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A new community data resource offers unique capabilities for evaluating the potential for 

useful Earth system prediction on decadal time scales.

PREDICTING NEAR-TERM 
CHANGES IN THE EARTH SYSTEM

A Large Ensemble of Initialized Decadal Prediction 
Simulations Using the Community Earth System Model

S. G. Yeager, G. Danabasoglu, N. A. Rosenbloom, W. Strand, S. C. Bates, G. A. Meehl,  
A. R. Karspeck, K. Lindsay, M. C. Long, H. Teng, and N. S. Lovenduski

The field of near-term climate prediction has 
grown rapidly since the advent of the f irst 
studies, about a decade old now, showing that 

observation-based initialization of coupled general 
circulation model (CGCM) simulations of the last 
half-century can significantly enhance predictive 
capacity on time scales from a year to a decade or 
more in advance (Keenlyside et al. 2008; Pohlmann 
et al. 2009; Smith et al. 2007). Phase 5 of the Coupled 

Model Intercomparison Project (CMIP5) included, 
for the first time, a framework for testing the benefits 
of historical initialization, in addition to prescribed 
external forcings, for decadal climate outlooks that 
are sensitive to both initial conditions and forced 
boundary conditions (Meehl et al. 2009). This frame-
work involves running fully coupled hindcast (i.e., 
retrospective forecast) ensembles initialized using ob-
servationally based state information at prescribed in-
tervals over the historical period; these hindcasts are 
then verified against observations and compared to 
uninitialized, free-running simulations to determine 
both overall skill and the benefits of initialization. 
Analysis of CMIP5 decadal prediction (DP) experi-
ments revealed a wide range in skill for different vari-
ables and for different prediction systems. While the 
potential for useful applications was demonstrated, 
the CMIP5 experience also highlighted a number of 
outstanding research questions that must be tackled 
in order to advance DP science into a more mature 
phase (Kirtman et al. 2013; Meehl et al. 2014). The 
prediction of near-term climate change has recently 
been recognized by the World Climate Research 
Programme (WCRP) as one of the grand challenges 
facing the international climate research community, 
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and an extensive set of coordinated decadal predic-
tion experiments slated for CMIP6 will help to further 
advance the frontiers of this still-nascent application 
of CGCMs (Boer et al. 2016).

The enormous computational cost of performing 
(and analyzing) DP experiments is a significant im-
pediment to progress in near-term climate prediction, 
not least because it greatly restricts the community 
of active researchers. The tier-1 set of hindcasts re-
quired for basic participation in the Decadal Climate 
Prediction Project (DCPP) of CMIP6 calls for roughly 
3,000 years of coupled model simulation (Boer et al. 
2016). This figure is based on a set of 10-member en-
sembles initialized each year for the past 60 years and 
integrated forward for 5 years (60 × 10 × 5 = 3,000). 
The resource demand doubles if the hindcast length 
is extended to 10 years so that skill can be evaluated 
at decadal, as opposed to multiannual, lead times. The 
significant cost of such experiments makes it difficult, 
if not wholly unfeasible, to systematically evaluate the 
sensitivity to poorly constrained DP configuration 
choices such as the ensemble size, the method of en-
semble generation, the annual start date, the number 
of start times, the initialization method, the number 
of initialized Earth system components (in addition 
to the ocean), and the component model resolution(s). 
Furthermore, the identification of skill enhancement 
due to initialization requires a complementary set of 
“uninitialized” (UI) historical simulations, which 
greatly adds to the expense of DP evaluation. Both 
the DP and UI ensembles should ostensibly be large 
enough so that the ensemble average operation ef-
fectively isolates the shared component of variance 
within the respective ensembles (Boer et al. 2013). 
The standard 10-member ensemble is probably insuf-
ficient for this purpose for many fields and regions 
of interest (Sienz et al. 2015), but is generally deemed 
adequate for pragmatic reasons.

A recently completed set of initialized prediction 
simulations using the Community Earth System 
Model (CESM) promises to be a valuable resource for 
evaluating decadal predictions of the Earth system in 
the large-ensemble limit. The CESM decadal predic-
tion large ensemble (CESM-DPLE) is composed of 
40 member ensembles initialized each 1 November 
between 1954 and 2015 (for a total of 62 start dates) 
and integrated for 122 months. What was originally 
a 10-member ensemble set was expanded by an ad-
ditional 30 members in early 2017 thanks to a compu-
tational award granted by the Computational and In-
formation Systems Laboratory (CISL) of the National 
Center for Atmospheric Research (NCAR). A unique 
aspect of the CESM-DPLE that, apart from ensemble 

size, makes it unprecedented in the field of near-term 
climate prediction is that the complementary, unini-
tialized historical simulations also compose a large 
ensemble set. The CESM Large Ensemble (CESM-LE; 
Kay et al. 2015) is a highly successful community 
project that has accumulated a 40-member ensemble 
of historical and projection simulations spanning 
1920–2100. The CESM-DPLE was generated using the 
same code base, component model configurations, 
and historical and projected radiative forcings as in 
the CESM-LE. Together, CESM-DPLE and CESM-LE 
offer a powerful means of disentangling the impacts 
of external forcing versus initialization on hindcast 
skill and of ascertaining how ensemble size (of both 
the initialized and uninitialized simulation sets) 
influences DP assessment.

The CESM-DPLE is a rich, public dataset that 
will support a broad spectrum of scientific research 
related to Earth system prediction. It comprises 
roughly 600 TB of climate data archived at tem-
poral frequencies ranging from 6 hourly to annual 
from each of the CESM component models (ocean, 
atmosphere, sea ice, and land). It includes ocean 
biogeochemistry fields (as does the CESM-LE), and 
thus it permits exploration of the predictability of 
fundamental components of the ocean biosphere 
and carbon cycle. Improved sampling of underlying 
climate probability distribution functions (PDFs) 
through the use of large ensembles provides more ac-
curate measures of higher-order statistical moments 
in addition to the ensemble mean. Indeed, one of the 
scientific motivations for the CESM-DPLE project 
was to determine whether the CESM prediction sys-
tem shows any evidence of predictable shifts in the 
likelihood of extreme climate phenomena—such as 
heat waves, cold spells, and floods—that inhabit the 
tails of climate PDFs. The large ensemble size will 
also facilitate process-oriented conditional subsam-
pling of the ensemble in order to develop a deeper 
understanding of the critical mechanisms at play in 
near-term prediction. As noted above, the fact that 
CESM-DPLE represents the initialized counterpart to 
CESM-LE over the time period of roughly 1955–2025 
opens up a host of possible lines of inquiry relating 
not only to near-term prediction skill and optimal DP 
system design, but more broadly addressing questions 
about the mechanisms and statistics of forced versus 
internal climate variability that might be elucidated 
by contrasting the two large ensembles.

This article is intended to document the CESM-
DPLE experimental design, provide a broad overview 
of the prediction skill for a few key climate fields, and 
advertise some promising capabilities that merit more 
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in-depth examination in subsequent work. The hope 
is that this study will inspire a diverse community to 
examine the CESM-DPLE dataset, and that it will 
serve as a jumping-off point for more detailed and 
focused scrutiny of regional skill and associated 
mechanisms.

EXPERIMENTAL DESCRIPTION. The CESM-
DPLE is based on CESM, version 1.1, using the same 
model and component configuration as that used in 
the CESM-LE (Kay et al. 2015). For completeness, 
some of the model details are repeated here. The 
atmosphere component is the Community Atmo-
sphere Model, version 5 (CAM5; Hurrell et al. 2013), 
with a finite-volume dynamical core at nominal 1° 
horizontal resolution and 30 vertical levels. The ocean 
component is version 2 of the Parallel Ocean Program 
(POP) run at nominal 1° horizontal resolution and 60 
vertical levels (Danabasoglu et al. 2012). The sea ice 
model is version 4 of the Los Alamos National Labora-
tory (LANL) Community Ice Code (CICE4; Hunke 
and Lipscomb 2008) and is run on the same horizon-
tal grid as the ocean. The land model is version 4 of 
the Community Land Model (CLM4; Lawrence et al. 
2011). The historical (through 2005) and projected 
(from 2006 onward) radiative forcings (including 
greenhouse and short-lived gases and aerosols) are 
identical to those used in CESM-LE. Following DCPP 
guidelines, historical volcanic aerosol forcings are ap-
plied in the DP experiments (Boer et al. 2016).

The CESM1.1 model includes the capability for 
simulating the global carbon cycle, wherein the land 
and ocean component models both include biogeo-
chemistry modules that compute carbon exchanges 
with the atmosphere (Hurrell et al. 2013; Lindsay 
et al. 2014). On the land surface, CLM simulates gross 
primary productivity and routing into litter and soil 
carbon pools using prescribed vegetation distribu-
tions. The ocean model explicitly simulates seawater 
carbonate chemistry, includes a representation of the 
lower trophic levels of the marine ecosystem, and 
tracks several biogeochemical tracers including dis-
solved inorganic carbon, oxygen, and nutrients (Long 
et al. 2013, 2016; Moore et al. 2013). These features 
of the CESM-DPLE system provide relatively novel 
Earth system prediction capabilities, but as in the 
CESM-LE simulations (Kay et al. 2015), the ocean 
biogeochemistry and the simulated atmospheric CO2 
concentration are purely diagnostic (i.e., there is no 
feedback onto the simulated physical climate).

The CESM-DPLE is a collection of 2,480 in-
dependent historical integrations of the CESM 
model—40 distinct member simulations for each 

of 62 initialization dates (1 November from 1954 to 
2015). As such, the computation was highly paral-
lelizable. Initially, 10 members for each initialization 
date were completed on National Energy Research 
Scientific Computing Center (NERSC) machines. 
An additional 30 members (~19,000 simulation years) 
were completed within a 2-month span on the new 
Cheyenne supercomputer at the NCAR-Wyoming 
Supercomputer Center (NWSC). Initial conditions 
for the atmosphere and land models were obtained 
from a single member of the CESM-LE from which 1 
November restart files were saved. While these initial 
conditions contain the effects of historical radiative 
forcings, they were not otherwise constrained by 
observations. Observations were introduced into 
CESM-DPLE primarily through the ocean and sea 
ice initial conditions, which were obtained from a 
coupled ocean–sea ice configuration of CESM1.1 
forced at the surface with historical atmospheric state 
and flux fields (see “Initializing the ocean” sidebar for 
details). Such forced ocean–sea ice (FOSI) simulations 
using CESM have been shown to reproduce some key 
aspects of observed ocean and sea ice variability quite 
well despite the fact that there is no direct assimilation 
of either ocean or sea ice observations (Danabasoglu 
et al. 2016; Yeager and Danabasoglu 2014; Yeager 
et al. 2015). Thus, the observations contributing to 
the historical realism of CESM-DPLE are derived 
from the atmospheric reanalysis and flux products 
used to drive the FOSI simulation. Full-field (as op-
posed to anomaly) initialization is used for all model 
components; drift adjustment is generally required 
prior to analysis. Unless otherwise noted, the results 
shown below are based on anomaly analysis, with DP 
anomaly fields computed by removing a lead-time-
dependent model climatology whose historical time 
span exactly matches that used for the verification 
data climatology (Boer et al. 2013; Kim et al. 2012).

The CESM-DPLE builds upon previous DP efforts 
at NCAR that made use of the Community Climate 
System Model, version 4 (CCSM4). The CCSM4 
decadal prediction (CCSM4-DP) simulation set was 
submitted to the CMIP5 DP collection and has been 
analyzed in several publications (Karspeck et al. 2015; 
Meehl et al. 2016; Meehl and Teng 2012, 2014a,b; 
Yeager et al. 2012, 2015). Noteworthy setup differ-
ences that distinguish CESM-DPLE from CCSM4-
DP (apart from ensemble size) include 1) the model 
code base (in particular, the use of CAM5 instead of 
CAM4), 2) the inclusion of ocean biogeochemistry 
(BGC), 3) the ensemble start date (1 November in-
stead of 1 January), and 4) a new FOSI simulation 
with improved forcing for initializing the ocean 
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The ocean is the primary reservoir 
of memory in the climate system, 

and hence the historical ocean state 
is the single-most important consid-
eration when it comes to initializing 
decadal climate predictions. The NCAR 
contribution to the CMIP5 decadal 
prediction collection (CCSM4-DP) used 
a FOSI simulation to obtain historical 
initial conditions for the ocean and sea 
ice components, with the FOSI surface 
fluxes computed with bulk formulas us-
ing atmospheric fields from the Coordi-
nated Ocean-Ice Reference Experiment 
(CORE) forcing dataset. The CORE forc-
ing protocol has been a widely used and 
extensively documented standard in the 
ocean modeling community (refer to the 
CORE-II virtual special issue of Ocean 
Modelling for related articles). Skill-
ful reproduction of observed decadal 
changes in Labrador Sea hydrography, 
in particular, in the CORE-forced FOSI 
is believed to be a key aspect of the CC-
SM4-DP initialization that explains long 
lead-time prediction skill in the subpolar 
gyre of the North Atlantic (Yeager et al. 
2012, 2015).

Despite high skill in the Atlantic 
sector, CCSM4-DP hindcasts exhibited 
a strong initialization shock in the tropi-
cal Pacific that resulted in spurious El 
Niño (La Niña) conditions in early lead 
years in ensembles initialized between 
roughly 1955 and 1974 (1985 and 2005) 
(Karspeck et al. 2015; Teng et al. 2017). 
Inspection of the CORE-forced FOSI 
simulation used for initializing CCSM4-
DP revealed a spurious weakening 
trend in the large-scale, zonal SST 
gradient along the equatorial Pacific 
compared to the stable SST gradi-
ent over the late twentieth century 
in the observed record (Fig. SB1a). 
Other experimental FOSI simulations 
forced with NOAA Twentieth Century 
Reanalysis, version 2 (20CRv2; Compo 
et al. 2011), and adjusted Japanese 
55-year Reanalysis Project (JRA55-do; 
Tsujino et al. 2018.) fields showed much 
less of a ∆SST trend than the CORE-
forced FOSI and, hence, were more 
consistent with observations in the 
tropical Pacific. The negative ∆SST trend 
in the CORE-forced FOSI appears to be 
related to a pronounced slackening of 

INITIALIZING THE OCEAN

Fig. SB1. Monthly time series of (a) the large-scale zonal SST gradient in the 
equatorial Pacific, quantified as the difference between western (Niño-4) 
and eastern (Niño-3) regional averages and (b) 10-m zonal wind speed aver-
aged over the eastern equatorial Pacific (Niño-3). The ∆SST curves are from 
observations (OBS; Hurrell et al. 2008) and the FOSI simulations used to 
initialize CCSM4-DP (CORE) and CESM-DPLE (CORE*), with the correla-
tion with observations given in the legend in (a). The zonal wind curves are 
from a variety of raw or adjusted atmospheric reanalysis products: NCEP 
(Kalnay et al. 1996), CORE-adjusted NCEP (LY09), 20CRv2 (Compo et al. 
2011), adjusted JRA55-do (Tsujino et al. 2018), and ERA-I (Dee et al. 2011).
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and sea ice components. Significant skill improve-
ments in CESM-DPLE compared to CCSM4-DP, 
discussed in the supplemental material (https://
doi.org/10.1175/10.1175/BAMS-D-17-0098.2), are 
believed to derive primarily from setup difference 4 
above, which largely eliminated a spurious trend in 
the east–west sea surface temperature (SST) gradient 
in the tropical Pacific (see the sidebar). A summary 
of the experimental setup of CESM-DPLE (and note-
worthy changes from the setup used for CCSM4-DP) 
is provided in Table 1.

HINDCAST EVALUATION METHODS. The 
full-field initialization necessitates a drift adjust-
ment procedure prior to hindcast verification against 
observations. This is accomplished by transforming 
the raw DP output into anomalies relative to the cli-
matological forecast for each lead time: Yjτʹ = Yjτ– Y

-

τ, 
where Yjτ represents the ensemble-average forecast 
from start year j at lead time τ and Y

-

τ represents an 
additional average over start years for a given τ. When 
verifying against sparse observational datasets, care 
is taken to compute Y

-

τ using only jτ pairs for which 
there exist corresponding observations (Doblas-Reyes 
et al. 2013; Kim et al. 2012).

Hindcast verif ication in this paper follows 
the framework outlined in Goddard et al. (2013). 
Verification metrics include the anomaly correla-
tion coefficient (ACC) and the mean-square skill 
score (MSSS = 1 − MSEDP/MSEref) computed against 
standard observational benchmarks (see below). The 
MSSS quantifies the change in mean-square error 

between the DP ensemble and observations (MSEDP) 
and the MSE of a reference hindcast (MSEref). Reference 
predictions considered herein include persistence and 
UI simulations. For comparison with DP hindcasts of 
N-year-average anomalies, the persistence hindcast is 
computed as the most recent N-year-average anomaly 
that had been observed at the time of DP initialization. 
Annual means are defined over January–December, 
and the persistence hindcast includes the November 
and December observations from the year of initial-
ization. The UI hindcast is simply the N-year-average 
anomaly for a particular time period computed from 
the set of uninitialized historical simulations. As noted 
above, anomalies are defined relative to identically 
sampled climatologies that are computed separately for 
each distinct data stream. We focus here on decadal-
time-scale predictions of low-frequency variability, and 
therefore we consider multiyear annual- and seasonal-
mean predictions for a subset of lead times [e.g., lead 
years 1–5 (LY1–5)].

The nonparametric block bootstrap technique 
outlined in Goddard et al. (2013) is used to assess the 
statistical significance of hindcast skill scores. To test 
whether a score (e.g., ACC) or score difference (e.g., 
∆ACC) is significantly different from zero, a boot-
strapped distribution of (4,000) scores is computed 
at each spatial location by resampling (with replace-
ment) the hindcast ensembles across both the time 
and member dimensions. To account for temporal 
autocorrelation, the resampling in time maintains 
continuity in 5-yr blocks (although the results are not 
strongly sensitive to this choice of block length). The 

the equatorial trade winds in the Pacific 
in the NCEP–NCAR reanalysis that 
is used as the base dataset for CORE 
(Fig. SB1b). The time-independent 
adjustment to NCEP–NCAR reanalysis 
winds that are part of the CORE forc-
ing protocol (Large and Yeager 2009, 
hereafter LY09) correct the weak trade 
wind bias in that dataset in the modern 
satellite era, but the adjustment also 
results in trade winds that are probably 
too strong prior to 1975, and it ampli-
fies the weakening trend inherent in 
the NCEP–NCAR reanalysis (Fig. SB1b). 
The fact that LY09 winds in the equato-
rial Pacific appear to be an outlier 
compared to more recent atmospheric 
reanalysis products such as 20CRv2 
and JRA55-do, as well as the European 

Centre for Medium-Range Weather 
Forecasts (ECMWF) interim reanalysis 
(ERA-Interim, hereafter ERA-I; Dee 
et al. 2011), would appear to explain 
the poor SST simulation in that region 
in the CORE-forced FOSI.

To eliminate the spurious ∆SST 
trend, which presumably gives rise to 
spurious Bjerknes feedback effects upon 
coupling that contribute to initialization 
shock behavior, a new FOSI was devel-
oped with forcing coming primarily from 
CORE data streams but with a nonstan-
dard, blended wind field. In particular, 
CORE winds were used everywhere 
except in the tropical band (30°S–30°N), 
where either 20CRv2 winds (spanning 
1948–2010) or JRA55-do winds (to 
extend the simulation through 2015) 

were used. This new CORE*-forced 
FOSI successfully eliminated the spuri-
ous ∆SST trend in the Pacific (Fig. SB1a) 
while retaining desirable aspects of 
standard CORE forcing elsewhere. The 
CESM-DPLE used the CORE*-forced 
FOSI for initializing the ocean and sea 
ice components, and this change is be-
lieved to explain the dramatic reduction 
in tropical Pacific initialization shock 
as well as much of the large, global-
scale skill improvements in a variety of 
fields compared to CCSM4-DP (see 
the supplemental material). Similar DP 
sensitivity to ocean initial states gener-
ated using erroneous tropical Pacific 
wind forcing has been noted in the 
Max Planck Institute decadal prediction 
system (Pohlmann et al. 2016).
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bootstrapped PDF of the scores reflects the uncer-
tainty of the test statistic associated with the limited 
ensemble size and temporal sampling and can be used 
to derive p values. For example, a positive (negative) 
score with a bootstrapped distribution showing only 
100 scores below (above) zero would have a p value 
of 100/4,000 = 0.025. Scores of either sign with low 
p values are of interest insofar as they indicate ar-
eas of notable success (or failure) of the prediction 
system. Scores that are not locally significant (i.e., 
p value > 0.1) are denoted in map plots with a slash 
mark (/). Fisher’s z transformation is applied to ACC 
scores prior to the determination of p values. Evalu-
ation of hindcast skill in terms of gridded skill score 
maps demands consideration of the field significance 
of the results (Ventura et al. 2004; Wilks 2006, 2016). 
In our skill-map plots, we assess field significance by 
controlling the false discovery rate (FDR) following 
Wilks (2016), assuming moderate to strong spatial 
correlation (αglobal = 0.1; αFDR = 2αglobal). An advantage 

of the FDR method is that global field significance 
is implied by the existence of local p values that, 
when sorted, fall below a ramping threshold. These 
particularly low p values are denoted in map plots 
with a dot (∙).

The observational benchmarks used for hindcast 
evaluation in this study are as follows: the Met Of-
fice EN4.2.1 gridded ocean temperature product for 
the upper-ocean heat content (Good et al. 2013), the 
Extended Reconstructed Sea Surface Temperature, 
version 5 (ERSSTv5), dataset from the National 
Oceanic and Atmospheric Administration (NOAA) 
(Huang et al. 2017), the University of East Anglia Cli-
matic Research Unit time series, version 4.00 (CRU-
TS4.0), land surface temperature and precipitation 
dataset (Harris et al. 2014), and estimates of ocean 
net primary productivity (NPP) generated from the 
Moderate Resolution Imaging Spectroradiometer 
(MODIS; 2003–15) using the Vertically Generalized 
Production Model (Behrenfeld and Falkowski 1997).

Table 1. Overview of the experimental setups of the two initialized decadal prediction experiments run to 
date at NCAR. Boldface font in the right column highlights noteworthy changes from the earlier (CCSM4-
DP) setup. Note that the UI is a complementary simulation set that employs the same external radiative 
forcings as the DP set. Refer to the sidebar for a detailed description of the modified CORE forcing used to 
generate ocean and sea ice initial conditions for CESM-DPLE.

CCSM4-DP CESM-DPLE

Model CCSM4 CESM1.1

  atm CAM4 (FV 1°, 26 levels) CAM5 (FV 1°, 30 levels)

  ocn POP2 (1°, 60 levels) POP2 (1°, 60 levels) with BGC

  ice CICE4 (1°) CICE4 (1°)

  lnd CLM4 CLM4

UI ensemble 6-member CCSM4 twentieth-century ensem-
ble (Meehl et al. 2012)

40-member CESM twentieth-century 
Large Ensemble (Kay et al. 2015)

Forcing

  through 2005 CMIP5 historical CMIP5 historical

  from 2006 onward
CMIP5 representative concentration pathway 
(RCP) 4.5

CMIP5 RCP 8.5

Initialization

  method Full field Full field

  atm UI UI

  ocn CORE-forced FOSI CORE*-forced FOSI

  ice CORE-forced FOSI CORE*-forced FOSI

  lnd UI UI

Ensembles

  Ensemble size 10 40

  Start dates Annual; 1 Jan 1955–2014 (N = 60) Annual; 1 Nov 1954–2015 (N = 62)

  Ensemble generation Variable Jan start days and round-off perturba-
tion of atm initial conditions

Round-off perturbation of atm initial conditions

  Simulation length 120 months 122 months
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HINDCAST SKILL IN THE SURFACE 
OCEAN. We first assess skill at predicting upper-
ocean heat content, particularly Atlantic Ocean heat 
content, because it is widely believed to be the founda-
tion of skillful decadal predictions of surface climate 
(Yeager and Robson 2017). Pentadal variations in heat 
content of the upper 295 m (T295) are well predicted 
in broad tropical and extratropical regions within 
each ocean basin at short lead times (Fig. 1a). At 
longer lead times, there is a loss of skill in the tropi-
cal Pacific, tropical Indian, and eastern extratropical 
Pacific Oceans, while scores remain high elsewhere 
(Figs. 1b,c). The ACC in CESM-DPLE is considerably 
greater than persistence in most regions exhibiting 
positive skill (Fig. 1d), and this skill improvement 
tends to increase with lead time (Figs. 1e,f). The 
regions of significantly high skill and skill improve-
ment are also generally found to be field significant.

Much of the skill improvement over persistence 
in pentadal hindcasts can be attributed to external 
forcing, and hence the comparison with uninitial-
ized (but externally forced) historical simulations is 
a higher bar for gauging success. ACC score differ-
ences between CESM-DPLE and CESM-LE reveal 

the impact of initialization on predictions of T295 
(Figs. 1g–i). The subpolar North Atlantic (SPNA) 
stands out as a region where the skill improvement 
associated with initialization is largest and most 
lasting, with ∆ACC exceeding 0.4 at all lead times 
considered (Figs. 1g–i). There are indications that 
the high SPNA skill extends northward toward the 
Arctic, with large improvements over persistence and 
modest but significant improvements over uninitial-
ized simulations at short lead times in the Nordic seas 
(NS). The high skill for SPNA heat content in initial-
ized hindcasts is generally understood to derive from 
realistic initialization of, and limited prediction of, 
Atlantic thermohaline circulation anomalies (Yeager 
and Robson 2017), and there is mounting evidence 
that upper-ocean anomalies in the SPNA propagate 
across the Iceland–Scotland Ridge to provide a source 
for NS predictability (Årthun et al. 2017; Årthun and 
Eldevik 2016; Yeager et al. 2015).

Other regions of significantly enhanced skill for 
heat content include the eastern subtropical North 
Atlantic off the coast of Africa, the subtropical South 
Atlantic, the north- and southeastern subtropical Pa-
cific, the west and south Indian Ocean to the east of 

Fig. 1. (a)–(c) ACC of annual upper-ocean heat content above 295 m (T295) from CESM-DPLE relative to Met 
Office EN4.2.1 data (Good et al. 2013) for lead times of 1–5, 3–7, and 5–9 years, respectively. ACC skill score 
differences (d)–(f) between CESM-DPLE and persistence and (g)–(i) between CESM-DPLE and CESM-LE. All 
fields were mapped onto a 5° × 5° grid prior to analysis. The scale used for (d)–(i) is half that used for (a)–(c). The 
absence (presence) of a gray slash indicates scores that are (are not) significant at the 10% level (α = 0.1); stippling 
further indicates points whose p values pass an FDR test for global (70°S–70°N) field significance (αglobal = 0.1).
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Madagascar, and the northwestern Pacific (Figs. 1g–i). 
The mechanisms underpinning high T295 skill in 
CESM-DPLE in these regions, and the potential sig-
nificance of this skill for other surface and subsurface 
fields of interest, should be examined in future, more 
regionally focused, studies. However, we will note that 
these regions exhibit an interesting correspondence 
to known mode water regions (Hanawa and Talley 
2001), suggesting that the skill improvements may 
be associated with realistic initialization of, and sub-
sequent subduction and interior advection of, mode 
water anomalies. There are also regions of significantly 
degraded T295 skill in the western tropical and north-
central Pacific and the Southern Ocean (SO). The 
reasons for negative skill differences remain unclear 
at this time, but we speculate that they are related to 
initialization shocks that result in spurious tropical 
air–sea interaction at short lead times, particularly in 
the eastern Pacific, that can have large far-field impacts 
(see the sidebar and more extended discussion below).

Trend bias correction is a potential source of skill 
in initialized hindcasts that is derived simply from 
initializing closer to the observed long-term trend, 
and it can result in enhanced skill scores even without 

any improvement in the simulation of internal climate 
variability mechanisms. To check whether trend bias 
correction is a significant factor, we have redone Fig. 1 
using detrended data (Fig. ES1). Almost all of the 
regions of improved T295 skill discussed above are 
recovered, and even enhanced, after detrending, im-
plying that trend bias correction is not the dominant 
source of ACC skill for this field.

In some regions, long-lasting skill at predicting 
upper-ocean heat content finds surface expression in 
terms of high skill scores for annual-mean SSTs that 
can be clearly associated with initialization (Fig. 2). As 
for T295, CESM-DPLE exhibits widespread, signifi-
cant skill at predicting pentadal SST variations out to 
decadal lead times (Figs. 2a–c). The northeast Pacific 
and the Pacific–Atlantic sectors of the SO stand out as 
regions of low predictability with skill that degrades 
with lead time (Figs. 2a–c). In contrast, the central 
and southeastern tropical Pacific shows a marked 
increase in skill with lead time. We will return to 
this phenomenon below. While there is widespread 
improvement over persistence (Figs. 2d–f), the skill 
comparison with CESM-LE reveals that external 
forcing accounts for a large fraction of the global 

Fig. 2. (a)–(c) ACC of annual SST from CESM-DPLE relative to ERSSTv5 observations (Huang et al. 2017) for 
lead times of 1–5, 3–7, and 5–9 years, respectively. ACC skill score differences (d)–(f) between CESM-DPLE 
and persistence and (g)–(i) between CESM-DPLE and CESM-LE. All fields were mapped onto a 5° × 5° grid 
prior to analysis. The scale used for (d)–(i) is half that used for (a)–(c). The absence (presence) of a gray slash 
indicates scores that are (are not) significant at the 10% level (α = 0.1); stippling further indicates points whose 
p values pass an FDR test for global (70°S–70°N) field significance (αglobal = 0.1).
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SST skill in CESM-DPLE (Figs. 2g–i). In particular, 
the very high ACC scores in the Indian and tropical 
western Pacific Oceans in CESM-DPLE are no better 
than in the uninitialized ensemble, consistent with 
the known dominance of the externally forced trend 
on SST variance in this region (Han et al. 2010).

There are, however, several regions showing lo-
cally and field significant SST skill improvement 
over uninitialized simulations that appear to be 
geographically related to the T295 improvements 
noted above. The North Atlantic (and in particular 
the SPNA) again stands out as a region where initial-
ization confers large benefits (Figs. 2g–i). For LY3–7, 
the skill improvement over uninitialized simulations 
(Fig. 2h) bears a strong resemblance to the canonical 
pattern of Atlantic multidecadal variability (AMV; 
Sutton and Hodson 2005), with heavy loading in the 
SPNA and an extension into the tropical North At-
lantic through the eastern subtropics. This horseshoe 
pattern of SST skill improvement, and the extension 
of skill improvement into the Nordic seas, reflects 
the underlying T295 improvements (Fig. 1h). There 
is reason to suspect that some of the baseline SST 
skill in the SPNA in the uninitialized ensemble is 
obtained through incorrect physical mechanisms. 
Yeager et al. (2012) point out that UI ensembles simu-
late late-twentieth-century SPNA warming despite 
Atlantic meridional overturning circulation (AMOC) 
weakening, presumably through anomalous surface 
fluxes, whereas FOSI and initialized DP simulations 
rely on AMOC-related advective heat convergence. 
Thus, the improved mechanistic fidelity associated 
with initialization (positive SPNA SST trend due to 
a strengthening AMOC) is not necessarily reflected 
in Fig. 2.

Other regions showing noteworthy SST skill im-
provement (Figs. 2g–i) include the eastern subtropical 
South Atlantic; the south Indian Ocean off Madagas-
car; the SO, particularly the Bellingshausen Sea to the 
west of the Antarctic Peninsula; the northwest Pacific 
region to the east of Japan and the Kamchatka Penin-
sula; and the southeast Pacific off the coast of Chile. 
As for the SPNA, the enhanced SST skill in most of 
these regions appears to be related to collocated im-
provements in T295 skill and is resilient to detrending 
(Fig. ES2), suggesting that these SST improvements 
are not simply artifacts of trend bias correction. The 
SO SST skill improvement over CESM-LE derives 
in part from improved representation of nontrend 
variability (Figs. ES2g–i), but the relation with T295 
skill improvement is not as clear as in other regions 
(cf. Figs. 1g–i). While there are significant improve-
ments over uninitialized simulations throughout much 

of the SO, it is still a region of low overall skill that, 
apart from the Indian Ocean sector, does not show 
improvement over persistence (even when detrended; 
Fig. ES2). Further work is needed to clarify the nature 
of the SO response in CESM-DPLE.

The improvement in SST skill in the equatorial Pa-
cific with lead time (Fig. 2) merits further discussion. 
As discussed in the sidebar (and the supplemental 
material), unbalanced initial conditions in the equa-
torial Pacific are hypothesized to give rise to spurious 
El Niño (La Niña) conditions that degrade the skill of 
initialized hindcasts at short lead times (Pohlmann 
et al. 2016; Teng et al. 2017). While the initialization 
shock in CESM-DPLE is much reduced compared to 
its predecessor (CCSM4-DP), there is still a signifi-
cant improvement in SST skill in many tropical and 
extratropical regions as lead time increases (Fig. 3), 
indicative of short-term adjustments to initializa-
tion that tend to degrade skill, particularly in the El 
Niño region. The expanding blue (negative ∆ACC) 
regions in Fig. 3 are expected, and we speculate that 
the growth of the orange regions (positive ∆ACC) 
is dynamically linked to the improved SST in the 
(south)eastern tropical Pacific. ACC in the western 
tropical Pacific, for instance, is seen to improve 
significantly with lead time (Fig. 3), resulting in im-
proved comparisons with reference forecasts (Figs. 2 
and ES2). The early-lead-time skill degradation in this 
region (Fig. 2g) may be related to the combination of 
spurious variability in the eastern tropical Pacific and 
model bias that extends ENSO activity too far to the 
west (Van Oldenborgh et al. 2012).

PREDICTING SURFACE TEMPERATURE 
AND PRECIPITATION. A key outstanding chal-
lenge in DP research is to ascertain the extent to which 
multiyear skill in predicting ocean heat content, SST, 
and sea ice extent (Yeager et al. 2015) might translate 
into useful predictions of surface climate over land. 
Skill maps of ACC for annual or seasonal surface air 
temperature (SAT) over land show near-ubiquitous, 
high, and significant skill that generally outperforms 
persistence (Fig. ES4). Much of this skill derives from 
the strong externally forced trend in SAT, and so it is 
difficult to detect ACC improvement over uninitial-
ized simulations unless a linear trend is first removed 
(Fig. ES5). However, the MSSS (using CESM-LE as the 
reference forecast) does reveal skill improvement even 
in the presence of strong forced SAT trends (Fig. 4). 
Initialization results in (field) significant improve-
ments in pentadal predictions of annual SAT over west-
ern Europe, Greenland, the Mediterranean, northern 
and southern Africa, Arabia, South Asia, northeastern 
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Fig. 3. ∆ACC for annual SST from CESM-DPLE relative to ERSSTv5 observations (Huang et al. 2017) for lead 
years (a) 2–6, (b) 3–7, (c) 4–8, (d) 5–9, and (e) 6–10. In each panel, ∆ACC is computed relative to the score for 
LY1–5 (see Fig. 2a). All fields were mapped onto a 5° × 5° grid prior to analysis. The absence (presence) of a gray 
slash indicates scores that are (are not) significant at the 10% level (α = 0.1); stippling further indicates points 
whose p values pass an FDR test for global (70°S–70°N) field significance (αglobal = 0.1).

Eurasia, China, and the southwestern United States. 
The enhanced annual skill appears to be related to 
widespread error reduction during boreal summer 
[June–August (JJA); Figs. 4g–i], as boreal winter [De-
cember–February (DJF)] improvements are confined 
primarily to northeast Africa and Arabia (Figs. 4d–f).

The notable increase in SAT MSSS with lead 
time in many regions is likely related to the broad 
patterns of improved SST forcing of the atmosphere 
noted earlier (Fig. 3). Trend bias correction may be 
contributing to some of the SAT skill in Europe 
and Asia given that scores there are lower when the 
trend is removed (Fig. ES6). Even after detrending, 
however, significantly positive MSSS (Fig. ES6) and 
∆ACC (Fig. ES5) scores are found over large swaths 
of the greater Mediterranean and central and eastern 
Asia regions, implying significant improvements in 

the representation of nontrend variability associated 
with initialization. These results appear consistent 
with a recent study that concluded that skillful mul-
tiyear prediction of boreal summer temperature over 
northeast Asia derives from a global atmospheric 
teleconnection pattern modulated by low-frequency 
North Atlantic SST variability (Monerie et al. 2017).

CESM-DPLE shows promising prospects for 
useful decadal predictions of hydroclimate over 
land, and this represents a significant advance over 
the CMIP5-era CCSM4-DP system. Figure 5 shows 
the ACC skill map for boreal summer [June–Sep-
tember (JAS)] land precipitation. Locally and field 
significant positive ACC scores are found in western 
Europe, central and northeastern Eurasia, the Afri-
can Sahel, parts of south and eastern Africa, Alaska, 
the northeastern and northwestern continental 
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Fig. 4. MSSS of SAT from the CESM-DPLE using CESM-LE as the reference forecast for lead times of 1–5, 3–7, 
and 5–9 years. MSE is computed relative to CRU-TSv4.00 data (Harris et al. 2014). Rows show the scores for 
(a)–(c) annual, (d)–(f) boreal winter (DJF), and (g)–(i) boreal summer (JJA) means. The absence (presence) of 
a gray slash indicates scores that are (are not) significant at the 10% level (α = 0.1); stippling further indicates 
points whose p values pass an FDR test for global (70°S–70°N) field significance (αglobal = 0.1). The nonlinear 
color bar reflects symmetric changes in the MSE ratio.

Fig. 5. (a)–(c) ACC of boreal summer (JAS) land surface precipitation (PREC) from the CESM-DPLE relative to 
CRU-TSv4.00 observations (Harris et al. 2014) for lead times of 1–5, 3–7, and 5–9 years. ACC skill score differences 
(d)–(f) between CESM-DPLE and persistence and (g)–(i) between CESM-DPLE and CESM-LE. All fields were 
mapped onto a 5° × 5° grid prior to analysis. The scale used for (d)–(i) is half that used for (a)–(c). The absence 
(presence) of a gray slash indicates scores that are (are not) significant at the 10% level (α = 0.1); stippling further 
indicates points whose p values pass an FDR test for global (70°S–70°N) field significance (αglobal = 0.1).
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United States, and northern Quebec (Figs. 5a–c). The 
number of field significant positive scores clearly 
outnumbers the negative scores. The skill variations 
with lead time are noticeable but small compared 
to the spatial variations in skill. Regions of high 
skill that also exhibit significant skill improvement 
over CESM-LE include western Europe, the Sahel, 
southeast Africa, and northwestern North America. 
Field significant improvements over uninitialized 
simulations are scattered at this spatial resolution, 
but there are noteworthy concentrations of positive 
∆ACC in the Sahel, Brazil, northwestern North 
America, western Europe, central Eurasia, southern 
Africa, and western Australia (Figs. 5g–i). However, 
not all of these regions show coherent improvements 
over persistence (Figs. 5d–f). Again, we find that 
the noted skill improvements over CESM-LE are 
resilient to detrending (Fig. ES7).

Numerous studies have linked the multidecadal 
variability of NATL SST (often referred to as Atlantic 
multidecadal variability) to seasonal climate fluctua-
tions over Europe, Africa, Asia, and the Americas. It 
therefore seems likely that the CESM-DPLE surface 
climate skill in these regions stems in large part from 
(enhanced) skill at predicting NATL SST (Figs. 2 

and ES2). However, the precise origins of skill over 
land in CESM-DPLE remain under investigation. 
Low-frequency warming (cooling) in the NATL has 
been associated with enhanced (suppressed) summer 
precipitation across Europe (Sutton and Dong 2012; 
Sutton and Hodson 2005), and it has recently been 
shown that NATL SST-driven changes in the supply 
of water vapor support skillful seasonal predictions 
of summertime convective rainfall over northern Eu-
rope (Dunstone et al. 2018). Averaging over the same 
region as Sutton and Dong (2012) and Dunstone et al. 
(2018), our system suggests that decadal predictions of 
summer precipitation over northern Europe may be 
viable (Figs. 6a,b). While the ensemble-mean signal is 
clearly very weak in both CESM-DPLE and CESM-LE 
(Fig. 6a), the ACC (which is insensitive to magnitude) 
for pentadal anomalies is 0.68 with a ∆ACC of 0.25 
over CESM-LE. This skill improvement might be even 
larger if it were possible to extend hindcast start dates 
further back in time in order to sample more of the 
positive phase of the AMV and European summer 
precipitation in the 1950s (Fig. 6b).

The striking skill improvement over the Sahel is 
also in line with our current understanding of AMV 
impacts over Africa (Mohino et al. 2016; Sutton and 

Fig. 6. Regional average boreal summer (JAS) precipitation for (a),(b) northern Europe (45°–70°N, 10°W–
25°E) and (c),(d) the West African Sahel (10°–20°N, 20°W–10°E). (left) Raw time series (mm day–1) and (right) 
normalized time series. The CESM-DPLE time series (red) is the ensemble mean over LY3–7; the CESM-LE 
ensemble-mean (blue) and observed (black) time series have been smoothed with a running 5-yr-mean filter. 
The regions are shown in Fig. 5. Skill scores are listed in (a) and (c).
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Hodson 2005; Wang et al. 2012; 
Zhang and Delworth 2006). On mul-
tiyear time scales, a warmer NATL is 
associated with a northward shift in 
the intertropical convergence zone 
(ITCZ) and enhanced moisture sup-
ply for the West African monsoon 
(Green et al. 2017; Sheen et al. 2017). 
CESM-DPLE generates an ACC of 
0.78 for regionally averaged summer 
(JAS) precipitation over the West 
African Sahel for lead years 3–7 
(Figs. 6c,d), slightly better than per-
sistence. The corresponding correla-
tion from CESM-LE is only 0.11, and 
the high CESM-DPLE correlation is 
slightly higher than that obtained 
from a 52-member multimodel mean 
of CMIP5 DP hindcasts analyzed 
over the same region and lead inter-
val (Martin and Thorncroft 2014). 
The skill for regionally averaged JAS 
precipitation over the Sahel increases 
considerably from LY1–5 to LY3–7 
and then slowly diminishes (Fig. 7a). 
We speculate that this lead-time 
dependence is related to the changes 
in SST skill discussed earlier (Fig. 3), 
which result in notably higher ACC 
scores in the subtropical Atlantic 
when nontrend variability is isolated 
(Fig. ES3).

Previous works have identified 
the relative SST index (RSI; the 
dif ference between subtropical 
North Atlantic SST and global 
tropical SST) as a good predictor of 
Sahel summertime precipitation as 
well as model potential for skillful 
Sahel prediction (Giannini et al. 
2013; Martin and Thorncroft 2014). 
CESM-DPLE does indeed show 
higher RSI skill than any of the 
reference forecasts considered here-
in—much higher than the previous 
CCSM4-DP system that was charac-
terized by a large initialization shock 
(Fig. 7b; see also the supplemental 
material). While the ability (or lack 
thereof) to predict RSI offers some 
explanation for the differences in Sahel precipitation 
skill between the different forecast systems (Fig. 7a), it 
does not really explain why CESM-DPLE skill peaks 

at LY3–7. Curiously, the high CESM-DPLE skill at 
predicting SPNA SST noted earlier is no better than 
in the old CCSM4-DP system (Fig. 7c), implying that 

Fig. 7. ACC as a function of lead time for (a) boreal summer (JAS) 
precipitation averaged over the Sahel (10°–20°N, 20°W–10°E), (b) the 
annual RSI (the difference between subtropical North Atlantic SST 
averaged over 10°–40°N, 75°W–15°E and global tropical SST averaged 
over 20°S–20°N), and (c) annual SST in the SPNA (50°–60°N, 45°–10°W). 
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regions discussed above (Fig. 6) varies as a function of 
ensemble size. With 40-member ensembles, the initial-
ized skill score of r = 0.68 for summer precipitation 
over Europe can be confidently distinguished from the 
UI ensemble that yields r > 0.4 for this region (Fig. 8a). 
While there is a discernible benefit from initialization, 
the external forcing is clearly contributing quite a lot to 
the overall skill in this region. Even with a 40-member 
UI ensemble, there is considerable uncertainty in the 
skill associated with external forcing (the 90% con-
fidence interval for the CESM-LE correlation spans 
about 0.3 for a 40-member ensemble and this increases 
to about 0.7 for a 5-member ensemble). Cleanly dis-
tinguishing initialized from uninitialized simulation 
skill in this region clearly requires large ensembles 
for both simulation sets (probably 20+ members). 
For the Sahel region, the 90% confidence interval for 
a 10-member UI set spans about 0.8 (Fig. 8b). In that 
region, however, the benefits of initialization are clearly 
evident even with a 10-member ensemble despite the 
UI uncertainty. To confidently (at the 90% level) beat 
persistence in the Sahel, however, probably requires 
an initialized ensemble of 30 or more. In short, the 

Fig. 8. ACC skill for boreal summer (JAS) land precipitation relative to the CRU-TS4.0 dataset (Harris et al. 2014) 
for pentadal anomalies over (a),(c) northern Europe (45°–70°N, 10°W–25°E) and (b),(d) the Sahel (10°–20°N, 
20°W–10°E). CESM-DPLE data are from LY3–7, as shown in Fig. 6. The skill dependence on ensemble size is 
computed using a bootstrapped resampling (with replacement) of ensemble members from the 40-member 
pools of CESM-LE (blue) and CESM-DPLE (red). The thick lines are the median, and the thin lines are the 5th 
and 95th percentiles, of a score distribution of size 10,000. The black dashed lines show the skill of the persis-
tence forecast, and the filled dots give the ACC score for the unique 40-member ensemble mean from each 
system. In (c) and (d), the orange lines show the ACC distribution for CESM-DPLE ensemble-mean predictions of 
random single-member time series drawn from the CESM-DPLE pool.

SPNA SST skill alone does not guarantee skillful Sa-
hel precipitation even though it is likely an important 
ingredient (Dunstone et al. 2011).

The apparent success of CESM-DPLE in skillfully 
hindcasting the relevant SST drivers of Sahel pre-
cipitation suggests that the forecast of drought con-
ditions through 2020 (which contrasts sharply with 
the CESM-LE near-term projection of above-normal 
precipitation) should be taken into consideration by 
relevant stakeholders (Fig. 6d). We note that this 
forecast is not inconsistent with a number of recent 
studies that anticipate a shift toward a cooler NATL 
(negative AMV) as a result of a weakening Atlantic 
thermohaline circulation (Hermanson et al. 2014; 
Robson et al. 2014, 2016; Yeager et al. 2015).

NEW CAPABILITIES. Large ensemble. The large 
ensemble size of CESM-DPLE, in conjunction with 
that of the CESM-LE, permits unprecedented explo-
ration of the sensitivity of DP skill assessment to the 
level of noise reduction achieved through ensemble 
averaging (Boer et al. 2013). Figure 8 shows how the 
precipitation skill over the northern Europe and Sahel 
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confidence intervals for predictions of precipitation 
over land are large, particularly for the baseline skill as-
sociated with external forcing, which is very ill-defined 
for UI ensembles of size 10 or less, which are not un-
common in the DP literature. The implication is that 
robust assessment of DP skill enhancement associated 
with initialization for fields such as precipitation may 
require much larger ensembles than current protocols 
recommend (Boer et al. 2016).

The increase of skill with ensemble size is in line 
with recent studies suggesting that unrealistically small 
signal-to-noise ratios in current DP systems can be 
overcome through the noise-dampening effect of large 
ensembles (Dunstone et al. 2016; Eade et al. 2014; Scaife 
et al. 2014). With respect to predictions of regional 
precipitation over land in the two areas highlighted 
above, CESM-DPLE does appear to exhibit a signal-
to-noise paradox similar to other DP systems insofar 
as significantly higher correlation scores are obtained 
when verifying against observations than when verify-
ing against single-member model “truth” (Figs. 8c,d). 
The ratio of predictable components (RPC; computed 
as the ratio of median correlations: robs/rmodel) is 1.64 
(2.05) for 40 member predictions of summer precipita-
tion over northern Europe (Sahel). This suggests that 
CESM-DPLE predictions of precipitation over land are 
underconfident, characterized by unrealistically low 
signal to noise, and that the real-world predictability 
may be higher than what is implied by the model en-
semble spread (Eade et al. 2014).

The large ensemble size will also facilitate explo-
ration of the predictability of higher moments of the 
PDFs of climate fields, including the extreme tails that 
correspond to the most impactful and costly climate 
phenomena. Previous efforts to quantify the skill of 
predicting climate extremes at decadal lead times 
have employed relatively small ensembles (≈10) that 
may suffer from sampling issues (Eade et al. 2012). 
Examination of probabilistic skill metrics that test the 
quality of the ensemble spread such as the reliability 
(the ability of the system to realistically partition 
forecast probability across different forecast catego-
ries) and discrimination (the ability of the system to 
distinguish between observed events and nonevents) 
will be an important next step that will be greatly 
facilitated by the large ensemble.

Ocean biogeochemistry. The inclusion of ocean BGC 
fields in CESM-DPLE is an exciting new capability 
that will facilitate a wide array of research into the pre-
dictability of ocean biogeochemistry, with potentially 
important implications for environmental managers 
and policy makers. Reliable near-term predictions of 

marine NPP (the net rate of photosynthetic carbon 
fixation by phytoplankton in the surface ocean) are of 
particular relevance for fisheries management. To that 
end, Fig. 9 illustrates the potential predictability of NPP 
integrated over the upper 150 m of the water column in 
CESM-DPLE. In Fig. 9, NPP anomalies from CESM-
DPLE (and from the reference forecasts) are verified 
against NPP anomalies from the CORE*-forced FOSI 
simulation used to initialize the DP simulations, rather 
than against observed anomalies. Therefore, the skill 
represents the potential for actual predictability in the 
limit of perfect knowledge of the initial state. Regions 
of very high ACC that are clearly distinguishable from 
both persistence and externally forced forecast skill 
are found in each of the world’s oceans out to decadal 
lead times. Similar to the upper-ocean heat content and 
SST (Figs. 1 and 2), the Atlantic stands out as a basin 
with particularly long-lasting skill that derives from 
initialization (Figs. 9c,f,i). There are also indications 
of enhanced skill in western boundary current regions 
such as the Gulf Stream, Kuroshio, Agulhas, and East 
Australian Current. In several of the eastern boundary 
upwelling systems, such as the Canary, Benguela, and 
Humboldt Current regions, potential predictability is 
high and shows significant improvement with initial-
ization. More extensive analysis is needed to determine 
the underlying mechanisms of this potential skill, and 
whether similar skill is seen in other elements of the 
ocean biosphere.

The limited coverage of BGC observations in space 
and time presents new challenges when it comes to 
assessing model fidelity and prediction skill. Satellite-
derived estimates of marine NPP over the global 
ocean can be used for prediction skill assessment 
(Seferian et al. 2014), but verification is then limited 
to the period for which satellite ocean color obser-
vations exist. Figures 10a and 10b show the annual 
NPP ACC scores for the CORE*-forced FOSI and the 
CESM-DPLE LY1 hindcast, respectively. Here, skill 
is computed relative to MODIS-estimated annual 
NPP anomalies at each location over 2003–15. High 
skill is found in the central equatorial and western 
subtropical Pacific, central subtropical Indian, and 
subtropical Atlantic Oceans.

The Canary Current region (12°–22°N, 10°–25°W; 
Chavez and Messié 2009) is a hotspot of productivity 
and a critical area for African fisheries (Food and Ag-
riculture Organization 2009), and so skillful decadal 
prediction in this region would be very beneficial for 
African resource management. In this region, CESM-
DPLE exhibits both potential skill (verified against 
CORE* over 1955–2015; Fig. 9a) at various lead 
times and actual skill (verified against MODIS-based 
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observational estimates over 2003–15; Figs. 10b,c) at 
LY1. Furthermore, the CORE*-forced FOSI simula-
tion shows good skill at reproducing observed NPP 
variability in this region (Figs. 10a,c,d), giving con-
fidence that the high ACC scores obtained when us-
ing the full multidecadal time series of CESM-DPLE 
(Fig. 9) are a reliable indication of realizable skill. 
While NPP estimated from satellite-derived chlo-
rophyll has many caveats, among them chlorophyll 
biases in the Canary Current due to Saharan dust 
(Chavez and Messié 2009), these results nevertheless 
suggest that skillful prediction of NPP in the Canary 
Current region may be possible.

SUMMARY. The CESM-DPLE is a new “big data” 
resource for the community that will permit advance-
ments in the science of decadal prediction of the Earth 
system that could not be achieved through a small-
scale, sole-investigator approach. The large number 
of hindcast start dates and ensemble members, 
paired with the equally large ensemble of uninitial-
ized historical simulations that compose the CESM 
Large Ensemble (Kay et al. 2015), offer unprecedented 
statistical power for disentangling the intrinsic versus 

extrinsic sources of skill, exploring signal-to-noise 
characteristics, and studying climate extrema. The 
preliminary assessment of the dataset provided herein 
shows that CESM-DPLE exhibits quite promising 
levels of skill for many different fields, across a broad 
range of forecast lead times up to decadal scales, both 
in the ocean and over land. Significant skill improve-
ment over the earlier CMIP5-era prediction set that 
used CCSM4 recommends its use both for new inves-
tigations and for reevaluation of earlier conclusions 
that were based on the less skillful CCSM4-DP. In 
particular, the combined analysis of CESM-DPLE 
and CESM-LE is revealing significant and potentially 
useful skill at predicting low-frequency variations 
in hydroclimate over land, such as over Europe and 
Africa, that appears to highlight the role of the ocean 
in modulating decadal climate variations. Large en-
sembles are needed to draw robust conclusions about 
the role of initialization in predictions of noisy atmo-
spheric fields and to realize skill given what appear to 
be unrealistically small signal-to-noise ratios in the 
model. The inclusion of prognostic ocean biogeo-
chemistry in CESM-DPLE opens up new prospects 
for predictability research that move beyond the 

Fig. 9. (a)–(c) ACC of annual NPP from the CESM-DPLE relative to the CORE*-forced FOSI simulation used 
for initialization for lead times of 1–5, 3–7, and 5–9 years. ACC skill score differences between (d)–(f) between 
CESM-DPLE and persistence and (g)–(i) between CESM-DPLE and CESM-LE. All fields were mapped onto a 
5° × 5° grid prior to analysis. The scale used for (d)–(i) is half that used for (a)–(c). The absence (presence) of 
a gray slash indicates scores that are (are not) significant at the 10% level (α = 0.1); stippling further indicates 
points whose p values pass an FDR test for global (70°S–70°N) field significance (αglobal = 0.1).
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Fig. 10. (a) ACC of annual NPP from the CORE*-forced FOSI simulation, relative to NPP anomalies estimated 
from the MODIS-based observational product over 2003–15. (b) As in (a), but for CESM-DPLE LY1 relative 
to MODIS. (c) Temporal evolution of standardized NPP anomalies in the Canary Current region (pink region 
on map inset) from the CORE*-forced FOSI simulation (black), CESM-DPLE LY1 (red), and MODIS (blue). (d) 
CORE*-forced FOSI vs MODIS standardized, annual NPP anomalies in the Canary Current region over 2003–15. 
NPP was gridded onto a regular 2° grid prior to analysis.

physical climate system. A preliminary analysis of 
NPP suggests that skillful multiyear predictions of 
ocean biogeochemistry relevant to fisheries manage-
ment (e.g., in the Canary Current region) are possible.

The output from CESM-DPLE (as well as from 
the CORE* simulation used to initialize the ocean 
and sea ice components) is available as raw, sin-
gle-variable time series files. A web page (www 
.cesm.ucar.edu/projects/community-projects/DPLE) 
provides specifics about the simulations, links to the 
data, a publication list, and additional overview di-
agnostics for select fields. The companion CESM-LE 
simulation set has similar web documentation (www 
.cesm.ucar.edu/projects/community-projects/LENS), 
including links to output and relevant publications.
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