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Abstract—Cloud computing has evolved into a promising
computing paradigm. However, it remains a challenging task
to protect application privacy and, in particular, the memory
access patterns, on cloud servers. The Path ORAM protocol
achieves high-level privacy protection but requires large mem-
ory bandwidth, which introduces severe execution interference.
The recently proposed secure memory model greatly reduces
the security enhancement overhead but demands the secure
integration of cryptographic logic and memory devices, a
memory architecture that is yet to prevail in mainstream cloud
servers.

In this paper, we propose D-ORAM, a novel Path ORAM
scheme for achieving high-level privacy protection and low
execution interference on cloud servers with untrusted mem-
ory. D-ORAM leverages the buffer-on-board (BOB) memory
architecture to offload the Path ORAM primitives to a secure
engine in the BOB unit, which greatly alleviates the contention
for the off-chip memory bus between secure and non-secure
applications. D-ORAM upgrades only one secure memory
channel and employs Path ORAM tree split to extend the secure
application flexibly across multiple channels, in particular, the
non-secure channels. D-ORAM optimizes the link utilization
to further improve the system performance. Our evaluation
shows that D-ORAM effectively protects application privacy on
mainstream computing servers with untrusted memory, with
an improvement of NS-App performance by 22.5% on average
over the Path ORAM baseline.

I. INTRODUCTION

Cloud computing has evolved as a ubiquitous computing
paradigm nowadays. To maximize hardware resource utiliza-
tion and reduce energy consumption, cloud providers widely
adopt server consolidation to share the same hardware re-
sources among multiple co-running applications. However,
such an execution model raises security concerns. On the
one hand, a curious or malicious server may monitor the
execution, e.g., it may attach physical devices to eavesdrop
the memory communication [26], [37]. On the other hand,
a co-running application may extract sensitive information
through covert communication channels [42], [47].

To ensure high-level security protection, the processor
chip needs to integrate security engines to defend against
various attacks. Intel Software Guard Extensions (SGX) [20]
isolates the code and data of private enclave functions from
the rest of system. By including the processor chip as the

only hardware component in the trusted computing base
(TCB), the XOM (execution only memory) model saves
encrypted data and code in the untrusted memory [27], [35],
which effectively protects data confidentiality. Recent studies
revealed that protecting data privacy on untrusted memory
demands oblivious memory (ORAM) to reshuffle memory
data after each memory access [16]. Unfortunately, ORAM
often introduces large memory contention and performance
degradation. For example, in the recently proposed Path
ORAM scheme [34], one memory access from the appli-
cation is converted to tens to hundreds of memory accesses,
exhibiting extreme memory access intensity [34].

To alleviate the performance overhead introduced in Path
ORAM, the secure memory based designs, e.g., ObfusMem
[3] and InvisiMem [2], place both the processor chip and
the main memory module in the TCB. The secure memory
model protects data privacy through communication channel
encryption, which has low-performance overhead in general.
However, it requires the secure integration of cryptographic
logic and memory devices. For example, adding a secure
(bridge) chip to the DRAM DIMM cannot meet the model
requirement as the wires on the PCB (printed circuit board)
may be compromised for eavesdropping. Placing the secure
engine in the logical layer of HMC (hyper memory cube)
architecture is viable [2] as the connection between logic and
memory devices are embedded inside one package. How-
ever, HMC faces fabrication challenges on module capacity
and yield. The mainstream computing servers still widely
adopt traditional untrusted DRAM modules. To summarize,
it is important to devise low interference privacy protection
schemes for cloud servers with untrusted memory.

In this paper, we propose D-ORAM, a novel oblivious
memory scheme, for cloud servers with untrusted mem-
ory. D-ORAM achieves the good tradeoff among high-
level security protection, low execution interference, and
good compatibility with existing server architecture. The
following lists our contributions.
• We propose to have Path ORAM delegated in a small off-

chip secure engine. D-ORAM leverages the BOB (buffer-
on-board) architecture such that the TCB consists of the
processor and the small secure delegator embedded in the
BOB unit. The secure delegator offloads the expensive
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Path ORAM primitives from the processor, which effec-
tively mitigates the extreme memory contention at the on-
chip memory controller. The precious processor resources
can be better exploited by co-running applications.

• We analyze the channel utilization and space allocation in
the new memory architecture. We split the Path ORAM
tree across the secure memory channel and other non-
secure ones, which achieves flexible space allocation
without adding more components to the TCB. We propose
utilization aware data allocation of non-secure application,
eliminating the potential bottleneck of the secure channel.

• We evaluate the proposed scheme and compare it to
the state-of-the-art. Our evaluation shows that D-ORAM
integrates well with server memory architectures and
effectively achieves low co-run interference. It improves
the NS-App performance by 22.5% on average over the
Path ORAM baseline.
In the rest of the paper, we briefly introduce the back-

ground and motivate the design in Section II. Section III
elaborates the proposed D-ORAM. We present the exper-
imental methodology and analyze the results in Section
IV and Section V, receptively. Additional related work is
discussed in Section VI, We conclude the paper in Section
VII.

II. BACKGROUND AND MOTIVATION

In this section, we briefly compare different DRAM
memory architectures and then discuss the threat model
and the privacy protection in two existing secure execution
models.

A. The Memory System Architecture

c0 c1 c2 c3 c4 c5 c6 c7

data busaddr bus
cmd bus

serial link

(a) Traditional memory architecture                       (b) BoB memory architecture

Processor
Mem Controller

DIMM

Processor
Main MC

DIMM

BoBBoB BoBBoB

Figure 1. The DRAM based memory system architectures.

The DRAM based memory system traditionally adopts
the direct-attached memory architecture, as shown in Figure
1(a). One memory channel connects to one or more DRAM
DIMMs while each DIMM consists of two memory ranks
and one rank consists of eight (no ECC) or nine (with ECC)
DRAM chips. The channel bus consists of address, data, and
command buses. While the address and command buses link
all chips using, e.g., daisy-chain, the data buses from each
chip are aggregated to form the channel data bus.

An on-chip memory controller (MC) is integrated on the
processor. When servicing a memory read or write request,
the MC sends out a sequence of device commands, e.g.,
precharge, activate, read, or write, to operate the memory

chips. The time intervals between device commands are
specified by JEDEC standard [24]. Different memory chan-
nels may be ganged together, i.e., operate synchronously, to
form wide data buses.

To address the capacity and bandwidth demands of mod-
ern computing servers, recent memory architectures place
memory buffers (and their associated logic) between CPU
and DRAM chips, ranging from a simple buffer that re-
drives the signal to boost signal integrity [25], to a buffer-
on-board (BOB) unit that controls the DRAM and receives
requests and sends data back to the processor [9], to the
HMC architecture [29] that adopts 2.5D/3D integration to
have control logic as well as other simple operations (e.g.,
ECC and cryptographic operations) in the logic layer on top
of memory chips. The last two designs communicate with
the processor using narrow but fast serial link buses — the
requests being sent to and the responses from the DRAM
chips are encapsulated as data packets.

While BOB and HMC architectures share many similari-
ties, there is a significant difference from security enhance-
ment point of view, i.e., the buses between BOB buffer and
DRAM chips are visible to attackers while the buses between
HMC and DRAM subarrays are embedded inside the HMC
module. Therefore, the DIMMs are still untrusted in BOB
architecture — it is possible to attach physical devices to
tamper with the communication [26], [37].

BOB architecture not only supports large capacity mem-
ory but also is compatible with commodity DIMMs. It
has better adoption in mainstream servers than HMC. IBM
power8 supports eight memory buffers with each control-
ling 128GB memory and 1TB per socket [33]. Oracle
M7 supports up to 16 DIMMs using eight BOB buffers
and 1TB per processor [19]. Intel Xeon E7 [21] adopts
proprietary Scalable Memory Buffers (SMBs) that supports
up to three DIMMs per buffer and 1.5TB per socket.
While the SMB details are not released to the public, SMB
controls DIMMs only and thus is similar to BOB rather than
Fully-buffered DIMM [23]. As a comparison, HMC faces
fabrication challenges for improving module capacity and
TSV yield at present. The first processor that uses HMC was
Fujitsu SPARC64 XIfx [14], which was released in 2015 and
connects to 32GB memory using eight 4GB HMC modules.

B. The TCB and The Threat Model

To facilitate security analysis, the system components
of a cloud server are often partitioned to those that are
trustworthy, i.e., the trusted computing base (TCB), and
those that are not [22]. A system is secure if all attacks
from outside of TCB can be successfully defended. As
an example, if the OS is in the TCB, there is no need
to defend attacks from the OS kernel. However, including
potentially an untrustworthy component in TCB could break
the security guarantee and leave the system in a vulnerable
state. A curious or malicious (after being hijacked) OS can
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easily break the security mechanisms that the application
may adopt.

Executing a secure program in an untrusted environment
such as on the cloud server faces various types of attacks.
Therefore, the TCB is preferably as small as possible. Fol-
lowing the threat model in previous studies [32], [13], [44],
the OS is not in the TCB and physical attack is possible. A
curious OS may launch profiling code to collect execution
statistics; a malicious OS may record keystrokes or sensitive
data used during the execution. In particular, an attacker
may attach physical devices to analyze the communication
signals.

In this paper, the processor chip is included in the TCB,
similar to previous designs [27], [32], [2], [3]. In addition, a
hardware component X can be optionally placed in the TCB
such that TCB consists of CPU and X. We next compare
different designs to illustrate their tradeoffs.

1) The Model Assuming Trusted Processor and Untrusted
Memory: When TCB includes the processor chip only,
i.e., no additional X component is in TCB, as shown in
Figure 2(a), secure application execution needs to defend
all attacks from outside of the processor chip such that data
confidentiality, integrity, and privacy are protected during
execution.

Adopting data encryption helps to enforce data confi-
dentiality. Lie et al. proposed to encrypt the user code
and data when they are saved in memory or disk and
decrypted when being brought to the processor chip for
computation. A secure engine is integrated into the processor
chip to facilitate the cryptographic operations [27]. Suh et al.
proposed Merkle tree based verification to efficiently check
the integrity of memory that contains dynamic data [36].

However, it is challenging to prevent information leak-
age from memory accesses. To access data saved in the
untrusted memory, the on-chip memory controller needs to
convert a read or write request to a sequence of device
commands. Since the memory module is not trustworthy,
those commands, as well as the memory addresses, are sent
in cleartext. Even though the data exchanged between the
processor and the memory module are encrypted, the access
pattern of memory addresses may leak sensitive information,
e.g., when a medical application searches for the treatment
information for a specific disease from the database, it is
likely that the current patient has corresponding symptoms
[8]. Even when both code and data are unknown to the
adversary, previous work has demonstrated a control flow
graph (CFG) fingerprinting technique to identify known
pieces of code solely based on the address trace [45].

ORAM Model. Studies have shown that to securely
prevent information leakage from memory access patterns, it
demands oblivious memory (ORAM) primitives [16], [17].
ORAM conceals the access pattern from an application by
continuously shuffling and re-encrypting the memory data
after each access. An adversary, while still being able to

observe all the memory addresses transmitted on the bus,
has a negligible probability to extract the real access pattern.

Path ORAM [34] was recently proposed as a practical
ORAM implementation. Figure 3 shows the logic component
and organization of a path ORAM protected system. The
physical memory is organized as a binary tree with each
node consists of, e.g., four, memory blocks (i.e., cachelines).
The logic addresses are randomly mapped to tree paths with
the mapping recorded in the position map. When there is an
LLC (last level cache) miss, the position map is consulted to
get the path number. Path ORAM fetches all physical blocks
along the path. After reading and decrypting these blocks,
the requested block can be returned to the LLC. It is then
remapped to a different path and temporarily buffered in the
stash. Other blocks of the path, together with a subset of
blocks from the stash that can be merged to the path, are
encrypted and written back to the memory. When caching
the top of the tree in a small cache, the number of accesses
can be reduced [32].

In summary, a Path ORAM access consists of read and
write phases with each phase read and write all blocks of
a tree path, respectively. Given 4GB Path ORAM tree, if
each bucket contains 4 blocks, the tree has 24 levels such
that one phase accesses 23×4 blocks if only the root node
is cached, or 21×4 blocks if top 3 levels are cached, etc.
These accessed blocks can be physically mapped to multiple
memory channels to increase parallelism.

2) The Model Assuming Trusted Processor and Trusted
Memory: An alternative TCB model is to place both the
processor and the main memory module in the TCB, as
shown in Figure 2(b). The recent proposed ObfusMem [3]
and InvisiMem [2] schemes use this model.

Since the communication channel is not included in the
TCB, the data exchanged between the trusted processor
and the trusted memory still need to be encrypted and
authenticated. A secure engine is integrated into the memory
module to support cryptographic operations.

There is no need to adopt Path ORAM protection if the
memory is trustworthy. A secure memory scheme encrypts
the packets for protecting data confidentiality and generates
the packets with the same length and order for both read and
write request types. When there are multiple channels, the
scheme needs to generate dummy requests to the channels
other than the one that the data located.

The secure memory model works well with HMC ar-
chitecture but faces challenges when applying to untrusted
memory settings. As an example, adding a secure (bridge)
chip to DRAM DIMM cannot meet the secure memory
model requirement as the wires on the PCB may be com-
promised such that the communication between the secure
chip and the memory chips is eavesdropped.
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Figure 2. Comparing two TCB models.
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Figure 3. Basic Path ORAM Organization and Operations

C. Comparing Secure Execution Models
We next compare the two secure execution models and

study the performance impacts in different settings. In the
following discussion, we use the following abbreviation.

S-App — a trusted process that adopts either Path ORAM,
secure memory model, or our model for protection; and

NS-App — a process that does not need protection.

Figure 4 summarizes the average execution time of NS-
Apps when co-running one S-App and seven NS-Apps on
an 8-core CMP when using different memory settings. For
a suite of programs that we tested, we report the best,
the worst, and the geometric mean cases. For the multiple
process scenarios, we simulated multiple instances of the
same workload in multi-programming fashion, similar to
those in [1]. The architecture details are listed in Sec-
tion 4. 1NS indicates the solo execution, i.e., there is no
other co-run applications. 1S7NS indicates that the eight
processes compete for four memory channels. 7NS-4ch
and 7NS-3ch indicate the channel partition that the seven
NS-Apps compete for four and three memory channels,
respectively, while the S-App uses a separate channel (with
results not shown).
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Figure 4. The performance degradation under different co-run scenarios.

From the figure, NS-Apps suffer from large performance
degradation when the system has a co-run S-App. When we
adopt Path ORAM, i.e., 1S7NS (Path ORAM), the non-
secure application may take up to 5.26× execution time of
the solo execution, and an average of 90.6% execution time
overhead. Given that each application has individual core
and cache resources, the interference comes mainly from the
contention for the memory bandwidth. As shown in [32],

[39], an S-App may consume close to 100% of the peak
memory bandwidth, which introduces large performance
degradation to co-running non-secure applications.

A potential optimization is to adopt channel partition, i.e.,
to allocate the Path ORAM accesses to one channel and
allocate the seven NS-Apps to other three channels. While
7NS-3ch achieves significant improvements compare to
1S7NS(Path ORAM), the degradation is still significant.
On average, NS-Apps exhibit 57% slowdown. By giving one
more channel resource, 7NS-4ch shows 43% slowdown.

Adopting secure memory execution model is benefi-
cial but not significant. We modeled the channel replica-
tion and read write obfuscation as in ObfusMem[3] and
InvisiMem[2]. While the secure memory execution model
introduces around 10% to S-App execution (as in [3]), it
tends to introduce large performance degradation to co-
run applications. When there are multiple channels, dummy
messages are generated to hide the access pattern. Since
these messages are executed in parallel, they have less
impact on S-App but degrade co-run NS-Apps significantly.

D. Design Goal

In this paper, we are to devise a novel secure execution
model that is compatible with mainstream server mem-
ory architectures, i.e., it prevents information leakage from
memory accesses to untrusted memory. Our design goal is to
achieve high-level security protection, high system resource
utilization, low interference between secure and non-secure
applications, and good compatibility with mainstream server
hardware.

III. THE D-ORAM DETAILS

In this section, we first present an overview of the
proposed D-ORAM scheme and then elaborate the details
and performance optimizations.

A. An Overview

An overview of the D-ORAM memory system is illus-
trated in Figure 5. An 8-core CMP has four BOB based
memory channels — each channel has a main BOB con-
troller on the processor chip and a simple controller on the
motherboard, i.e., MainMCi and SimpleMCi, respectively
(0≤i≤3). Residing between the processor and the commod-
ity memory DIMMs, the simple controller contains both
control logic and data buffers. BOB architecture uses the
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serial link to connect the main controller and the simple
controller, and parallel link to connect the simple controller
and the DIMMs. The simple controller is responsible for
sending out device commands and enforcing the timing
constraints as specified in JEDEC standard.
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Figure 5. An overview of D-ORAM memory system.

By default, D-ORAM upgrades one memory channel, i.e.,
channel-0 in the figure, to secure channel which delegates
Path ORAM. Other channels are normal channels.

For discussion purpose, the peak bandwidth of one serial
link channel is set to be comparable with that of one
parallel link channel. Each simple controller controls one
to four sub-channels. There are two reasons: (1) we are
to compare with the direct-attached memory architecture
that uses four parallel link channels. The two settings have
comparable peak off-chip memory bandwidth. (2) we are to
study the space advantage of BOB architecture to support
large capacity memory systems.

D-ORAM introduces an extra secure component, referred
to as secure delegator (SD), to the on-board simple con-
troller, which not only accelerates cryptographic operations
but also enforces Path ORAM.

TCB=CPU+SD. The TCB in D-ORAM includes both the
processor (CPU) and the secure delegator (SD). SD has two
responsibilities: (1) It secures the communication between
CPU and SD. The sender encrypts and adds authentica-
tion and integrity check bits before sending out the mes-
sage while the receiver decrypts, authenticates and integrity
checks before use. (2) It performs Path ORAM accesses to
the untrusted memory. In particular, it converts one memory
request from the processor to hundreds of memory accesses
to a path on the ORAM tree.

A major difference between the proposed D-ORAM
model and the secure memory model is that D-ORAM
does not include memory modules in the TCB, that is, even
though SD is physically integrated with the on-board BOB
unit, the BOB components, e.g., the controller logic and

the queue buffer do not need protection. Thus, the address
and command buses (that connect the simple controller and
memory modules) transmit cleartext data that are visible
to attackers. Such a setting matches the wide adoption
of untrusted commodity DIMMs in server settings. The
commodity DIMMs need cleartext addresses and device
commands with timing following the JEDEC standard. Our
design does not need to redesign the DRAM interface and
device.

MainMC0

R/W Addr Data

Encrypted Bits

On-chip Secure Engine

Chk Bits

Real Req. , Dummy Req.

Encrypted Bits Chk Bits

R/W Addr Data

 Delegation Control

CPU

SD

Figure 6. Delegating Path ORAM in SD.

B. Path ORAM Delegation in SD

We first present how SD protects the memory accesses
in D-ORAM. Intuitively, SD protects the communication
between CPU and SD through an encrypted channel, similar
to that in InvisiMem; and the communication between SD
and DIMMs using Path ORAM.

Let us assume the system is running one S-App and
one or multiple NS-Apps. The OS allocates space from all
four channels to the NS-Apps and space from the secure
channel to the S-App. In particular, S-App builds the Path
tree covering 4GB memory space. Each tree node contains
four blocks (i.e., cache lines) that are distributed to four
sub-channels controlled by MainMC0. D-ORAM works as
follows.

The processor triggers SD for operation. In D-ORAM,
the SD unit is triggered by a memory request sent from
MainMC0. When S-App encounters a cache miss and needs
to access the main memory, MainMC0 prepares a BOB
packet, as shown in Figure 6. Each packet is 72B long,
which includes three fields: access type (1 bit, i.e., read or
write), memory address (63 bits), and data (512 bits). D-
ORAM enhances the baseline packet preparation in BOB
scheme to prevent information leakage.
(1) D-ORAM always attaches a 64B data field to the packet

such that a read request is non-distinguishable from a
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write request. This helps to prevent potential information
leakage from request types [2], [3]. For the read requests,
the data field contains dummy data, e.g., all 0s.

(2) D-ORAM, in addition to a real memory request from
the secure application, may generate dummy requests to
prevent timing channel attack [28], [46].
In D-ORAM, the on-chip secure engine generates a new
Path ORAM request t cycles after receiving the response
packet of the preceding request. We choose t=50 in this
paper. If there is no real request from S-App, a dummy
request is generated and sent.

(3) D-ORAM adopts the OTP (one-time-pad) encryption. Be-
fore program execution, the on-chip secure engine and the
SD negotiate a secret key K and a nounce N0. This can
be accomplished by adopting the public key infrastructure
(PKI) as shown in [2].
The on-chip secure engine generates a 72B-long OTP
using AES encryption, and XOR the OTP and the packet
as follows.

OTP = AES(K,N0, SeqNum)

SeqNum = SeqNum+ 1

Enc Packet = OTP ⊕ Cleartext Packet (1)

The SeqNum is the message sequence number and
is reset before execution. From the equation, it is clear
that the OTP is not data dependent on the content of
the transmitted packet and thus can be pre-generated.
Processing one Path ORAM takes long time (to finish
hundreds of memory accesses to the Path tree) while it
only requests two OTPs for processor/SD communication
— one for sending the request and the other one for
receiving the response. The overhead is negligible.

(4) For high level security, the packet may need authentication
and integrity check. The former prevents the attacker
from injecting malicious packets. The latter prevents the
attacker from replaying old packets. We adopt the similar
designs in previous studies [3].

SD delegates Path ORAM. When SD receives the en-
crypted packet from MainMC0, it decrypts and checks the
data before processing it. SD then follows Path ORAM
protocol to access the data saved in the insecure sub-
channels. SD contains all the components that are necessary
for Path ORAM (Figure 3). We will evaluate its hardware
overhead in Section III-E.

The processing follows the Path ORAM protocol [34]. It
consists of the following steps: SD first consults the position
map to locate the path along which the requested data is
saved; it then reads all data blocks from the path; it remaps
the requested block to another path and has it saved in the
stash; it re-encrypts other blocks along the path and write
them back. The blocks in the stash, if can be combined, are
written back as well. As discussed, one tree node consists
of four blocks that are distributed to four sub-channels. All

four sub-channels are accessed in parallel to minimize the
performance degradation.

SD returns the response packet. When SD finishes the
read phase, it prepares a 72B-long response packet. The
data field contains the dummy bits if the request from the
processor was a write request. The response packet needs to
be encrypted and has checked bits added before being sent
back to the processor chip. The processor chip checks the
packet and decrypts it to get the requested data for the read
request or finish for the write request.
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Figure 7. Splitting a Path D-ORAM tree across channels.

Timing control in D-ORAM.

To prevent the timing channel attack, the processor chip
sends out a new request is t cycles after receiving the
response packet. In this paper, we set t=50. If the write phase
is ongoing when the processor chip receives the response
packet, we choose to buffer the new request in SD and get
it serviced after the write phase for the current request.

Given that sub-channels use parallel links, SD sends the
request to the simple controller, which is responsible for
generating the detailed device commands and device access
time to the insecure memory.

C. Expanding Path ORAM Tree Across Memory Channels

In the default D-ORAM configuration, the secure channel
consists of four sub-channels, which provides roughly the
same bandwidth for S-App as the setting in previous Path
ORAM studies [32], [39], i.e., the one adopting four on-
chip memory controllers for four parallel channels. In either
setting, Path ORAM can utilize close to the peak memory
bandwidth of each channel or sub-channel.

However, the default configuration may potentially run
into space allocation problem. To prevent tree path overflow,
a critical exception that fails the protocol, Path ORAM sets
the space efficiency to be around 50% [34]. That is, a 4GB
tree needs to be built for 2GB user data. In addition, when
running, e.g., two S-Apps and two NS-Apps in D-ORAM,
the two NS-Apps could have their data spread across all four
channels but the two S-Apps allocate all their data all in the
secure channel. Therefore, the secure channel tends to be
under memory capacity pressure.
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Table I
BALANCE SPACE DEMAND ACROSS CHANNELS

k Data Block Distribution Extra Messages
channel #0 channel #1,#2,#3 channel #0 channel #1,#2,#3

1 50.0% 16.7% per channel 4k short Read packets, 4k
Response packets, 4k Write
packets

m short Read packets,
m Response packets,
m Write packets, m ∈[k,2k]

2 25.0% 25.0% per channel
3 12.5% 29.2% per channel

We then propose to balance the space demand by ex-
panding the Path ORAM tree across channels. As shown in
Figure 7, we observe that the nodes in the last level of the
tree account for around 50% space — there are 2L nodes
in level L and (2L-1) nodes in total from level 0 to level
L-1. Let us denote the two sets as S1 and S2, respectively.
Given one path that contains L+1 nodes including the root
node (level 0), we access 1 node from set S1 and L nodes
from set S2.

Based on the imbalanced accesses to the tree node sets,
we propose to relocate the last k levels to other channels
to balance the space demand across the channel. Since
each tree node contains four data blocks, we distribute
them to channels #i, #1, #2, and #3, respectively, and
i = (path id mod 3) + 1. That is, the nodes have their
first blocks alternatively allocated in three normal channels.
As shown in Figure 7. Table I compares the percentages
of the blocks saved in each channel when splitting the last
k levels into normal memory channels. For example, when
k=2, each channel saves 25% data blocks of the path tree.

To conduct Path ORAM protocol under the optimized data
allocation, the SD and the on-board simple controller send
out explicit requests to access the k nodes (or 4k data blocks)
from the last k levels. For simplicity, SD sends out 4k read
packets to explicitly ask for the blocks from the other three
normal channels. 1 Here, the read packets are short packets
with data field omitted. This is safe because the optimization
is well known such that the message types at this step are
also known to attackers. The response packets are of 72B
each. The fetched blocks are first returned to the on-chip
memory controller and then forwarded to the SD in the
secure channel. The data blocks are then updated during
the write phase with Write requests sent from the SD and
forwarded by the main controllers.

An interesting property of this optimization is that there
is no need to upgrade the normal channels. Given that the
contents saved in the path tree are encrypted and optionally
authenticated for higher level security, the normal channels
cannot derive private information from the access. Neither
the read request packet nor the response packet demand
additional encryption — the read packet can be sent in
cleartext while the response packet contains the fetched data
(already ciphertext) from the memory.

A disadvantage of the design is that it overburdens the
serial links with extra messages. Table I compares the

1Some read packets may be merged, we leave it to the future work.

number of extra messages with different k values. From the
table, when k=2, D-ORAM sends 8 extra short read packets
to CPU and 8 response packets to SD on channel #0; and 2
to 4 read and response packets on each normal channel.

(a) when NS-Apps using 
3  normal channels, 

no S-App

Ch0  Ch1  Ch2  Ch3

T33  

(b) when NS-Apps using 
4 normal channels, 

no S-App

Ch0  Ch1  Ch2  Ch3

T25  

(c) when NS-Apps 
using 4 channels, with 
S-App in secure ch0

Ch0  Ch1  Ch2  Ch3

T25mix  T25  

(d) when balancing the  
slowdown from channels 
with S-App in secure ch0

Ch0  Ch1  Ch2  Ch3

Ta Tb

Figure 8. Balance the average access latency between secure and normal
channels.

D. Secure Channel Sharing

The secure channel in D-ORAM, comparing to those
normal channels, tends to be overloaded. Channel#0 services
not only S-App but also NS-Apps. Given that S-App is
extremely memory intensive, there exists significant con-
tention between S-App and NS-Apps for the sub-channels.
Our study showed that even adopting the cooperative Path
ORAM optimization [39], the performance degradation to
memory accesses of this channel cannot be ignored. In
addition, adopting the space demand optimization introduces
extra messages. When k=2, the secure channel suffers from
24 extra messages while each of normal channel has 6 to
12 extra messages.

Figure 8 illustrates the memory access latency when we
allocate NS-Apps using different memory channels. Figure
8(a) and (b) show that when there is no S-App, the channel
access latency is longer when there are fewer channels.
While our proposed technique can eliminate the interference
in non-secure channels, as shown in Figure 8 (c), the secure
channel is still slower than other channels.

Given one S-App and multiple NS-Apps, we profile
the performance of three co-run settings and estimate the
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channel contention. For each setting, we first compute the
slowdown of the average memory access latency on NS-
App, i.e., the latency degradation of co-run setting over the
solo run setting; and then compute the average slowdown of
all NS-Apps. We have:

(1) T33 is the average memory access latency slowdown when
NS-Apps use the three normal channels but not the secure
channel, i.e., each channel has 33% traffic;

(2) T25 is the average memory access latency slowdown when
NS-Apps use all four channels but the S-App is not active,
i.e., each channel has 25% traffic;

(3) T25mix is the average memory access latency slowdown
when NS-Apps use all four channels and S-App uses the
secure channel. Ta and Tb are the average memory access
latency of secure and normal channels after balancing.
Our goal is shown in Figure 8(d), which achieves similar

channel access latency Ta and Tb by adjusting the memory
traffic to Channel #0.

We propose to alleviate the contention on the secure chan-
nel by adjusting the data allocation of NS-Apps and directing
fewer NS-App requests to this channel. Our technique is
to adjust the number of NS-Apps that can use the secure
channel. By default, all NS-Apps can allocate memory from
channel #0.

By reducing the number of NS-Apps that can use the
secure channel, Channel # 0 shall become less congested.
However, if most NS-Apps use normal channels, the overall
performance is close to T33, which may become sub-optimal
due to bandwidth contention on normal channels.

We find the optimum allocation threshold by profiling
application’s channel access latency, T25mix and T33. We
calculate the ratio of r =T25mix/ T33, if r > 1, the secure
channel is slow to handle more traffic from NS-App, and
if r < 1, it is better to fully utilize all channels to handle
traffic from NS-App. We show the profiling results and how
the ratio impacts our threshold chosen in section V-C .

E. Overhead of Secure Delegator

We need to enhance the hardware on BoB to enable D-
ORAM. The secure delegator embedded in the BOB unit
is responsible for conducting Path ORAM operations. As
shown [31], this secure component (including the stash,
encryption logic, etc) occupies less than 1 mm2 die area
using 32nm technology node. This is modest for an on-board
BOB unit.

F. Extension to Parallel Link Buses

In this paper, we utilize the BOB architecture to enable
low-interference low-cost secure execution model on un-
trusted memory. Extending the design to parallel link bus
based direct-attached architecture is possible but demands
modifications to the channel organization. For example, if
the data buses of individual memory chips are aggregated
by an on-DIMM bridge chip, e.g., the UDIC controller in

[11], it is possible to offload the secure delegator in the
UDIC. That is, the TCB consists of the processor chip and
the secure delegator in the UDIC. Such an extension demand
timing adjustment to enable a non-blocking read operation.
In summary, offloading to traditional direct-attached mem-
ory architecture is possible but tends to introduce higher
overhead.

G. Security Analysis

Our D-ORAM design focuses on reducing the application
execution interference by delegating the secure engine to
BoB unit. The access pattern of S-App is still protected by
Path ORAM which does not show any information leakage
through the plaintext on the conventional directed attached
interface. We do not change any protocol of Path ORAM,
hence, the protection strength is not affected. In our co-
run model, we assume that multiple applications sharing the
same memory bandwidth. Our fix memory access rate for
S-App can prevent timing side channel attack, as studied in
previous work[44], [46].

IV. EXPERIMENTAL METHODOLOGY

To evaluate the proposed D-ORAM scheme, we simulated
an 8-core CMP with four off-chip memory channels. We
used USIMM, a cycle accurate memory system simulator
with processor ROB front-end[6]. We modified the default
DDR memory interface to simulate the proposed architecture
and compare them to the state-of-the-art. We added 15ns
data transfer latency for the overhead of link bus and BoB
control.

Table II summarizes the baseline processor and memory
configuration. The DRAM memory follows JEDEC DDR3-
1600 specification. We adopted the default values in the
specification that are strictly enforced in USIMM.

Each application has its own memory space. The baseline
S-App Path ORAM tree occupies 4GB memory space. The
Path ORAM configuration is: L = 23, Z = 4. We used tree-
top cache to cache top three levels of nodes, and the rest of
21 levels are divided into three section of 7-level subtrees,
in order to maximize the row buffer hit rate[32].

Each memory channel can consist of one to four sub-
channels. We choose to set the secure channel with 4 sub-
channels, and other channels with 1 sub-channel, in order to
fairly compare with previous techniques.

When S-App and NS-App are sharing the same memory
channel, we adopt the bandwidth preallocation technique in
[39]. We set the threshold to 50% so that both kinds of
applications have similar slowdown.

We choose 15 memory intensive benchmarks used in
MSC [1]. These benchmarks are chosen from PARSEC suite,
commercial and BioBench. Each benchmark trace consists
of 500 million representative instructions out of 5 billion
instructions, using a methodology similar to Simpoint [1].
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Figure 9. Comparing NS-App performance when adopting different D-ORAM schemes

Table II
BASELINE SYSTEM CONFIGURATION

Parameter Value
Processor 8-core, 3.2GHz
Processor ROB size 128
Processor retire width 4
Processor fetch width 4
Last Level Cache 4MB
Memory Device DDR3-1600
Memory channels 4
Sub-channel per channel 1-4
Rank per Sub-Channel 1
Bank per Rank 8
Buffer Logic and Link latency 15ns[10]

Table III
SIMULATED BENCHMARK PROGRAMS

Suite Workloads
PARSEC black (4.2), face (26.8), ferret (8.0), fluid (17.5),

stream (12.9), swapt (10.9)
COMM. comm1 (7.3), comm2 (12.6), comm3 (4.2), comm4

(3.7), comm5 (4.5)
SPEC leslie (23.1), libq (12.0)
BIOBENCH mummer (24.0), tigr (6.7)

The workloads used for evaluation consists of one S-
App and seven NS-Apps: S-App version adopts encryption
and Path ORAM protection (or other protection schemes)
while NS-App version does not. The addresses of different
versions are mapped to different address spaces. Our results
use the same program for S-App and NS-App.

Table III summarizes the benchmark programs with their
corresponding MPKI (memory access per kilo instructions)
listed in parenthesis. We used the first two letters of each
program to indicate the workload in the result section.

V. RESULTS

In the experiments, we evaluated the following schemes:
• Baseline. This is the baseline for comparison purpose.

It uses 4-channel direct-attached DRAM interface to run
the workloads. The results of other schemes are normal-
ized to Baseline.

• D-ORAM. This scheme implements the secure delegator
(SD) on channel #0. It does not apply either space or

channel optimization. The S-App is mapped to Channel
#0 with its addresses being allocated interleavingly across
four sub-channels. The NS-Apps are mapped to all four
channels with their addresses being allocated interleav-
ingly across four channels.

• D-ORAM+k. This scheme is built on top of D-ORAM.
It allows S-App to use other channels while the SD
still stays with Channel #0. We modeled the memory
communication across channels. k denotes that the number
of extra tree levels that the Path ORAM tree expand. The
tree space doubles when k=1.

• D-ORAM/c. This scheme is built on top of D-ORAM. This
technique controls how NS-App can utilize channel #0.
Parameter c means the number of NS-Apps that can use
channel #0. In our setting, c can vary between 0 to 7.
D-ORAM/7 is the same as D-ORAM.

• D-ORAM+k/c. This scheme combines D-ORAM+k and
D-ORAM/c to illustrate the effectiveness of channel shar-
ing under tree expansion.

A. Performance Evaluation

We first analyzed the performance under different pro-
tection settings. Figure 9 shows the normalized execution
time of Baseline, D-ORAM, D-ORAM/X, D-ORAM+1,
and D-ORAM+1/4. Here, D-ORAM/X means the best result
can be achieved by varying the parameter c from 0 to 7.
The detailed bandwidth sharing results can be found in the
following section.

From the figure, we observed that D-ORAM reduces the
execution time to 87.5% of Baseline. The reduction
mainly comes from utilization of fast non-secure channels.
However, the secure channel is still shared by all NS-Apps
and S-App. By adjusting the number of cores using the
secure channel, the execution time can be reduced further
to 77.5% of baseline, representing 22.5% performance im-
provement by using D-ORAM/X.

Our technique allows large Path ORAM tree storage
across the secure channel and other channels. In the fig-
ure, D-ORAM+1, the one that allocates all leaf nodes to
other three non-secure channels, only slightly slower than
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Figure 10. Comparing the performance impact when using large Path ORAM trees.

D-ORAM. We observed that, on average, the execution
time is 88.6% of Baseline. Adopting the bandwidth
sharing technique, for example, when allowing 4 NS-Apps
(D-ORAM+1/4) to use the secure channel, the execution
time can be reduced to 81.4% of Baseline.

B. Expanding the Path ORAM Tree

Figure 10 shows the performance impact of space expan-
sion. We varied the k from 1 to 3, meaning that we added
extra k levels to the original 4GB Path ORAM tree and the
capacity of Path ORAM tree expands from 4GB to 4×2kGB.

The introduced overhead to NS-App is minimal. Com-
pared to the D-ORAM, varying k from 1 to 3 adds additional
1.02%, 2.01%, 3.29% execution time. This is because that
the extra memory accesses introduced by channel commu-
nication are not significant. For the secure channel, the extra
traffic is limited between processor and BoB controller. For
other channels, because k × 4 blocks are distributed to 3
channels, the impact is also not significant.

C. Secure Channel Sharing

We then studied the effectiveness of secure channel shar-
ing. Figure 11compares the performance under different D-
ORAM settings. In particular, we compared the performance
when allowing 0 to 7 NS-Apps to utilize the secure channel,
i.e., having their data allocated to the secure channel. We in-
cluded the results of 7NS-3ch and 7NS-4ch for comparison.

From the figure, we observed that different applications
prefer different channel sharing configurations. To determine
the optimal setting for different applications, we found
that the two parameters, T25mix and T33, are critical for
identifying the best sharing configuration. We use a differ-
ent segment of memory trace as profiling input and then
compute the T25mix/ T33 ratio, as shown in Figure 12. We
show that our simple ratio calculation can guide the program
to choose the optimum c setting.

When the ratio is bigger than 1, i.e., T25mix >T33, we
prefer to let fewer NS-App copies to use all four channels,
e.g., bl, cx and mu. Therefore, c should be set to a smaller
number in this case. When the ratio is smaller than 1,

we prefer to let more (e.g., 5 to all) NS-App copies to
use all four channels, e.g., le, li, st and ti. In Figure 12,
there is only one exception c2, which has best configuration
c = 1 in experiment but falls on the other side of the
figure. We believe that this is because the ratio is very
close to 1. For other benchmarks, our profiling guidance
works in accordance with the best parameter we achieved in
experiments.

D. Access Latency Reduction

We also compared the average NS-App access latency
reduction in Figure 13. In this experiment, for illustration
purpose, we chose D-ORAM+1 and D-ORAM/4for the space
expansion and secure channel sharing optimizations, respec-
tively. On average, the NS-App read access time can be
reduced to around 70% of the baseline. The write access
time can be reduced to 48% of the baseline.

E. The Performance Impact on S-App

D-ORAM was designed primarily for improving NS-
App performance and maps S-App mapping to a secure
channel. In D-ORAM design, adopting Secure Delegator in
BoB architecture slows down the memory access latency by
tens nanoseconds. However, Path ORAM accesses typically
finish in the range of thousands of nanoseconds [3], [32].
The overhead from BOB architecture is small.

VI. RELATED WORK

ORAM Optimization. The large performance overhead
of ORAM has been a focus of recent ORAM designs.
Ring ORAM[30], Bucket ORAM[12] were proposed to
reduce the bandwidth overhead on the memory bus by using
different bucket organization and more complicated access
flow control.

To improve Path ORAM performance on DRAM based
system, several techniques have been proposed. Ren et
al.[32] optimized block mapping using sub-tree layout,
which maximizes row buffer hit for ORAM accesses. They
saved the top of the Path ORAM tree in a small on-chip
cache to improve performance. Zhang et al. [44] eliminated
unnecessary memory accesses if consecutive path accesses
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Figure 11. The performance impact when adopting secure channel sharing.
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have overlaps. Wang et al.[39] proposed an efficient band-
width sharing technique, and read and write phase accelera-
tion for ORAM applications co-run with other applications
on server with conventional memory interface.

Secure Memory. The recent proposed ObfusMem [3]
and InvisiMem [2] schemes assume that memory is secure,
which can be exploited to significantly reduce protection
overhead. Motivated by near data processing [4], [5], Gundu
et.al propose to use a secure DIMM [18] for integrity
verification. They proposed to put a bridge chip on memory
DIMM that can handle merkle tree verification, and reduce
the memory traffic between processor and memory.

To protect timing channel leakage, Wang et al. [40]
designed a queuing structure per security domain and al-
located timing slots to different domains to eliminate timing
channels. They further propose a trade-off between timing

information leakage and performance[41].
Covert channel attacks. [47] propose a framework CC-

hunter that can detects the possible covert timing channels
on shared hardware. The model assumes that the Trojan
is able to intentionally communicate the secret to spy via
covert channel. [48] use information theory to quantify
the communication capacity of microarchitectural covert
channels, and introduce a detection technique for covert
channel eavesdropping attacks.

DRAM Architectures. Recent studies proposed alter-
native memory architectures to alleviate the constraints in
traditional memory systems. Fully Buffered DIMM [15]
adds a buffer on DIMM to handles memory requests. While
FB-DIMM can effectively increase memory density, it in-
troduces high power consumption, making it a less popular
architecture in modern servers. BOOM [43] adds buffer
on DIMM to decouple internal and external buses, which
achieves large power savings by matching the external high
performance bus with multiple low performance internal
buses. MIMS[7] replaces traditional bus interface with a
universal message-based interface in memory system. The
difference between MIMS and BoB design is that MIMS
may improve communication efficiency by combining mul-
tiple memory requests in one packet. Alloy[38] utilizes DDR
based parallel interface as well as serial interface for a GPU
enabled heterogeneous system.

VII. CONCLUSIONS

In this paper, we propose D-ORAM, a secure memory sys-
tem that minimize execution interference on cloud servers.
D-ORAM propose to utilize the buffer-on-board (BOB) like
memory architecture to offload the Path ORAM operations
to a secure engine in the BOB buffer, which greatly alleviates
the contention for the offchip memory bus between secure
and non-secure applications. Our design upgrades only one
secure memory channel, and enables Path ORAM tree split
to extend the secure application flexibly across multiple
channels, in particular, the non-secure channels. We propose
secure channel bandwidth sharing which further improve the
system performance. Our evaluation shows that D-ORAM
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effectively protects application privacy on mainstream com-
puting servers with untrusted memory, with an improvement
of NS-App performance by 22.5% on average over the Path
ORAM baseline.
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