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Abstract: Two major challenges arise in regression analyses of recurrent event data:
first, popular existing models, such as the Cox proportional rates model, may not fully
capture the covariate effects on the underlying recurrent event process; second, the cen-
soring time remains informative about the risk of experiencing recurrent events after
accounting for covariates. We tackle both challenges by a general class of semiparametric
scale-change models that allow a scale-change covariate effect as well as a multiplicative
covariate effect. The proposed model is flexible and includes several existing models
as special cases, such as the popular proportional rates model, the accelerated mean
model, and the accelerated rate model. Moreover, it accommodates informative cen-
soring through a subject-level latent frailty whose distribution is left unspecified. A
robust estimation procedure which requires neither a parametric assumption on the
distribution of the frailty nor a Poisson assumption on the recurrent event process is
proposed to estimate the model parameters. The asymptotic properties of the resulting

estimator are established, with the asymptotic variance estimated from a novel resam-
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pling approach. As a byproduct, the structure of the model provides a model selection
approach among the submodels via hypothesis testing of model parameters. Numerical
studies show that the proposed estimator and the model selection procedure perform
well under both noninformative and informative censoring scenarios. The methods are
applied to data from two transplant cohorts to study the risk of infections after trans-

plantation.
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1. Introduction

The importance of analyzing recurrent events data has been widely recognized in many
fields such as medicine, public health, cybersecurity, engineering, and social sciences
(Wei and Glidden, 1997; Cook and Lawless, 2007). Examples of recurrent events
include opportunistic infections experienced by patients who undergo hematopoietic
stem cell transplantation (Marr, 2012), repeated cardiovascular events in survivors
of myocardial infarction (Rogers et al., 2012), episodes of schizophrenia in chronic
schizophrenic patients (Eaton et al., 1992), cyber attacks on network systems (Ben-
jamin et al., 2016), and breakdowns of repairable systems (Nelson, 2003). Various
regression models have been proposed to evaluate covariate effects on the risk of re-
current events. Pepe and Cai (1993), Lawless and Nadeau (1995), and Lin et al. (2000)

considered Cox-type proportional rates/intensities models that postulate multiplica-



tive covariate effects on the baseline rate/intensity function of the recurrent event
process. Lin et al. (1998) studied the accelerated mean model where covariates modify
the timescale of the cumulative mean function. Chen and Wang (2000) and Ghosh
(2004) presented the accelerated rate/intensity model that formulates covariate effects
to change the time-scale directly on the baseline rate/intensity function. These three
types of models are covered as special cases in a general class of regression models pro-
posed by Sun and Su (2008). Other covariate effect formulations include the additive
rate models (Schaubel et al., 2006) and the additive-multiplicative rate models (Liu
et al., 2010). All the methods above require a noninformative censoring assumption,
that is, the censoring time is conditionally independent of the recurrent event process
given the observed covariates.

In many applications, an informative censoring or terminal event, such as graft
failure or death, can terminate the observation. Failing to account for informative
censoring can lead to substantial bias in inferences and invalid conclusions (e.g., Cook
and Lawless, 1997; Ghosh and Lin, 2002; Luo et al., 2010). A popular approach to ac-
commodate informative censoring is joint modeling, where the association between the
failure event and the recurrent event process is modeled via a shared frailty (Lancaster
and Intrator, 1998; Liu et al., 2004; Ye et al., 2007; Zeng and Lin, 2009; Kalbfleisch
et al., 2013). One advantage of the frailty is that it accounts for heterogeneity that

cannot be explained by the observed covariates. Nonetheless, inference on the shared



frailty model often requires a parametric assumption on the frailty distribution and
correct modeling of the terminal event, which are nuisances when the primary interest
is the covariate effects on the risk of recurrent events. Formal checking for the frailty
distribution and the model specification of the terminal event is essential for inferences
but underdeveloped. An alternative approach is to relax the parametric assumption
on the shared frailty model. For instance, Wang et al. (2001), Huang and Wang (2004)
and Huang et al. (2010) considered Cox-type models and Xu et al. (2017) studied a
joint scale-change model of the recurrent event process and the terminal event.

We propose an approach that allows a flexible form of informative censoring in a
generalized scale-change model for recurrent event processes. Our model encompasses
two types of covariate effects: a scale-change effect that alters the timescale and a
multiplicative effect that modifies the risk. A similar modeling approach has been
studied for univariate survival data (Chen and Jewell, 2001) and recurrent event data
(Sun and Su, 2008) under conditionally independent censoring given the observed co-
variates. Similar to Sun and Su (2008), this flexible formulation includes Cox-type
models, the accelerated mean model, and the accelerated rate model as special cases.
In contrast to Sun and Su (2008), the recurrent event process is associated with the
censoring time through an unobserved, subject-specific frailty, and no parametric as-
sumption about the frailty distribution is required. Utilizing the common mean struc-

ture shared by the conditional distribution of recurrent events and the order statistics



of a set of right-truncated failure times, we embed the problem into estimation with
right-truncated data and develop a novel semiparametric estimation procedure that
does not require information about the frailty variable. The asymptotic normality of
the resulting estimator is established without the strong Poisson-type assumption for
the recurrent event process or parametric assumptions for the frailty variable. The
asymptotic variance is estimated from an efficient resampling-based sandwich estima-
tor. The structure of the model facilitates model selection among the submodels via
hypothesis testing of model parameters. Our numerical studies confirmed the validity

of the proposed methods and the model selection procedure.

2. Model Setup

Suppose that [0, 7] is the time period of a study where recurrent events can potentially
be observed up to time 7. For a subject, let N(¢) be the number of events in interval
[0,¢], and X be a p x 1 covariate vector. Let C' be a noninformative censoring time,
such as the end of the study, which is independent of N(-) given X. Let D be an
informative censoring time, such as death, which is associated with N(-) even after
conditioning on X. Define the follow-up time as Y = min(C, D, 7). The observed data
are independent and identically distributed copies {N;(t),Y;, X; :t <Y, i =1,...,n}.
Let m; be the number of events of subject ¢ before time Y;. If m; > 0, the jump times

of N;(t) are the observed event times ¢;;, j = 1,...,m;.



Our model formulates the rate function for the counting process N;(t), \;(t) dt =
E{dN;(t) | Z;, X;}, given the covariate vector X; and an unobserved subject-specific

nonnegative frailty Z;. Specifically, we postulate that
/\z<t> = Zi/\o(tBXiTa)eX;rﬁ, t e [0, T], (21)

where Z; has an unspecified distribution with F(Z?) < oo, a and 3 are both p x 1
vectors of parameters, and \(t) is an unspecified, non-Weibull baseline rate function.
As in Sun and Su (2008), the Weibull baseline \o(t) o t?, for some ¢, is excluded
for identifiability between « and (. Define the corresponding cumulative baseline
rate function Ay(t) = f; Ao(u) du. For identifiability between Z; and A(t), we assume
Ao(7) =1 and E(Z; | X;) = pz; that is, the conditional mean of Z given X does not
depend on X. As Z; has a multiplicative effect on the rate function, Model (2.1) allows
the event occurrence rate to be inflated (or deflated) by the frailty variable Z; with
an arbitrary distribution. We assume that Y; is independent of N;(-) given (Z;, X;).
The dependence between Y; and N;(+) unconditional on (Z;, X;) can be either positive
or negative, depending on whether the association between Y; and Z; is positive or
negative given X;.

Model (2.1) offers great flexibility and includes several popular semiparametric
models for recurrent event processes as special cases. When § = 0, it reduces to
the frailty accelerated rate model \;(t) = Z;Ao(te’i @), the special case of which with

a degenerate frailty distribution was considered in Ghosh (2004). Covariate effects



under the accelerated rate model modify the timescale of the rate function and allow
for identical risk at time 0, a desirable property for modeling recurrent events in
randomized clinical trials. When a = 3, Model (2.1) reduces to the frailty accelerated
mean model \;(£) = Z;A\o(te™i *)eXi @ proposed by Xu et al. (2017), where the covariate
effects modify the time scale of the cumulative mean function of the recurrent event
process by a factor of X/ ®. When o = 0, Model (2.1) reduces to the popular frailty
Cox-type regression model \;(t) = Z;Ao(t)eX: #; see Lancaster and Intrator (1998),
Wang et al. (2001), Huang and Wang (2004). In this case, the covariate effects modify
the magnitude of the rate function by a factor of eXi #. Similar to Sun and Su (2008),
the three submodels coincide with each other if and only if \y(¢) is of the Weibull form.
The flexible formulation of Model (2.1) offers a new framework to test, diagnose, and
compare the submodels via hypothesis tests on parameters a and [; see details in
Section 3.

Interpretation of the covariate effects under Model (2.1) involves two types of mod-
ification on the rate function: a scale-change effect that alters the timescale by a factor
of €X' and a multiplicative effect that modifies the magnitude of the rate function
by a factor of eXi 8. The effects are easily seen when X contains a single treatment
indicator. In this case, e’ characterizes the risk ratio between treated subjects (X = 1)
at time ¢ and untreated subjects (X = 0) at time te®. When a = (3, the combined

changes in timescale and in magnitude are in such a way that the resulting cumulative



mean function has a timescale modification. This motivates a useful alternative pre-
sentation of Model (2.1). Let A;(t) = E{N;(t) | Z;, X;} be the conditional cumulative

mean function. Then
Ai(t) = Ziho(teXT )X, te0,7],

where v =  — . The parameters a and  can then be interpreted as the scale-change
effect parameter and multiplicative effect parameter on the conditional cumulative
mean function, respectively. In the case of a single treatment indicator covariate, the
expected number of events occurred by time ¢t among treated subjects (X = 1) equals

e times the expected number of events by time te® in the control group (X = 0).

3. Estimation and Inference

3.1 Parameter Estimation

For a p-dimensional vector a, consider the transformations ¢};(a) = tl-jeXiT @ and
Y*(a) = Ve . Let R¥(t,a) = > It (a) <t <Y;*(a)}; hereafter, when m; = 0,
we define the summation operator Z;n:zl to be zero. Define counting process for the

transformed event times N;(t,a) = >°7" I{tj;(a) < t AY;*(a)}, so that Nj(t,a) =

Ni(te_XiT“ A'Y;), where A is the minimum operator. Under Model (2.1), for ¢t <Y},
t
E{Ni(t) | Xi, Z;,Yi} = / Zo(ue™X )X P du = Z;Ag(teXT @)X (B,
0

and thus for t < Y, E{N(t,a) | X;, Z;, Y} = Z;Ao{teXi (-} X (Ba),



We develop a novel semiparametric estimation procedure that does not require
a distributional assumption about the frailty variable. To motivate the procedure,
we first consider the case where the true parameter is known, or a = «. For this
special case, we suppress « in the notation whenever there is no ambiguity and write
th = tieXi @ Y = YieXi e, N¥(t) = Ni(t,a), and R:(t) = R*(t,a). When a = o we
have E{N*(t) | X;, Z;,Y;} = Z;\o(t)eXi 6= for t < Y;, which implies that the rate
function of the underlying transformed process follows the Cox-type proportional rates
model with a multiplicative frailty. Since the informative censoring time Y; depends
on both X; and Z;, conventional methods that require independent censoring may lead
to biased estimation. Moreover, the estimation procedures in Xu et al. (2017) cannot
be applied, as the transformed process remains dependent on X;.

We now embed the problem into a seimparametric estimation with clustered right-
truncated data by utilizing a common mean structure shared by the conditional dis-
tribution of recurrent events and the order statistics of a set of (possibly correlated)
right-truncated failure times. Given (m;, Y;*), consider a set of m; random variables,

denoted by E‘l, ...t*  such that each has a marginal density function free of (Zi, X):

cYimgo

o(t)
Ao(Y7)’

0<t<Y/ (3.2)

It follows from Ag(7) = 1 that Ay(¢) defines a proper distribution function and

thus (3.2) can be viewed as a truncation density function (Wang et al., 2001; Xu
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et al., 2017). In other words, t* 's can be viewed as right-truncated failure times
with truncation time Y;*. We show in Proposition 1 that the transformed recurrent
event times {tf,...,t; } of the ith individual share the same mean structure with

? Vimyg

the right-truncated failure times {t, ..., 5 }.

» Yimy

Proposition 1. Consider the counting process induced by the right-truncated random
variables T, j = 1,...,my, that is, Ni(t) = Yo ](E?j <t), fort < Y*. Then we

Zj’

have E{N*(t) | Zi, X;,Y;"} = E{N(t) | Zi, Xi,Y;'}.

Since E (m; | Z;, X;,Y7) = Ziho(Y*)eXT (F=2) Proposition 1 follows from E{N}(t) |

Z;, X0, Y7} = E[B{N;(t) | mi, Zi, X0, Y7} | Zi, X0, Y] = E{mio(8)/Mo(Y7*) | Zi, Xi, Y7}
= Z;No(t)eXi{ B=0) — E{N*(t)| Z;, X;,Y}. Such mathematical equivalence moti-

vates us to extend the methods for independent right-truncated survival data (Kalbfleisch
and Lawless, 1991; Wang, 1989) to the context of clustered right-truncated data to
construct estimating equations. Specifically, define N;} (t)y=1 (%V;‘] <tAY), }N%;‘] (t) =
I (%v;"] <t <Y and E:‘(t) > R*( ). It is known that, with right-truncated
data, N* (1 —1) fT . dH (u), where H(u) = log Ag(u), defines a martingale on
[0, 7]. Simple algebra with change of variable gives E{df\f;; (t) — l?i;*j (t)dH(t)} = 0 for
€ [0, 7] and this defines a mean zero process M;: “(t) = ft (w). Tt can

be further shown that the stochastic process based on the clustered right-truncated
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data {t5,..., %5 },

)y Yimy

0= 350 =3 M50 - [ Byt = K - [ Riwan,

0
has a zero mean. Following the above discussion, we can treat the observations
{31, ..., t;,,} as the order statistics of {¢;;,...,%;, }; in this case, N (t) = N7 (t) and
R:(t) = R:(t). Therefore the stochastic process My (t) = N7 (t) — fot Rf(u)dH(u), te
[0, 7], though not a martingale, also has a zero mean. The proof is given in the Ap-
pendix S1 of the Supplementary Material. Moreover, for all ¢t € [0, 7], we have the

following equations

E{i/oth;(u)} =0 and E{EZI/OTXidMi*(u)} = 0. (3.3)

Note that t7;’s may be correlated but the estimating equations in (3.3) remain unbiased.

The first term in (3.3) introduces a consistent estimator for H via

dH (1) = —%ﬁldgig).

The proof of the consistency of H (+) is given in the Appendix S1 of the Supplementary
Material.
Replacing H with Hin (3.3), we propose to estimate « by solving the estimating

equation:

(1) u, a
—12 / { T;}dj\f*(t a) =0, (3.4)
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where RV (t,a) = 2", XFR?(t,a) for k € {0,1}. The estimating function S,(a) is
similar to that of the accelerated failure time model with truncated data (Lai and
Ying, 1991) and can be solved using, for example, the derivative-free algorithm of
Barzilai and Borwein (1988) implemented in Varadhan and Gilbert (2009). Let &, be

the solution to (3.4). It is easy to see that H can be estimated by

s (t; &) /T Z?:l dN; (u; Gy
n\l; Q) = — n ~ y
t Zi:l R} (u; Gy

and thus A can be estimated by A, (t) = exp{ H,(t; &)}

With a estimated, we now focus on the estimation of 7, which is defined earlier

as v = 8 — «. It follows from (2.1) that
E mi\g " (Y7) | Xi] = E[E{m; | X, Y7, ZiA7 (Y]) | XJ]
= E [Ziexp(X,'7) | Xi] = exp(X,'0),
where X,| = (1, X,7) and " = (log iz,7"). This expectation suggests the following
estimating equation if o and Ag are known: n=' 37 | X;" {m;Ag" (V") — exp(X[[6)} =

0. The estimator for €, denotes by én, can be obtained by solving the following es-

timating equation with a and Ay replaced by their estimators from in the first step:

Un(0; é) = S X7 [mif\;l{Yi*(dn)} —exp(X0)| = 0. (3.5)
=1

Then 3 can be estimated by Bn = &, +Y,. Given &, and An, the estimating equation

in (3.5) is monotone and continuously differentiable with respect to 6, hence its root
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can be easily obtained using standard software.
3.2 Asymptotic theory and variance estimation
To study the large sample properties of the proposed estimators, we impose the

following regularity conditions:
Condition 1 Pr(Y* > 7) > 0, where Y* = YeX '@,

Condition 2 The covariate X is bounded; the latent variable Z is positive with

E(Z?) < .

Condition 3 The conditional probability density function of Y given (Z, X) is con-

tinuous and uniformly bounded.

Condition 4 The rate function \y(t), t € [0, 7], is strictly bounded below by zero and

has a bounded second derivative function.

Condition 5 The matrices J and J5 defined in the Appendix S1 of the Supplementary

Material are non-singular.

Conditions 1-5 are common assumptions in survival models. Condition 4 imposes
the bounded second derivative function of Ag(t), which is usually required for the
accelerated failure time model to evaluate the asymptotic covariance matrix. With
these regularity conditions, we have the following asymptotic results, whose proof is

provided in the Appendix S1 of the Supplementary Material.
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Theorem 1. Under Conditions 1-5, n'/?(&, — o, By — B) converges weakly to a mul-
tiwariate normal distribution with mean zero and covariance matriz X(«, 3) specified
in the Appendix S1 of the Supplementary material. Furthermore, for the estimated
baseline rate function, we have n'/2{A,(t, an) — Ao(t)}, t € [0, 7], converges weakly to

a mean-zero Gaussian process.

Theorem 1 allows us to use the asymptotic joint Gaussian distribution of n'/?(a,, —
a, ﬁn — ) to make inferences on model parameters. Since the limiting covariance
matrix X(a, ) depends on the unknown density functions of the censoring time, it
may be computationally difficult and inefficient to estimate it directly from the data.
We propose an efficient resampling approach to estimate the covariance matrix ¥(a, 3).
We first describe an approach to estimate the covariance of n'/?(&, — «, 6, — 0)

denoted by (@), then use it to retrieve the estimation of ¥(«, 8). From the proof

of Theorem 1,

a, — « Sn(@)
n1/2 — nl/ZJ;é + 0p<1),
0, — 0 U, (6; @)

where J, ¢ is the slope matrix

Ja,@ = )
J1 Jo

with J, Jy, Jo defined in the Appendix S1 of the Supplementary Materials. This implies

Y(a,0) has a sandwich form: J oVao(J,g) ", where V, 4 is the limiting covariance
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matrix of n'/2{ST(a),U](#;a)}. The proposed resampling approach estimates the
two components V, g and J, ¢ separately, and requires neither density estimations nor

intensive computation.

Step 1: Estimation of V,y Let (&1,...,&,) be a set of independent and identically
distributed positive random variables with unit mean and unit variance (e.g., standard
exponential), we define perturbed estimating functions as follows:

n! B D ket 2 X Ry, (1, ) v
Z Z / {62 z ZZ:l ?ikl gkR;;l(t’ a) Nij (t7 Oé),

=1 j=1

and

UTHOz )=n" Z{Z

AT{Y*( )}

- eXp(‘XVZTQ)] )
where

t Z?:l Z;nzll & dN;} (u; &)
0 Z?:I 27:1 fz’R;'kj(% )

Following the arguments in Zeng and Lin (2008), n*/2{S! (a,), Ul (0,; é,,)} conditional

Al (t) = exp{H] (t; &)} and H(¢; &)

on the observed data has the same asymptotic distribution as n'/2{S,(a), U,(0;a)}

evaluated at the true parameters. Thus a consistent estimator of V, g, denoted by

A

4,0, 18 given by the sample variance of the perturbed replicates of the derivative-

free Barzilai-Borwein spectral algorithm n=Y2{S! (&), Ul (6,; dn) .

Step 2: Estimation of J,, Estimation of the slope matrix, J,, is challenging

due to non-smoothness of the estimating functions. For a (2p + 1)-dimensional vector
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s = (s1,82) € R and (a,r) in a small neighborhood of (a, ) such that ||(a,r) —
(a,0)|| — 0, the proof of Theorem 1 implies that the estimating functions can be

uniformly decomposed into

Sp(a+n"1%s1) — S, (a), s1
nt/? = Jay + 0,(1).
Un(r +n"2s5;a +n""%s)) — Up,(r; a) So

Since S, (&y,) = 0 and U, (Y, &) = 0, we have

A ~1/2
1 Sy, +n712s)) e, 81 oy(1).
Up (0, + 0 255: Gy + 11251 So
The above equation presents an asymptotic linear relationship of the estimating equa-
tions. Motivated by the above results, the jth row of J, can be approximated by
regressing the jth component of n*/2{S, (&, +n2s1), Up (0 +n"255; G +1"2s51)}
on s, which are generated from a (2p + 1)-dimensional standard normal distribution.

Putting the estimated regression coefficients into a matrix gives an estimator J a4, Of

Jop-

The target sandwich variance matrix X(«, ) is then estimated by (éy,,0,) =
j;n{ 0 ‘A/dmén(j;; én)T‘ Compare to the conventional bootstrap methods, which require
solving estimating equations repeatedly, the proposed resampling procedure approach
is computationally much more efficient because it only requires evaluations of (rather

than solving) the perturbed estimating functions and performing least squares regres-

sions. With 3(é,, 0,,), the estimated covariance matrix of $(a, 8) can then be obtained
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]b Opxl Opxp
]b Opxl ]ﬁ
where 1), is the p X p identity matrix. Following the above discussion and the argument
in Zeng and Lin (2008), the estimator 3(dy,, 3,) is consistent under Conditions 1-5.
3.3 Hypothesis testing of submodels
The asymptotic results enable model selection for the nested submodels. For
example, the Cox-type proportional rates assumption can be tested through Hy : a = 0
vs. Hi : a # 0 under the proposed model. In this case, a test statistic can be
constructed with T, = &, i(dn)_lo?n, where f](dn) is the estimated covariance matrix
of n'/2(&, — a). Under the null hypothesis, T, converges weakly to a Chi-square
distribution XIQ,, with p degrees of freedom. To evaluate the power of the test statistics,
consider the true local alternative o« = n~'/2h, where h € RP, then by the central limit
theorem, T, converges weakly to a noncentral Chi-square distribution with p degrees
of freedom and non-centrality parameter h'Y(a)~th. Therefore, the power of the test
goes to 1 if hT¥(a)™*h — oo or ||n!/2al| — oo.
Similarly, the other two submodels can be tested and diagnosed. For the accel-
erated mean model, we consider Hy : v = 0 vs. H; : v # 0 and the test statistic is
Tam = A 2(3n) ", where 3(4,) is the estimated covariance matrix of n'/2(%, — 7).

For the accelerated rate model, we consider Hy : § = 0 vs. H; : f # 0 and
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Ty = B;i(ﬁn)*lﬁm where i(ﬁn) is the estimated covariance matrix of n1/2(3n - p).
Following similar arguments, both T, and T,, converge weakly to Chi-square distri-
bution Xf,, and the power of the two tests go to 1 when the true parameters satisfying

1/2

[n'/25|| — oo and ||n'/2p|| — oo, respectively.

4. Numerical Studies

Simulations were conducted to examine the performance of the proposed method.
The recurrent event process was generated from a non-stationary Poisson process
with intensity function \(t) = Z\g(te®X1e2X2)efrXa+82X where \o(t) = [2(1+1)] 7Y,
and X; and X5 were generated from independent standard normal distributions. The
subject-specific latent variable Z was either set as Z = 1 or generated from a gamma
distribution with mean 1 and variance 0.25. The latter yields a scenario of informative
censoring, while the former yields a scenario of non-informative censoring. In these
settings, we used E(Z) = 1 as opposed to Ag(7) = 1 which was assumed in Section 2
for ease of discussion. Since we only require one of these identifiability conditions
above, the proposed estimation procedure remains valid. We altered the regression
coefficients o and [ to generate data from whether the proposed generalized scale-
change model or from the submodels discussed in Section 2. The censoring time was
generated from an exponential distribution with mean 60e~*!/Z. We set T = 60.

With n € {200,400} and 1000 replications, Tables 1 and 2 summarize results
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under a generalized scale-change model and a Cox-type proportional rates model,
respectively. Results under the accelerated rate model and accelerated mean model
are presented in the Appendix S2 of the Supplementary Material. Under our settings,
the average number of observed recurrent events ranges from 1.5 to 5.7. The standard
errors of the proposed method were obtained from the efficient resampling approach
with 200 bootstrap samples. For comparison, we also report the results of the estimator
proposed by Sun and Su (2008), which requires a noninformative censoring assumption.
Both the proposed estimator and the estimator proposed by Sun and Su (2008) were
obtained by solving the corresponding estimating equations with the derivative-free
Barzilai-Borwein spectral algorithm implemented in Varadhan and Gilbert (2009).
Zero vectors were used as the initial value for the equation solver. We also present
results using the true values as the initial value to investigate the stability of the

estimating equations.

[Table 1 about here.]

[Table 2 about here.]

[Figure 1 about here.|

The proposed estimator is virtually unbiased for all scenarios considered regardless
of the choice of the initial value. The average standard errors for the proposed estima-

tors are reasonably close to the empirical counterparts, indicating that the proposed
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variance estimator performs well even with a moderate bootstrap sample of size 200.
Furthermore, the proposed estimator yields empirical coverage probabilities that are
close to the nominal level of 95%, suggesting that the normal approximation for the
distribution of the proposed estimators is appropriate. When n = 200, the empirical
coverage probabilities for Bn are closer to the anticipated level of 95% than that for
Q.,, suggesting that the normality approximation may require a larger sample size for
&, than for Bn Similar trends are observed in the scenarios presented in the Ap-
pendix S2 of the Supplementary Material. The estimates of the baseline cumulative
rate functions for all scenarios are also presented in the Appendix S2 of the Supple-
mentary Material. The averages of Ao(t) are indistinguishable from the truth for all
cases considered.

Through our simulation studies, the estimator of Sun and Su (2008) was found to
be sensitive to the choice of the initial values. As seen in Tables 1 and 2, the estimator
of Sun and Su (2008) yields large biases when the initial values were set to be zeros.
The average standard errors for the estimator of Sun and Su (2008) was obtained from
the classical bootstrap approach with 200 bootstrap samples. For most cases, the
bootstrap standard errors are not close to the empirical counterpart. The inconsistency
of the bootstrap standard errors reflect the instability in the estimator of Sun and Su
(2008). As a result, the resulting coverage probabilities are far from to the nominal

level. When the initial value was specified at the true value, their estimator yields



21

small biases when Z = 1 but moderate biases when the non-informative censoring
assumption is not met. The estimator of Sun and Su (2008) yields smaller empirical
standard errors for all cases when the initial value was specified at the true value,
which is not realistic in practice.

In the Appendix S2 of the Supplementary Material, we report results from addi-
tional simulation studies. We considered gamma frailty of variance 0.5 and 1, implying
a larger degree of heterogeneity among the subject. For all the settings considered,
our estimator remains virtually unbiased, with estimated standard errors reasonably
close to the empirical standard errors. The magnitude of the estimated standard errors
seems to increase with the variance of the frailty variable, but the empirical coverage
rates remain close to the nominal level in all scenarios. We also considered additional
scenarios where the average number of events per subject was lower than those in
the earlier settings, and scenarios where the recurrent events were generated from a
non-Poisson process given the frailty by including a second latent variable in the rate
model and/or altering the distribution of the interarrival time from exponential. The
performance of our estimator remains satisfactory in all scenarios.

Now that the proposed estimator is robust in most practical settings, we evaluated
the performance of testing the nested submodels. We considered the same simulation
settings but with a; = as and 81 = (35, and only focused on the informative censoring

scenarios. Based on 1000 replications, Figure 1 displays the rejection rate at a 0.05
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significance level for the tests discussed in Section 3 when fixing either o or 5 at (0,0)"
and the other at (k, k)" for some constant k. We set k = 0 initially, then move k away
from 0 in both directions to denote gradual deviation from the accelerated mean model
and migration to the Cox-type model or accelerated rate model. When a = = 0, all
rejection proportions are close to the nominal level of 0.05. In Figure 1a, the rejection
proportions for the 7., test are close to the nominal level of 0.05 reflected by the
true value of @« = 0. As (8 deviates from 0 in Figure la, both the T,,, and T,, tests
increase in power, with slightly higher power for the Ty, test. Similarly, in Figure 1b,
Teox test and T, test increase in power as a deviates from 0 while 7T}, test remains at
the nominal level of 0.05 throughout. Among the tests, the T,,, test appears to have
the highest rejection proportion indicating that our method is more likely to reject
the accelerated mean model. For a given k, the rejection proportion for the T, test
is higher than that for the T, test, which is because Bn is usually associated with

smaller standard errors.

5. Application

Serious infection is a major source of complications after transplant and is known
to be associated with increased risk of allograft failure and death. A prospective
cohort study was conducted at the Johns Hopkins Hospital to evaluate morbidity

and mortality after transplant. In this study, patients who consented to an IRB
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approved protocol were contacted every 3 months to obtain information on serious
infection episodes. This preliminary cohort contained 161 kidney transplant recipients
and 164 patients who underwent hematopoietic stem cell transplant (HSCT) at the
Johns Hopkins Hospital in the year of 2012. Patients were followed until death, graft
failure, or the end of the study, whichever comes first. The median follow-up time was
20.2 months for the kidney transplant cohort and 12.2 months for the HSCT cohort,
respectively. During the study, the kidney transplant recipients experienced a total of
206 infection episodes (1.3 per recipient), and the HSCT recipients experienced a total
of 290 infection episodes (1.8 per recipient). There were 42 deaths observed during

the study period, among which 36 were in the HSCT cohort.

[Figure 2 about here.|

[Table 3 about here.|

We first analyze the infection process of the kidney transplant cohort. Of the 161
kidney transplant recipients, 91 (56.5%) were white, 47 (29.2%) had hypertension, and
11 (6.8%) had diabetes at the time of transplant. The age at transplant among the kid-
ney transplant recipients ranged from 19.7 to 81.8 years, with a median of 53.5 years.
Other potential risk factors used in the analysis include the human leukocyte antigen
(HLA) incompatibility and the high-risk cytomegalovirus (CMV) serostatus (CMV-

negative recipients and CMV-positive donors vs. others). There were 31 (19.3%)
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HLA incompatible patients and 21 (13.0%) patients with high-risk CMV serostatus.
The age variable was centered and scaled to have unit variance. Figure 2a depicts
the longitudinal patterns of recurrent infection episodes by HLA-compatibility in the
kidney transplant cohort. The plot suggests that HLA-incompatible transplant re-
cipients tend to have a higher frequency of serious infections than HLA-compatible
recipients. The upper panel of Table 3 summarizes the estimated covariate effects for
the kidney transplant cohort, with standard errors estimated through the proposed
resampling approach with 500 bootstraps. Using Wald’s Chi-square test, p-values for
testing Hy: a« =0, Hy: =0 and Hp : v =0 are all < 0.001. The hypothesis testing
results suggest that none of the submodels is appropriate for the data and that the
covariates modify both the timescale of the infection process and the magnitude of
the rate of infections. The estimated coefficients for age and HLA incompatibility are
both significantly positive, implying that patients who were older or HLA incompati-
ble were more likely to experience infections sooner and more frequent throughout the
follow-up. In particular, for one standard deviation increases in age (12.8 years), the
time to infection episodes was accelerated by a factor of 0.36 in addition to an elevated
risk of 1.75. Similarly, patients underwent HLA incompatible kidney transplantation
had an accelerated time to infection episodes by a factor of 0.17 on top of an elevated
risk of 3.95. Patients with high-risk of the CMV disease or with hypertension tend to

have a decelerated time to infection episodes by a factor of 5.00 and 6.46, respectively.
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A similar analysis was performed with the HSCT cohort where, instead of HLA
incompatibility and CMV serostatus, the type of stem cell transplant (allogeneic vs.
autologous) was included as a covariate. Among the 164 HSCT patients, 126 (76.8%)
were white, 93 (56.7%) were male, 128 (78.1%) had an allogeneic transplant, and 42
(25.6%) had lymphomas disease at transplant. The age at transplant ranged from
19.2 to 75.5 years, with a median of 52.2 years. We used the standardized age in this
analysis. Figure 2b depicts the longitudinal patterns of recurrent infection episodes
and death by the type of HSCT transplantation. It is observed that HSCT patients
who underwent an allogeneic transplant tend to experience serious infections at a
higher frequency. The lower panel of Table 3 summarizes the parameter estimates and
their standard errors. The p-values for testing Hy : § = 0 is 0.37 while the p-values
for testing Hy : @« = 0 and Hy : v = 0 are < 0.001. The hypothesis testing results
suggest that the covariates were not significantly associated with the rate of infections,
and the proposed model reduces to the accelerated rate model. Since our estimating
procedure estimates the timescale effect parameter without requiring the estimation of
the multiplicative effect parameter, our inferences for the regression coefficients in the
accelerated rate model are still valid. The only significant risk factor is the allogeneic
transplant, which decelerated the time to infection episodes by a factor of 0.13.

Finally, we considered a graphical assessment of whether the baseline rate function,

Ao(t), is in the Weibull class. The assessment is motivated by the fact that, under the
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Weibull model, the proposed model reduces to the Cox-type model of Wang et al.
(2001) and log{Ay(t)} is linear in log(t). Plots of log{Ay(t)} versus log(t) presented in

the Appendix S3 of the Supplement Material suggests that Ag(t) is not Weibull.

6. Discussion

The proposed model tackles the need to characterize covariate effects in a flexible
modeling framework and to account for informative censoring in recurrent event data
analysis through a generalized scale-change model with an unspecified frailty. The
estimation procedure is novel, without requiring information on the frailties by ex-
ploiting the model structure. The asymptotic properties of the proposed estimator are
established, and inferences are based a computationally efficient resampling method.
Since the model encompasses several popular models as special cases, an attractive
byproduct is model specification tests for the submodels via various restrictions on
the model parameters.

The proposed estimation procedure is based on a quasi-conditional likelihood,
conditioning on (Xj, Z;) and Y;. Thus, our model is simple in the sense that model
specifications for the censoring event time and the frailty are not needed as they
can be treated as nuisances. For the same reason, our model is robust against the
misspecification of the censoring time distribution, making it an appealing alternative

to most joint modeling approaches that model the risk of recurrent events and the
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informative time jointly. The proposed method can be easily extended to a joint
modeling framework when the joint analysis of the covariate effects on the recurrent
events and the terminal event is of interest. For instance, in addition to assuming
Model (2.1) for the underlying recurrent event process, we may consider the accelerated
failure time model as in Xu et al. (2017) and specify the hazard function of the terminal

event D as

h(t) = Zho(teX )X ¢, te0,7], (6.6)

where ( is p X 1 vector of model parameters and hy(t) is the baseline hazard function.
Under the joint models, the recurrent event model can still be estimated by applying
the estimation procedure described in Section 3 and Model (6.6) can be estimated
using the “borrow-strength” technique originally proposed in Huang and Wang (2004)
and later adopted in Xu et al. (2017). This is an interesting extension to pursue in
the future.

There are also several other research directions. The robustness of the proposed
method comes at the cost of efficiency loss. It would be of interest to evaluate the
efficiency loss in exchange of robustness by comparing the proposed methods with
the likelihood-based joint analyses of recurrent and terminal events, as the latter is
expected to yield the most efficient parameter estimation under correct model specifi-
cations. In particular, the current estimation of o does not depend on the estimation

of 8 because in our carefully devised estimation procedure, 8 is not involved in the
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embedded seimparametric estimation on clustered right-truncated data. A more ef-
ficient estimator may be constructed by incorporating the knowledge about (8 in the
estimation of «, and, thus, to develop an iterative algorithm for estimating both
and «. Nonetheless, such procedure is difficult to derive without additional assump-
tions because e® %i and the unobserved frailty variable Z; are coupled together in
the rate function. It is expected that additional assumption on the distribution of
Z; will be needed in order to exploit the information about 5. For instance, one
may use a likelihood-based estimation approach by assuming the distribution of the
frailty variable. However, such likelihood-based inference for the proposed model has
not been investigated in the literature either for univariate survival data or recur-
rent event data, and thus warrants further research. Given that the current method
can only deal with time-independent baseline covariates, it would also be of interest
to extend the proposed method to allow both time-independent and time-dependent
covariates (Huang et al., 2010). From the model identifiability perspective, we rec-
ommend that the Weibull model should be fitted and diagnosed first, and if rejected,
the proposed model can then be fitted. As graphical diagnoses are often subjective,
a formal goodness-of-fit test for the Weibull model with frailty would be a tool of

important utility before applications of the proposed model.
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Supplementary Materials

The online supplementary materials contain the proof of Theorem 1, additional sim-

ulation results, and graphical diagnosis of the Weibull model.
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Table 1: Simulation results with o = (—=1,—1)" and 8 = (1,1)". Columns without
an asterisk (%) present results using the zero vector as initial value; columns with an
asterisk present results using the true value as initial value; Bias is the empirical bias;
ESE is the empirical standard error; ASE is the average of the standard error obtained
from resampling; CP is the empirical coverage probability (%) of 95% confidence

intervals.
Proposed Sun and Su (2008)
n Bias ESE ASE CP Bias* ESE* Bias ESE ASE CP Bias* ESE*
Z =1

200 o7 0.005 0.307 0.295 93.0 —0.011 0.308 0.678 0.533 0.218 19.2  0.003 0.095
as  0.007 0.277 0.264 93.1 —0.013 0.273 0.646 0.499 0.214 19.9 0.003 0.091
By 0.005 0.181 0.184 93.7 0.004 0.179 0.373 0.332 0.142 33.5 —0.010 0.091
Ba 0.005 0.175 0.174 94.2 —0.002 0.174 0.375 0.323 0.140 34.7 0.007 0.094

400 o7 0.019 0.218 0.210 94.6 —0.004 0.217 0.218 0.251 0.161 39.5 0.001 0.086
as 0.011 0.194 0.186 94.2 0.003 0.189 0.194 0.239 0.155 41.4 —0.008 0.087
By 0.006 0.135 0.131 95.1 0.005 0.131 0.123 0.172 0.109 57.1 —0.001 0.077
By 0.008 0.129 0.128 95.0 0.000 0.130 0.113 0.165 0.105 57.4 —0.002 0.077

Z ~ Gamma(4,4)

200 oy 0.001 0.314 0.301 93.7 0.001 0.320 0.683 0.410 0.224 18.8 —0.113 0.159
as; —0.010 0.281 0.267 93.3 0.023 0.281 0.536 0.386 0.230 25.1 0.095 0.146
B1 —0.008 0.221 0.219 93.7 —0.006 0.223 0.311 0.305 0.173 44.1 0.103 0.169
B2 0.003 0.213 0.209 93.5 0.013 0.214 0.311 0.301 0.180 49.6 0.096 0.168

400 o7 0.005 0.232 0.215 94.5 —0.008 0.224 0.432 0.257 0.162 23.9 —0.147 0.156
ay 0.002 0.203 0.191 94.4 —0.009 0.205 0.264 0.218 0.158 41.7 —0.091 0.144
f1 0.005 0.163 0.158 94.4 —0.006 0.168 0.169 0.190 0.136 62.6 —0.090 0.136
B2 —0.001 0.151 0.151 94.7 —0.000 0.147 0.134 0.188 0.138 70.4 0.097 0.141
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Table 2: Simulation results with o = (0,0)" and 8 = (—1,—1)". Columns without
an asterisk (%) present results using the zero vector as initial value; columns with an
asterisk present results using the true value as initial value; Bias is the empirical bias;
ESE is the empirical standard error; ASE is the average of the standard error obtained
from resampling; CP is the empirical coverage probability (%) of 95% confidence
intervals.

Proposed Sun and Su (2008)

n Bias ESE ASE CP Bias* ESE* Bias ESE ASE CP Bias* ESE*

Z =1

200 o; —0.004 0.161 0.155 92.5 —0.006 0.148 0.358 0.240 0.092 15.2 —0.019 0.049
as —0.001 0.153 0.151 92.5 0.005 0.150 0.394 0.237 0.097 11.6 —0.018 0.043
f1 —0.001 0.118 0.114 92.9 —0.003 0.109 0.241 0.154 0.081 20.3 —0.013 0.069
B2 —0.003 0.112 0.113 92.5 0.003 0.112 0.262 0.158 0.082 18.2 —0.012 0.072
400 «; 0.001 0.104 0.100 94.9 0.001 0.110 0.187 0.215 0.078 33.3 —0.016 0.039
ap —0.005 0.102 0.096 93.6 —0.001 0.102 0.199 0.214 0.077 30.4 0.008 0.042
B1 —0.001 0.078 0.073 94.8 0.001 0.081 0.127 0.145 0.064 39.8 —0.010 0.062
B2 —0.003 0.076 0.071 94.6 —0.001 0.076 0.135 0.148 0.063 39.4 0.005 0.058

Z ~ Gamma(4,4)

200 oy 0.007 0.167 0.146 92.4 —0.011 0.169 0.414 0.219 0.118 15.0 —0.042 0.062
ag 0.002 0.155 0.141 94.0 —0.001 0.155 0.388 0.253 0.124 18.2 —0.045 0.077
B1 0.007 0.149 0.124 91.7 —0.000 0.142 0.273 0.168 0.127 35.9 —0.044 0.129
B2 0.003 0.146 0.123 90.7 0.005 0.143 0.255 0.202 0.131 40.5 —0.043 0.121
400 «;  0.005 0.113 0.101 92.2 0.001 0.112 0.302 0.208 0.093 20.3 —0.051 0.071
oz 0.001 0.108 0.099 93.6 0.001 0.105 0.249 0.231 0.100 32.0 —0.049 0.074
B1 0.000 0.106 0.095 91.9 0.005 0.102 0.189 0.168 0.100 42.7 —0.044 0.096
B2 —0.005 0.102 0.099 91.8 0.006 0.100 0.174 0.186 0.102 49.4 —0.055 0.102
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Table 3: Summary of the infection data; & and 3 are the point estimator; SE(&) and

~

SE(B) are the corresponding standard error; the age variable was standardized to have
mean 0 and standard deviation 1.

Proposed Model

A A

Q SE(&) B SE(pB)

Kidney transplant cohort
Age 1.025 0.354  0.557 0.263
White —-1.729 0.952 —-0.631 0.600
HLA incompatible 1.757  0.651 1.374 0478
CMV —-1.609 0.654 —0.087 0.487
Diabetes 1.076  1.383 0.019 0.821
Hypertension —1.864 0.918 —0.917 0.729

HSCT cohort
Age —0.320 0.567  0.075 0.149
White —0.966 0.871 —0.281 0.504
Male —2.237 2781 —-0.864 0.773
Allogeneic  —2.038 0.804  0.517  0.907
Lymphomas disease —1.048 1.347 —0.478 0.565
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Rejection probability
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Figure 1: Rejection rates based on 1000 replications at 0.05 significance level using
the hypothesis testing procedures described in Section 3. Solid lines (—) present the

rejection rates for Hy :

a = 0, which is used to test the Cox-type proportional rates

assumption; Dashed lines (---) present the rejection rates for Hy : § = 0, which is
used to test the accelerated rate assumption; Dotted lines (---) present the rejection
rates for Hy : a = [ or v = 0, which is used to test the accelerated mean assumption.
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Figure 2: Longitudinal plots of the infection data; horizontal gary lines indicate the
time elapsed from transplant to end of follow-up; X represents an infection episode; e
represents death.
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