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A new community data resource offers unique capabilities for evaluating the potential for

useful Earth system prediction on decadal time scales.

he field of near-term climate prediction has
grown rapidly since the advent of the first
studies, about a decade old now, showing that
observation-based initialization of coupled general
circulation model (CGCM) simulations of the last
half-century can significantly enhance predictive
capacity on time scales from a year to a decade or
more in advance (Keenlyside et al. 2008; Pohlmann
etal. 2009; Smith et al. 2007). Phase 5 of the Coupled
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Model Intercomparison Project (CMIP5) included,
for the first time, a framework for testing the benefits
of historical initialization, in addition to prescribed
external forcings, for decadal climate outlooks that
are sensitive to both initial conditions and forced
boundary conditions (Meehl et al. 2009). This frame-
work involves running fully coupled hindcast (i.e.,
retrospective forecast) ensembles initialized using ob-
servationally based state information at prescribed in-
tervals over the historical period; these hindcasts are
then verified against observations and compared to
uninitialized, free-running simulations to determine
both overall skill and the benefits of initialization.
Analysis of CMIP5 decadal prediction (DP) experi-
ments revealed a wide range in skill for different vari-
ables and for different prediction systems. While the
potential for useful applications was demonstrated,
the CMIP5 experience also highlighted a number of
outstanding research questions that must be tackled
in order to advance DP science into a more mature
phase (Kirtman et al. 2013; Meehl et al. 2014). The
prediction of near-term climate change has recently
been recognized by the World Climate Research
Programme (WCRP) as one of the grand challenges
facing the international climate research community,
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and an extensive set of coordinated decadal predic-
tion experiments slated for CMIP6 will help to further
advance the frontiers of this still-nascent application
of CGCMs (Boer et al. 2016).

The enormous computational cost of performing
(and analyzing) DP experiments is a significant im-
pediment to progress in near-term climate prediction,
not least because it greatly restricts the community
of active researchers. The tier-1 set of hindcasts re-
quired for basic participation in the Decadal Climate
Prediction Project (DCPP) of CMIP6 calls for roughly
3,000 years of coupled model simulation (Boer et al.
2016). This figure is based on a set of 10-member en-
sembles initialized each year for the past 60 years and
integrated forward for 5 years (60 x 10 x 5 = 3,000).
The resource demand doubles if the hindcast length
is extended to 10 years so that skill can be evaluated
at decadal, as opposed to multiannual, lead times. The
significant cost of such experiments makes it difficult,
if not wholly unfeasible, to systematically evaluate the
sensitivity to poorly constrained DP configuration
choices such as the ensemble size, the method of en-
semble generation, the annual start date, the number
of start times, the initialization method, the number
of initialized Earth system components (in addition
to the ocean), and the component model resolution(s).
Furthermore, the identification of skill enhancement
due to initialization requires a complementary set of
“uninitialized” (UI) historical simulations, which
greatly adds to the expense of DP evaluation. Both
the DP and UI ensembles should ostensibly be large
enough so that the ensemble average operation ef-
fectively isolates the shared component of variance
within the respective ensembles (Boer et al. 2013).
The standard 10-member ensemble is probably insuf-
ficient for this purpose for many fields and regions
of interest (Sienz et al. 2015), but is generally deemed
adequate for pragmatic reasons.

A recently completed set of initialized prediction
simulations using the Community Earth System
Model (CESM) promises to be a valuable resource for
evaluating decadal predictions of the Earth system in
the large-ensemble limit. The CESM decadal predic-
tion large ensemble (CESM-DPLE) is composed of
40 member ensembles initialized each 1 November
between 1954 and 2015 (for a total of 62 start dates)
and integrated for 122 months. What was originally
a 10-member ensemble set was expanded by an ad-
ditional 30 members in early 2017 thanks to a compu-
tational award granted by the Computational and In-
formation Systems Laboratory (CISL) of the National
Center for Atmospheric Research (NCAR). A unique
aspect of the CESM-DPLE that, apart from ensemble
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size, makes it unprecedented in the field of near-term
climate prediction is that the complementary, unini-
tialized historical simulations also compose a large
ensemble set. The CESM Large Ensemble (CESM-LE;
Kay et al. 2015) is a highly successful community
project that has accumulated a 40-member ensemble
of historical and projection simulations spanning
1920-2100. The CESM-DPLE was generated using the
same code base, component model configurations,
and historical and projected radiative forcings as in
the CESM-LE. Together, CESM-DPLE and CESM-LE
offer a powerful means of disentangling the impacts
of external forcing versus initialization on hindcast
skill and of ascertaining how ensemble size (of both
the initialized and uninitialized simulation sets)
influences DP assessment.

The CESM-DPLE is a rich, public dataset that
will support a broad spectrum of scientific research
related to Earth system prediction. It comprises
roughly 600 TB of climate data archived at tem-
poral frequencies ranging from 6 hourly to annual
from each of the CESM component models (ocean,
atmosphere, sea ice, and land). It includes ocean
biogeochemistry fields (as does the CESM-LE), and
thus it permits exploration of the predictability of
fundamental components of the ocean biosphere
and carbon cycle. Improved sampling of underlying
climate probability distribution functions (PDFs)
through the use of large ensembles provides more ac-
curate measures of higher-order statistical moments
in addition to the ensemble mean. Indeed, one of the
scientific motivations for the CESM-DPLE project
was to determine whether the CESM prediction sys-
tem shows any evidence of predictable shifts in the
likelihood of extreme climate phenomena—such as
heat waves, cold spells, and floods—that inhabit the
tails of climate PDFs. The large ensemble size will
also facilitate process-oriented conditional subsam-
pling of the ensemble in order to develop a deeper
understanding of the critical mechanisms at play in
near-term prediction. As noted above, the fact that
CESM-DPLE represents the initialized counterpart to
CESM-LE over the time period of roughly 1955-2025
opens up a host of possible lines of inquiry relating
not only to near-term prediction skill and optimal DP
system design, but more broadly addressing questions
about the mechanisms and statistics of forced versus
internal climate variability that might be elucidated
by contrasting the two large ensembles.

This article is intended to document the CESM-
DPLE experimental design, provide a broad overview
of the prediction skill for a few key climate fields, and
advertise some promising capabilities that merit more



in-depth examination in subsequent work. The hope
is that this study will inspire a diverse community to
examine the CESM-DPLE dataset, and that it will
serve as a jumping-off point for more detailed and
focused scrutiny of regional skill and associated
mechanisms.

EXPERIMENTAL DESCRIPTION. The CESM-
DPLE is based on CESM, version 1.1, using the same
model and component configuration as that used in
the CESM-LE (Kay et al. 2015). For completeness,
some of the model details are repeated here. The
atmosphere component is the Community Atmo-
sphere Model, version 5 (CAMS5; Hurrell et al. 2013),
with a finite-volume dynamical core at nominal 1°
horizontal resolution and 30 vertical levels. The ocean
component is version 2 of the Parallel Ocean Program
(POP) run at nominal 1° horizontal resolution and 60
vertical levels (Danabasoglu et al. 2012). The sea ice
model is version 4 of the Los Alamos National Labora-
tory (LANL) Community Ice Code (CICE4; Hunke
and Lipscomb 2008) and is run on the same horizon-
tal grid as the ocean. The land model is version 4 of
the Community Land Model (CLM4; Lawrence et al.
2011). The historical (through 2005) and projected
(from 2006 onward) radiative forcings (including
greenhouse and short-lived gases and aerosols) are
identical to those used in CESM-LE. Following DCPP
guidelines, historical volcanic aerosol forcings are ap-
plied in the DP experiments (Boer et al. 2016).

The CESM1.1 model includes the capability for
simulating the global carbon cycle, wherein the land
and ocean component models both include biogeo-
chemistry modules that compute carbon exchanges
with the atmosphere (Hurrell et al. 2013; Lindsay
etal. 2014). On the land surface, CLM simulates gross
primary productivity and routing into litter and soil
carbon pools using prescribed vegetation distribu-
tions. The ocean model explicitly simulates seawater
carbonate chemistry, includes a representation of the
lower trophic levels of the marine ecosystem, and
tracks several biogeochemical tracers including dis-
solved inorganic carbon, oxygen, and nutrients (Long
et al. 2013, 2016; Moore et al. 2013). These features
of the CESM-DPLE system provide relatively novel
Earth system prediction capabilities, but as in the
CESM-LE simulations (Kay et al. 2015), the ocean
biogeochemistry and the simulated atmospheric CO,
concentration are purely diagnostic (i.e., there is no
feedback onto the simulated physical climate).

The CESM-DPLE is a collection of 2,480 in-
dependent historical integrations of the CESM
model—40 distinct member simulations for each
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of 62 initialization dates (1 November from 1954 to
2015). As such, the computation was highly paral-
lelizable. Initially, 10 members for each initialization
date were completed on National Energy Research
Scientific Computing Center (NERSC) machines.
An additional 30 members (~19,000 simulation years)
were completed within a 2-month span on the new
Cheyenne supercomputer at the NCAR-Wyoming
Supercomputer Center (NWSC). Initial conditions
for the atmosphere and land models were obtained
from a single member of the CESM-LE from which 1
November restart files were saved. While these initial
conditions contain the effects of historical radiative
forcings, they were not otherwise constrained by
observations. Observations were introduced into
CESM-DPLE primarily through the ocean and sea
ice initial conditions, which were obtained from a
coupled ocean-sea ice configuration of CESM1.1
forced at the surface with historical atmospheric state
and flux fields (see “Initializing the ocean” sidebar for
details). Such forced ocean-sea ice (FOSI) simulations
using CESM have been shown to reproduce some key
aspects of observed ocean and sea ice variability quite
well despite the fact that there is no direct assimilation
of either ocean or sea ice observations (Danabasoglu
et al. 2016; Yeager and Danabasoglu 2014; Yeager
et al. 2015). Thus, the observations contributing to
the historical realism of CESM-DPLE are derived
from the atmospheric reanalysis and flux products
used to drive the FOSI simulation. Full-field (as op-
posed to anomaly) initialization is used for all model
components; drift adjustment is generally required
prior to analysis. Unless otherwise noted, the results
shown below are based on anomaly analysis, with DP
anomaly fields computed by removing a lead-time-
dependent model climatology whose historical time
span exactly matches that used for the verification
data climatology (Boer et al. 2013; Kim et al. 2012).
The CESM-DPLE builds upon previous DP efforts
at NCAR that made use of the Community Climate
System Model, version 4 (CCSM4). The CCSM4
decadal prediction (CCSM4-DP) simulation set was
submitted to the CMIP5 DP collection and has been
analyzed in several publications (Karspeck et al. 2015;
Meehl et al. 2016; Meehl and Teng 2012, 2014a,b;
Yeager et al. 2012, 2015). Noteworthy setup differ-
ences that distinguish CESM-DPLE from CCSM4-
DP (apart from ensemble size) include 1) the model
code base (in particular, the use of CAMS5 instead of
CAM4), 2) the inclusion of ocean biogeochemistry
(BGCQC), 3) the ensemble start date (1 November in-
stead of 1 January), and 4) a new FOSI simulation
with improved forcing for initializing the ocean
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INITIALIZING THE OCEAN

he ocean is the primary reservoir

of memory in the climate system,
and hence the historical ocean state
is the single-most important consid-
eration when it comes to initializing
decadal climate predictions.The NCAR
contribution to the CMIP5 decadal
prediction collection (CCSM4-DP) used
a FOSI simulation to obtain historical
initial conditions for the ocean and sea
ice components, with the FOSI surface
fluxes computed with bulk formulas us-
ing atmospheric fields from the Coordi-
nated Ocean-Ice Reference Experiment
(CORE) forcing dataset.The CORE forc-
ing protocol has been a widely used and
extensively documented standard in the
ocean modeling community (refer to the
CORE-l virtual special issue of Ocean
Modelling for related articles). Skill-
ful reproduction of observed decadal
changes in Labrador Sea hydrography,
in particular, in the CORE-forced FOSI
is believed to be a key aspect of the CC-
SM4-DP initialization that explains long
lead-time prediction skill in the subpolar
gyre of the North Atlantic (Yeager et al.
2012,2015).

Despite high skill in the Atlantic
sector, CCSM4-DP hindcasts exhibited
a strong initialization shock in the tropi-
cal Pacific that resulted in spurious El
Nifio (La Nifia) conditions in early lead
years in ensembles initialized between
roughly 1955 and 1974 (1985 and 2005)
(Karspeck et al. 2015;Teng et al. 2017).
Inspection of the CORE-forced FOSI
simulation used for initializing CCSM4-
DP revealed a spurious weakening
trend in the large-scale, zonal SST
gradient along the equatorial Pacific
compared to the stable SST gradi-
ent over the late twentieth century
in the observed record (Fig. SB1la).
Other experimental FOSI simulations
forced with NOAA Twentieth Century
Reanalysis, version 2 (20CRv2; Compo
et al.2011),and adjusted Japanese
55-year Reanalysis Project (JRA55-do;
Tsujino et al. 2018.) fields showed much
less of a ASST trend than the CORE-
forced FOSI and, hence, were more
consistent with observations in the
tropical Pacific. The negative ASST trend
in the CORE-forced FOSI appears to be
related to a pronounced slackening of
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Fic. SBIl. Monthly time series of (a) the large-scale zonal SST gradient in the
equatorial Pacific, quantified as the difference between western (Nifio-4)
and eastern (Nifio-3) regional averages and (b) 10-m zonal wind speed aver-
aged over the eastern equatorial Pacific (Nifio-3). The ASST curves are from
observations (OBS; Hurrell et al. 2008) and the FOSI simulations used to
initialize CCSM4-DP (CORE) and CESM-DPLE (CORE¥), with the correla-
tion with observations given in the legend in (a). The zonal wind curves are

from a

variety of raw or adjusted atmospheric reanalysis products: NCEP

(Kalnay et al. 1996), CORE-adjusted NCEP (LY09), 20CRv2 (Compo et al.
2011), adjusted JRA55-do (Tsujino et al. 2018), and ERA-I (Dee et al. 2011).




the equatorial trade winds in the Pacific
in the NCEP-NCAR reanalysis that

is used as the base dataset for CORE
(Fig. SB1b).The time-independent
adjustment to NCEP-NCAR reanalysis
winds that are part of the CORE forc-
ing protocol (Large and Yeager 2009,
hereafter LY09) correct the weak trade
wind bias in that dataset in the modern
satellite era, but the adjustment also
results in trade winds that are probably
too strong prior to 1975, and it ampli-
fies the weakening trend inherent in
the NCEP-NCAR reanalysis (Fig. SBIb).
The fact that LY09 winds in the equato-
rial Pacific appear to be an outlier
compared to more recent atmospheric
reanalysis products such as 20CRv2
and JRA55-do, as well as the European

Centre for Medium-Range Weather
Forecasts (ECMWVF) interim reanalysis
(ERA-Interim, hereafter ERA-I; Dee
etal.201 1), would appear to explain
the poor SST simulation in that region
in the CORE-forced FOSI.

To eliminate the spurious ASST
trend, which presumably gives rise to
spurious Bjerknes feedback effects upon
coupling that contribute to initialization
shock behavior, a new FOSI was devel-
oped with forcing coming primarily from
CORE data streams but with a nonstan-
dard, blended wind field. In particular,
CORE winds were used everywhere
except in the tropical band (30°S-30°N),
where either 20CRv2 winds (spanning
1948-2010) or JRA55-do winds (to
extend the simulation through 2015)

were used. This new CORE*-forced
FOSI successfully eliminated the spuri-
ous ASST trend in the Pacific (Fig. SBla)
while retaining desirable aspects of
standard CORE forcing elsewhere.The
CESM-DPLE used the CORE*-forced
FOSI for initializing the ocean and sea
ice components, and this change is be-
lieved to explain the dramatic reduction
in tropical Pacific initialization shock

as well as much of the large, global-
scale skill improvements in a variety of
fields compared to CCSM4-DP (see
the supplemental material). Similar DP
sensitivity to ocean initial states gener-
ated using erroneous tropical Pacific
wind forcing has been noted in the

Max Planck Institute decadal prediction
system (Pohlmann et al. 2016).

and sea ice components. Significant skill improve-
ments in CESM-DPLE compared to CCSM4-DP,
discussed in the supplemental material (https://
doi.org/10.1175/10.1175/BAMS-D-17-0098.2), are
believed to derive primarily from setup difference 4
above, which largely eliminated a spurious trend in
the east-west sea surface temperature (SST) gradient
in the tropical Pacific (see the sidebar). A summary
of the experimental setup of CESM-DPLE (and note-
worthy changes from the setup used for CCSM4-DP)
is provided in Table 1.

HINDCAST EVALUATION METHODS. The
full-field initialization necessitates a drift adjust-
ment procedure prior to hindcast verification against
observations. This is accomplished by transforming
the raw DP output into anomalies relative to the cli-
matological forecast for each lead time: Y]'T =Y, - 1_/1,
where Y, represents the ensemble-average forecast
from start year j at lead time 7 and Y, represents an
additional average over start years for a given 7. When
verifying against sparse observational datasets, care
is taken to compute i using only j7 pairs for which
there exist corresponding observations (Doblas-Reyes
et al. 2013; Kim et al. 2012).

Hindcast verification in this paper follows
the framework outlined in Goddard et al. (2013).
Verification metrics include the anomaly correla-
tion coefficient (ACC) and the mean-square skill
score (MSSS = 1 — MSE_ /MSE_) computed against
standard observational benchmarks (see below). The
MSSS quantifies the change in mean-square error
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between the DP ensemble and observations (MSE )
and the MSE of a reference hindcast (MSE_ ). Reference
predictions considered herein include persistence and
UI simulations. For comparison with DP hindcasts of
N-year-average anomalies, the persistence hindcast is
computed as the most recent N-year-average anomaly
that had been observed at the time of DP initialization.
Annual means are defined over January-December,
and the persistence hindcast includes the November
and December observations from the year of initial-
ization. The UT hindcast is simply the N-year-average
anomaly for a particular time period computed from
the set of uninitialized historical simulations. As noted
above, anomalies are defined relative to identically
sampled climatologies that are computed separately for
each distinct data stream. We focus here on decadal-
time-scale predictions of low-frequency variability, and
therefore we consider multiyear annual- and seasonal-
mean predictions for a subset of lead times [e.g., lead
years 1-5 (LY1-5)].

The nonparametric block bootstrap technique
outlined in Goddard et al. (2013) is used to assess the
statistical significance of hindcast skill scores. To test
whether a score (e.g., ACC) or score difference (e.g.,
AACQC) is significantly different from zero, a boot-
strapped distribution of (4,000) scores is computed
at each spatial location by resampling (with replace-
ment) the hindcast ensembles across both the time
and member dimensions. To account for temporal
autocorrelation, the resampling in time maintains
continuity in 5-yr blocks (although the results are not
strongly sensitive to this choice of block length). The
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bootstrapped PDF of the scores reflects the uncer-
tainty of the test statistic associated with the limited
ensemble size and temporal sampling and can be used
to derive p values. For example, a positive (negative)
score with a bootstrapped distribution showing only
100 scores below (above) zero would have a p value
of 100/4,000 = 0.025. Scores of either sign with low
p values are of interest insofar as they indicate ar-
eas of notable success (or failure) of the prediction
system. Scores that are not locally significant (i.e.,
p value > 0.1) are denoted in map plots with a slash
mark (/). Fisher’s z transformation is applied to ACC
scores prior to the determination of p values. Evalu-
ation of hindcast skill in terms of gridded skill score
maps demands consideration of the field significance
of the results (Ventura et al. 2004; Wilks 2006, 2016).
In our skill-map plots, we assess field significance by
controlling the false discovery rate (FDR) following
Wilks (2016), assuming moderate to strong spatial

of the FDR method is that global field significance
is implied by the existence of local p values that,
when sorted, fall below a ramping threshold. These
particularly low p values are denoted in map plots
with a dot (-).

The observational benchmarks used for hindcast
evaluation in this study are as follows: the Met Of-
fice EN4.2.1 gridded ocean temperature product for
the upper-ocean heat content (Good et al. 2013), the
Extended Reconstructed Sea Surface Temperature,
version 5 (ERSSTv5), dataset from the National
Oceanic and Atmospheric Administration (NOAA)
(Huang et al. 2017), the University of East Anglia Cli-
matic Research Unit time series, version 4.00 (CRU-
TS4.0), land surface temperature and precipitation
dataset (Harris et al. 2014), and estimates of ocean
net primary productivity (NPP) generated from the
Moderate Resolution Imaging Spectroradiometer
(MODIS; 2003-15) using the Vertically Generalized

correlation (ocglobal =0.1 o, = 2

doba)- AN advantage

Production Model (Behrenfeld and Falkowski 1997).

TasLE |. Overview of the experimental setups of the two initialized decadal prediction experiments run to
date at NCAR. Boldface font in the right column highlights noteworthy changes from the earlier (CCSM4-
DP) setup. Note that the Ul is a complementary simulation set that employs the same external radiative
forcings as the DP set. Refer to the sidebar for a detailed description of the modified CORE forcing used to
generate ocean and sea ice initial conditions for CESM-DPLE.

CCSM4-DP CESM-DPLE
Model CCSM4 CESMI.I
atm CAM4 (FV I°, 26 levels) CAMS (FV 1°, 30 levels)
ocn POP2 (I°, 60 levels) POP2 (I°, 60 levels) with BGC
ice CICE4 (1°) CICE4 (1°)
Ind CLM4 CLM4

Ul ensemble

6-member CCSM4 twentieth-century ensem-
ble (Meehl et al. 2012)

40-member CESM twentieth-century
Large Ensemble (Kay et al. 2015)

Forcing

through 2005

CMIPS historical

CMIPS historical

from 2006 onward fll;{l‘él:l;irj:presentative concentration pathway CMIP5 RCP 8.5
Initialization
method Full field Full field
atm Ul Ul
ocn CORE-forced FOSI CORE*-forced FOSI
ice CORE-forced FOSI CORE*-forced FOSI
Ind ul ul
Ensembles
Ensemble size 10 40

Start dates

Annual; | Jan 1955-2014 (N = 60)

Annual; | Nov 1954-2015 (N = 62)

Ensemble generation

Variable Jan start days and round-off perturba-
tion of atm initial conditions

Round-off perturbation of atm initial conditions

Simulation length

120 months

122 months
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HINDCAST SKILL IN THE SURFACE
OCEAN. We first assess skill at predicting upper-
ocean heat content, particularly Atlantic Ocean heat
content, because it is widely believed to be the founda-
tion of skillful decadal predictions of surface climate
(Yeager and Robson 2017). Pentadal variations in heat
content of the upper 295 m (T295) are well predicted
in broad tropical and extratropical regions within
each ocean basin at short lead times (Fig. 1a). At
longer lead times, there is a loss of skill in the tropi-
cal Pacific, tropical Indian, and eastern extratropical
Pacific Oceans, while scores remain high elsewhere
(Figs. 1b,c). The ACC in CESM-DPLE is considerably
greater than persistence in most regions exhibiting
positive skill (Fig. 1d), and this skill improvement
tends to increase with lead time (Figs. le,f). The
regions of significantly high skill and skill improve-
ment are also generally found to be field significant.

Much of the skill improvement over persistence
in pentadal hindcasts can be attributed to external
forcing, and hence the comparison with uninitial-
ized (but externally forced) historical simulations is
a higher bar for gauging success. ACC score differ-
ences between CESM-DPLE and CESM-LE reveal

:

l‘_-‘t g

the impact of initialization on predictions of T295
(Figs. 1g-i). The subpolar North Atlantic (SPNA)
stands out as a region where the skill improvement
associated with initialization is largest and most
lasting, with AACC exceeding 0.4 at all lead times
considered (Figs. 1g-i). There are indications that
the high SPNA skill extends northward toward the
Arctic, with large improvements over persistence and
modest but significant improvements over uninitial-
ized simulations at short lead times in the Nordic seas
(NS). The high skill for SPNA heat content in initial-
ized hindcasts is generally understood to derive from
realistic initialization of, and limited prediction of,
Atlantic thermohaline circulation anomalies (Yeager
and Robson 2017), and there is mounting evidence
that upper-ocean anomalies in the SPNA propagate
across the Iceland-Scotland Ridge to provide a source
for NS predictability (Arthun et al. 2017; Arthun and
Eldevik 2016; Yeager et al. 2015).

Other regions of significantly enhanced skill for
heat content include the eastern subtropical North
Atlantic off the coast of Africa, the subtropical South
Atlantic, the north- and southeastern subtropical Pa-
cific, the west and south Indian Ocean to the east of

2277077057
902.055405%

/50,07
///;////

-0.8 -0.6 -0.4 -0.2

0.2 0.4 0.6 0.8 ACC

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 AACC

FiG. I. (a)-(c) ACC of annual upper-ocean heat content above 295 m (T295) from CESM-DPLE relative to Met
Office EN4.2.1 data (Good et al. 2013) for lead times of 1-5, 3-7, and 5-9 years, respectively. ACC skill score
differences (d)-(f) between CESM-DPLE and persistence and (g)-(i) between CESM-DPLE and CESM-LE. All
fields were mapped onto a 5° % 5° grid prior to analysis. The scale used for (d)-(i) is half that used for (a)-(c). The
absence (presence) of a gray slash indicates scores that are (are not) significant at the 10% level (a = 0.1); stippling
further indicates points whose p values pass an FDR test for global (70°S-70°N) field significance ("‘g|oba| =0.1).
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Madagascar, and the northwestern Pacific (Figs. 1g-1).
The mechanisms underpinning high T295 skill in
CESM-DPLE in these regions, and the potential sig-
nificance of this skill for other surface and subsurface
fields of interest, should be examined in future, more
regionally focused, studies. However, we will note that
these regions exhibit an interesting correspondence
to known mode water regions (Hanawa and Talley
2001), suggesting that the skill improvements may
be associated with realistic initialization of, and sub-
sequent subduction and interior advection of, mode
water anomalies. There are also regions of significantly
degraded T295 skill in the western tropical and north-
central Pacific and the Southern Ocean (SO). The
reasons for negative skill differences remain unclear
at this time, but we speculate that they are related to
initialization shocks that result in spurious tropical
air-sea interaction at short lead times, particularly in
the eastern Pacific, that can have large far-field impacts
(see the sidebar and more extended discussion below).

Trend bias correction is a potential source of skill
in initialized hindcasts that is derived simply from
initializing closer to the observed long-term trend,
and it can result in enhanced skill scores even without

any improvement in the simulation of internal climate
variability mechanisms. To check whether trend bias
correction is a significant factor, we have redone Fig. 1
using detrended data (Fig. ESI). Almost all of the
regions of improved T295 skill discussed above are
recovered, and even enhanced, after detrending, im-
plying that trend bias correction is not the dominant
source of ACC skill for this field.

In some regions, long-lasting skill at predicting
upper-ocean heat content finds surface expression in
terms of high skill scores for annual-mean SSTs that
can be clearly associated with initialization (Fig. 2). As
for T295, CESM-DPLE exhibits widespread, signifi-
cant skill at predicting pentadal SST variations out to
decadal lead times (Figs. 2a—c). The northeast Pacific
and the Pacific-Atlantic sectors of the SO stand out as
regions of low predictability with skill that degrades
with lead time (Figs. 2a—c). In contrast, the central
and southeastern tropical Pacific shows a marked
increase in skill with lead time. We will return to
this phenomenon below. While there is widespread
improvement over persistence (Figs. 2d-f), the skill
comparison with CESM-LE reveals that external
forcing accounts for a large fraction of the global
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FiG. 2. (a)-(c) ACC of annual SST fromm CESM-DPLE relative to ERSSTv5 observations (Huang et al. 2017) for
lead times of 1-5, 3-7, and 5-9 years, respectively. ACC skill score differences (d)-(f) between CESM-DPLE
and persistence and (g)-(i) between CESM-DPLE and CESM-LE. All fields were mapped onto a 5° x 5° grid
prior to analysis. The scale used for (d)-(i) is half that used for (a)-(c). The absence (presence) of a gray slash
indicates scores that are (are not) significant at the 10% level (a = 0.1); stippling further indicates points whose
p values pass an FDR test for global (70°S-70°N) field significance (aglobal =0.1).
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SST skill in CESM-DPLE (Figs. 2g-i). In particular,
the very high ACC scores in the Indian and tropical
western Pacific Oceans in CESM-DPLE are no better
than in the uninitialized ensemble, consistent with
the known dominance of the externally forced trend
on SST variance in this region (Han et al. 2010).

There are, however, several regions showing lo-
cally and field significant SST skill improvement
over uninitialized simulations that appear to be
geographically related to the T295 improvements
noted above. The North Atlantic (and in particular
the SPNA) again stands out as a region where initial-
ization confers large benefits (Figs. 2g-i). For LY3-7,
the skill improvement over uninitialized simulations
(Fig. 2h) bears a strong resemblance to the canonical
pattern of Atlantic multidecadal variability (AMYV;
Sutton and Hodson 2005), with heavy loading in the
SPNA and an extension into the tropical North At-
lantic through the eastern subtropics. This horseshoe
pattern of SST skill improvement, and the extension
of skill improvement into the Nordic seas, reflects
the underlying T295 improvements (Fig. 1h). There
is reason to suspect that some of the baseline SST
skill in the SPNA in the uninitialized ensemble is
obtained through incorrect physical mechanisms.
Yeager et al. (2012) point out that UI ensembles simu-
late late-twentieth-century SPNA warming despite
Atlantic meridional overturning circulation (AMOC)
weakening, presumably through anomalous surface
fluxes, whereas FOSI and initialized DP simulations
rely on AMOC-related advective heat convergence.
Thus, the improved mechanistic fidelity associated
with initialization (positive SPNA SST trend due to
a strengthening AMOC) is not necessarily reflected
in Fig. 2.

Other regions showing noteworthy SST skill im-
provement (Figs. 2g-i) include the eastern subtropical
South Atlantic; the south Indian Ocean off Madagas-
car; the SO, particularly the Bellingshausen Sea to the
west of the Antarctic Peninsula; the northwest Pacific
region to the east of Japan and the Kamchatka Penin-
sula; and the southeast Pacific off the coast of Chile.
As for the SPNA, the enhanced SST skill in most of
these regions appears to be related to collocated im-
provements in T295 skill and is resilient to detrending
(Fig. ES2), suggesting that these SST improvements
are not simply artifacts of trend bias correction. The
SO SST skill improvement over CESM-LE derives
in part from improved representation of nontrend
variability (Figs. ES2g-i), but the relation with T295
skill improvement is not as clear as in other regions
(cf. Figs. 1g-i). While there are significant improve-
ments over uninitialized simulations throughout much
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of the SO, it is still a region of low overall skill that,
apart from the Indian Ocean sector, does not show
improvement over persistence (even when detrended;
Fig. ES2). Further work is needed to clarify the nature
of the SO response in CESM-DPLE.

The improvement in SST skill in the equatorial Pa-
cific with lead time (Fig. 2) merits further discussion.
As discussed in the sidebar (and the supplemental
material), unbalanced initial conditions in the equa-
torial Pacific are hypothesized to give rise to spurious
El Nifio (La Nifia) conditions that degrade the skill of
initialized hindcasts at short lead times (Pohlmann
et al. 2016; Teng et al. 2017). While the initialization
shock in CESM-DPLE is much reduced compared to
its predecessor (CCSM4-DP), there is still a signifi-
cant improvement in SST skill in many tropical and
extratropical regions as lead time increases (Fig. 3),
indicative of short-term adjustments to initializa-
tion that tend to degrade skill, particularly in the El
Nifo region. The expanding blue (negative AACC)
regions in Fig. 3 are expected, and we speculate that
the growth of the orange regions (positive AACC)
is dynamically linked to the improved SST in the
(south)eastern tropical Pacific. ACC in the western
tropical Pacific, for instance, is seen to improve
significantly with lead time (Fig. 3), resulting in im-
proved comparisons with reference forecasts (Figs. 2
and ES2). The early-lead-time skill degradation in this
region (Fig. 2g) may be related to the combination of
spurious variability in the eastern tropical Pacific and
model bias that extends ENSO activity too far to the
west (Van Oldenborgh et al. 2012).

PREDICTING SURFACE TEMPERATURE
AND PRECIPITATION. A key outstanding chal-
lenge in DP research is to ascertain the extent to which
multiyear skill in predicting ocean heat content, SST,
and sea ice extent (Yeager et al. 2015) might translate
into useful predictions of surface climate over land.
Skill maps of ACC for annual or seasonal surface air
temperature (SAT) over land show near-ubiquitous,
high, and significant skill that generally outperforms
persistence (Fig. ES4). Much of this skill derives from
the strong externally forced trend in SAT, and so it is
difficult to detect ACC improvement over uninitial-
ized simulations unless a linear trend is first removed
(Fig. ES5). However, the MSSS (using CESM-LE as the
reference forecast) does reveal skill improvement even
in the presence of strong forced SAT trends (Fig. 4).
Initialization results in (field) significant improve-
ments in pentadal predictions of annual SAT over west-
ern Europe, Greenland, the Mediterranean, northern
and southern Africa, Arabia, South Asia, northeastern
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Fic. 3. AACC for annual SST from CESM-DPLE relative to ERSSTv5 observations (Huang et al. 2017) for lead
years (a) 2-6, (b) 3-7, (c) 4-8, (d) 5-9, and (e) 6-10. In each panel, AACC is computed relative to the score for
LY1-5 (see Fig. 2a). All fields were mapped onto a 5° % 5° grid prior to analysis. The absence (presence) of a gray
slash indicates scores that are (are not) significant at the 10% level (« = 0.1); stippling further indicates points

whose p values pass an FDR test for global (70°S-70°N) field significance (ocg

Eurasia, China, and the southwestern United States.
The enhanced annual skill appears to be related to
widespread error reduction during boreal summer
[June-August (JJA); Figs. 4g-i], as boreal winter [De-
cember-February (DJF)] improvements are confined
primarily to northeast Africa and Arabia (Figs. 4d-f).

The notable increase in SAT MSSS with lead
time in many regions is likely related to the broad
patterns of improved SST forcing of the atmosphere
noted earlier (Fig. 3). Trend bias correction may be
contributing to some of the SAT skill in Europe
and Asia given that scores there are lower when the
trend is removed (Fig. ES6). Even after detrending,
however, significantly positive MSSS (Fig. ES6) and
AACC (Fig. ES5) scores are found over large swaths
of the greater Mediterranean and central and eastern
Asia regions, implying significant improvements in
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the representation of nontrend variability associated
with initialization. These results appear consistent
with a recent study that concluded that skillful mul-
tiyear prediction of boreal summer temperature over
northeast Asia derives from a global atmospheric
teleconnection pattern modulated by low-frequency
North Atlantic SST variability (Monerie et al. 2017).

CESM-DPLE shows promising prospects for
useful decadal predictions of hydroclimate over
land, and this represents a significant advance over
the CMIP5-era CCSM4-DP system. Figure 5 shows
the ACC skill map for boreal summer [June-Sep-
tember (JAS)] land precipitation. Locally and field
significant positive ACC scores are found in western
Europe, central and northeastern Eurasia, the Afri-
can Sahel, parts of south and eastern Africa, Alaska,
the northeastern and northwestern continental
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(presence) of a gray slash indicates scores that are (are not) significant at the 10% level (« = 0.1); stippling further
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FiG. 6. Regional average boreal summer (JAS) precipitation for (a),(b) northern Europe (45°-70°N, 10°W-
25°E) and (c),(d) the West African Sahel (10°-20°N, 20°W-10°E). (left) Raw time series (mm day~') and (right)
normalized time series. The CESM-DPLE time series (red) is the ensemble mean over LY3-7; the CESM-LE
ensemble-mean (blue) and observed (black) time series have been smoothed with a running 5-yr-mean filter.
The regions are shown in Fig. 5. Skill scores are listed in (a) and (c).

United States, and northern Quebec (Figs. 5a-c). The
number of field significant positive scores clearly
outnumbers the negative scores. The skill variations
with lead time are noticeable but small compared
to the spatial variations in skill. Regions of high
skill that also exhibit significant skill improvement
over CESM-LE include western Europe, the Sahel,
southeast Africa, and northwestern North America.
Field significant improvements over uninitialized
simulations are scattered at this spatial resolution,
but there are noteworthy concentrations of positive
AACC in the Sahel, Brazil, northwestern North
America, western Europe, central Eurasia, southern
Africa, and western Australia (Figs. 5g-i). However,
not all of these regions show coherent improvements
over persistence (Figs. 5d-f). Again, we find that
the noted skill improvements over CESM-LE are
resilient to detrending (Fig. ES7).

Numerous studies have linked the multidecadal
variability of NATL SST (often referred to as Atlantic
multidecadal variability) to seasonal climate fluctua-
tions over Europe, Africa, Asia, and the Americas. It
therefore seems likely that the CESM-DPLE surface
climate skill in these regions stems in large part from
(enhanced) skill at predicting NATL SST (Figs. 2
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and ES2). However, the precise origins of skill over
land in CESM-DPLE remain under investigation.
Low-frequency warming (cooling) in the NATL has
been associated with enhanced (suppressed) summer
precipitation across Europe (Sutton and Dong 2012;
Sutton and Hodson 2005), and it has recently been
shown that NATL SST-driven changes in the supply
of water vapor support skillful seasonal predictions
of summertime convective rainfall over northern Eu-
rope (Dunstone et al. 2018). Averaging over the same
region as Sutton and Dong (2012) and Dunstone et al.
(2018), our system suggests that decadal predictions of
summer precipitation over northern Europe may be
viable (Figs. 6a,b). While the ensemble-mean signal is
clearly very weak in both CESM-DPLE and CESM-LE
(Fig. 6a), the ACC (which is insensitive to magnitude)
for pentadal anomalies is 0.68 with a AACC of 0.25
over CESM-LE. This skill improvement might be even
larger if it were possible to extend hindcast start dates
further back in time in order to sample more of the
positive phase of the AMV and European summer
precipitation in the 1950s (Fig. 6b).

The striking skill improvement over the Sahel is
also in line with our current understanding of AMV
impacts over Africa (Mohino et al. 2016; Sutton and



Hodson 2005; Wang et al. 2012;
Zhang and Delworth 2006). On mul-
tiyear time scales, a warmer NATL is
associated with a northward shift in
the intertropical convergence zone
(ITCZ) and enhanced moisture sup-
ply for the West African monsoon
(Green et al. 2017; Sheen et al. 2017).
CESM-DPLE generates an ACC of
0.78 for regionally averaged summer
(JAS) precipitation over the West
African Sahel for lead years 3-7
(Figs. 6¢,d), slightly better than per-
sistence. The corresponding correla-
tion from CESM-LE is only 0.11, and
the high CESM-DPLE correlation is
slightly higher than that obtained
from a 52-member multimodel mean
of CMIP5 DP hindcasts analyzed
over the same region and lead inter-
val (Martin and Thorncroft 2014).
The skill for regionally averaged JAS
precipitation over the Sahel increases
considerably from LY1-5 to LY3-7
and then slowly diminishes (Fig. 7a).
We speculate that this lead-time
dependence is related to the changes
in SST skill discussed earlier (Fig. 3),
which result in notably higher ACC
scores in the subtropical Atlantic
when nontrend variability is isolated
(Fig. ES3).

Previous works have identified
the relative SST index (RSI; the
difference between subtropical
North Atlantic SST and global
tropical SST) as a good predictor of
Sahel summertime precipitation as
well as model potential for skillful
Sahel prediction (Giannini et al.
2013; Martin and Thorncroft 2014).
CESM-DPLE does indeed show
higher RSI skill than any of the
reference forecasts considered here-
in—much higher than the previous
CCSM4-DP system that was charac-
terized by a large initialization shock
(Fig. 7b; see also the supplemental
material). While the ability (or lack
thereof) to predict RSI offers some

explanation for the differences in Sahel precipitation
skill between the different forecast systems (Fig. 7a), it
does not really explain why CESM-DPLE skill peaks
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at LY3-7. Curiously, the high CESM-DPLE skill at
predicting SPNA SST noted earlier is no better than
in the old CCSM4-DP system (Fig. 7c), implying that
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SPNA SST skill alone does not guarantee skillful Sa-
hel precipitation even though it is likely an important
ingredient (Dunstone et al. 2011).

The apparent success of CESM-DPLE in skillfully
hindcasting the relevant SST drivers of Sahel pre-
cipitation suggests that the forecast of drought con-
ditions through 2020 (which contrasts sharply with
the CESM-LE near-term projection of above-normal
precipitation) should be taken into consideration by
relevant stakeholders (Fig. 6d). We note that this
forecast is not inconsistent with a number of recent
studies that anticipate a shift toward a cooler NATL
(negative AMYV) as a result of a weakening Atlantic
thermohaline circulation (Hermanson et al. 2014;
Robson et al. 2014, 2016; Yeager et al. 2015).

NEW CAPABILITIES. Large ensemble. The large
ensemble size of CESM-DPLE, in conjunction with
that of the CESM-LE, permits unprecedented explo-
ration of the sensitivity of DP skill assessment to the
level of noise reduction achieved through ensemble
averaging (Boer et al. 2013). Figure 8 shows how the
precipitation skill over the northern Europe and Sahel

a. JAS PREC, N Europe (10°W-25°E, 45°N-70°N)

regions discussed above (Fig. 6) varies as a function of
ensemble size. With 40-member ensembles, the initial-
ized skill score of r = 0.68 for summer precipitation
over Europe can be confidently distinguished from the
Ul ensemble that yields r > 0.4 for this region (Fig. 8a).
While there is a discernible benefit from initialization,
the external forcing is clearly contributing quite a lot to
the overall skill in this region. Even with a 40-member
UI ensemble, there is considerable uncertainty in the
skill associated with external forcing (the 90% con-
fidence interval for the CESM-LE correlation spans
about 0.3 for a 40-member ensemble and this increases
to about 0.7 for a 5-member ensemble). Cleanly dis-
tinguishing initialized from uninitialized simulation
skill in this region clearly requires large ensembles
for both simulation sets (probably 20+ members).
For the Sahel region, the 90% confidence interval for
a 10-member UI set spans about 0.8 (Fig. 8b). In that
region, however, the benefits of initialization are clearly
evident even with a 10-member ensemble despite the
UT uncertainty. To confidently (at the 90% level) beat
persistence in the Sahel, however, probably requires
an initialized ensemble of 30 or more. In short, the

b. JAS PREC, Sahel (20°W-10°E, 10°N-20°N)
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Fic. 8. ACC skill for boreal summer (JAS) land precipitation relative to the CRU-TS4.0 dataset (Harris et al. 2014)
for pentadal anomalies over (a),(c) northern Europe (45°-70°N, 10°W-25°E) and (b),(d) the Sahel (10°-20°N,
20°W-10°E). CESM-DPLE data are from LY3-7, as shown in Fig. 6. The skill dependence on ensemble size is
computed using a bootstrapped resampling (with replacement) of ensemble members from the 40-member
pools of CESM-LE (blue) and CESM-DPLE (red). The thick lines are the median, and the thin lines are the 5th
and 95th percentiles, of a score distribution of size 10,000. The black dashed lines show the skill of the persis-
tence forecast, and the filled dots give the ACC score for the unique 40-member ensemble mean from each
system. In (c) and (d), the orange lines show the ACC distribution for CESM-DPLE ensemble-mean predictions of
random single-member time series drawn from the CESM-DPLE pool.

1880 | BAMS SEPTEMBER 2018



confidence intervals for predictions of precipitation
over land are large, particularly for the baseline skill as-
sociated with external forcing, which is very ill-defined
for UT ensembles of size 10 or less, which are not un-
common in the DP literature. The implication is that
robust assessment of DP skill enhancement associated
with initialization for fields such as precipitation may
require much larger ensembles than current protocols
recommend (Boer et al. 2016).

The increase of skill with ensemble size is in line
with recent studies suggesting that unrealistically small
signal-to-noise ratios in current DP systems can be
overcome through the noise-dampening effect of large
ensembles (Dunstone et al. 2016; Eade et al. 2014; Scaife
et al. 2014). With respect to predictions of regional
precipitation over land in the two areas highlighted
above, CESM-DPLE does appear to exhibit a signal-
to-noise paradox similar to other DP systems insofar
as significantly higher correlation scores are obtained
when verifying against observations than when verify-
ing against single-member model “truth” (Figs. 8¢,d).
The ratio of predictable components (RPC; computed
as the ratio of median correlations: r /r_ . ) is 1.64
(2.05) for 40 member predictions of summer precipita-
tion over northern Europe (Sahel). This suggests that
CESM-DPLE predictions of precipitation over land are
underconfident, characterized by unrealistically low
signal to noise, and that the real-world predictability
may be higher than what is implied by the model en-
semble spread (Eade et al. 2014).

The large ensemble size will also facilitate explo-
ration of the predictability of higher moments of the
PDFs of climate fields, including the extreme tails that
correspond to the most impactful and costly climate
phenomena. Previous efforts to quantify the skill of
predicting climate extremes at decadal lead times
have employed relatively small ensembles (=10) that
may suffer from sampling issues (Eade et al. 2012).
Examination of probabilistic skill metrics that test the
quality of the ensemble spread such as the reliability
(the ability of the system to realistically partition
forecast probability across different forecast catego-
ries) and discrimination (the ability of the system to
distinguish between observed events and nonevents)
will be an important next step that will be greatly
facilitated by the large ensemble.

Ocean biogeochemistry. The inclusion of ocean BGC
fields in CESM-DPLE is an exciting new capability
that will facilitate a wide array of research into the pre-
dictability of ocean biogeochemistry, with potentially
important implications for environmental managers
and policy makers. Reliable near-term predictions of
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marine NPP (the net rate of photosynthetic carbon
fixation by phytoplankton in the surface ocean) are of
particular relevance for fisheries management. To that
end, Fig. 9 illustrates the potential predictability of NPP
integrated over the upper 150 m of the water column in
CESM-DPLE. In Fig. 9, NPP anomalies from CESM-
DPLE (and from the reference forecasts) are verified
against NPP anomalies from the CORE*-forced FOSI
simulation used to initialize the DP simulations, rather
than against observed anomalies. Therefore, the skill
represents the potential for actual predictability in the
limit of perfect knowledge of the initial state. Regions
of very high ACC that are clearly distinguishable from
both persistence and externally forced forecast skill
are found in each of the world’s oceans out to decadal
lead times. Similar to the upper-ocean heat content and
SST (Figs. 1 and 2), the Atlantic stands out as a basin
with particularly long-lasting skill that derives from
initialization (Figs. 9¢,f,i). There are also indications
of enhanced skill in western boundary current regions
such as the Gulf Stream, Kuroshio, Agulhas, and East
Australian Current. In several of the eastern boundary
upwelling systems, such as the Canary, Benguela, and
Humboldt Current regions, potential predictability is
high and shows significant improvement with initial-
ization. More extensive analysis is needed to determine
the underlying mechanisms of this potential skill, and
whether similar skill is seen in other elements of the
ocean biosphere.

The limited coverage of BGC observations in space
and time presents new challenges when it comes to
assessing model fidelity and prediction skill. Satellite-
derived estimates of marine NPP over the global
ocean can be used for prediction skill assessment
(Seferian et al. 2014), but verification is then limited
to the period for which satellite ocean color obser-
vations exist. Figures 10a and 10b show the annual
NPP ACC scores for the CORE*-forced FOSI and the
CESM-DPLE LY1 hindcast, respectively. Here, skill
is computed relative to MODIS-estimated annual
NPP anomalies at each location over 2003-15. High
skill is found in the central equatorial and western
subtropical Pacific, central subtropical Indian, and
subtropical Atlantic Oceans.

The Canary Current region (12°-22°N, 10°-25°W;
Chavez and Messié 2009) is a hotspot of productivity
and a critical area for African fisheries (Food and Ag-
riculture Organization 2009), and so skillful decadal
prediction in this region would be very beneficial for
African resource management. In this region, CESM-
DPLE exhibits both potential skill (verified against
CORE* over 1955-2015; Fig. 9a) at various lead
times and actual skill (verified against MODIS-based
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FiG. 9. (a)-(c) ACC of annual NPP from the CESM-DPLE relative to the CORE*-forced FOSI simulation used
for initialization for lead times of 1-5, 3-7, and 5-9 years. ACC skill score differences between (d)-(f) between
CESM-DPLE and persistence and (g)-(i) between CESM-DPLE and CESM-LE. All fields were mapped onto a
5° x 5° grid prior to analysis. The scale used for (d)-(i) is half that used for (a)-(c). The absence (presence) of
a gray slash indicates scores that are (are not) significant at the 10% level (« = 0.1); stippling further indicates
points whose p values pass an FDR test for global (70°S-70°N) field significance (« =0.1).

observational estimates over 2003-15; Figs. 10b,¢) at
LY1. Furthermore, the CORE*-forced FOSI simula-
tion shows good skill at reproducing observed NPP
variability in this region (Figs. 10a,c,d), giving con-
fidence that the high ACC scores obtained when us-
ing the full multidecadal time series of CESM-DPLE
(Fig. 9) are a reliable indication of realizable skill.
While NPP estimated from satellite-derived chlo-
rophyll has many caveats, among them chlorophyll
biases in the Canary Current due to Saharan dust
(Chavez and Messié 2009), these results nevertheless
suggest that skillful prediction of NPP in the Canary
Current region may be possible.

SUMMARY. The CESM-DPLE is a new “big data”
resource for the community that will permit advance-
ments in the science of decadal prediction of the Earth
system that could not be achieved through a small-
scale, sole-investigator approach. The large number
of hindcast start dates and ensemble members,
paired with the equally large ensemble of uninitial-
ized historical simulations that compose the CESM
Large Ensemble (Kay et al. 2015), offer unprecedented
statistical power for disentangling the intrinsic versus
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global

extrinsic sources of skill, exploring signal-to-noise
characteristics, and studying climate extrema. The
preliminary assessment of the dataset provided herein
shows that CESM-DPLE exhibits quite promising
levels of skill for many different fields, across a broad
range of forecast lead times up to decadal scales, both
in the ocean and over land. Significant skill improve-
ment over the earlier CMIP5-era prediction set that
used CCSM4 recommends its use both for new inves-
tigations and for reevaluation of earlier conclusions
that were based on the less skillful CCSM4-DP. In
particular, the combined analysis of CESM-DPLE
and CESM-LE is revealing significant and potentially
useful skill at predicting low-frequency variations
in hydroclimate over land, such as over Europe and
Africa, that appears to highlight the role of the ocean
in modulating decadal climate variations. Large en-
sembles are needed to draw robust conclusions about
the role of initialization in predictions of noisy atmo-
spheric fields and to realize skill given what appear to
be unrealistically small signal-to-noise ratios in the
model. The inclusion of prognostic ocean biogeo-
chemistry in CESM-DPLE opens up new prospects
for predictability research that move beyond the
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on map inset) from the CORE*-forced FOSI simulation (black), CESM-DPLE LYI (red), and MODIS (blue). (d)
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NPP was gridded onto a regular 2° grid prior to analysis.

physical climate system. A preliminary analysis of
NPP suggests that skillful multiyear predictions of
ocean biogeochemistry relevant to fisheries manage-
ment (e.g., in the Canary Current region) are possible.

The output from CESM-DPLE (as well as from
the CORE* simulation used to initialize the ocean
and sea ice components) is available as raw, sin-
gle-variable time series files. A web page (www
.cesm.ucar.edu/projects/community-projects/DPLE)
provides specifics about the simulations, links to the
data, a publication list, and additional overview di-
agnostics for select fields. The companion CESM-LE
simulation set has similar web documentation (www
.cesm.ucar.edu/projects/community-projects/LENS),
including links to output and relevant publications.
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