. The implementation details of

the adaptive Lasso is provided in Section S.11 of the Supplementary Materials.

• “PODS-Split” is the combined approach we discussed at the end of Section

5. Its implementation is similar to R-Split, except that the minimum and

maximum model sizes equal ŝmin/2 and n2/2−3 in each stage of model selection.

• “De-sparsified” represents the de-sparsified Lasso of van de Geer et al. (2014)

and Zhang and Zhang (2014), and is implemented using the R package hdi.

• “Alasso+OLS” refers to the method of ordinary least squares applied to a

model selected by Adaptive Lasso. The confidence intervals are constructed

based on normal approximations.

The performance measures used in this section include
√
n times bias, n times

mean squared error, coverage probability and average length of the confidence inter-

vals of the treatment effect α. The details about the dimension and the covariance

structure of the covariates are provided in the captions of the accompanying tables.

6.2 Results

In this subsection, we provide the finite sample comparisons in our simulation studies

through Tables 1 and 2, one for each setting.

Table 1 for Setting 1 shows that R-Split is an overall leader for sparse models in

terms of bias, efficiency, and validity of inference, but provably due to under-fitting

bias, the estimator can underperform for dense or sometimes moderately sparse

models. In those cases, PODS-Split does well by reducing the bias and deliver-

ing confidence intervals with the desired coverage. PODS helps reduce the bias of

post-double-selection estimators. The refitted estimator from Alasso+OLS is cen-

tered away from α, and the asymptotic approximation provides a very poor guide

to the finite-sample distribution of this estimator. The post-double-selection with

2-fold cross estimation avoids the over-fitting bias, but is not as efficient as R-Split
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or PODS-Split. The de-sparsified Lasso estimator often has smaller variance than

others, but it is not as satisfactory in terms of the coverage of the resulting interval

estimates, mainly due to bias, which is in line with our analysis in Section 4.1.

From the results in Table 2 for Setting 2, we see the same message that R-Split

does well for sparse models, and equally noteworthy is that R-Split has substantially

smaller variances than the two-stage selection methods whenever R2
d is high, that is,

when the treatment Di is well correlated with some of the covariates. On the other

hand, when both γ and β dense, all the methods perform poorly in the coverage of

the interval estimates. Overall, the relative performance of each method depends on

the sparsity of the underlying model, but repeated data splitting and PODS are two

promising additions to the toolkit of debiased inference on the treatment effect in a

high dimensional setting.

7 Real data example

In this section we illustrate the use of the proposed methods by examining the effect

of mother’s smoking on infant birth weight. Lumley et al. (2000) confirmed the exis-

tence of a causal relationship between smoking cessation during pregnancy and birth

weight in randomized trials. Here we use the regression analysis on an observational

study to adjust for the potential confounders, as done in Nijiati et al. (2008).

To study the effect of smoking on infant birth weight, we use the 2015-2016 Natal-

ity data from the National Vital Statistics System of Centers for Disease Control and

Prevention. To illustrate the utility of the proposed methods, we consider only live,

singleton births to Asian mothers between the age of 18 and 45, with no more than

2 years of college education in the United State. This results in a data set of 59,250

births in 2015, and 58,785 births in 2016 with fully observed variables in this study,

and each data set contains 217 main-effects variables. To avoid handpicking impor-

tant interaction terms to be included in the model, we introduce all possible 12,543

interaction terms and then screen out the unimportant ones by model selection. The
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screening procedure is carried out on the 2015 data so that the selected set of vari-

ables are independent of the 2016 data. As an implementation detail, we replace

several continuous variables (mother’s age, height, weight gain during pregnancy,

and pre-pregnancy weight) with their spline basis functions. After Lasso screening

(with the tuning parameter chosen by cross validation with the lamdba.min option

of package glmnet), we control for the father’s age and race, infant’s sex, plural-

ity, infant’s birth defects, infant’s Apgar score, the obstetric estimate of gestation,

induction of labor, admission to NICU, mother’s pre-pregnancy weight, mother’s

weight gain during pregnancy, mother’s height, and several variables that indicate

complications during pregnancy, and some interaction terms between these selected

features. In total we keep p = 630 variables.

With the year 2016 data, since the sample size 58, 785 is much larger than p, we

use the OLS estimate of the treatment effect from this full sample as a benchmark

in the investigation. From fitting the full sample with a linear regression model,

47.56% of the variance of the infant birth weight can be explained by the selected 630

variables. The results regarding the infant birth weight by using the full sample show

evidence that, on average, women who were self-reported smokers delivered infants

weighting 80.33g less than the others. Our goal is to compare the performances of

the existing methods for estimating the treatment effect based on randomly drawn

subsamples of size nsub from the 2016 data. Since only 2.06% of mothers were

reported to have smoked during pregnancy, to have a more balanced group, we first

draw nsub/2 observations from the mothers who smoke during pregnancy, and draw

another nsub/2 observations from the remaining sample.

Since the performances of the de-sparsified Lasso and the post-double-selection

are similar to PODS in this particular study, we include the results only for PODS,

R-Split, PODS-Split and Alasso+OLS in Figure 3. We observe that R-Split and

PODS with R-Split have relatively small mean squared errors, and the confidence

intervals obtained via the non-parametric delta method achieve near nominal cover-

age probabilities. PODS gets reasonable coverage and improves with the sample size.

26



The “Alasso+OLS” estimator has low coverage due to bias after model selection, and

the asymptotic approximation provides a very poor guide to the finite-sample dis-

tribution. Overall, the use of R-Split, whether used alone or together with PODS,

would help the inference in this study at sample sizes below 300.

8 Concluding remarks

This paper addresses the issue of bias after model selection and its impact on sta-

tistical inference on treatment effects from a linear or partially linear model in a

high dimensional setting. We consider the method of repeated data splitting to re-

move the over-fitting bias without much sacrifice in efficiency. We revisit some of

the well-known two-stage selection estimators and discuss a delicate bias-variance

trade-off with those methods. As made clear in the paper, there are pros and cons in

each method. While the method of repeated data splitting eliminates the over-fitting

bias and helps minimize the efficiency loss, it is subject to the risk of under-fitting,

especially in a non-sparse model. The two-stage selection methods reduce the under-

fitting bias but at the cost of efficiency loss when the treatment variable is correlated

with some of the inactive covariates in the model. In the latter cases, we propose

a new variant, PODS, that aims to suppress the over- and under-fitting biases si-

multaneously. Our theoretical and empirical investigations show that the proposed

methods improve the validity of inference on the treatment effect in a high dimen-

sional regression model.

In a special case where Di ∈ {0, 1} represents the treatment indicator, we may

study the average treatment effect following the Neyman-Rubin’s causal model; see

Neyman (1923) and Rubin (1974). We refer to Section S.9 of the Supplementary

Materials for further details.
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Supplementary Materials

Section S.1 gives some useful lemmas needed in the proofs. Section S.2 gives

an additional example to illustrate the over-fitting bias issue. Section S.3 details

bootstrap-induced splits (B-Split), which is an alternative to R-Split, and offers a

finite sample comparison between R-Split and B-Split. Section S.4 contains the

proofs and derivations needed in Sections 3.2 and 5. Section S.5 contains the proofs

for PODS discussed in Sections 4.2 and 5. Section S.6 gives sufficient conditions

for Assumptions 5 and 9. Section S.7 contains the implementation details for the

combined approach of R-Split and the post-double-selection method mentioned at

the end of Section 5. Section S.8 contains the derivation of variance estimation in

R-Split via the non-parametric delta method used in Section 3.1. In Section S.9, we

discuss how regression adjustment for the average treatment effect estimation can be

handled in our framework. In Section S.10, we provide an additional set of results

for the analysis in Section 7 based on polynomial basis function expansions instead

of spline basis expansions. Finally, Section S.11 contains the implementation details

of the adaptive Lasso used in Example 1 of Section 2.2 and the simulation studies of

Sections 6.
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Figure 1: (a) The left panel shows standardized bias of Alasso+OLS estima-

tor as the tuning parameter λ varies from exp(2) to exp(−3). The horizontal

axis is − log(λ) as a measure of model size. (b) The right panel shows the

probabilities of under-fitting M0 6⊂ M̂ , perfect selection M0 = M̂ , and no

under-fitting M0 ⊂ M̂ in Example 1.
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Figure 2: Finite sample comparison between R-Split and the two-stage selection

methods based on Model (5.4). The data generating process is described in

Section 5 and Σjk = 0.9|j−k| is the (j, k)-th element of Σ, for j, k = 1, · · · , p+ 1.

Panels (a) and (c) show the
√
n times the bias of the α estimates. Panels (b)

and (d) show n times the variance of the α estimates.
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Table 1: Performance summaries for various methods under Setting 1 with (n, p) = (100, 500).

Oracle Double Double-2CV PODS R-Split PODS-Split De-sparsified Alasso+OLS

β is sparse, independent predictors, ŝmin = 6√
nBias 0.05(0.05) −0.17(0.05) 0.03(0.09) 0.04(0.05) 0.03(0.05) 0.03(0.05) −0.28(0.06) −0.37(0.05)

nMSE 1.07(0.07) 1.17(0.08) 4.16(1.66) 1.14(0.08) 1.20(0.08) 1.23(0.08) 1.72(0.12) 1.57(0.10)

Cover 0.95(0.01) 0.92(0.01) 0.91(0.01) 0.93(0.01) 0.96(0.01) 0.96(0.01) 0.93(0.01) 0.84(0.02)

Length 0.20(0.00) 0.20(0.00) 0.25(0.00) 0.20(0.00) 0.22(0.00) 0.22(0.00) 0.24(0.00) 0.17(0.00)

β is sparse, Σij = 0.31(i6=j), ŝmin = 6.√
nBias 0.02(0.05) −0.62(0.08) 0.43(0.09) 0.03(0.09) 0.12(0.06) 0.19(0.07) −0.15(0.07) −2.72(0.07)

nMSE 1.36(0.09) 3.59(0.25) 3.87(0.25) 3.83(0.29) 2.12(0.14) 2.19(0.14) 2.40(0.16) 9.66(0.56)

Cover 0.93(0.01) 0.90(0.01) 0.91(0.01) 0.91(0.01) 0.93(0.01) 0.94(0.01) 0.90(0.01) 0.28(0.02)

Length 0.22(0.00) 0.32(0.00) 0.33(0.00) 0.32(0.00) 0.27(0.00) 0.28(0.00) 0.27(0.00) 0.20(0.00)

β is sparse, Σij = 0.91(i6=j), ŝmin = 10.√
nBias 0.04(0.14) 3.80(0.18) 0.42(0.20) −0.06(0.20) 0.39(0.15) 0.50(0.15) −0.75(0.15) −3.62(0.16)

nMSE 9.14(0.57) 30.04(2.05) 19.74(1.27) 20.76(1.46) 11.69(0.76) 11.90(0.75) 11.87(0.74) 26.11(1.62)

Cover 0.94(0.01) 0.83(0.02) 0.93(0.01) 0.90(0.01) 0.94(0.01) 0.95(0.01) 0.93(0.01) 0.56(0.02)

Length 0.57(0.00) 0.77(0.01) 0.81(0.01) 0.78(0.01) 0.66(0.01) 0.68(0.00) 0.61(0.00) 0.44(0.00)

β is sparse, Σij = 0.9|i−j|, ŝmin = 6.√
nBias 0.03(0.11) −0.25(0.11) −0.04(0.12) −0.04(0.11) 0.42(0.10) −0.02(0.11) 0.45(0.10) −0.98(0.12)

nMSE 5.95(0.37) 6.09(0.40) 6.63(0.42) 6.07(0.41) 5.58(0.33) 6.35(0.44) 5.55(0.34) 7.60(0.54)

Cover 0.93(0.01) 0.92(0.01) 0.94(0.01) 0.93(0.01) 0.90(0.02) 0.95(0.01) 0.88(0.01) 0.78(0.02)

Length 0.46(0.00) 0.45(0.00) 0.46(0.00) 0.45(0.00) 0.35(0.00) 0.49(0.00) 0.37(0.00) 0.33(0.00)

β is moderately sparse, Independent predictors, ŝmin = 10.√
nBias 0.05(0.05) −0.62(0.08) 0.02(0.12) 0.14(0.08) 0.19(0.07) 0.17(0.08) −0.78(0.07) −0.64(0.06)

nMSE 1.18(0.08) 3.71(0.24) 7.10(0.88) 2.98(0.19) 2.71(0.17) 3.48(0.23) 3.37(0.21) 2.24(0.16)

Cover 0.96(0.01) 0.89(0.01) 0.92(0.01) 0.87(0.02) 0.95(0.01) 0.95(0.01) 0.88(0.01) 0.82(0.02)

Length 0.22(0.00) 0.33(0.00) 0.45(0.00) 0.28(0.00) 0.33(0.00) 0.38(0.00) 0.29(0.00) 0.20(0.00)

β is moderately sparse, Σij = 0.91(i6=j), ŝmin = 10.√
nBias −0.14(0.12) −0.28(0.11) −0.11(0.12) −0.20(0.11) 1.10(0.10) −0.00(0.11) 0.17(0.10) 0.13(0.10)

nMSE 6.99(0.45) 5.87(0.37) 6.76(0.41) 5.99(0.38) 6.20(0.38) 6.12(0.42) 5.06(0.29) 5.33(0.31)

Cover 0.94(0.01) 0.94(0.01) 0.95(0.01) 0.93(0.01) 0.80(0.02) 0.95(0.01) 0.90(0.01) 0.80(0.02)

Length 0.50(0.00) 0.45(0.00) 0.49(0.00) 0.45(0.00) 0.35(0.00) 0.51(0.00) 0.37(0.00) 0.30(0.00)

β is moderately sparse, Σij = 0.9|i−j|, ŝmin = 10.√
nBias 0.09(0.12) −0.12(0.11) 0.04(0.12) 0.01(0.11) 1.11(0.10) 0.02(0.12) 0.32(0.10) 0.20(0.10)

nMSE 7.23(0.46) 6.02(0.38) 7.12(0.44) 6.44(0.41) 6.43(0.39) 6.44(0.42) 5.46(0.32) 5.39(0.33)

Cover 0.94(0.01) 0.95(0.01) 0.95(0.01) 0.93(0.01) 0.80(0.02) 0.95(0.01) 0.89(0.01) 0.79(0.02)

Length 0.51(0.00) 0.45(0.00) 0.50(0.00) 0.45(0.00) 0.35(0.00) 0.51(0.00) 0.37(0.00) 0.29(0.00)

β is dense, Σij = 0.9|i−j|, ŝmin = 10.√
nBias - −1.32(0.14) −0.13(0.21) −0.16(0.18) 1.95(0.13) −0.14(0.17) −0.63(0.12) 0.37(0.12)

nMSE - 12.24(0.88) 22.89(1.50) 13.12(1.05) 14.43(0.80) 11.95(0.91) 7.30(0.39) 6.89(0.49)

Cover - 0.89(0.01) 0.93(0.01) 0.84(0.02) 0.74(0.02) 0.94(0.01) 0.77(0.02) 0.73(0.02)

Length - 0.58(0.00) 0.85(0.01) 0.54(0.00) 0.43(0.00) 0.71(0.00) 0.35(0.00) 0.30(0.00)

When β is not sparse, we omit the results for “Oracle”. ŝmin is the minimum model size used in R-Split.

The numbers in the parenthesis are the standard errors of the estimated values. The nominal coverage

probability is 0.95.
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Table 2: Notations are the same as in Table 1. The results are based on Setting 2 with (n, p) = (100, 500).

Oracle Double Double-2CV PODS R-Split PODS-Split De-sparsified Alasso+OLS

β and γ are sparse, R2
y = 0.8, R2

d = 0.5, ŝmin = 6√
nBias 0.05(0.03) −0.02(0.05) 0.23(0.05) −0.04(0.05) 0.14(0.05) 0.06(0.05) 0.38(0.05) −0.94(0.06)

nMSE 0.46(0.03) 1.15(0.08) 1.49(0.10) 1.16(0.08) 1.13(0.08) 1.21(0.08) 1.27(0.09) 2.79(0.37)

Cover 0.95(0.01) 0.95(0.01) 0.91(0.01) 0.94(0.01) 0.95(0.01) 0.95(0.01) 0.94(0.01) 0.70(0.02)

Length 0.14(0.00) 0.21(0.00) 0.22(0.00) 0.22(0.00) 0.22(0.00) 0.23(0.00) 0.22(0.00) 0.17(0.00)

β and γ are sparse, R2
y = 0.8, R2

d = 0.9, ŝmin = 6√
nBias 0.03(0.01) −0.03(0.05) 0.02(0.05) −0.01(0.05) 0.09(0.03) 0.02(0.05) 0.18(0.03) −1.00(0.05)

nMSE 0.10(0.01) 1.04(0.07) 1.25(0.08) 1.03(0.07) 0.34(0.03) 1.12(0.07) 0.41(0.03) 2.18(0.14)

Cover 0.95(0.01) 0.95(0.01) 0.93(0.01) 0.94(0.01) 0.94(0.01) 0.96(0.01) 0.94(0.01) 0.58(0.02)

Length 0.06(0.00) 0.20(0.00) 0.21(0.00) 0.20(0.00) 0.14(0.00) 0.23(0.00) 0.12(0.00) 0.13(0.00)

β is moderately sparse and γ is dense, R2
y = 0.8, R2

d = 0.3, ŝmin = 10√
nBias 0.02(0.03) −0.27(0.05) 0.60(0.04) 0.08(0.04) 0.36(0.04) 0.23(0.04) 0.34(0.04) −0.77(0.05)

nMSE 0.48(0.03) 1.19(0.09) 1.25(0.09) 0.92(0.07) 0.94(0.07) 0.91(0.06) 0.96(0.07) 2.03(0.13)

Cover 0.94(0.01) 0.92(0.01) 0.86(0.02) 0.93(0.01) 0.90(0.01) 0.93(0.01) 0.93(0.01) 0.67(0.02)

Length 0.14(0.00) 0.19(0.00) 0.17(0.00) 0.18(0.00) 0.17(0.00) 0.19(0.00) 0.19(0.00) 0.15(0.00)

β is moderately sparse and γ is dense, R2
y = 0.8, R2

d = 0.8, ŝmin = 10√
nBias 0.03(0.02) −0.43(0.05) 0.26(0.04) −0.03(0.05) 0.24(0.03) 0.10(0.03) 0.33(0.03) −0.56(0.05)

nMSE 0.22(0.01) 1.55(0.10) 1.00(0.10) 1.02(0.07) 0.43(0.03) 0.59(0.03) 0.58(0.04) 1.33(0.10)

Cover 0.94(0.01) 0.90(0.01) 0.85(0.02) 0.95(0.01) 0.90(0.01) 0.94(0.01) 0.92(0.01) 0.68(0.02)

Length 0.09(0.00) 0.20(0.00) 0.14(0.00) 0.19(0.00) 0.11(0.00) 0.14(0.00) 0.13(0.00) 0.11(0.00)

β is dense and γ is dense, R2
y = 0.8, R2

d = 0.8 ŝmin = 15√
nBias − 2.01(0.07) 4.28(0.06) 1.95(0.14) 4.06(0.04) 3.47(0.04) 4.01(0.04) 2.28(0.07)

nMSE - 6.20(0.38) 20.04(1.01) 6.13(0.38) 17.18(0.83) 12.89(0.65) 16.91(0.82) 7.35(0.51)

Cover - 0.51(0.02) 0.03(0.01) 0.39(0.02) 0.00(0.00) 0.16(0.02) 0.00(0.00) 0.20(0.02)

Length - 0.21(0.00) 0.18(0.00) 0.16(0.00) 0.13(0.00) 0.20(0.00) 0.14(0.00) 0.11(0.00)

When β is not sparse, we omit the results for “Oracle”. The reduced forms of R2 are defined by

R2
y = 1− E(εi+ανi)

2

Var(Yi)
= 1− σ2

ε+α2σ2
ν

Var(Yi)
, and R2

d = 1− σ2
ν

Var(Di)
. The numbers in the parenthesis are the standard

errors of the estimated values. The nominal coverage probability is 0.95.
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Figure 3: Finite sample performance for estimating effect of smoking on

infants birth weights, aggregated over 1,000 replications.
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