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Abstract—The success and impact of activity recognition algo-
rithms largely depends on the availability of the labeled training
samples and adaptability of activity recognition models across
various domains. In a new environment, the pre-trained activity
recognition models face challenges in presence of sensing bias-
ness, device heterogeneities, and inherent variabilities in human
behaviors and activities. Activity Recognition (AR) system built
in one environment does not scale well in another environment,
if it has to learn new activities and the annotated activity
samples are scarce. Indeed building a new activity recognition
model and training the model with large annotated samples
often help overcome this challenging problem. However, collecting
annotated samples is cost-sensitive and learning activity model
at wild is computationally expensive. In this work, we propose
an activity recognition framework, UnTran that utilizes source
domains’ pre-trained autoencoder enabled activity model that
transfers two layers of this network to generate a common feature
space for both source and target domain activities. We postulate
a hybrid AR framework that helps fuse the decisions from a
trained model in source domain and two activity models (raw and
deep-feature based activity model) in target domain reducing the
demand of annotated activity samples to help recognize unseen
activities. We evaluated our framework with three real-world
data traces consisting of 41 users and 26 activities in total. Our
proposed UnTran AR framework achieves ≈ 75% F1 score in
recognizing unseen new activities using only 10% labeled activity
data in the target domain. UnTran attains ≈ 98% F1 score while
recognizing seen activities in presence of only 2-3% of labeled
activity samples.

I. INTRODUCTION

Activity recognition (AR) is a prolific research area in
the era of Internet-of-Things (IoT), pervasive, wearable and
smart computing [1][2][3]. With the proliferation of smart
sensing devices, (i.e., smartphone, smartwatch etc.) various
applications related to health care monitoring, obesity manage-
ment, interactive gaming etc., have constantly been evolving
to improve the human-centric services in the smart living
environments. In contrast, AR models are typically built to
recognize a predefined and limited set of activities, for ex-
ample sitting, running, walking, exercising etc. In addition,
the emerging diversity of wearable devices, their sensing
capabilities and heterogeneities, and variations in human activ-
ities and their daily life-styles undermine the performance of
known AR models. These traditional approaches solely rely
on the specific environmental settings, heuristically selected
handcrafted features and a predefined set of activities trained
with a large set of annotated samples. Therefore, in general,

obtaining reliable ground truth annotated activity samples is
crucial to adapt AR systems in the target environment.

Scaling existing AR system is challenging due to the
presence of handcrafted features that are dependent on domain
knowledge and predefined environmental settings. Finding the
optimal set of features across a predefined set of activities also
requires domain expertise. To overcome these challenges, deep
learning based unsupervised techniques have been proposed
that help to choose an optimal set of domain dependent fea-
tures [4]. However, training a deep network is computationally
expensive, and requires a large set of activity samples tuning
in the target domain. Moreover, limited amount of training
samples in the target domain causes overfitting and network
biasness that pose challenges for adapting AR models. Re-
searcher proposed various domain adaptation techniques [5][6]
that mostly involved co-training [7]. However, co-training a
deep network requires both source and target domains’ activity
samples during the learning phase, which may not always
be available. The most interesting insights of using multi-
layered deep learning techniques is that it generates most
generic features in the lower-layers and most specific features
in the deeper layers [8]. Motivated by this, we bootstrap our
AR framework by transferring the learned weight and bias
parameters of a pre-trained deep network from the source
to target domain. This partial layer knowledge transferring
helps mitigate the need for domain dependent handcrafted
features, reduces the computational cost, and minimizes the
data distributions divergence between the source and target
domains.

The presence of new activities in the target environment
(domain) poses challenges when scaling an existing AR sys-
tem. For example, AR model capable of recognizing exercising
activities (such as push ups) can not correctly distinguish new
activity like playing basket ball in the target domain. Evaluat-
ing the performance of existing AR models requires a large set
of annotated activity samples in the target domain. However,
it is not feasible to ask users to provide annotated samples
for each of the activity instances and train a new activity
model that can adapt the characteristics of a new environment.
Our assumption is that the user can provide a small amount
of annotated activity samples in the target domain. However,
training new activity model with these small amount of labeled
activity samples encounters two challenges: i) availability of



limited training data and ii) presence of imbalanced and unseen
activities in the new domain. Therefore, it is difficult for the
traditional AR model to cope with the new challenges while
achieving the required activity recognition performance. In
this work, we advocate to use the source domain activity
recognition model in conjunction with two variants of target
domain activity recognition models – statistical features based
AR model and deep feature based AR model which help to
mitigate the scarcity of label information in the target domain.

The key advantage of our activity recognition model is that
it leverages the performance of existing AR model by learning
the variability of the activity patterns using a small amount
of labeled activity samples in the target domain. The key
contributions of this work are summarized below.
• We exploit transfer learning enabled deep features rep-

resentation techniques to mitigate the scarcity of activ-
ity samples in an unsupervised manner. We leverage
our feature learning approach with a limited amount of
training samples by transferring the first two layers of
the source trained deep sparse autoencoder with deep
learning classifier in the target domain. Our model helps
percolate the existing weights and biases of the trained
network in the target domain and constructs generalized
feature space representation which help overcome the
diversity across users’ activities, environmental settings
and sensing biasness.

• We transfer label information from source domain to tar-
get domain by utilizing source domain classifier and fuse
decision with two target domain classifiers - handcrafted
and deep networked generated feature based classifier.
Fusing the knowledge of these three classifiers altogether
helps solve the scarcity of label information and the
imbalanced class problem in the target domain.

• We evaluate our AR framework, UnTran on three real-
world activity data traces and demonstrate the effective-
ness and efficacy of our proposed cross-domain activity
recognition model.

II. RELATED WORK

In this section, we review the existing work in three major
areas: traditional machine learning approaches, deep learning
and transfer learning in activity recognition.

A. Activity Recognition

In wearable pervasive computing, a plethora of research
exists that recognizes human activities (i.e., playing basket
ball, walking, standing etc.) [9][10][11][2]. Researchers em-
ployed various supervised machine learning algorithms (SVM,
Decision Trees, Random Forest etc.) to classify human activity
where these classifiers were trained with a large set of labeled
activity samples. These traditional supervised machine learn-
ing algorithms are tuned to specific settings and do not perform
well if deployed in a new environment where variations in
users activity patterns, diversity of devices, and sensing bi-
asness are omnipresent [12][2][3]. Traditional supervised AR
models utilized handcrafted features. However, these features

extraction process requires domain expert knowledge [13]. AR
models trained with handcrafted features are not robust and
scalable because of the existence of tightly bound feature space
to a specific setting and the fixed number of activities in the
source environment.

Learning features from unlabeled activity samples has also
been explored recently [14][15]. These methods learn feature
spaces from a large set of activity samples in the target domain.
Therefore, reemploying the existing AR models requires a
lot of annotated activity samples in the target domain. Re-
searchers have investigated semi-supervised methods that help
learn parameters using both labeled and unlabeled activity
samples [16][17]. These techniques alleviates ground-truth
annotation problem with a smaller pool of labeled samples
from a large set of unlabeled activity samples. However, these
methods are error prone and typically unable to replace the
need for ground-truth annotated data from experts. In addition,
it is always not feasible to collect a large number of labeled
data traces or make requests to the human annotators. In an
attempt to bootstrap an existing trained activity model, in this
work, we advocate to use a small subset of unlabeled samples
in addition with a small subset of labeled activity samples in
the target domain.

In recent times, unseen activity recognition approaches
have also been investigated. NuActive [18] proposed outliers-
aware attribute based unseen activity recognition method using
unlabeled activity data traces and showcased classification
performance by training AR model with selected activity sam-
ples using active learning. However, the performance of the
attribute based activity recognition model degrades in presence
of existing and new activities. The attribute based activity
recognition models assume that each activity has a unique set
of attributes. [9] proposed attribute and feature based fusion
method to improve the performance of AR model with the help
of labeled activity samples. Although [18], [9] achieved better
performance in inferring new activities, the authors failed to
consider the sensing biasness, activity patterns, variations, and
user diversity in the targeted domain. Most of the existing
work discovered new activities within the same domain and
also relied on the unique set of manually defined attributes
for each of the activities. Moreover, defining attributes of
each activity is a time-consuming task, and requires a lot of
efforts and domain knowledge. In this work, we reduce this
effort by transferring the knowledge from the source to target
domain in an autonomous way by using deep transfer learning
techniques. Our proposed AR framework helps mitigate the
scarcity of labeled activity samples by utilizing labels infor-
mation from source domain to target domain.

B. Deep Learning

Various research have focused on learning features from
sensor data traces using deep learning techniques [19][20][21].
Deep learning based feature extraction method has been ap-
plied for the activity recognition research problem. The main
objective of this approach is to learn hidden activity patterns
from the sensor data traces and discover meaningful patterns
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Fig. 1: Overview of our activity recognition approach. (a) Source domain labeled activity instances, (b) Target domain contains
both unlabeled and few labeled activity instances, (c) Common feature space for classification, and (d) Resulting activities
after classification. Note that different shapes correspond to different activities.

without the human intervention. These automatic hidden pat-
terns can be discovered with two deep learning approaches
– supervised and unsupervised [22][23][24]. Supervised deep
feature learning approaches are computationally expensive and
require a large set of annotated samples. On the other hand,
unsupervised deep learning methods demand a large set of
unlabeled training samples [21][23]. Both of these methods
are computationally expensive and require a significant amount
of training time to adjust the network parameters. None of
these approaches work well in presence of scarce activity
samples. In order to deploy these AR models, further tuning
of parameters is necessary in the target environment. In this
work, we exploit the benefits of existing pre-trained sparse
deep autoencoder enabled activity recognition model in the
source domain to reduce the required samples in the target
domain.

C. Transfer Learning

Scalability and adaptability are the persistent research chal-
lenges in activity recognition application domain. Transfer
learning based activity recognition techniques have been inves-
tigated recently [25][26][27]. Nonetheless, a limited number
of aspects of transfer learning enabled activity recognition has
been investigated. [26] proposed uninformed transfer learning
algorithm that help minimize cross-subject variability to scale
human activity recognition. The authors proposed to transfer
label information from the source domain to recognize unla-
beled activities in the target domain and assumed availability
of a large set of unlabeled data samples with similar activities
in the target domain. [28] addressed the versatility of sensor
modality and sensor position independence by transferring a
similar set activity labels from an existing trained sensor node
to a new sensor node without any user intervention. In contrast,
we propose a framework that is able to infer activities with a
limited number of samples and in presence of new activities
in the target domain.

III. OVERVIEW OF UNTRAN FRAMEWORK

We briefly outline the different algorithmic components of
our proposed activity recognition framework, UnTran in this
section.

A. Problem Settings

We design UnTran framework for recognizing unseen ac-
tivities in presence of user activity patterns diversity, sensing
biasness and limited activity samples in the target domain.
We assume that the source domain has a significant amount of
labeled activities and a pre-trained activity model. Our UnTran
framework works with limited activity data, imbalanced and
unseen activities. To tackle this, we propose to construct
common feature space where similar activity samples help
generate similar feature space. However, with a limited activity
samples, AR model suffers from overfitting problem in the
deployed target domain. To address this, we combine the
inference decisions from multiple AR models (one source AR
model and two target AR models) and deploy that to recognize
activities in the target domain. Fig. 1 represents the overview
of our activity recognition approach.

Mathematically we define our problem as follows. Let
source domain training data Ds = {x(s)i , y

(s)
i }

Ns
i=1 =

{Xs,y(s)}, where x(s)i ∈ Rd denotes d-dimensional source-
domain instance and y

(s)
i denotes the corresponding label of

Cs categories. We assume that the target domain contains
d-dimensional unlabeled data instances and target domain
data are represented as Dt = {x(t)j , y

(t)
j } = {X(t),y(t)}

where y(t) is the class label to infer. We also assume that
target domain constitutes both seen and unseen activities and
contains activity categories, Ct = {Cun ∪ Csn}, where seen
activities categories, Csn and Cun represents unseen activity
categories. Due to the heterogeneity in the target domain,
marginal probability distributions of data between these two
domains are different (P (Xs) 6= P (Xt)). It is worth to note
here that transfer learning based approach works when both
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the source and target domains are related, which implies that
the generated feature space between two domains has explicit
or implicit relationship to each other.

For example, the source and target domains activity sets
are {‘Sitting’, ‘Standing’, ‘Cooking’, ‘Eating’} and {‘Sitting’,
‘Standing’, ‘Cooking’, ‘Biking’, ‘Jogging’}, respectively and
both the domains contain accelerometer sensor signal traces.
In this scenario, target domain has two unseen activities and
the total number of activity categories are imbalanced.

B. System Architecture

The overall UnTran architecture is shown in Fig. 2. UnTran
consists of three main components.

Data Processing: This module filters raw sensor signals
and then extracts low-level features from these pre-processed
raw sensor data.

Feature Encoding: This module uses first two layers of
source trained autoencoder and generates common features in
the target domain. Data distribution differences are minimized
by transferring the two layers from source domain that helps
generate generic features. These features are then used in the
next module.

Activity Recognition Model: In this module, we fuse the
knowledge of one source domain AR model and two target
domain AR models. Source domain labeled samples are passed
through the feature encoder and then encoded features are used
to train classifiers. In the target domain, one classifier is trained
with deep features and other classifier is trained with low-level
raw features. Finally, we fuse the knowledge of these three AR
models to infer activities in the target domain.

IV. SYSTEM DESIGN AND ALGORITHM

In this section, we discuss the details of our activity recog-
nition framework.

A. Data Processing

Our framework is agnostic and works with any kinds of
sensor signals. In this work, we use accelerometer sensor
signals to demonstrate the effectiveness of our proposed
framework. The collected sensor signals for the activities are
noisy and need to be processed before the activity recognition
process. We processed our sensor signals in two steps -i)
Data Preprocessing, and ii) Feature Extracting. In the data

processing step, collected raw sensor data is filtered using a
low-pass median filter. We determine the band of the filter
by applying FFT on the data. This filtered data is then used
to create frames. We created each frame in a fixed-width
sliding window having a length of 50% overlap per frame.
In the feature extracting step, the previously generated frames
are used to compute various statistical and frequency domain
features. Time domain features like mean, standard deviation
etc., and frequency domain features like energy, entropy etc.,
of the signals, are calculated using Fast Fourier Transform
(FFT) on each frame. We normalized the computed features
which is then fed into the feature encoding process, that helped
reduce the training time of the autoencoder.

B. Feature Encoding (FE):

Autoencoder (AE) is a feed-forward neural network that
contains an input layer, an output layer, and one or more in-
termediate hidden layers between them [29] [30]. Autoencoder
contains two processes - i) encoding, and ii) decoding. Given
an input x, autoencoder encodes this input through four layers
encoding process and then feed this encoded output as input
to the decoding process to generate an output x̄. In this work,
we use four layers deep autoencoder for feature encoding.
Mathematically, the encoding and decoding processes of the
deep autoencoder are represented as follows.

Encoding Layers:

h
(1)
i = f(W1x

(1)
i + b1),

h
(2)
i = f(W2h

(1)
i + b2),

h
(3)
i = f(W3h

(2)
i + b3)

h
(4)
i = f(W4h

(3)
i + b4)

(1)

Decoding Layers:

h̄
(4)
i = f(W′

4h
(4)
i + b′4),

h̄
(3)
i = f(W′

3h̄
(4)
i + b′3),

h̄
(2)
i = f(W′

2h̄
(3)
i + b′2),

h̄
(1)
i = f(W′

1h̄
(2)
i + b′1)

x̄i = h̄
(1)
i

(2)

where f(.) is a nonlinear activation function. We use
sigmoid function as a nonlinear activation function.

Autoencoder helps discover activity patterns by compress-
ing the sensor signals (x) in the encoder then decompress
the output of the encoder to generate an output which is
similar to the sensor signal (~x). However, this compression
process generates low-dimensional features which is similar to
PCA [31]. The disadvantage of this feature discovering process
is that the hidden layers’ dimension must be kept smaller
than the encoder input dimension. As a result, reconstructing
similar output as the raw sensor signals in the decoding
process becomes challenging. Therefore, we employ low-level
features as an autoencoder input. However, this extracted
features reduces the input dimension, hence implicitly restricts
the number of neurons in each hidden layer that results to



a low-dimensional PCA feature that hinders in finding the
generalized feature space. We, therefore, use a sparse hidden
layer as the first hidden layer and feed low-level features
into this layer. The dimension of our sparse layer is larger
than the raw features dimension and in order to get the
meaningful feature representation, we add sparse constraints
in this layer. Additional three layers are used to establish
non-linear correlation among the activities. We named this
modified autoencoder as Deep Sparse Autoencoder (DSAE).
Our DSAE learns weights matrices and bias vectors of the
hidden layers by minimizing the following reconstruction
error.

Jaen(W, b) = min
W,b
||x− x̄||2 + α

NL1∑
i=1

Φkl(ρ||ρ̂i) (3)

The first term of Eqn. 3 represents the reconstruction cost
of our DSAE where W and b denote weights and biases of
encoding and decoding layers, respectively. the second term, of
Eqn. 3 represents Kullback-Leibler (KL) divergence between
the sparsity constraint ρ and average activation ρ̂ of the first
hidden layer. The average activation of a hidden unit, j is
computed as follows.

ρ̂j =
1

m

m∑
i=1

[
aL1
j xi

]
(4)

where m denotes the number of low-level feature inputs.
We employ stochastic gradient descent (SGD) [32] method to
determine the changes of weights and biases and update the
network parameters accordingly.

We assume that our source domain has a large number of
labeled activity samples. DSAE helps learn inherent activity
characteristics in an unsupervised fashion. Establishing the
correlation between the activity and corresponding features
requires tuning the network parameter with respect to the
activity class. Hence, we append a softmax layer at the end of
the encoding layer to encode class labels in the source domain.
To train this source domain classifier, we use the following
cross-entropy objective function.

min
θ

(
− 1

n

n∑
i=1

k∑
j=1

1{yi = j} log
eθ

T
j xi

k∑
l=1

eθ
T
l xi

)
(5)

where 1(.) is an indicator function and provides 1 when the
condition is true otherwise 0. We employ stochastic gradient
descent (SGD) [32] method to tune the network parameters.

The performance of the source trained classifier degrades
while deploying in the target domain due the marginal distri-
butions of the data between two domains and unseen activity
samples. Lower layers of this source domain network produce
most generic features and higher layers (closer to classifier
layer) generates most domain-specific features [8]. We transfer
the first two layers of the source trained network to produce the
common feature space in the target domain. We choose the first
two layers due to its capability of generating generic features
and preserving domain information. Selection of the number
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Fig. 3: Common Feature Space Generation

of layers can also be performed empirically. We also see
that our assumption holds empirically (details are presented
in section V-I). Target domain activity instances are then fed
into this partial network to produce most common features
space. Fig. 3 represents this transfer learning enabled feature
encoding process.

C. Activity Recognition Model (ARM)

Our activity recognition model consists three classifiers- one
source domain classifier and two target domain classifiers.
Source domain annotated activity instances are fed into the
feature encoding layers (first two layers as shown in Fig. 3
(a)) to produce common features. These generated features
can be used to train any standard classifier. Due to the optimal
implementation, we use support vector machine (SVM) [33].
SVM finds the maximum margin hyperplane w.x − b = 0,
that maximizes the distance between the activity instances and
hyperplane by minimizing the following problem.

minimize
(w,b)

1

2
wwT + C

n∑
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi, and ξi ≥ 0, ∀i.

where xi and yi represents the ith the feature vector and
activity label, respectively. φ(.) corresponds to kernel function
that transforms the separable feature space. The parameter, ξi
represents the degree of false classification. Capacity constant,
C controls overfitting and error of the classifier.

Generated source domain deep features are used to train
a SVM classifier and we named it as ’Source AR’. Target
domain low-level features are also fed into the feature encoder
to produce deep features and which will be used to train
a SVM classifier in the target domain and we named it as
’Target Deep AR’. We also train a SVM classifier with low-
level features in the target domain and named it as ’Target Raw
AR’. Since the target domain has a few number of labeled
activity samples, we fuse these three models to overcome
the insufficient labeled data problem in the target domain.
Before fusing these classifiers, we determine whether an
activity sample belongs to an existing class or a new class.
To determine if an activity sample belongs to a new class,
we train one-class SVM with all the source domain labeled
samples as the seen class. If a sample is outside of the source



activity distributions then it is detected as a new class. This
novelty detector helps formulate fusion function.

The target domain classifier model trained with a few
number of labeled activity samples underestimates the class
conditional probability, P (yi|x), because a limited sample
covers a smaller feature subspace compared to the true feature
subspace that can be covered by all the activity labeled samples
in the target domain. Due to this smaller probability, AR model
fails to detect correct activity class for many instances. The
class probabilities of our AR model is computed as follows.

P (yi|x) =
1

1 + exp(Af(x) +B)
(6)

where f(x) denotes the signed distance of the input feature
vector to the hyperplane. The parameters, A and B are esti-
mated using maximum likelihood estimation from the labeled
training activity instances during the training period of the
classifier.

Our DSAE implicitly reduces the distribution distances
between source and target domain, therefore we use both
source and target domain classifier to infer activities. We
propose a scoring function that combines the source and target
domain classifiers’ inference knowledge and helps overcome
the biased probability estimates. Our novelty detector helps
determine new activities in the target domain and also helps
formulating our fusion function. Our fusion function is formu-
lated as follows.

φ(y|x) =


Ps(y|x) + Pd(y|x), if (yd = yr)

max(Ps(y|x), Pd(y|x)), else if (ys = yd)

Ps(y|x)× Pr(y|x)× Pd(y|x), otherwise

In case of new activities detected by novelty detector, we
define the following fusion function.

φ(y|x) =

{
Pr(y|x) + Pd(y|x), if (yd = yr)

max(Pd(y|x), Pr(y|x)), otherwise

where Ps(y|x), Pd(y|x) and Pr(y|x) represent source
trained classifier probability, target domain deep feature
trained classifier probability and raw feature trained classifier
probability, respectively. yd, yr and ys denotes the output
class of ’Source AR’, ’Target Deep AR’ and ’Target Raw
AR’ models predicted classes respectively. Feature encoding
process does not minimize data distributions explicitly. Hence,
novelty detector may also falsely classify few existing activity
samples as new activity or vice versa. We overcome this
challenge by adding Pr and Pd together in both existing or
new activity detection process and this help improving the
prediction probability even though they have lower individual
probabilities. We multiply source, and target domain prediction
probabilities when all classifiers predict similar activity classes
because source AR model prediction probability is usually
much higher than that of target domain AR model. Upon
determining the combined probability using fusion model,

class-labels with the highest probability represents the activity
class and it is represented as follows.

y∗ = arg max
y

φ(y|x) (7)

V. EXPERIMENTAL EVALUATION

In this section, we discuss the details of our experiments.

A. DataSets Description

We validate our proposed activity recognition framework,
UnTran with three publicly available datasets traces. We use
accelerometer sensor signal traces from these datasets. The
dataset descriptions are discussed below.

i) Opportunity dataset (Opp) [34][35] contains naturalistic
17 activities of daily living (ADL) from four participants. The
activities include drinking, cleaning table, eating sandwich etc.
Data was recorded at 64 Hz for about 6 hours of recording
from 5 Inertial Measurement Unit (IMU) on the upper limbs
and torso comprising of 3D accelerometers, 3D gyroscope and
3D magnetic field sensor. We consider 10 activities and use
only accelerometer sensors data to evaluate our framework.

ii) WISDM Actitracker dataset (Wisdm) [36] contains 6
distinctive human activities including walking, jogging, sitting
etc. belongs to 29 users. Data was collected at 20 Hz using
a smartphone accelerometer sensor kept on front pants leg
pocket.

iii) Daily and Sports dataset (Das) [37] containing 19
activities performed naturally by 8 subjects. Data was collected
at 25 Hz sampling frequency. Each activity duration was
5 min for each subject. The activity set includes sitting,
playing basketball, cycling etc. Five motion tracker (MTx)
units were used to collect the activity dataset where each
MTx unit contains 3D accelerometer, 3D gyroscope, and 3D
magnetometer sensors. MTx units were placed on the torso,
right arm, left arm, right leg and left leg.

B. Baseline Methods

We compare our proposed UnTran framework with the
state-of-the-art transfer learning based classifiers such as
Transfer Component Analysis (TCA) [38], and Joint Distri-
bution Adaptation (JDA)[39].

C. Implementation Details

We implemented our framework using python based deep
learning platform, Tensorflow [40]. Accelerometer sensor data
was segmented into 128 samples frames, with 50% overlap
between successive frames. Frames were filtered with low-pass
median filter to remove noises. We extracted various statistical
time- and frequency-domain features, which were then fed into
the classifier in batches, with a batch size of 32. We kept
the frame length and batch size consistent across all datasets
and experiments. We implemented transfer learning baseline
methods, TCA with python and JDA using MATLAB. Our
DSAE comprised of four layers. In addition, a softmax layer
was added to encode the class labels in the source domain.
We used the first two layers of the source tuned network to



Dataset Source Domain Target Domain
Opp 3 1
DAS 6 2

WISDM 21 8

TABLE I: Number of users in the source and target domain

build our classifier. We ran our UnTran framework on a server
equipped with four NVIDIA GTX 1080-Ti GPUs and 64 GB
memory with Intel Core i7-6850K processor.

D. Evaluation Methodology

We evaluated our UnTran framework with standard leave-
two-sample-out cross validation method [18]. We train the
target domain model with (n − 2) samples and rest of the
two samples are used to test against the trained model. We
repeat this process

(
n
2

)
times and report the average result.

E. Performance Metrics

We evaluated and compared the performance of our frame-
work based on the following metrics. i) Precision P =
( TP
TP+FP ), ii) Recall R = ( TP

TP+FN ), iii) F-1 Score = 2×P×R
P+R

and, iv) Accuracy = TP+TN
TP+TN+FP+FN , where TP, FP, TN, and

FN are the number of instances of true positive, false positive,
true negative and false negative, respectively.

F. Experimental Results

In this work, we partition each dataset into two groups and
each group contains distinct users. Table I shows the number
of users in the source and target domain for each of the
dataset. We randomly choose users to generate the source and
target domain. We evaluate the performance of our proposed
UnTran framework for the following settings i) Influence of
balanced classes (i.e., how UnTran performs if both the source
and target domains have same number of activities), and ii)
Influence of imbalanced classes (i.e., how UnTran performs if
target domain contains larger number of activities).

Opp Das Wisdm
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Fig. 4: UnTran performance on seen activities

G. Influence of Balanced Activities

In this experiment, both the source and target domain
contain equivalent number of activities but target domain
contains unseen activities too.

1) Seen Activities: We conduct this experiment to demon-
strate our frameworks’ efficacy while both source and target
domain contain similar activities. Our framework comprises of
supervised SVM model, therefore we encode label information
with only 2-3% labeled activity samples in the target domain.
We evaluated our framework with leave-two-sample-out cross-
validation technique as stated before. Fig. 4 represents our
framework’s performance on three datasets. We see that our
framework achieves F1 score of 0.82, 0.85, 0.98 for Opp,
Das and Wisdm dataset, respectively. Note that Opp dataset
achieves lower f1 score compared to other dataset due to the
larger data distributions difference which is caused by the
diverse set of activity classes and sensing biases. On the other
hand, Wisdm dataset shows higher F1 score because it contains
smaller number of similar type of activities (only six) hence
this dataset has less data distributions divergence.

2) Unseen Activities: In this settings, we evaluated our
model performance in the presence of new activities in the
target domain. We vary the number of new activities in
the target domain while maintaining the constraint of same
number of activities in both domain. We also study how the
performance of UnTran framework is affected by varying the
number of labeled data, in the target domain.
Varying amount of labeled data: To study this, we system-
atically varied the amount of labeled activity data in the target
domain and computed the average F1 score of our UnTran
framework. We varied the labeled data of our (n-2) activity
samples in the target domain and rest of the remaining two
samples were used to test the performance of our framework.
Percentage of labeled activity samples were chosen at random
from the (n-2) samples. We also varied the number of unseen
activities from one to five for OPP and DAS datasets and
one to three for WISDM dataset. We computed the average
and reported the results. In this case, the alternative classifier
(TCA, JDA) also undergoes the same techniques and is trained
with the equivalent amount of labeled training data in the target
domain.

Fig. 5 reports the average results of the varying amount
of labeled data while the source and target domain contains
equivalent number of activity classes. We notice that our
framework performance improves with the increase in the
labeled activity samples. Our framework shows reasonable
performance with only 20-30% of labeled samples compared
to TCA and JDA. In case of opportunistic dataset, the perfor-
mance is closer to JDA due to larger data distributions between
source and target. Fig. 5b shows that our model achieves a
performance gain of 12-15% because the wisdm dataset has a
lesser number of closely related unseen activities. Our feature
encoder was able to establish a better correlation among the
extracted features and activities. In the presence of a large
number of heterogeneous activities and diverse settings, our
framework achieved a performance gain 2-4%. Fig. 5a , and
5c reports the impact of activity and environmental setting
heterogeneities.
Varying the number of unseen activities: We evaluated
our models efficacy in the presence of varying number of
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Fig. 5: UnTran performance (Varying amount of labeled data) in presence of equivalent number of activities in both source
and target domain
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Fig. 6: UnTran performance (Varying number of unseen activities) in presence of equivalent number of activities in the source
and target domain

unseen activities in the target domain. We varied the number
of unseen activities from one to A (number of activities) and
followed the same leave-two-samples-out cross validation. Our
framework performs reasonably well with 20-30% labeled
activity samples. Therefore, we use 30% labeled activity
samples to train our model in the target domain. Fig. 6
represents the experimental results for all three dataset. We
noticed that our models overall performance drops 5-12%
with the increasing number of unseen activities in the target
domain. On the other hand, our model achieves performance
gain of 10-13% compared to TCA and JDA because of the
capability of utilizing label information from the source to
the target domain. Both TCA and JDA minimizes the data
distribution divergence explicitly and when TCA model is
trained with the labeled data it performs similarly as JDA.
Hence, the performance of TCA and JDA are close to each
other. However, our framework shows supremacy due the
knowledge fusion across the source and target domain.

H. Influence of Imbalanced Activities

We examine the performance of our framework when target
domain contains both the existing source activities and the
new activities. Hence, in this setting, our target domain model
contains larger number of activity classes. Basically, we are in-
terested to see whether our framework is able to find and learn
any relationship from the existing activities and recognize new
activities in the target domain. Our DSAE model is trained
with five activities (five for opp and das, three for wisdm) in

the source domain. We used the first two layers to produce
common features in the target domain. Generated features are
then used to train SVM model in the target domain.
Varying labeled data: In this experiment, we vary the amount
of labeled activity samples to train the target domain AR
model. We choose (n-2) samples to train our ‘Target raw AR’
and ‘Target deep AR’ model and rest of the two samples
test against this trained model. Percentage of labeled data
of the (n-2) trained samples are chosen at random while
training the target domain AR model. We used 30% labeled
activity samples in this experiment. Further, we used leave-
two-class-out cross validation technique, our (A-2) activity
classes participated in the model training and rest of the
two new activity classes participate in the test phase. It is
worth noted that our target domain activity set contains all
the existing activities of the source domain, and in addition,
it also contains new activities.

Fig. 7 represents the performance of this experiment. We
observe that our framework achieves performance gain of 3-
5% for opportunistic and daily and sports dataset compared
to the standard state-of-the-art transfer learning classifier. Our
framework achieves 10-12% performance improvement on
wisdm dataset compared to other TCA and JDA. For wisdm
dataset (exercising activities), source domain contains three
activities (i.e., ‘Sitting’, ‘Standing’, ‘Walking’ and the target
domain contains one or more new activities like ‘Upstairs’,
‘Downstairs’ and ‘Jogging’. These new activities are closely
related with the source domain activities. For example, ‘Jog-
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Fig. 7: UnTran performance (Varying amount of labeled data) in presence of imbalance activities in the target domain
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Fig. 8: UnTran performance (Varying the number of unseen classes) in presence of imbalance activities in the target domain
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Fig. 9: UnTran performance on different layers

ging’ and ‘Walking’ have both hand and leg movements.
Therefore, our feature encoding model able to find more cor-
related features and establish a non-linear correlation among
the activities and help improve the performance of our AR
framework.
Varying the number of unseen activities: We extended
our previous experiment, by varying the number of unseen
activities in the target domain. In this setting, 30% annotated
activity samples were used to train the ‘Target raw AR’
and ‘Target deep AR’ model. Fig. 8 represents our models
performance in the presence of imbalance activities in the
target domain. We observed that the performance dropped
15-20% with the increasing number of unseen activities. Our
fusion framework incorrectly classifies a few number of new
activities as existing activities because our feature encoding
module encounters difficulties to generate distinct, separable
common feature space for these activity samples. From Fig. 8,
we notice that our framework achieve F1 score about 70%

on average even in the presence of a large number of new
activities in the target domain.

I. Performance Analysis of Deep Features

In this section, we examine, how our UnTran framework
performs while we use features from different layers. The
performance of our model is evaluated with a fixed number of
unseen activities in the target domain for all the three real-
world datasets. We use source trained classifiers’ different
layers to generate deep features in the target domain. Fig. 9
shows the leave-two-sample-out cross-validation result. Deep
neural network generates most generic features in the lower
layers and domain specific features in the upper layers. Fig. 9
reflects this characteristics. Note that the performance of our
model decreases as approaches the upper layer of the network.
Most generic features (Layer 1) are unable to distinguish
activities while most specific features (Layer 4) are unable
to generate a common feature space in the target domain.
Therefore, we choose the first two layers to generate features
and recognize activities in the target domain.

VI. DISCUSSION

Our proposed deep sparse autoencoder based transfer learn-
ing enabled activity recognition framework, UnTran addresses
a significant promising problem of unseen activity detection.
There are however additional issues that need to be investi-
gated.

Device and Sensor Diversity: We evaluated our frame-
work, with only using wearable accelerometer sensors data.
Though performance examination against three public datasets
implicitly attests efficacy of our framework against users,



environment heterogeneities and sensing biasness. However,
additional investigations are required when activity signals are
collected through heterogeneous sensors (i.e., camera, PIR,
etc.) and devices (smartwatch, smartnecklace, etc.).

Explicit Structural Patterns Mapping: Deep sparse au-
toencoder learns inherent latent features and is able to establish
a correlation among the activities automatically. Transferring
first few layers from the source to target domain helps generate
common features space. We assume that features generated
by the source trained layer implicitly reduces domain diver-
gence automatically. However, for a large number of unseen
and non-correlated activities, this implicit domain divergence
minimization may be minimal and the performance of our
framework degrades. To further improve the performance of
our UnTran, a potential research direction, and our ongoing
work is to incorporate structural correlation mapping among
the intra- and inter-activities between the source and target
domain.

Annotation Effort: We utilize source domain activity labels
in our UnTran fusion AR framework to reduce labeled data in
the target domain. However, we assume that users provide
a few annotated samples in the target domain at random.
To improve the performance and reduce the annotation costs
associated with the number of activity samples can be further
studied. One possible future direction is to employ active-
learning based annotation technique.

VII. CONCLUSION

Human behavior and activity recognition in the smart en-
vironment have versatile application in healthcare, sports an-
alytics, physical and cybersecurity domains. In this paper, we
propose transfer learning enabled activity recognition approach
that helps to infer new activities in the new environment. We
envision that future smart environment will be very diverse
in terms of users activity patterns, new sensing devices and
their communication mediums. One of the most challenging
task of activity learning is to recognize new activities in the
target environment. Therefore, we advocate a novel activity
recognition framework, UnTran to learn and recognize new
activities in the target domain. We exploit the adaptability and
scalability of deep sparse autoencoder in the target domain and
fuse the deep and raw activity models both from source and
target domain to deal with limited training samples. We attest
the efficacy of our proposed UnTran framework with real data
traces and compare its performance with several state-of-the-
art transfer learning methods. We believe that our proposed
adaptable and scalable activity recognition framework, UnTran
will help advance human behavior and activity inference in
large-scale diverse environments.

VIII. ACKNOWLEDGMENT
This research is partially supported by the ONR under grant

N00014-15-1-2229.

REFERENCES

[1] Nicky Kern, Bernt Schiele, and Albrecht Schmidt. Multi-sensor activity
context detection for wearable computing. Springer.

[2] Oscar D Lara and Miguel A Labrador. A survey on human activity
recognition using wearable sensors. IEEE Communications Surveys and
Tutorials, 15(3):1192–1209, 2013.

[3] Xing Su, Hanghang Tong, and Ping Ji. Activity recognition with
smartphone sensors. Tsinghua Science and Technology, 19(3):235–249,
2014.

[4] Jianbo Yang, Minh Nhut Nguyen, Phyo Phyo San, Xiao Li Li, and
Shonali Krishnaswamy. Deep convolutional neural networks on multi-
channel time series for human activity recognition. In Twenty-Fourth
International Joint Conference on Artificial Intelligence, 2015.

[5] Emmanuel Munguia Tapia, Stephen S Intille, and Kent Larson. Activity
recognition in the home using simple and ubiquitous sensors. In
Pervasive, volume 4, pages 158–175. Springer, 2004.
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