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DeActive: Scaling Activity Recognition with Active Deep Learning
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Deep learning architectures have been applied increasingly in multi-modal problems which has empowered a large number

of application domains needing much less human supervision in the process. As unlabeled data are abundant in most of the

application domains, deep architectures are getting increasingly popular to extract meaningful information out of these large

volume of data. One of the major caveat of these architectures is that the training phase demands both computational time

and system resources much higher than shallow learning algorithms and it is posing a diicult challenge for the researchers to

implement the architectures in low-power resource constrained devices. In this paper, we propose a deep and active learning

enabled activity recognition model, DeActive, which is optimized according to our problem domain and reduce the resource

requirements. We incorporate active learning in the process to minimize the human supervision along with the efort needed

for compiling ground truth. The DeActive model has been validated using real data traces from a retirement community center

(IRB #HP-00064387) and 4 public datasets. Our experimental results show that our model can contribute better accuracy while

ensuring less amount of resource usages in reduced time compared to other traditional deep learning approaches in activity

recognition.
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1 INTRODUCTION

Human activity recognition is becoming an ubiquitous need for many emerging smart environment applications
such as remote heath monitoring, participatory sensing, interactive gaming, and green building energy manage-
ment. Thriving development of low-cost ambient, mobile and wearable devices in recent years has intensiied the
efectiveness of inferring Activities of Daily Livings (ADLs) in ubiquitous settings [14]. These ubiquitous devices
are equipped with diverse sensors like accelerometer, gyroscope, GPS, magnetometer etc. The emergence of
Internet of Things (IoT) has delivered multitude of smart infrastructure sensors and connected devices which has
also complemented the evolution of smart environment. By exploiting these pervasive and mobile technologies
researchers are proposing new methodologies to capture the activity, mobility and behavioral pattern of our
daily life. Many algorithmic techniques in activity recognition (AR) literature such as sparse coding [9], transfer
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learning [32], active learning [23], deep learning [48] have been investigated recently for versatile AR application
development and deployment. While each approach has its own advantages and disadvantages in terms of
scalability, adaptability, and transferability of activity learning, recognition and discovery models, in this work,
we particularly focus on leveraging the simplicity of those techniques and exploiting that to fulill the emergent
requirements of large scale activity recognition in heterogeneous settings. Fundamentally we investigate how
the underlying inference pipeline of the activity recognition process in deep architecture can be simpliied. Such
a simpliied architecture can then be exploited in various constrained (resource deprived smart devices) and
unconstrained environments (heterogeneous smart environments and multiple users population) where the
requirements of the applications may vary signiicantly. This help ramify the performance of deep activity models,
and reduce resource footprints in terms of memory, CPU usage and computational time without compromising the
inherent power of the core methodologies. Incorporating resource eiciency and cost-efective intelligent labeling
techniques with the deep activity models help scale the activity recognition models in diverse environments and
showcase the efectiveness of deep activity learning methodology when augmented with other simplistic popular
machine learning approaches.
One of the underpinning challenges in scaling these activity recognition models outside any constrained

environments is eicient feature representation from unlabeled noisy source of data and accumulating signiicant
amount of labeled training data. Conventional shallow learning approaches heavily relies on the handcrafted
features extracted by human interventions. Therefore, the eiciency of the trained model largely depends on
the expertise and domain knowledge of the feature engineer. The human designer needs to ilter appropriate
features to reduce the dimensionality of the feature space as well which is laborious. Also the statistical features
can help in learning low-level activities like walking, sitting, standing only but these shallow features fail to
summarize and generalize complex activties like cooking, doing laundry, cleaning etc. which consist combinations
of low-level activities. Deep learning based approaches can help us to learn discriminative features without any
human interventions. However a major bottleneck for deep learning based approaches is that the model itself
is like a black box and the huge number of generated parameters are intractable. As a consequence it becomes
increasingly diicult to manage and integrate changes in the model over time.

Deep learning based unsupervised machine learning techniques have been investigated to handle the scarcity
of activity labels. While deep learning based techniques have shown signiicant improvements for large scale
activity recognition problems [28], itting the activity models in presence of unlabeled activity samples and
mitigating the biasness of overitting distributions are still challenging research problems [29]. The unsupervised
training and ine tuning phase of deep nets also warrant substantial computational resources and labeled data
sources, respectively [30]. While shallow and supervised learning [46] sufer from representing well the large
scale activity learning model, the hierarchical deep learning [47] model helps capture the iner details of the
activity model. It incrementally helps mitigate the need for handcrafted features in layer by layer but at the cost
of more resource-hungry computational operations involving calculations of weight and biasness parameters
of the model [20]. The main objective of this work is not to depreciate the intrinsic advantage of deep nets or
appreciate the inherent advantages of clustering with neural networks, but to showcase the viability of various
combination of these approaches for simpliied and efective activity recognition at scale.

Trading the balance between this system-level resource need and application-level performance improvement is
a non-trivial research problem, and have been investigated in recent activity recognition application domain [47].
Scaling the deep learning model for small footprint devices such as smartphone and smart wristwatches have
also been investigated by exploiting diferent inference phases of deep model [60]. While the recent approaches
investigated the runtime layer compression and deep architecture decomposition by crunching deep learning
computational complexity, we propose to investigate simple K-means clustering and active learning approach
to curtail the complexity of feature extraction and the burden of ground truth data collection, respectively.
While auto encoder is the approach to learn the features in the deep activity models, we investigate a simple
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K-means clustering strategy to learn and represent the features of the hidden nodes by exploiting the quantization
capability of k-means. This help to percolate the simplicity behind the feature extraction, representation, and
learning in a deep activity model and its performance in terms of system resource, computational time and
performance improvement.
Existing deep learning models assume that activity labels are available and if not human annotator can be

passively employed. In particular, stable supply of structured and labeled data is substantial for an efective deep
learning algorithm. Despite the existence of plethora of data in pervasive computing, these collections do not
provide much information due to poorly or partially labeled. In order to improve the model incrementally, Active
Learning (AL) has been employed to select the most informative data instances and subsequently acquire labels
of these data instances. This reduces the burden of labeling data manually and accelerates the training time. If
infused together with deep learning, AL framework can help to improve the eiciency of deep model. However
AL frameworks only ilter out most informative instances from a pool of instances which are relatively small in
number. As a result, most of the instances with low uncertainty gets ignored. A handful of labeled instances may
not have a signiicant impact in the training of deep learning. Although most informative instances can play
a vital role in learning an important pattern, but instances with low uncertainty can also help to ine tune the
parameters of a deep model. In this work, we propose to embed active learning at the training phase of deep
learning to query the most informative and cost-efective unlabeled sample points to collect the labels and also
utilize the low uncertain instances. The key contributions of this work include:

• We exploit K-means clustering technique to represent and learn the features in the pre-training phase in
presence of unlabeled data and ine-tuning phase of output layers in presence of labeled data. Our proposed
approach helps to bridge the continuation of generative and discriminative learning of deep activity models
while reducing the resource overhead with improved classiication performance.
• We propose an active learning technique in the ine tuning phase of the deep learning training process to
accumulate the most informative and meaningful labeled samples. Also we label the instances with low
uncertainty score by calculating the similarity indices between them and the most informative instances.
The density weighted active learning based heuristic augmented with optimized classiier help scale the
deep activity models.
• We evaluate our proposed, DeActive framework on real activity recognition data traces and a real smart
home system, SenseBox which we built to validate that simplistic of-the-shelf machine learning algorithms
augmented with deep activity models so that we can showcase competitive performance gain and less
resource usage.

2 RELATED WORK

Activity Recognition using heterogeneous sensor and data sources has been investigated extensively over the
past decade. In this section we contrast our model DeActive with other most relevant proposed models.

2.1 Activity Recognition

Inferring Activities of Daily Living (ADL) are approached from two perspective - vision based and sensor modality
based. In vision based approach, researchers have exploited microphone and cameras to extract the performed
human activity from audio and video or image data [27] [62]. A variety of sensor modalities like accelerometer,
ambient sensors, RFID tags, Radar etc [44] [25] have been used in sensor based approach. The major upsurge of
mobile and wearable technologies have also accelerated the activity recognition research [22] [54]. Bao and Intille
[7] used ive biaxial accelerometers which are placed in diferent parts of the body and detected 20 activities.
Haiz et al. [43] used an array of micro-doppler radars to detect diferent human body movements. In many of
these works, shallow machine learning models like Decision Trees, HMM, SVM etc have been harnessed to ind
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meaningful relationship between the features learned from the sensor data and the performed activity [44]. The
widely used features in activity recognition domain include basis transform coding (e.g.signals with wavelet
transform and Fourier transform) [39], statistical parameters extracted from raw sensor signals [19] and symbolic
representation [31]. Although these features are widely used in many time series problems, they are heuristic
and not task dependent. Activity recognition models also have to address challenges like intraclass variability,
interclass similarity, the NULL-class dominance, complexness and diversity of physical activities [19].

2.2 Deep Learning & Activity Recognition

In most of the cases activity recognition models based on shallow classiiers deal with a set of handcrafted
features. These features are then fed to the model, but many of these features are not assured to be relevant and
eventually this expedites diiculty in inferring complex activities. Some times statistical features fail to capture
substantial facets of human body movements. Due to recent advancements in high performance computing and
implementation of deep architectures, researchers are now proposing activity recognition models using deep
learning [47] [34] [46] [40] [58] [17]. The authors of [24] proposed a hybrid approach using HMM and deep
learning to infer activities from triaxial accelerometer data. Francisco et al [21] demonstrated a model based on
deep convolution and LSTM recurrent network which is suitable for multimodal wearable sensors. Simple RBM
based model can outperform other activity recognition models has been demonstrated in [28]. The authors also
prove that resource usage of traditional RBM in smartwatches is manageable. A deep model using an extension
of Convolutional Neural Netowrk and recurrent neural network has been proposed in [5]. DeepEar [48] a deep
learning enabled mobile audio sensing framework addresses the issue of audio data classiication. Li et al. [52]
[51] proposed an activity recognition system based on convolutional neural network using passive RFID data.
By connecting diferent Convolutional Neural Networks (CNN) through fusion methods, an ensemble model
is built to infer the kitchen related activities in [55]. The authors of [56] investigated the efect of transferring
kernel in the convolutional layers in mobile activity recognition domain. Their work considered transfer between
users, application domains, diferent sensors and locations. They validated that kernel transfer can reduce the
training time by 17%. Guan et al. [33] proposed a Long Short Term LSTM based ensemble model and tackled the
problems of having imbalanaced and problematic data for wearable devices. The authors of [69] proposed DEC
(Deep Embedded Clustering) to learn feature representations and cluster assignments simultaneously using deep
neural networks. DEC reduces the dimension by optimizing the KL-divergence to minimize the withing-cluster
distance of each cluster. The proposed feature embedding method works well for clustering but fails to learn the
latent data structure.

2.3 Active Learning & Activity Recognition

The use of active learning for attaining ground truth at low cost in activity recognition systems has been
addressed in recent years [16] [23] [38]. The authors of [53] [65] used uncertainty based active learning for
activity recognition. The authors of [12] used entropy based measure to calculate the informativeness of activity
data instances. Legion:AR [49], an activity recognition framework uses active learning and inquires for labels
from crowd on demand. AALO [37] uses active learning for labeling overlapped activities. The authors of [4]
validates that by using active learning the actual annotation cost can be reduced by 30-75%. [36] employed an
entropy based uncertainty measure to select the most informative instances and validated that only 20% of the
training data ensures convergence to the same accuracy while using the whole training set. A variety of research
where active learning has been augmented with deep learning have also been proposed [67] [70] [64]. Zhu et al.
[35] proposed an active learning algorithm GAAL using Generative Adversarial Network (GAN). GAAL generates
new uncertain instances and then requests for annotation to the human annotator. These labeled instances are
then added back to the training data set. A cost efective active learning algorithm in conjunction with CNN
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Fig. 1. Overall framework for DeActive activity recognition model. Deep Learning phase is composed of k-means encoders.

The output of k-means in the final layer is provided to the Active Learning phase which selects the most informative instances

from the unlabeled data pool.

(CEAL) to discover the large amount of high conidence samples from the unlabeled set for feature learning has
been proposed in [68].

3 OVERALL DESIGN

Our DeActive model is designed to work with sensor entities like ambient PIR sensor, accelerometer etc. which
are used for activity recognition. As we handle the heterogeneous sensor entities, we need to pre-process the
data accordingly due to the variation in data. For example, ambient PIR sensor provides binary values (1=Motion
and 0 = No Motion). It is diicult to model an activity recognition classiier using only binary sensor values,
so it is necessary to extract some more information using the data. On the other hand, accelerometer sensors
provide human movement acceleration which has been an important indicator for activity pattern recognition in
recent years. As acceleration does not encounter binary values, the processing of accelerometer data is diferent
compared to PIR sensors. As a result our pre-processing step handles diferent sensor data sources and extracts
features. DeActive model encompasses two important components - Deep Architecture and Active Learning.

Real-time human activity and context monitoring using mobile devices or wearables has become an essential
constraint. Since deep learning algorithms have high complexity in terms of computation and resource availability
[10], researches are currently focusing on accelerating deep learning on mobile devices [28] [8]. Most of the
smart home system controllers are embedded systems and have very limited resources. For example the specs of
Samsung SmartThings hub V2 is: 1GHz ARM Cortex-A9 CPU, 512MB DDR3 RAM, and 4GB Flash memory. On
the other hand these devices do not have any GPUs which can assist executing deep architectures. The authors
of [46] proposed a software accelerator DeepX for low power mobile devices. DeepX is designed to optimize the
execution by decomposing the deep architecture and innovative use of resources. In DeActive, we try to optimize
the parameters of fully connected deep learning model by using k-means as our encoder. The authors of [20]
have shown that if properly initialized according to the problem domain, k-means can accelerate the encoding
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Fig. 2. DeActive pipeline from collecting data to final inference.

process. We just need to tune the parameter k in the hidden layers, as a result of which the calculation of millions
of parameters as in stacked RBM autoencoders is minimized.
Active Learning strategies are used to collect ground truth information with minimal human supervision.

Simpler active learning strategies like margin sampling, uncertainty sampling and least conidence are easier to
implement, however overtime these sampling strategies become biased and overconident [15]. Other popular
query strategies like Query by Committee (QBC) and disagreement based approaches have higher computational
complexity as they have to maintain a set candidate hypothesis space which can get intractable overtime. It is
possible to initialize a set of hypothesis space with smaller cardinality, however the probability of ignoring the
true hypothesis always remains. Cluster based active learning methods may provide a signiicant advantage
over simpler ones in terms of efectiveness [57]. By exploiting the input distribution, we can cluster the most
informative instances after each iteration and query the ideal instances of those clusters like the centroids.
However cluster based approaches have limitations like querying the outlier cluster. In DeActive , we employ
a density-weighted heuristic to calculate the most informative data instances. The idea is to query the data
instances which lie in the dense region of the cluster so that we can label the neighboring instances as well. We
consider the euclidean distance as our similarity measure among the instances while calculating the density.
In order to remove the outliers from being queried we take advantage of our k-means clustering and use the
silhouette coeicient in our inal objective function. This coeicient is calculated by the distance measurement
between the points in its cluster and other surrounding cluster centers. We also exploit this coeicient to ilter
out the representative instances of each clusters. If the coeicient value is higher than a predeined threshold,
then we consider it and assign its label to all other instances inside the cluster. In Figure 1 we demonstrate our
overall DeActive framework. We have two diferent data instance pools - unlabeled and labeled data pools. We
then extract both time domain and frequency domain features from the data instances and normalize them. In
our Deep Learninд module, we quantize our feature vectors by using K-means based feature encoding and use
the density estimates of the clustering in our Active Learninд module. In Fig. 2 we demonstrate the pipeline of
our Deep Learninд module. Finally according to the value of our objective function, we then query the selected
data instances.
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4 UNSUPERVISED FEATURE LEARNING

In recent years a lot of research have been conducted in the area of deep learning for representing data in lower
dimension. One of the prominent approach for feature learning in deep architectures is to use layers of non-linear
processing units for extraction and embedding of features. These layers are referred as auto encoders. These
auto encoders are responsible for assembling lower dimensional representation of the higher dimensional data.
Given an input x ∈ Rn , an auto encoder attempts to learn an encoding function f (x ) ∈ Rk , k << n by iteratively
minimizing the error of reconstructing x through a decoding function д( f (x )) � x ∈ Rn . The authors of [20]
showed that spherical k-means or spectral clustering can be used as an alternative to encoders using sparse
encoding or PCA. One major drawback for using k-means is that the capability of discovering sparse directions
in data largely depends on the dataset size and dimension. If the data dimension is higher, we will need a large
volume of data to outperform other encoders. However, we consider data is abundant and so our concern is to
speed up the process. In this section we discuss how we can exploit the k-means algorithm as our encoder.

4.1 K-Means Clustering

K-means clustering is a partitioning method where a set of observations are partitioned into a speciied number
of clusters and similar observations reside in the same cluster. Given a set of observations X = {x1, ..,xn }, the
observations are assigned to k clusters byminimizing the error distance between cluster centersC = {c1, c2, ...., ck }
and X , while assigningW = {w1, ....,wk } class indexes:

E (C,W ) =

n∑

i=1

∥xi − cwi
∥ (1)

In most of the cases this error distance Eqn. 1 is minimized using heuristics like Lloyd’s algorithm, Elkan [18]
etc. But these heuristics are unable to adapt in case of large amount of data. As in our case we plan to employ
K-means as our hidden encoder layer in deep architecture, so the algorithm needs to process a large volume of
data. To address this issue we propose to design our K-means using Stochastic Gradient Descent [11] [66]. The
authors of [11] showed that optimizing the k-means cost function using Expectation Maximization (EM) based
approach is equivalent to Newton’s method. Although second order methods like Newton’s method tends to
converge faster than gradient descent but optimizing K-means using SGD has been proposed in the literature
for addressing large-scale learning tasks, due to its superior performance and low resource footprint [42] [63].
Other clustering models like GMM can also be employed to learn the encoding. GMM have the advantage of
doing soft assignment of cluster centroids over hard assignment in k-means. However, k-means is much simpler
than GMM in both complexity and model interpretability which motivated us to exploit it and we try to recover
the problem of hard assignment by introducing appropriate feature mapping function. Although density based
clustering methods like DBSCAN can be also employed but it fails to ensure scalability while handling high
dimensional data. Also DBSCAN is unable to capture the underlying data distribution if there are large diferences
in densities of the clusters. The objective function for k-means is Qkmeans = mink

1
2 (x −wk ). We calculate the

gradient ▽wk
Qkmeans = −ηt

δQ (w )

δw
by taking the partial derivative of the Objective function. After this we update

the learning rate η and weight vectorw according to Eqns. 2 and 3. The whole process iterates until the cluster
centers are no longer changing.

ηk = ηk + 1 (2)

wk = wk +
1

ηk
(x −wk ) (3)
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4.2 K-Means as Encoder

The K-means clustering algorithm takes two parameters, number of clusters k and a set of observation vectors V .
The algorithm returns cluster centers or centroidsC = {c1, c2, ...., ck } for each of the k clusters. While associating
an observation vector vi to a cluster kj , the primary goal is to minimize the distance between the vector and
cluster center. The result of k-means can be employed to quantize vectors. The goal of vector quantization is
to form encoding of vectors which reduces the expected distortion. Eventually k-means algorithm extracts a

dictionary D ∈ Rn×k of k vectors where each vector x (i ) ∈ Rn , i = 1, ...,m is mapped to an encoded vector which
reduces the error in reconstruction. The deinition of the dictionary is as follows:

minimize
∑

i

∥D
(i )
s − x

(i ) ∥22 (4)

where ∥s (i ) ∥0 ≤ 1, ∀i and ∥D (j ) ∥2 = 1, ∀j

In Eqn. 4, s (i ) ∈ Rn is a code vector associated with input data point x (i ) . D (j ) is the jth column of dictionary

D. Our goal is to form the dictionary D and extrapolate the code vectors of each data point x (i ) in such a way

that if given s (i ) and D, we can reconstruct the original x (i ) . Our objective is to reduce the squared diference

between x (i ) and its analogous reconstruction D
(i )
s . This is accomplished by two constraints described in Eqn. 4.

The irst constraint ∥s (i ) ∥0 ≤ 1 means that each code vector s (i ) is forced to have at most one non-zero entity.
The second constraint ∥D (j ) ∥2 = 1 ensures that each column in the dictionary is of unit length. The encoding
and reconstruction mechanisms are similar to sparse coding [50]. The diference between K-means and sparse

coding is that the latter allows more than one non-zero entity in each code vector s (i ) which leads to more precise
representation. Although sparse coding can be interchangeable here but the simplicity and scalability of K-means
can be useful in scaling our activity recognition system. Also we need to solve a convex optimization problem for
every code vector in sparse coding which requires an immense endeavor and conclusively makes it diicult to

deploy at large scale. The optimal code vector s (i ) used in K-means is:

s
(i )
j =


D (j )Tx (i )

, if j == argmaxl |D
(l )Tx (i ) |

0, otherwise
(5)

Using Eqn. 5 we can form the code vectors rapidly and can train very large dictionaries immediately by
alternative optimization of D and s . Also we only have one parameter to tune for K-Means which is the number
of centroids for each hidden layer. At the inal layer we apply k-means to ind the desired k class indexes.

4.3 Initialization

One of the major problems of k-means algorithm is that it may produce empty clusters depending on the initial
centroids. Although for static cases this problem is trivial and can be avoided by running the algorithm for couple
of times. If empty cluster problem is not handled, it may lead to signiicant performance reduction. Therefore, it is
important to properly initialize the centroids. Random initialization of initial central vectors is one of the simplest
approach, but this will not be efective for sensor data. Whether the data are coming from ambient or wearable
sensors, the data tend to group too densely in some areas which results in a large number of centroids starting in
a dense region. Most of these centroids end up becoming clusters with very few data instances. In order to avoid
such scenario, we propose to randomly initialize the centroids from a Normal distribution and then normalize
them to unit length in accordance with our constraint. Let X = {x1, ....,xi } be our data set and S = {s1, .., si } is
our corresponding code vector matrix. We update the centroids according to Eqn 6. We add the l2 norm of the
diference between our previous dictionary Dold and the new dictionary D with the reconstruction error to make
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the update damped. Our goal is to minimize this error and calculate the optimum dictionary. After optimization
we get the update rule as Eqn 7. Here SST refers to the dot product of code matrix S and its transpose ST . We
update our dictionary D according to Eqn 7 in a loop until convergence.

D = argmin
D
| |DS − X | |22 + | |D − Dold | |

2
2 (6)

= (SST + I )−1 (XST + Dold ) ≈ XST + Dold (7)

4.4 Feature Mapping

K-means returns a set of cluster centers or centroids with k cardinality, which we use to design our feature
mapping function. We consider two choices for our feature mapping function: i) We add k binary features to
each sample, where each feature j has value one if and only if the jth centroid learned by k-means is the closest
to the sample under consideration (Eqn. 8). ii) A non linear mapping, where we calculate the mean distance
(µ) between the sample under consideration and other centroids and then a feature has value if and only if the
centroid learned by k-means is within the radius of µ (Eqn. 9).

f 1k (x ) =

1 if k == argminj | |c

(j ) − x | |22
0 Otherwise

(8)

f 2k (x ) =max {0, µ (z) − zk } (9)

5 ACTIVE LEARNING

Active Learning can help scaling our activity recognition model and reduce the amount of efort needed for
manual annotation. While deep learning assumes to have passive labeled data available in per-training phase
or select them randomly from a pool of labeled datasets, we propose to investigate how active learning could
help to improve the activity recognition performance at scale. Augmenting the training phase of deep activity
models with active learning is a crucial step to reduce both computational time and system resource requirements.
Therefore, our primary goal here is to help ind the most informative data instance which we will query from the
user. Here most informative instance is deined as an unlabeled instance which will bring the greatest change
in our current training model if label is provided. LetU be the set of unlabeled data instances and L be the set
of labeled data instances. The active learning algorithm will select the most informative data instance out of k
samples fromU in a pool based sampling setting. First we pre-train the deep learning network in an unsupervised
way using the unlabeled instance set U . Then we use the labeled data set L to train the inal output layer of
k-means classiier, followed by ine tuning the network. We consider an active learning strategy using the data
density by explicitly considering the structure of the data while selecting queries. If we consider the data instances
with high information content, the sampling strategy will get biased and over conident as the time progress. So
we also consider the data instances which are representative of the underlying distribution. Here we scrutinize
the data instances which lie in the dense region of a cluster. The information density heuristic is calculated by
the following equation:

f (x ) = argmax
x

Φ(x ) × *
,

1

card (U )

∑

x ∈U

sim(x ,x∗)+
-

β

(10)

In our objective function f (x ), card(U) depicts the cardinality of our unlabeled data instance pool and Φ(x )

represents the utility of x according to expected error reduction of our k means classiier. The sim(x ,x∗) measures
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the similarity between x and all other data instances. Using equation 1 we get our loss function as following:

L(x ) = argmin

n∑

i=1

∥x − x∗∥ (11)

Our activity recognition model has no idea about what the error will be when it receives a label from the query.
Using the decision theoretic approach instead of reducing error as a known value, we minimize it as an expected
value by using the model’s posterior distribution as an acceptable approximation. Using this intuition our utility
measureΦ(x ) is deined as following:

Φ(x ) = argmin
x

Ey |x [L(x )]

= argmin
x

∑

y

P (y |x )[

n∑

i=1

∥x − x∗∥] (12)

The term *
,

1
card (U )

∑
x ∈U

sim(x ,x∗)+
-

β

in Equation 10 weights the informativeness of x by its average similarity to

all other instances. The parameter β controls the relative importance of the density term. Our objective function
can be less sensitive to the outliers as it works in a dense region only. However if the dense region is in between
the boundary of two clusters it may choose unnecessary data instances and outliers. To ensure that we introduce
silhouette coeicient sic in our objective function. Let d (i ) be the average dissimilarity of xi with all other data
within the same vicinity. This portrays how well xi is assigned to it’s own cluster. d (i ) is deined as the average
distance from xi to all other points in its own cluster. We deine e (i ) to be the lowest average dissimilarity of xi
to any other cluster, of which xi is not a member. The cluster with lowest e (i ) is said to be the neighboring cluster
of the cluster where xi resides. Now we deine our silhouette coeicient as following:

sic =
e (i ) − d (i )

max{d (i ), e (i )}
(13)

sic =



1 −
d (i )
e (i )
, if d (i ) < e (i )

0, if d (i ) = e (i )
e (i )
d (i )
− 1, if d (i ) > e (i )

(14)

The value of sic ranges between -1 and 1. Smaller d (i ) represents xi to be analogous to its own cluster. On the
other hand large e (i ) illustrates xi to be poorly matched to its neighboring cluster. As a result, sic close to 1 depicts
appropriately clustered instance and close to 0 means xi resides on the border of two clusters. So by plugging in
the coeicient into our objective function, we ensure that no outliers or unnecessary data instances get queried.
The inal objective function for our active learning method is

f (x ) = argmax
x

[sic Φ(x ) × *
,

1

card (U )

∑

x ∈U

sim(x ,x∗)+
-

β

] (15)

The overall active learning strategy of our DeActive model is summarized in Algorithm 1.

6 SENSEBOX IMPLEMENTATION

We collected real life data using our SenseBox [41] smart home system. The SenseBox system is composed of an
ARMv5-based hub that is placed in the residences of volunteers, along with several sensors (passive infrared and
accelerometer) that communicate back to the sensor hub via AXSEM AX5043 radios operating in the 900 MHz
ISM band. The receivers for the AXSEM radios are connected via Ethernet which are inexpensive and provide
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ALGORITHM 1: DeActive Active Learning

1: Input:U = A pool of unlabeled instances {(x )u }Uu=1,

L = A pool of labeled instances {(x )l }L
l=1

,

Edist = Error Distance from K-Means in the inal Output layer of the deep architecture

k = Number of Clusters or Activities

2: Output:Most informative data instances in each cluster.

3: D = {}

4: for every xi ∈ U do

5: Calculate the loss using Edist in eqn 11

6: Calculate base utility measureΦ(x ) by taking the expected value of the loss give label y.

7: Calculate the silhouette coeicient sic for instance xi
8: d Calculate the informativeness f (x ) of xi using eqn 15

9: D = D ∪ d

10: end for

11: q = instance with maximum f (x ) and query for label l

12: if s
q
c > δ then

13: I = Neighbor instances of q

14: Assign label l to instances in I

15: end if

16: L = l ∪ I

adequate reliability for our application. The ARMv5-based hub with 700MHz CPU frequency is built on top
of a consumer NAS device, the Cloud Engines PogoPlug. Using the publicly available GPL sources, we rebuilt
the kernel to support kernel-level features we required in this application or felt we may require in the future
(e.g. Video4Linux, NAT, support for various wireless devices.) As is typical in this scenario, subtle issues with
downstream kernel code necessitated ixing several issues before the kernel was able to be successfully built and
stable. A high level architecture of our system is demonstrated in Figure 3. As our deep learning algorithm uses
torch [3] library, we have built torch for ARM processor.

7 EXPERIMENTAL SETUP

In this section we discuss the experimental setup and datasets we have used to validate our DeActive . Apart
from using our own data collected using SenseBox , we also used four publicly available datasets to justify our
framework. We provide descriptions of the datasets in the following:

Opportunity Dataset: The OPPORTUNITY dataset [61] encompasses both ambient motion and accelerometer
sensor data from four participants. Each participant performed a session ive times and in each of these sessions
they performed a set of kitchen activities. Accelerometer sensors are placed on 12 diferent places of the body.
We considered a subset of these data set which included accelerometer data from the upper limbs of the body.
About 75% of the data instances do not correspond to any class.

CASAS Dataset: The CASAS dataset [13] contains ambient motion sensor data deployed in the WSU smart
apartment. Couple of item sensors are also mounted on some objects to detect their usages. The data represents
participants performing ive ADL activities in the apartment (Make a phone call, Wash hands, Cook, Eat, Clean).
WISDM Dataset: The WISDM dataset [45] has triaxial accelerometer data from 29 users collected by android

smartphone. This dataset has 1, 098, 207 data instances of 6 classes - Walking, Jogging, Upstairs, Downstairs,
Sitting and Standing.
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Fig. 3. SenseBox architecture which has ARM v5 CPU with 700MHz. Multimodal sensors dump the streaming data in the

Event Bus and the system reads the new data from there.

Skoda Daphnet Dataset: The Skoda Daphnet dataset [6] contains the freezing of gait in users with Parkinson’s
disease. Three acceleration sensors on the hip, thigh and ankle were attached to 10 subjects. The data are classiied
into three classes - Freeze, No Freeze and No Experiment.

SenseBox Dataset: Using our own smart home system SenseBox [41] we collected data from 10 participants [2]
(IRB - #HP-00064387) from a retirement community. Three ambient motion sensors and seven object sensors were
installed in each participant apartment. We installed three motion sensors in three diferent rooms (bedroom,
living room and kitchen) of each single bedroom apartment. We also placed three door sensors on the main
entrance door and two closet doors. Five object sensors were mounted on diferent appliances (broom, trashcan,
laundry basket, dustpan and phone). The users also wore a wearable device, Empatica E4, on their dominant
hand which provided 3D acceleration data for each of the activities. We have used motion and object sensors
from Wireless Sensor Tags [1] for our experiments. The sensors sent the data to the tag manager which was
connected to our SenseBox system. Empatica E4 was not connected to the SenseBox system, it stored the data in
its in device memory. We dumped the wearable data each day from the device and uploaded to our server. Our
dataset has ive activities - Cooking, Cleaning, Brooming, Eating, Sleeping. The ground truth information was
collected using video recordings. Each participant were asked to follow a script of activities and we recorded the
user movements using an ip camera for two hours. We then labeled the sensor data instances by mapping the
timestamps with the video frames. Each participant provided 24 hours of continuous sensor data for 20 days.

7.1 Preprocessing

In order to validate ourDeActive model, data from two types of sensor modalities are considered - ambient motion
sensor and accelerometer sensor from smartphone or wearable. In this section we discuss the preprocessing of
data from these sensor modalities.
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7.1.1 Ambient Sensor. Ambient motion or infrastructural sensors are embedded in smart environments. Largely
these sensors are PIR motion sensors which detect motion in the vicinity. The information received from ambient
motion sensors permit to discern the performed activity with more reliability. These motion sensors contribute
to identify the presence of a human in a certain part of the home and provide complementary evidence of the
performed activity. It provides a value of 1 if a motion is detected otherwise 0. Other type of sensor deployed is
door sensors which also provides binary values (OPEN and CLOSE) based on the motion of the door. Each sensor
sequence is associated with a timestamp which is discretized to an integer value, day of the week which is also
converted to an integer (0-6) where Monday being 0, ID of the previous activity performed and inally the length
of the current activity measured in number of sensor events.

7.1.2 Accelermeter Sensor. Deep learning architectures are designed to process and deal noises of sequential
sensor data by performing unsupervised feature learning. To extract meaningful information from the data we
apply a noise ilter and extract statistical features from the data. We apply a simple low pass ilter to smooth
out the arbitrary noises in the accelerometer data and a high pass ilter to remove the efect of gravity. The
accelerometer signals are then separated into frames using a ixed width sliding window with 10% overlapping.
We used a 3 seconds sliding window and set the sampling frequency at 60Hz. We then extract statistical features
which include:

• The mean, standard deviation and variance.
• Signal and diferential vector magnitude.
• Signal entropy to diferentiate between signals that correspond to diferent activity patterns but similar
energy signals.
• Pairwise correlation of between each pair of dimensions.
• Zero-crossing rate in each dimensions.
• Weighted average of the frequency components to obtain a mean frequency.
• Magnitude and Energy of Fast Fourier Transform (FFT).

7.1.3 Data Normalization. We fuse together the extracted features from multiple sensors of both sensor
modalities (ambient and accelerometer) by concatenating them into a single feature vector. After modeling the
features for both sensor modalities, our next step is to normalize the data so that the features will be rescaled
as we want all features to contribute equally.The normalized data will have the properties of standard normal
distribution with zero mean (µ = 0) and unit variance (δ = 1). As we are using stochastic gradient descent for
centroid calculation in our k-means encoder, certain weights may update faster than others since the feature values
play a role in the weight updates with features being on diferent scales. Computation of distance measurement
in k-means envisages each feature uniformly and so we have to ensure that units of features do not alter the
relative approximation of observations. Also If a variance of a feature which is orders of magnitude larger than
others, it might inluence the classiication and make the class estimator unable to learn from other features
correctly as expected. So normalizing the features so that they are centered around 0 with a standard deviation of

1 is important. The normalization is done using: z =
x−µ

δ
.

8 PIPELINE AND MODEL PARAMETERS

We present the pipeline of DeActive in Fig. 2. In the pre-training phase we generate windows with unlabeled
data instances.Each window is a two-dimensional (180 × 3) matrix containing samples of 3 seconds window
as the sampling frequency of the accelerometer is 60Hz. We then extract 3 × 3 patches from the windows and
apply k-means clustering on the extracted patches. The generated clusters are normalized to have magnitude
1 and the centroids are used to encode and decode the data instances. We learn the encoding dictionary D in
this way. In order to encode the future data instances, we calculate the Euclidean distance for each patch of
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the new window to each of the centroids. Based on the calculated distances, individual patches are assigned
to centroids/clusters using Eqn. 8 or 9. We used 9 for its efectiveness and speed. We apply such three fully
connected layers of encoding. We then apply mean pooling over the inal assignment vector. We calculate the
reconstruction error by subtracting the original time series from our encoded and then decoded signal and take
the mean absolute value (MAV). In Figure 4a and 4b we show the reconstruction error of our encoding model.
From Figure 4b, we see that the error does not change much after assigning 150 clusters. So in each hidden layer
we set the number of clusters to be 150. In Figure 4a we show a sample reconstruction of 2000 sample time series
signal using our encoder. At the inal output layer we employed a softmax classiier.

9 EVALUATION METHODOLOGY

We evaluate our model using precision, recall and F1 measures. However these measures also exhibit biasness due
to population prevalence and label bias as they inherently ignore handling of negative examples [59]. As a result
we also calculate Informedness and Markedness measures deined in Eqn 16 & 17 to avoid bias by integrating
inverse recall and inverse precision respectively.

markedness = precision + inversePrecision − 1 (16)

in f ormedness = recall + inverseRecall − 1 (17)

Markedness and Informedness articulate how marked and informed the classiier is respectively with comparison
to chance. We evaluated our active learning algorithm by comparing with other simple active learning method-
ologies - Maximum Entropy sampling, Query By Committee and Random sampling. In order to compare these
methods we calculated Normalized Mutual Information (NMI) using the ground truth information. Both the true
activity class label and queried label assignment are considered as random variables in NMI. NMI measures the
mutual information between these two assignments and normalizes them to zero to one range. If we consider K
be the random variable of queried class labels of data instances andC be the true labels then the NMI is computed

by equation: NMI =
2I (C ;K )

H (C )+H (K )
. Here I (X ;Y ) = H (X ) − H (X |Y ) is the mutual information between random

variables X and Y. Here H is the entropy function.

9.1 Performance Analysis

In this section, we examine the performance of our DeActive model on real world datasets described in the
previous section. In our proposed model we use 3 hidden layers. We irst normalize the data with zero mean
and standard variance. The deep activity recognition models are trained using stochastic gradient decent with
mini-batch size of 64. We utilize 10% instances of the datasets to pre-train the models and then 50% instances to
ine tune. We leave 20% for validation and rest of the 20% for testing. Due to relatively small number of classes
available in our dataset we experienced overitting problem. We applied łdropout" method which is a widely
used technique to tackle the overitting problem. The dropout probability was set to 0.8. In Table 1 we compare
our model with other deep architectures for SenseBox dataset. For all of the deep architectures we followed same
distribution of splitting to create the tuning, training and testing dataset. All the networks were tuned using back
propagation and optimized using gradient descent. It is apparent that our model achieves better accuracy (92.84%)
with 3 hidden layers. We experimented with diferent number of features and empirically we got better results
for 500 features for all the deep architectures. We trained our model oline using our lab server.

9.2 Classification Accuracy

We irst evaluate accuracy of diferent datasets with ambient motion sensor data using our model. We show
the Precision, Recall, F1, Informedness and Markedness score of individual datasets in Figure 5 and 6 . For
Opportunity dataset (Fig 5b), we see that preparing cofee achieved lowest accuracy as these activities involved
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Fig. 4. Figure (a) shows the reconstruction error for 2000 data samples of accelerometer. Figure(b) shows the trend in error

with varying number of centroids for the hidden layers.

Table 1. Accuracy of diferent deep architectures on SenseBox dataset

Model # of layers # of Nodes Batch Size Activation Output layer Accuracy(%)

DBN 3 256 64 ReLU Softmax 85.52
RBM 3 256 64 ReLU Softmax 89.78

CNN
3 conv, 2 pooling,
2 fully connected

16 (No. of ilters
in a conv layer)

64 ReLU Softmax 86.16

Sparse
Autoencoder

3 256 64 ReLU Softmax 84.11

LSTM
2 LSTM

1 fully connected
100 (No. of

memory units)
64 tanh Softmax 88.27

DeActive 1 150 64 Eqn 9 Softmax 87.34
DeActive 2 150 64 Eqn 9 Softmax 89.34
DeActive 3 150 64 Eqn 9 Softmax 92.34

similar movement using kitchen appliances. For SenseBox dataset we experience comparatively low accuracy for
cooking, eating sleeping and brooming than cleaning. After further investigation we found that cooking activity
has a lot of false positives. About 38% time our prediction algorithm predicted cooking as eating and cleaning.
By reviewing the ground truth information we conirmed that in these cases the participant was in the kitchen
but not cooking. The participant sometimes ate in the kitchen and also there are times when he was cleaning
the appliances. As a result our model confused these two classes with cooking activity. Eating activity is also
hard to detect using just the ambient motion sensor as the participants ate in diferent locations at times. We
faced similar problem as cooking activity in this case and majority of the false positives were labeled as cooking.
Although we have attached an acceleration sensor with the broom to detect the Brooming activity but due to
mobility in diferent rooms while brooming it created false positives. Similarly for CASAS dataset we received
much higher accuracy for all the activities except Eat . The line chart in Figure 12 shows the convergence of
accuracy with respect to the percentage of dataset used in the experiment.
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Fig. 5. Precision, recall, F1, informedness and markedness score of each activity in CASAS and Opportunity datasets (ambient

motion sensor data).
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Fig. 6. (a) Precision, recall, F1, informedness and markedness score of each activity in SenseBox dataset (ambient motion

sensor data) and (b) illustrates the accuracy of diferent shallow learning algorithms compared to our DeActive framework.

Table 2. Comparison of our DeActive algorithm with other existing approaches for diferent datasets.

Activity Recognition System Skoda Opportunity WISDM SenseBox

Deep Convolutional and LSTM Recurrent Neu-
ral Networks for Multimodal Wearable Activ-
ity Recognition [21]

95.8 91.20 95.86 88.09

Convolutional Neural Networks for human ac-
tivity recognition using mobile sensors [26]

88.19 93.17 94.75 84.20

Deep Activity Recognition Models with Triax-
ial Accelerometers [24]

89.38 86.39 94.46 87.54

Our deep learning framework DeActive 97.24 94.06 91.83 92.34
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Fig. 8. Precision, recall, F1, informedness and markedness score of WISDM and Skoda datasets (3D acceleration data).

Now we validate our model with 3D acceleration data. In this case we also show the same metrics used in
previous experiment for each activity in each dataset in Figure 8 and 7. Each dataset showed much better accuracy
when accelerometers were involved. In both SenseBox andWISDM a single accelerometer sensor entity is utilized.
In our dataset we employed a wearable device placed on the dominant arm of the participant and forWISDM a
smartphone. Broominд (Figure 7a) achieved much better accuracy than using just the ambient sensors as our deep
learning architecture was able to ind better feature representation from the acceleration data. In Opportunity

dataset we experience less accuracy for Prepare Sandwich and Cleanup activity. After further investigation we
found that about 31% of Prepare Sandwich class was labeled as Cleanup and Prepare Cofee. These two activities
had similar feature representations in our model and as a result the predictor mislabeled them. With Skoda data
set we have achieved much higher accuracy compared to other datasets as the activities considered had distinct
feature representations. In case of SenseBox dataset again we achieved low accuracy for eating and cooking classes.
For further validation we looked into our video recordings and found that diferent participants had diferent
eating behavior. Also the eating pattern largely depends on the cuisine and the type of food you are eating. For
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Fig. 9. The figures demonstrate the performance of our active learning algorithm.
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Fig. 10. The figures demonstrate the trend of instance selection time and incorrectly classified instances of diferent active

learning algorithm.

example, some foods are eaten using fork and knives (rice, steak vegetables etc.), some using only spoon (soup,
stew, chowder etc.) and some using only hand (burger, sandwich etc.). Due to these variations it was diicult to
capture distinguishing feature between diferent eating movements. For cooking activity, we experienced similar
challenges due to variations in cooking style. Some of the participants were not spending much time in cooking.
Also during cooking, we saw that the participants were doing other activities concurrently like talking over the
phone, moving stufs or watch television etc. As a result we achieved low accuracy for cooking activity. In Table 3
we show the precision, recall and F1 score of each activity for ive random users from our SenseBox data set. For
each individual in Table 3, we trained our model in leave-one-out fashion. We see that our model was able to infer
the cooking activity of User 3 and User 4 with higher accuracies than others. Upon further investigation we found
that User 3 and User 4 cooked regularly. User 5 experienced lowest accuracy for cleaning activity. We noticed
that the ground truth labeling of cleaning and brooming for User 5 were ambiguous. Some of cleaning activity
instances involved use of broom which introduced the ambiguity. We encountered similar problem for User 1 in
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Table 3. Precision (Pr), Recall (Re), and F1 score of leave-one-out evaluation for five random users from SenseBox dataset.

User Cooking Cleaning Brooming Eating Sleeping

Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1

User 1 88 89 88 84 81 82 86 89 87 88 90 88 93 88 90

User 2 94 94 94 90 92 90 93 91 91 89 91 89 90 91 90

User 3 96 91 93 92 91 91 92 92 92 89 88 88 89 88 88

User 4 95 90 92 93 88 90 93 92 92 87 92 89 91 93 91

User 5 85 84 84 85 88 86 82 87 84 88 90 88 91 91 91

brooming activity as well. For WISDM dataset, the overall accuracy was much higher (≈ 92%) than other datasets
as the activities considered have distinct signature pattern in the accelerometer data. In Table 2 we compare
our DeActive model with some recent existing activity recognition works which use 3D acceleration data from
wearable and mobile devices. Although these state-of-the-art models experimented on diferent datasets, still we
have achieved similar or better accuracy. These models also take more training time and require more resources
than our model.

9.3 Efect of Active Learning

We applied our active learning algorithm in a 10-fold cross validation manner. We started our active learning
experiment with 20,000 unlabeled data instances and randomly selected 1000 labeled instances to train our
model. Initial accuracy of our model with 1000 labeled instances is ≈ 65%. We adopt pool based sampling in our
experiment where we gather the incoming data instances in a pool and select the informative data instances
from this instance pool. After analyzing the results of silhouette coeicient, we empirically deine 0.73 as our
threshold. In Figure 9a we exhibit the change in model accuracy over 800 iterations. In each iteration we query
the most informative 5 data instances and after receiving the label we add it to our training dataset. The instances
which are within our predeined threshold (0.73), we also annotate them in accordance with their associated most
informative instance. We compare our algorithm with other popular active learning strategies like maximum
entropy, Query by Committee(QBC) and random sampling. It is evident from the igure that after acquiring labels
of only 4000 instances we achieved accuracy close to 85% whereas utilizing all of the labeled instances (70,000)
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we achieved 92.34% average accuracy. So by labeling less than 10% of the dataset we achieved fairly close to
optimal accuracy. In igure 12 we showed the convergence of accuracy with respect to percentage of labeled data
instances. We see that without active learning, we could only achieve average accuracy of only 70% by utilizing
almost 20% of the labeled instances. Therefore, DeActive can provide better accuracy with much fewer labeled
instances which also ensures lower annotation efort. Also our active learning strategy outperforms other popular
strategies and converges faster. Our model achieves better performance with respect to recognition accuracy
after acquiring same percentage of labeled examples.

In Figure 9b we show the efect in NMI for our model. From the igure we see that our model is converging to
optimal accuracy faster. The higher NMI represents that the assigned label by our classiier and the label from the
annotator is getting closer. We also look at how many instances were incorrectly classiied in 100 iterations using
our active learning algorithm in igure 10b. It is noticeable from the igure that our active learning algorithm
is more stable in correctly classifying instances compared to other strategies which indicates that only vital
instances are being selected for querying. Another important parameter for evaluating active learning algorithm
is to monitor the speed or the time it takes to select instances in each iteration. Average instance selection times
for entropy, QBC, random sampling and DeActive are - 0.76s, 0.73s, 0.80s, 0.468s. DeActive is almost 40% faster
than other strategies while selecting instances. In igure 10a we show the progression of instance selection time
for the irst 100 iterations for all active learning strategies.

9.4 Device Performance

We investigate the performance of our DeActive model in SenseBox architecture. In Figure 11 we see that our
algorithm executes much faster than other algorithms. In [28], the execution time is reported as 20.78 msec with
50 hidden layers and 3,289,600 parameters. In our case the execution time is close to 10 msec with 3 hidden layers.
However [28] used Snapdragon 400 quad core CPU whereas we used single core CPU.

10 FUTURE WORKS & DISCUSSIONS

We have demonstrated that active learning can help us to mitigate the manual efort needed for compiling ground
truth information and reduce training time. However, active learning is built on a naive assumption that a sinдle
annotator will always provide correct label information. In real world scenario, multiple annotators will be
involved instead of single annotator model as the single annotator might get exhausted and stop providing labels.
Also it is impractical to assume that the annotators are going to provide correct labels all the time. So it is necessary
to pose the query to appropriate annotator or else it will be meaningless. In future, we want to investigate an
active learning setting with multiple imperfect annotators and pose the query according to their ranks and
availability. We understand that the coniguration of our SenseBox system and [28] are completely diferent. We
plan to deploy our model with a similar setup like [28] and compare the performance of our architecture in future.
Our experimental evaluation showed that active learning can help to achieve optimum accuracy in reduced time
but not improve it as we have put more emphasis on the eiciency of the system. In order to make smart home
systems cheaper, researchers are looking into embedded devices and most of these IoT devices do not have high
computational capability. On the other hand deep models require signiicant computational resources which is a
major bottleneck while harnessing the power of deep models in embedded devices. As a result, there is a growing
need for more optimized deep architectures and hardware designs which will boost the smart home technologies.
By applying k-means based encoder we have mitigated the problem of resource constraint but at the cost of
losing accuracy. Alternative methods like sparse coding, GMM, DBSCAN etc. can provide higher accuracy but
they are not appropriate for low-powered resource constrained devices. In future, we envision to close this gap
between accuracy and eiciency by investigating more appropriate encoding method.
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11 CONCLUSION

Scafolding the activity recognition to many emerging smart environment applications is a pressing societal
need. While advanced machine learning approaches albeit help achieve that objective, in this paper, we envision
that simple algorithms can be considered as viable and sometime competitive alternatives along that pathway.
Motivated by this, we presented an activity recognition model using a simple K-means clustering assisted deep
architecture which help to scale activity recognition in large. Our proposed model also consolidated active
learning to mitigate the amount of human efort needed for collecting ground truth information. We compared
our activity model with other deep and active learning algorithms and validated that our model can outperform
them. We built a custom-made smart home system, Sensebox and demonstrated that the competence and viability
of our model through real deployment in retirement community center. We believe our work is the irst step
towards enabling the vision that Simplicity is the Scalability.
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