Scaling Human Activity Recognition via Deep
Learning-based Domain Adaptation

Md Abdullah Al Hafiz Khan

Department of Information Systems

Nirmalya Roy
Department of Information Systems

Archan Misra
School of Information Systems

University of Maryland, Baltimore County University of Maryland, Baltimore County Singapore Management University

Email: mdkhanl @umbc.edu

Abstract—We investigate the problem of making human activ-
ity recognition (AR) scalable—i.e., allowing AR classifiers trained
in one context to be readily adapted to a different contextual
domain. This is important because AR technologies can achieve
high accuracy if the classifiers are trained for a specific individual
or device, but show significant degradation when the same
classifier is applied context—e.g., to a different device located at
a different on-body position. To allow such adaptation without
requiring the onerous step of collecting large volumes of labeled
training data in the target domain, we proposed a transductive
transfer learning model that is specifically tuned to the properties
of convolutional neural networks (CNNs). Our model, called
HDCNN, assumes that the relative distribution of weights in the
different CNN layers will remain invariant, as long as the set of
activities being monitored does not change. Evaluation on real-
world data shows that HDCNN is able to achieve high accuracy
even without any labeled training data in the target domain,
and offers even higher accuracy (significantly outperforming
competitive shallow and deep classifiers) when even a modest
amount of labeled training data is available.

I. INTRODUCTION

The diversity of sensors on personal devices, such as
smartphones and smartwatches, has driven the development
of novel Activity Recognition (AR) technologies, which help
capture a person’s daily lifestyle activities and gestures in
the physical world. Activity Recognition typically involves
the development of supervised classification models (e.g., [1])
that utilize features defined over data from sensors, such
as accelerometer or gyroscope, and that are trained using
data labeled explicitly with tags such ‘sitting’, ‘walking’ and
‘climbing’. Such AR capabilities are a fundamental enabler of
many new applications, such as pervasive wellness tracking,
in-store shopping analytics and immersive gaming.

Unfortunately, this approach to building AR-based appli-
cations does not satisfactorily handle at least three different
forms of diversity exhibited in the real world:

o Cross-User Diversity: Individuals can exhibit significant
differences in the way that they perform the same daily
lifestyle activities, with this diversity increasing as the
community of target users gets larger. A single classifi-
cation model performs poorly [2] across a diverse pool
of users, leading to 30% or higher drop in classification
accuracy.

e Device-Type Diversity: Due to the gradual adoption of
wearables and IoT devices, individuals often carry mul-

Email: nroy@umbc.edu

Email: archanm@smu.edu.sg

Smartphone

Second Linear Discriminant (LD2)
.
Second Linear Discriminant (LD2)

e Standing
Running -6
Walking

e Standing
Running
Walking

15

-8
-25 00 2 50 7.5 100 —-7.5 —50 -25 00 25 50 75
First Linear Discriminant (LD1) First Linear Discriminant (LD1)

Fig. 1: LDA of three activities for three features (mean,
standard deviation, variance)

tiple personal devices.Due to the different on-body po-
sitions where these devices are usually placed, the same
activity results in different signatures being observed by
these devices, implying the inadequacy of a common
model. Moreover, different devices are sensitive to differ-
ent features—e.g., Figure 1 shows, via linear discriminant
analysis that the feature set of {mean, standard deviation,
variance} of accelerometer data from a smartphone is
well suited to distinguish between ‘sitting’, ‘standing’ and
‘running’, while this is not the case for a smartwatch.

e Device-Instance Diversity: Studies have shown that the
sensor-based signatures also exhibit variation, when the
same user performs identical activities but using different
device instances—e.g., when a user switches from one
smartphone model to another. Indeed, the accelerometer
sensor on different smartphones (of the same model)
are known to exhibit perceptible differences [3], and
the AR accuracy is known to degrade [4] due to such
instance-specific variations in the sensor observations
across different devices.

In effect, the triple of {User, Device-Type, Device-Instance}
gives rise to a set of distinct operational contexts (or domains),
which cannot be accommodated by a single, universal classifi-
cation model. The simplest approach to tackling this diversity
is to build domain-specific models for each of these operational
domains. To compound the problem, state-of-the-art AR deep
learning based classifiers [5] require large volumes of labeled
training data.

To make AR-based applications viable on a large scale, we
urgently need an approach that dispenses with the need for
domain-specific training data, and yet avoids the performance
degradation observed with domain-independent models. What

is effectively needed is a way to take a classification model
developed in one domain, and to adapt it automatically to
another domain, while requiring no, or very minimal, explicit
training data in the new domain. Various machine learning
approaches such as semi-supervised [6], self-taught [7], and
transfer learning [8] have been previously proposed for such
automatic classifier adaptation.

However, these existing approaches have a few notable
limitations: (i) Most of these approaches assume that the
source and target domain utilize the same underlying hand-
crafted features. This assumption may not be true when
different device-types are used in different on-body positions—
as shown in Figure 1, where different accelerometer features
prove discriminative for a phone in a pocket vs. a wrist-
worn smartwatch; (i) Many of the online or semi-supervised
approaches reduce the volume of training data required, but
do not eliminate it. Instead, they often assume that training
data is available progressively, and thus focus on incrementally
refining the classification model; (iii) Adaptive models for AR
classification have traditionally relied on shallow models, and
do not address the issue of how to easily adapt “training data
hungry” deep-learning classifiers automatically.

In this paper, we propose a framework for scalable human
activity recognition, based on a deep convolutional neural
network (CNN) model. Our proposed model exploits the local
dependency and scale invariance properties of CNN-based AR
to extract the context-independent discriminative features from
accelerometer data [5]. Using real-world activity data sets
(both collected by us from 15 users, and 2 additional public
datasets), we show that our proposed deep transfer learning
approach is effective, even in the absence of any labeled
training data in the target context.

Key Contributions: We thus make the following key contri-
butions.

e Deep Learning-based Domain Adaptation: We propose

a transfer learning motivated CNN-based activity recog-
nition framework, called Heterogeneous Deep Convo-
lutional Neural Network (HDCNN) that automatically
adapts and learns the model across different domains—i.e.,
{user, device — type, device —instance} combinations.
Our adaptation model works on the assumption that the
distribution of weights in the convolutional layers remains
largely unchanged across different contexts, and thus
automatically adjusts the weights while minimizing this
divergence in weight distributions.

o Ability to Adapt with No or Minimal Labeled Data in
Target Context: Our approach assumes that the set of
daily lifestyle activities being monitored (i.e., the set of
output activity labels) remains the same in both source
and target contexts. We design the transfer learning
approach such that it implicitly incorporates the source
context activity labels, and thus does not require any
explicitly-labeled target training data. If even a modest
amount of target-domain labeled data is available, then
the classifier can be rapidly adapted further, to provide
superior performance.

o Empirical Demonstration of Superior Performance: We
use our real-world data to demonstrate how HDCNN
outperforms other alternatives. In particular, HDCNN
achieves more than 80% accuracy when adapting in
the absence of any target-domain labeled data, with
this accuracy exceeding 87% accuracy with only 10%
labeled (about 26 mins of activity) data in the tar-
get domain. Noticeably, HDCNN achieves approx. 80%
classification accuracy when adapting across device-
instances (smartwatch—smartphone, and vice versa),
where unadapted baseline model achieves accuracy 38%
(smartphone—smartwatch, and vice versa), outperform-
ing competitive transfer learning models by over 10%.

II. RELATED WORK

In this section, we review the related work in three major
areas: activity recognition in general, applications of transfer
learning, and deep learning for scalable activity recognition.

A. Activity Recognition

Human activity recognition underpins various wellness-
related applications such as remote healthcare monitoring &
obesity management etc. [9]. Researchers have explored multi-
ple novel sensing systems such as wearable [10], ambient, PIR
sensor, sensor tag, RFID etc., for inferring human activity and
its correlation with behavioral health [11], [1], [12]. However,
wearable human activity recognition typically requires large
amounts of labeled data gathered under conditions identical to
that being monitored, and requires hand crafted features to fit
shallow machine learning models. Traditional shallow classi-
fiers are known to degrade in a new environment, where the
activity patterns or users (i.e., age, sex, behavior, lifestyle) are
different. To cope with these issues, researchers investigated
mechanisms to scale shallow classifier models [13][14][2].
However, these activity models do not attempt to automatically
adapt an existing classification model to a different context,
without requiring any additional labeled data. In this work,
we propose a deep CNN-based activity recognition approach
that relies on local dependencies of motion sensor signals
(e.g., for accelerometer data, acceleration signals for the same
activity for different users in diverse environments should be
closely correlated) and that helps discover and utilize invariant
features.

B. Deep Learning

Researchers have recently explored a variety of computa-
tionally efficient deep learning approaches for human activity
recognition. The Restricted Boltzmann Machine (RBM) has
been used to extract features for activity recognition [15].
However, this model advocates fully connected deep neural
network and has not been designed to aptly capture the local
dependencies among the motion sensor signals. [16], [17]
proposed convolutional neural network (CNN) based models
that capture intricate features from motion sensors and helps
improve AR accuracy. But these techniques are similar to the
traditional activity recognition approaches in their need for
large volumes of labeled data in training phase.

C. Deep Transfer Learning

Several transfer learning-based approaches have been ex-
plored for adapting activity models learned from one domain
to another. [18] analyzed CNN based transfer learning ap-
proaches for wearable human activity recognition and showed
that lower layer features are more transferable. [19] explored
feature transferability from one domain to another using
CNNs for image classification and showed that features are
more generic in lower layers and become more application-
specific in higher layers. Deep Domain Confusion (DDC) [20]
approach has been proposed to minimize the maximum mean
discrepancy (MMD) distance of a single fully connected layer
of CNN architecture (referred as adaptation layer). However,
this model is restrictive in terms of model extensibility as the
hidden features of other layers are not transferable. In our
work, we focus on reducing discrepancy between the source
and target domain feature spaces across both generic and
specific hidden layers, and also adapt the final classifier layer.

ITII. DEEP CNN

In this paper, we propose to improve the ability of a
trained classifier to accurately classify unlabeled data, in a
target domain, even when the source and target domains
have different activity data distributions. Our key contribution
is the development of a deep CNN framework that helps
incorporate the local dependencies in sensor signals, preserves
the invariant features, and minimizes the discrepancy across
general and specific layers for constructing the activity models
in the target domain. In our approach, the source domain
CNN is first trained with labeled activity training instances
(of the source domain). The CNN for the target domain is
first initialized as follows: (i) the softmax layer is initialized
with the weights from source domain and (ii) the other three
hidden layers are seeded with random weights and bias. This
newly constructed CNN is trained using unlabeled instances of
activities in the target domain (the set of activities is, however,
assumed to be the same as the source domain). It helps encode
the source domain label information which is also referred as a
label encoding layer. In the target domain CNN learning phase,
we attempt to minimize the KL divergence (or discrepancy)
between the weights & biases of each hidden layer, between
the source and target domain data instances. Figure 2 depicts
our heterogeneous deep CNN activity recognition framework
consisting of two convolutional layers and one fully connected
layer (i.e, embedding layers) spanning across both source and
target domains.

A. Problem Formalization

. . .. o s .81 Ms
Given a source domain activity data sets, D, = {«?,yS}:,

where y? is the activity label and unlabeled target domain
activity data sets D, = {z;};; where n, is the number
of unlabeled examples and =z € R™*1 we build activity
model in the source domain labeled activity data sets first
and then utilize it to recognize unlabeled activities in the
target domain. We use the activity models built in the source
domain to extract activity features in the target domain in
presence of any unlabeled data. This helps utilize source

Source Domain

Softmax, h(6)
Activity Labels

e |2
g

Embedding Spac

Wby . W'b's Wab's

Target Domain

Fig. 2: Deep CNN Activity Recognition Framework

domain label distribution to recognize target domain activity
recognition tasks. We extract the features by considering each
layer of the CNN independently, and try to preserve the
feature representation of these two separate distributions by
minimizing the KL divergence in each layer. In Fig. 2, there
are two factors, i) classification cost, and ii) embedding space
cost, which are needed to be considered to build our CNN.
Therefore, we formulate this optimization problem as one of
minimizing the following cost function:

L
J(O)=C0O)+a) W0, o) +p0(0) (1)
i=1

where 6 is the models’ parameter such as weights and bias,
o) and o) are the activation functions of source and target
domain, L is the number of embedding layers, and « and 3
are positive constants to balance the corresponding terms. We
represent the i*" unit neuron output (activation function) of
k' feature map in I*" layer as follows.

N
I—1+k
and 2L =0l + > whkal ()

1k .
g; (Z;c) =1) nti—1
n=

(3 1—‘,—62;0)

The term C(#) in Eqn. 1 represents the objective function

of softmax regression classifier which is elaborated in Eqn. 3
further,

1 ns k eGJTmi
) = —- [Z;Zuy =itos——| @
=1 j=1 S efi i
j=1

where ng is the number of annotated samples in the source
domain. By introducing this loss function, we help incorporate
the label information from source domain activities to target
domain. The other term in Eqn. 1 refers the layer-wise KL-
divergence cost function in our model and we defined it as
follows.

\IJZ-(J(S)7 J(t)) _]-—‘d(-Pi(S)H-Pi(t)) + Fd(‘Pi(t)H‘ZDi(S)) 4)

where I'; represents the Kullback-Leibler divergence (KL-
divergence) [21]. A lower KL divergence value implies a
greater similarity between the distributions. In Eqn. 4, Pi(s) and
Pi(t) are the probability mass functions of source and target
domain data distribution, respectively. We minimize layer-
wise KL-divergence between source and target domains as we

believe that the corresponding features are more transferrable,

and that the relative distribution of parameters remains the
same for the given activities, independent of the domain
context. Bach neuron in a layer’s output is a real value
corresponding to the each input data set. We calculate the
average output for entire input data set which represents the
probability of that neuron. Finally, we calculate normalized
probability of that neuron for each layer. Mathematically, we
present this for source domain data samples as follows.

& PY

) -
E PZ(S)

Similarly, we define the target domain probability distribu-
tion. We minimize the features discrepancy in the first layer
and transmit those features incrementally to the next layer
for further reduction in discrepancy. We continue this process
until the end of our feature extraction layer to minimize
the discrepancy among the generic and specific feature sets.
One challenge we face in this process, is overfitting, which
we tackle by trading off the size of training data and the
network. To reduce this overfitting, we use a regularization
term ®(6) as shown below (Eqn. 7) with our objective function

as represented in Eqn. 1.
L K

(0) =)

=1 k=1

%) i T 0

(g™ I + 1163]1%) (7

We further optimize our deep CNN by incorporating the
dropout technique that helps us remove neural network units
at random along with all incoming and outgoing edges. We
apply the simplest case, where we provide retain probability
(p) to retain each unit independent of other units. It helps us
prevent overfitting and gain lower generalization error in our
model. We apply this dropout technique in our fully connected
layer as well.

B. Model Learning

Gradient descent is one the most popular techniques used
in neural network to optimize the cost function. We employ
AdaDelta [22] algorithm to optimize our objective function for
our domain adaptive automated CNN-based activity recogni-
tion model. AdaDelta helps accumulate the a-priori gradients
of a fixed size window w and update the model parameters as
follows.

O =0, + AG; and A§ = — VAPl 1te

E[Ag?]i+e

®)

Elg?]; and E[#?)]; are the gradient running average and
the parameter (/) running average at time, respectively and
depicted as follows.

Elg*)s = vE[g’]i—1 + (1 = 7)g¢)

E[6%); = vE[0°]—1 + (1 — 7)6}

where ¢; is the gradient of our objective function with
respect to 6; and represented as.

_ 576
gt = 50,

(10)

We calculate the partial derivatives of the cost function, J with
respect to weight, w; and bias, b; and fit it into Eqn. 10 and
update the model parameters to find the optimal solution. We
present this partial derivatives calculation of J with respect
to W1 in appendix. Similarly, we calculate partial derivative
with respect to Wa, W3, Wy, and by, bs, b3, by respectively to
establish the value of our model parameter, #. Our proposed
deep transfer CNN helps achieve better local optimal solution
to minimize the discrepancy between generic and specific lay-
ers across heterogeneous settings which in turn helps increase
the transferability and adaptability of cross-domain features
in different settings. The details of our proposed algorithm is
summarized in Algorithm 1.

Algorithm 1: Heterogeneous Deep Convolutional Neural
Network (HDCNN) for activity recognition

1: Input: Assume source domain D, = {x§8)7y2(8)}|?:51
and D; = {:El(t)}u;tl model parameters « and S, k =
no. of nodes in the fully connected layer, c = label layer,
and trained source domain CNN

2: Output: Results of the label layer z* and weighted
target domain CNN layers L.

3: Construct target domain CNN with same number of
convolutional and fully connected layers and append
softmax layer taken from source CNN

4: Initialize random weights and biasness parameters W7,
Wa, W3, Wy, by, ba, bs, by in the target domains CNN

5: Compute the partial derivative of J(#) with respect to
W1 and similarly calculate all other derivatives

6: Compute E[g?];, the gradient running average and
E[6?], the parameters (W1, Wa, W3, Wy, by, ba, b3, by)
running average using Eqn. 9

7: Compute Af, and update model parameters using Eqn. 8
Continue step 5, 6, 7 until the algorithm converges

8: Compute resulted label layer output (z?), using
2t = f(Wyhg + by) and embed target domain’s CNN
layers and then construct target classifier as described in
section II-C

C. Deep Activity Classifier Construction

In this section, we discuss the details of constructing our
heterogeneous classifier (HDCNN) which runs across a diverse
set of devices, users, and environments with zero or minimal
labeled of datasets available in the target domain. We hypoth-
esize that our target domain activities have unlabeled data and
source domain activities have labeled data. For any activity
instance ? in the target domain, we consider the activity class
for which that specific instances have maximum probability on
the source domain class and calculate the final layer’s output
as 2! = f(Wyhg(z') 4+ by) where hy denotes the softmax
classifier. In the evaluation phase, we use target domain data
as input into the newly constructed HDCNN input layer to
generate the required features for the final output.

IV. EXPERIMENTAL SETUP AND EVALUATION

In this section, we discuss the detailed evaluation of our

proposed activity recognition framework with our dataset,

gathered with 4 different devices and 15 distinct users.

A. The Dataset

We collected smartphone and smartwatch accelerometer
sensor data for eight activities - ‘Sitting’, ‘Standing’, ‘Jump-
ing’, ‘Lying’, ‘Walking’, ‘Running’, ‘Stairs Up’, ‘Stairs
Down’. Three smartphones from two different manufacturers
(2 LG Nexus 4 and Moto G) and a smartwatch (Moto 360)
were used to collect these activity traces. Smartphones were
kept in a tight pouch around the waist, while the smartwatch
was worn on dominant hand. The devices were synchronized
with the time service of the network provider and the ac-
celerometer data was sampled at 50 Hz. Fifteen users (11 male,
4 female) in the age group of 18 to 40 years participated in
this experiment.

Participants followed a scripted set of activities, perform-
ing each individual activity multiple times for a duration
of 10 minutes each (except jumping, which was restricted
to ~3 minutes to avoid physical over-exertion), resulting in
5,86,000 data frames in total. Besides collecting the smart-
phone/smartwatch accelerometer data via a custom-build up,
each activity was recorded by a video camera, with user
consent, to provide ground-truth labeling. The data collection
took place under realistic conditions (i.e., when the subjects
walked around university campus). Each subject followed their
own patterns (i.e., how fast they wanted to walk or how they
wanted to climb) for each activity.

B. Baseline Methods

To understand HDCNN’s comparative performance, we
compare it with several state-of-the-art transfer learning based
classifiers such as Deep Domain Confusion (DDC) [20], Joint
Distribution Adaptation (JDA) [23] and Transfer Component
Analysis (TCA) [24].

C. Implementation Details

We implemented our heterogeneous deep CNN (HDCNN)
framework using the Python based deep learning platform,
Theano [25]. The accelerometer data was first segmented
into 128-sample frames (approx. 2.5 secs long), with 50%
overlap between successive frames. Frames are then fed into
the classifier in batches, with a batch size = 64. We keep
the frame length and batch size consistent across all of our
experiments.

We set all the parameters of our HDCNN classifiers com-
posed of two convolutional layers through empirical evaluation
(see parameter sensitivity Section IV-DS5 later). We set the
number of filters to 32 and 64, respectively for two convolu-
tional layers with a filter size of 5, the max-pooling size to 2,
and add one fully connected hidden layer (with k =128 nodes)
to the convolutional layers. One additional classifier layer is
used to generate posterior probabilities. We set the model
parameters « = 0.005, 5 = 0.00002 and k = 128 for our dataset.
We maintain this configuration both for the standard CNN and
our proposed HDCNN classifiers. We ran our heterogeneous
deep CNN AR model on a server equipped with a NVIDIA

GeForce 1080 Ti GPU and 64 GB memory with an Intel Core
17-6850K (3.80 GHz) processor.

We report on the performance of the various classifica-
tion approaches using the common metric of accuracy (=
m%ﬁi%), where TP, FP, TN, and FN are the number
of instances of true positive, false positive, true negative and
false negative, respectively. Other metrics, such as precision,
recall and F-1 score were also evaluated, but not reported here
as the insights are qualitatively similar.

D. Experimental Results

We evaluate the performance of our proposed activity recog-
nition framework with respect to the following metrics. i)
Influence of unlabeled data (i.e., how HDCCN performs in
the absence of any labeled training data), and ii) Percentage
of labeled training data (i.e., how HDCNN performs if given
varying amounts of labeled training data).

1) Device-Type Heterogeneity: We next evaluate HDCNN’s
performance when the learnt model is applied to a different
device type, i.e., for i) Smartphone to Smartwatch transfer,
and ii) Smartwatch to Smartphone transfer.

i) Smartphone to Smartwatch Transfer: We consider
a smartphone-generated labeled data as source domain and
a smartwatch as target domain. As before, we consider the
availability of only a modest amount of labeled training
data in the target domain; the baseline classifiers are also
trained on this target domain’s training data. To maintain user
independence, we randomly split the labeled training data from
10% to 100%.

Fig. 3 shows HDCNN achieves = 76% accuracy with only
10% training data; moreover, this accuracy improves only
slightly (improving to ~ 81%) as the volume of labeled
training data increases. HDCNN also outperforms the various
baseline shallow-learner and DDC algorithms, by about 6% on
average. Noticeably, DDC requires a larger volume of training
data (close to 60%) in the target domain to converge, and
HDCNN outperforms the DDC by = 10%, when the amount
of labeled training data (in the target domain) is modest.
Results for the case of ‘no labeled data’ are similar to those
presented later for the User Diversity paradigm and are omitted
here for space reasons.

i) Smartwatch to Smartphone Transfer: We also an-
alyzed the classifier performance in the reverse direction:
where we use smartwatch data as the source domain and
smartphone as the target domain. Fig. 4 shows performance
of our HDCNN. We observed very similar results: HDCNN
outperforms the other classifiers and achieves ~80% accuracy
with only 10 — 20% of labeled training data.

These results show the superiority of our HDCNN approach
for a case of high practical interest in today’s scenarios where
users carry multiple devices: when an activity recognition
model trained on one device is rapidly transferred to a newly
acquired device. However, the absolute accuracy numbers are
slightly lower in this case. The results suggest that transfer
learning of features is harder for device-type heterogeneity.
We suspect that this is because the different canonical on-body
positions of different devices (e.g., wrist for a smartwatch and

Datasets il Wb

HDCNN| JDA | TCA| DDC| HDCNN| JDA | TCA| DDC
HHAR | 78.75 63.13] 57.81) 71.40, 76.74 55.68] 56.39] 69.37
HAR 72.24 55.69| 51.42 65.62] 74.71 59.55| 53.75| 66.19

TABLE I: Percentage (%) Accuracy Comparison of HHAR
and HAR datasets

pant pockets for a smartphone) imply larger differences in the
characteristic sensor signatures between the source and target
domains.

Performance Under Diverse Datasets: To investigate the
generality of our results, we investigate HDCNN’s relative
performance using additional datasets: (i) Heterogeneity Activ-
ity Recognition (HHAR) [4] and (ii) Position aware activity
recognition (HAR) [26]. HHAR contains six different loco-
motive activities, with accelerometer data from 8 smartphones
and 4 smartwatches. Data was collected from 9 users, with
the smartphones placed in a waist pouch, and smartwatches
mounted on each arm. HAR data consists of 8 in-the-wild
locomotive activities, collected by 15 users, with phones
mounted on 6 different body positions (chest, head, shin, thigh,
upper arm & waist) and a forearm-mounted smartwatch. For
our studies, we partition the data with smartphone data as the
source domain and smartwatch data as the target domain (and
vice versa).

Table I represents the comparative performance of HD-
CNN (P — W indicates smartphone-to-smartwatch, and
W — P denotes the reverse), with only 30% labeled data
used in the target domain. We observe that HDCNN achieves
~76% and =~ T3%classification accuracy, for HHAR and
HAR respectively, when adapting across device-instances. The
HAR dataset contains activities performed under more natural
settings, and thereby exhibit higher diversity. We also see that
HDCNN significantly outperforms other transfer learning ap-
proaches (e.g., JDA and TCA), including the best-performing
DDC (=70% & 66%). We also studied non-adaptive classifiers
(i.e., applying just the source-domain trained classifier on
the target domain). As expected, the accuracy is quite low:
CNN achieves performance accuracy of ~34.38% and 32.94%
(smartphone—smartwatch, and vice versa), while SVM accu-
racy is ~27.05% and 31.25% (for HHAR and HAR). These
results demonstrate HDCNN'’s ability to achieve significant
performance gains across diverse activities.

2) User Diversity: We next consider another common case
of user diversity, where the model is trained on a subset
of users and then applied to other users. For this study,
we consider only smartphone-based AR. We partitioned the
dataset into two groups: group 1 consisting of 9 of the 15 users
and representing the source domain, while group 2 consists
of the remaining 6 users who constitute the target domain.
Note that our approach differs from traditional cross-validation
approaches in that we actually adapt the classifier by utilizing
a small portion of the activity data from the 6 users, instead
of simply applying the 9-user trained model to these 6 users.
Performance with No Labeled Data: We first evaluate the
performance of our AR framework (HDCNN classifier) in the
complete absence of any labeled data in the target domain.

920

80

70

Accuracy (%)
<
3
Accuracy (%)

50 -§- JDA -%- DDC 50

-3- oA
TCA —&— HDCNN TCA

-%- DDC
—&— HDCNN

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Percentage (%) of Training Instances Percentage (%) of Training Instances

Fig. 3: HDCNN vs. classi- Fig. 4: HDCNN vs. classi-
fiers: Smartphone — Smart- fiers: Smartwatch — Smart-
watch phone

We first train the HDCNN using the entire labeled data of
activities from group 1 (source domain) and then transfer it to
group 2 (target domain). Even though the target domain data
is unlabeled, we perform the transfer learning with varying
amounts of group 2’s activity data (the remaining data is used
as the evaluation set). More specifically, in this approach, the
adaptation is restricted only to using the unlabeled target-
domain “training data” to update the weight & bias values
of the hidden layers, so as to ensure the closest distributional
similarity (Equation 1) between the activation functions. Note
that we do not modify (or update) the softmax layer weights,
as we do not assume any ground truth about the activity labels
(in the target domain). We follow the same classifier adaptation
process for the baseline classifiers (DDC, JDA and TCA) as
well.

Fig. 5 shows accuracy of HDCNN and the other classifiers,
as a function of the percentage of group 2’s data that is used
(without any labels) as the target domain’s training set. We
see that HDCNN achieves a performance gain of ~6-22%
compared to the other classifiers (this roughly corresponds
to the accuracy drop reported due to user diversity in prior
literature). As the other classifiers are retrained on the target
domain’s training set to reduce the domain discrepancy only
on single layer, their performance is obviously affected by the
quantum of such training set data. TCA performs worst than
all other classifiers because (i) TCA learns suboptimal kernel
space by minimizing domain distribution distance from hand-
crafted features, and (ii) it does not consider non-transferable
hidden features. Note that the Deep domain confusion model
(DDC) performs worse than the HDCNN classifier, as DDC
adapts only a single layer of the network, which restricts its
transferability across domains. Moreover, we reiterate that this
performance gain of HDCNN is achieved in the complete
absence of any labeled data in the target domain. From
the Fig. 5, we also note that HDCNN performance gain
drops ~1-3% with the increasing amount of target domain
unlabeled activity samples as it encounters more diverse non-
transferable features in the target domain. HDCNN is still able
to learn and adapt its feature correlations (its edge weights)
to accommodate the diversity exhibited in the target domain.
HDCNN’s accuracy gains are also stable and quite insensitive
to the volume of unlabeled training data, as it requires only
10-20% of the activity samples in the target domain dataset.

Performance Comparison with Unadapted Classifier: We

compare our HDCNN model performance with the baseline
standard classifiers such as CNN, SVM, RF, and LR. We
trained baseline classifier with only source annotated training
instances (9 users from group 1) and tested against the target
domain instances (6 users from group 2). We use 100% source
annotated training instance and target domain unlabeled data
(group 2’s users data) to validate our HDCNN model, using a
standard 10-fold cross-validation technique. Table IT compares
the performance gains: we see that HDCNN achieves perfor-
mance gain of ~ 18-31%, as it is able to learn and adapt
correlated features in the target domain.

HDCNN
79.09

CNN
60.72

SVM RF LR
54.78 | 53.84 | 48.59

TABLE 1II: Percentage (%) Accuracy Comparison with stan-
dard baseline methods

Performance with Varying Labeled Data: We next study
how the performance of HDCNN is affected by the availability
of varying amounts of labeled training data, in the target
domain. Our primary interest is in the question: does a modest
amount of labeled training data, when used in conjunction with
a transfer model seeded by unlabeled data, help to improve the
classifier performance in the target domain?

To study this, we systematically vary the amount of labeled
data and measure the classification accuracy of our HDCNN.
More specifically, in this approach, we first refine the HDCNN
model in the target domain—i.e., adjusts the weights and
bias terms in the hidden layers, using the unlabeled target
domain data. Subsequently, we use the additional labeled
data to modify the softmax regression layer coefficients (the
parameter 6, which was initialized using the values learned
in the source domain), according to Equation 3). In this
case, the alternative classifiers (TCA, JDA and DDC) also
undergo domain adaptation & transfer learning steps, with
the equivalent amount of labeled training data available in the
target domain.

Fig. 6 shows the comparative performance. HDCNN clearly
outperforms all baseline transfer algorithms and achieves the
best accuracy (close to 90%), with this accuracy remaining
essentially unchanged as the amount of labeled training data is
varied from 10-~100%. More specifically, when only 10% of
group 2’s (the remaining 6 users) data is used for supervised
classification, HDCNN achieves ~87% accuracy and signif-
icantly outperforms the other algorithms. This indicates that
HDCNN can rapidly adapt (its softmax regression layer) to the
target domain activity pattern. As expected, a transferable deep
learning model (DDC) does outperform the shallow models,
as it tunes the parameters based on the target domain activity
labels. JDA achieves performance gain ~3-4% lower than
DDC due to the fact that JDA also learns suboptimal kernel
space by using both source and target domain activity data, in
addition to target domain activity label information. In fact,
as a data-hungry model, DDC performs quite poorly when
only 10% of labeled data is available. Our results show that
HDCNN is very effective in using even limited amounts of

labeled training data in the target domain: the classification
accuracy jumps to ~ 90%, under 10% labeled data, compared
to only ~ 80% when no labeled data is available.

3) Influence of Cross-People & Class Distribution: We now

describe two additional performance-related aspects of our
proposed HDCNN algorithm.
Cross-People Activity Recognition: We also analyzed how
our transfer learning algorithm works for a more limited cross-
user scenario, where a user’s data consists of both smartphone
and smartphone samples. More specifically, we randomly
choose user 1 as source and user 2 as target from group 1
and group 2, respectively and vary the user 2’s label data. We
repeat this experiment and report the average accuracy and
compare HDCNN performance with the other algorithms.

Fig. 7 depicts that better activity recognition performance
is achieved for cross-user HDCNN model. Our model out-
performs other models; more specifically, with only 20% of
label data from user 2, it achieves an accuracy score of ~=90%.
This is likely due to the ability of HDCNN’s to extract diverse
discriminatory features (relevant to either phone or watch-
based sensing) without any need for hand-crafted feature
selection. This feature diversity is able to tackle inherent
divergence in activity distributions, intensity, style and pace,
across the two users, with just minimal data from user 2.
Influence of Class Distribution: The optimization frame-
work for our HDCNN algorithm implicitly assumes that the
distribution (relative frequency) of different activity classes
will be roughly the same between the source and target
domains. To study this issue more carefully, we explicitly
studied the impact that imbalanced training data in the target
domain has on the overall classifier performance. To examine
this situation, we sampled labeled training data in different
proportions from the target domains. We consider all source
domain labeled samples and 20% labeled samples from the
target domain. We choose the relative percentage of data
samples (in the target domain) as {11%, 12%, 2% 14%, 15%,
15%, 16%, 15%} for our activity classes { ‘Climbing Down’,
‘Climbing Up’, ‘Jumping’, ’Lying’, ’Standing’, ‘Sitting’, ‘Run-
ning’, ‘Walking’}—i.e., we consciously reduced the number of
‘Jumping’ & ‘Climbing’ instances, and boosted the number of
‘Sitting’, ‘Running’ & ‘Walking’ instances.

Fig. 8 shows our classifier performance for such imbalanced
training data. We see that HDCNN shows low-precision value
~0.45 for ‘Jumping’, indicating that a number of other activity
labels are falsely classified as ‘Jumping’. Similarly, ‘Climbing
Down’ shows low recall value (/0.54), indicating a failure
to detect a large number of ‘Climbing Down’ samples. The
results suggest that our proposed transfer learning model
is not immune to the problem of “imbalanced classes” in
the target domain data set. Clearly, even when primed with
balanced classes in the source domain, the transfer learning
approach has difficulties in obtaining the correct layer weights,
especially for the minority classes (the ones that have lower
representation in the target domain’s training set). In future
work, we shall explore how to modify the objective function
to better tackle such class imbalance.

100

% JoA

90 TCA

-¥- DDC
—§- HDCNN 2

80

70

Accuracy (%)
~
S

60

Accuracy (%)

60

50 -$- DA
50 TCA

-%- DDC
- HDCNN

10 20 30 40 50 60 70 80 90 100
40 Percentage (%) of Training Instances

10 20 30 40 50 60 70 80 90 100 Flg. 6: HDCNN performance
(Varying Amount of Labeled
Data)

Percentage (%) of Training Instances

Fig. 5: HDCNN Performance
(No Labeled Data)

4) Dynamics of Learning Transferability: We also compare
our HDCNN model with non-transferable baseline classifiers
such as CNN, and SVM. We trained baseline CNN and
SVM using only source or target domain annotated training
instances and named as CNN(*), SVM(), CNN(®) and SVM®
where (s) and (¢) stands for source and target domain. These
classifiers are then tested against the target domain testing
instances. We trained our model, HDCNN with only 10%
target domain labeled data and compare the performance of
the baseline methods. (For the baseline methods, the source
domain classifiers are trained using 100% of the labeled
source domain data, whereas the target domain classifiers
are validated using a standard 10-fold cross validation tech-
nique.) Table III represents the performance comparison of
our HDCNN with non-transferable methods. Note that our
model, HDCNN achieves ~ 26% performance gain compared
to only source domain trained methods. Expectedly, CNN(*) a
deep learning classifier that is explicitly trained on the target
domain and that requires a large corpus of labeled training
data, performs the best. However, our HDCNN model achieves
87% accuracy, which is close to target domain trained SVM(*)
and CNN®). The key advantage is that HDCNN is able to
achieve this accuracy with significantly smaller quantity of
labeled training data in the target domain.

5) Parameter Sensitivity: We also report on how the per-
formance of our classifier (HDCNN) is affected by the fol-
lowing CNN-related parameters. (i) retaining probability (each
unit/neuron retained with probability, (p)), (ii) number of fully
connected nodes (k), and (iii) model parameter («). We plot
the effect of one parameter on the activity recognition accuracy
by keeping the other two parameters unchanged. We sample
the value of « from {0.001, 0.005, 0.01, 0.05, 0.07, 0.1,
0.5, 1.0, 1.5, 2.0}, and k from {8, 16, 32, 64, 128, 256}.
Fig. 9 a), b), c) showcase the influence of these parameters
on the activity recognition accuracy. We note (Fig. 9a) that
our HDCNN classifier achieves ~ 78% AR accuracy for a
retaining probability of 0.5. Similarly, Fig. 9b shows that
higher AR accuracy is achieved with either £ = 128 or 256
fully connected nodes. We chose k = 128 in all our experi-
mentation, as this offered reduced computational complexity.
Finally, our classifier achieves highest accuracy of ~ 78%
at model parameter (o) 0.005 (Fig. 9c). The lower value of
« helps accelerate the convergence of our deep CNN model

Accuracy (%)
Metric Score
°

50 -$- JpA -%- DDC
TCA —#— HDCNN
40 10 20 30 40 50 60 70 80 90 100
Percentage (%) of Training Instances 0.0 T R e S —
Fig. 7: HDCNN classifier ="
performance for personalize Fig. 8: Influence of class dis-
model tribution on HDCNN

faster and thus helps boost AR accuracy, even for smaller sizes
of the training dataset.

V. DISCUSSION AND FUTURE WORK

While our results show the significant promise of our
constraint-driven transfer learning approach for CNNs, there
are additional issues that need to be investigated.

Transfer Under Label Mismatches: As shown in Figure 8,
an imbalance in the frequency distribution, of different activity
classes degrades the performance of the transferred classifier.
In this case HDCNN performance degrades as the limited
number of target domain samples prevent it from learning
all possible variations for the corresponding activities. One
possible solution to tackle this might be to use random over-
sampling [27]. However, random oversampling can also cause
overfitting problem due to the duplicate number of samples
from the same activity classes. Therefore, further investigation
is needed to understand if this degradation arises principally
due to the imbalanced distribution in the training data of
the target domain, or is due to the mismatch in distributions
between the training data of the source and target domains.
Performance Under "
Noisy Datasets: To %
understand the limitations
of our framework, we also
evaluated its performance
sensitivity to varying noise
level in the target domain. G
We use 100% annotated
source domain instances
and noisy target domain
instances. We generate varying level of noisy data by adding
“unknown” activity instances in the target domain dataset.
Note that our target domain contains only 20% annotated
activity instances. Fig. 10 shows the overall performance of
our HDCNN for smartphone-to-smartphone (P — P) and
smartphone to smartwatch (P — W) transfers. We see that
our HDCNN model performance drops ~ 21%, and 26%
in case of P — P and P — W, respectively. This result
suggests that transferring features in presence of noisy dataset
in the target domain is challenging.

VI. CONCLUSION

\‘

3
>
/)

/
/
/
/
/
1]
/
/

a
g
]
!
I
|
|
|
I
J

Accuracy (%)
w & ow
8 5 3

N
S

—a— PoP - PoW

10 20 30
Percentage (%) of Noise Data

Fig. 10: HDCNN Performance
Under Noise

To tackle the problem of easily adapting activity recognition
(AR) algorithms to changing domain context (people, device-

Methods | Accuracy (%) o

HDCNN 87.40 =

CNN(S) 60.95 g m/\‘\/‘
SVMG) 54.24 <

CNN® 95.58

SVM® 91.64 O 0 O o b Omaiditg Qi

TABLE III: Percentage (%)
accuracy comparison with
non-transferable baseline
methods

(a) Dropout probability
influence on AR Accu-
racy

types and device-instances), we propose a deep transfer learn-
ing approach called HDCNN. In HDCNN, the parameters of a
CNN-based classifier are learnt using extensive training data in
one domain, and then adapted using data from another (target)
domain. Our key insight is that, if the activity labels (and
the relative proportion of each activity) remain unchanged,
the relative distribution of weights in the hidden layers of the
source domain model should be similar to the corresponding
target weight distributions. Based on empirical evaluation,
we showed that HDCNN performs well even in the absence
of any labeled data, but can achieve higher classification
accuracy with even a very modest amount of target domain
labeled data (roughly 1 minute of data for each activity).
HDCNN achieves over 90% accuracy when presented with
cross-user differences, and =~ 80% accuracy under the more
challenging case of smartphone-to-smartwatch model transfer,
outperforming alternatives by 5 — 20%. We believe that our
approach will help usher in similar automatic adaptation-based
approaches for practical in-the-wild activity recognition.

VII. ACKNOWLEDGMENT

The authors thank the shepherd Stephan Sigg and anony-
mous reviewers for their constructive feedback and comments.
This research is partially supported by the ONR under grant
N00014-15-1-2229, and partially by the Singapore Ministry
of Education Academic Research Fund Tier2 under research
grant MOE2014-T2-1063.

REFERENCES
[1]
[2]

Tomas Brezmes and Juan-Luis Gorricho. Activity recognition from
accelerometer data on a mobile phone. In Proc. of ANN 2009.
Nicholas D et al. Lane. Enabling large-scale human activity inference
on smartphones using community similarity networks (csn). In Proc of
Ubicomp, 2011.

Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy Choudhury, and
Srihari Nelakuditi. Accelprint: Imperfections of accelerometers make
smartphones trackable. 2014.

Allan Stisen, Henrik Blunck, and Sourav Bhattacharya. Smart devices
are different: Assessing and mitigatingmobile sensing heterogeneities for
activity recognition. In Proc. of ACM SenSys, 2015.

Ming Zeng, Le T Nguyen, Bo Yu, Ole J Mengshoel, Jiang Zhu, Pang
Wu, and Joy Zhang. Convolutional neural networks for human activity
recognition using mobile sensors. In Mobile Computing, Applications
and Services (MobiCASE), 2014 6th International Conference on, pages
197-205. IEEE, 2014.

Xiaojin Zhu. Semi-supervised learning. In Encyclopedia of machine
learning, pages 892-897. Springer, 2011.

Rajat et al. Raina. Self-taught learning: transfer learning from unlabeled
data. In Proc. of ML. ACM, 2007.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. /[EEE
Transactions on knowledge and data engineering, 22(10):1345-1359,
2010.

[3]

[4]

[5]

[6]
[7]

(b) The parameter influ-
ence of k

o

Accuracy (%)

S

Accuracy (%)

256 000§ 0000 0% 070} 05 ¥ 15 2
k a

) 16 32

(c) The parameter influ-
ence of «

Fig. 9: Influence of learning parameters on our deep heterogeneous classifier (HDCNN)

[91 B Adar Emken, Ming Li, Gautam Thatte, Sangwon Lee, Murali An-
navaram, Urbashi Mitra, Shrikanth Narayanan, and Donna Spruijt-Metz.
Recognition of physical activities in overweight hispanic youth using
knowme networks. Journal of Physical Activity and Health, 9(3):432—
441, 2012.

Ferhat Attal, Samer Mohammed, Mariam Dedabrishvili, Faicel Cham-
roukhi, Latifa Oukhellou, and Yacine Amirat. Physical human activity
recognition using wearable sensors. Sensors, 15(12):31314-31338,
2015.

Xing Su and Hanghang Tong. Activity recognition with smartphone
sensors. Tsinghua Science and Technology, 2014.

Mi Zhang and Alexander A Sawchuk. Usc-had: a daily activity dataset
for ubiquitous activity recognition using wearable sensors. In Proc. of
ACM UbiComp, 2012.

Jussi et al. Parviainen. Adaptive activity and environment recognition
for mobile phones. Sensors, 2014.

Zahraa Said et al. Abdallah. Streamar: incremental and active learning
with evolving sensory data for activity recognition. In Proc. of ICTAL
IEEE, 2012.

Thomas Plotz, Nils Y Hammerla, and Patrick Olivier. Feature learning
for activity recognition in ubiquitous computing.

M. Zeng and L. T. Nguyen. Convolutional neural networks for human
activity recognition using mobile sensors. In Proc. of (MobiCASE),
2014.

Sung-Bae Cho Charissa Ann Ronao. Human activity recognition with
smartphone sensors using deep learning neural networks. Expert systems
with applications, 2016.

Francisco Javier Ordéiiez Morales and Daniel Roggen. Deep convolu-
tional feature transfer across mobile activity recognition domains, sensor
modalities and locations. In Proc. of ACM ISWC, 2016.

Jason Yosinski and Jeff Clune. How transferable are features in
deep neural networks? In Advances in Neural Information Processing
Systems, 2014.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor
Darrell. Deep domain confusion: Maximizing for domain invariance.
arXiv preprint arXiv:1412.3474, 2014.

David JC MacKay. Information theory, inference and learning algo-
rithms. Cambridge university press, 2003.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and
Philip S Yu. Transfer feature learning with joint distribution adaptation.
In Proceedings of the IEEE international conference on computer vision,
pages 2200-2207, 2013.

Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and Qiang Yang.
Domain adaptation via transfer component analysis. /IEEE Transactions
on Neural Networks, 22(2):199-210, 2011.

Theano Development Team. Theano: A Python framework for fast
computation of mathematical expressions. arXiv e-prints, 2016.

Timo Sztyler and Heiner Stuckenschmidt. On-body localization of wear-
able devices: An investigation of position-aware activity recognition.
In Pervasive Computing and Communications (PerCom), 2016 IEEE
International Conference on, pages 1-9. IEEE, 2016.

Haibo He and Edwardo A Garcia. Learning from imbalanced data.
IEEE Transactions on knowledge and data engineering, 21(9):1263—
1284, 2009.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

