Wear Leveling for Crossbar Resistive Memory

Wen Wen
Department of Electrical and
Computer Engineering
University of Pittsburgh
wew55@pitt.edu

ABSTRACT

Resistive Memory (ReRAM) is an emerging non-volatile memory
technology that has many advantages over conventional DRAM.
ReRAM crossbar has the smallest 4F2 planar cell size and thus is
widely adopted for constructing dense memory with large capacity.
However, ReRAM crossbar suffers from large sneaky currents and
IR drop. To ensure write reliability, ReRAM write drivers choose
larger than ideal write voltages, which over-SET/over-RESET many
cells at runtime and lead to severely degraded chip lifetime.

In this paper, we propose XWL, a novel table based wear leveling
scheme for ReRAM crossbars. We study the correlation between
write endurance and voltage stress in ReRAM crossbar. By esti-
mating and tracking the effective write stress to different rows
at runtime, XWL chooses the ones that are stressed the most to
mitigate. Our experimental results show that, on average, XWL
improves the ReRAM crossbar lifetime by 324% over the baseline,
with only 6.1% performance overhead.

CCS CONCEPTS

« Computer systems organization — Processors and mem-
ory architectures; Embedded systems; « Hardware — Memory
and dense storage;

KEYWORDS
Resistive memory, crossbar array, wear leveling, endurance

ACM Reference Format:

Wen Wen, Youtao Zhang, and Jun Yang. 2018. Wear Leveling for Crossbar
Resistive Memory. In DAC ’18: DAC °18: The 55th Annual Design Automation
Conference 2018, June 24-29, 2018, San Francisco, CA, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3195970.3196138

1 INTRODUCTION

Modern applications, e.g., big data analytics, video streaming and
graphical games, exhibit increasing demand for large capacity mem-
ory. However, DRAM, the de facto choice for main memory, faces
low density, short refreshing interval and scalability challenges at
20nm and beyond [10]. ReRAM (Resistive Memory) has recently
emerged as a promising candidate for constructing future large

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’18, June 24-29, 2018, San Francisco, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5700-5/18/06...$15.00
https://doi.org/10.1145/3195970.3196138

Youtao Zhang
Department of Computer Science
University of Pittsburgh
zhangyt@cs.pitt.edu

Jun Yang
Department of Electrical and
Computer Engineering
University of Pittsburgh
juy9@pitt.edu

capacity main memory [16, 18, 19, 21]. It has many advantages
such as non-volatility, no refreshing, high density and almost-zero
standby power. Comparing to other non-volatile memory tech-
nologies, ReRAM has better density and scalability than those of
STT-MRAM, and better write performance than that of PCM. How-
ever, ReRAM suffers from unsatisfactory write endurance [23]. Re-
cent studies showed that the endurances of ReRAM chips adopting
different resistive materials range from 103 to 10° [20].

ReRAM cell arrays often adopt the crossbar architecture to achieve
the smallest 4F? planar cell size [21]. ReRAM crossbars enable the
construction of dense main memory with large capacity, but face
large sneaky currents and IR drop issues [16, 18, 22] — the leakage
currents flowing through half-selected cells during writes are not
negligible. Adopting access diodes helps to mitigate the issue, but
cannot eliminate it completely.

To mitigate sneaky current and IR drop in ReRAM crossbars,
ReRAM writes, in particular, RESET operations, conservatively
adopt the worst-case latency. Recent studies have optimized the
write latency from one latency fitting all cells in the crossbar to
different latencies based on row address, i.e., writing the rows that
are close to the write drivers can finish faster due to smaller IR drop
on their cells [21, 22]. Considering the data patterns inside the cell
array can further improve the average write latency [18], resulting
in significantly improved write performance for ReRAM crossbars.

However, prior studies [3, 8, 13] showed that programming
ReRAM cells with longer than necessary pulse length over-SETs
or over-RESETs the corresponding cells, leading to orders of mag-
nitude degradation in ReRAM cell lifetime [3]. While optimized
write strategies [18, 21, 22] write different rows using different
write latencies, the rows being close to the write drivers still get
stressed more than others. Adopting traditional wear leveling tech-
niques that evenly distribute writes across all rows in ReRAM space
would become less effective — the rows that close to the drivers
are approaching their lifetime while others may still have a lot of
endurance to use. Thus, it is important to devise a wear leveling
approach that considers the stress difference at runtime.

In this paper, we propose XWL, a novel table based wear leveling
design for addressing the write endurance degradation from IR drop
in ReRAM crossbars. We summarize our contributions as follows.

e We study write endurance variation in ReRAM crossbar, which
reveals that the effective write, i.e., the actual degree of ReRAM
wearing out, depends on data patterns and row addresses at
runtime. To the best of our knowledge, this is the first study
revealing the unique wearing characteristic in ReRAM crossbars.

e We propose XWL, a novel table based wear leveling design that
tracks the effective writes at runtime. XWL periodically remaps
the ReRAM rows that are stressed the most, rather than the ones
accumulating the most write counts.

o We evaluate the proposed wear leveling scheme. The experimen-
tal results reveal that, our design improves write endurance by
324%, compared to the baseline design.

In the rest of the paper, we introduce backgrounds and motiva-
tions in Section 2. We elaborate the wear leveling scheme in Section
3. We present the evaluations in Section 4. We discuss prior related
work in Section 5 and conclude the paper in Section 6.

2 BACKGROUNDS AND MOTIVATIONS
2.1 ReRAM Basics and Crossbar Structure

As Figure 1 (a) shows, a ReRAM cell has two metal layers, and
an oxide layer that is sandwiched between the metal layers. A
ReRAM cell uses two resistance states, i.e., low resistance state
(LRS) and high resistance state (HRS), to represent logical ‘1° and
‘0, respectively. Programming a ReRAM cell is to apply a write
voltage with appropriate pulse width and magnitude to the cell,
which switches the cell’s resistance state either from HRS to LRS,
or from LRS to HRS, referred to as SET and RESET, respectively.

“1T1R” Structure
ampmSouiceline
e

0; Top Metal Layer
Vacanc) -
Y Metal Oxide Wordine ha\l/f selected cells selected cell
“OT1R” Structure 2V 70

Bottom Metal Layer , [
amlorgiine v =) e

P 1/2v - 5
S arReRAM Cell <&

High Resistance State (Logic “0”)

Low Resistance State (Logic “1”)

&
L
Oxygen lon’ DIR” Structure VUV 0
a\Wordline — Sneak Current
s d Diod
- y?‘eoREM Cell
Q},\é’\
(a) (b) (c)

Figure 1: The ReRAM basics: (a) the cell structure; (b) the
three typical ReRAM array structures; and (c) the sneak cur-
rent issue in ReRAM crossbar array.

A wide range of metal oxide materials, such as HfOx-based and
TiOx-based materials, have been proposed to construct ReRAM
cells. According to previous studies, the ReRAM cells using different
materials present different energy, scalability, and most importantly,
write endurance characteristics. The techniques developed in this
paper are generally applicable to all kinds of ReRAM cells.

There are three typical ReRAM array structures, as shown in
Figure 1 (b). The 1T1R structure has an access transistor, which is
similar to that of conventional DRAM cells. It has largest cell size.
Both of 0T1R and 1D1R structures are fabricated as ReRAM crossbar
arrays that have the smallest 4F? planar cell size. The difference is
that the 1D1R structure adopts an access diode that helps to reduce
sneak currents in the crossbar. In this work, our ReRAM crossbar
adopts 1D1R cell structure.

2.2 Motivation

We next study the IR drop issue in the crossbar, and analyze its
impact on ReRAM cell write endurance.

2.2.1 IR Drop Issue. Writing a ReRAM line with multiple cells
consists of two steps: a SET phase to write 1s, and a RESET phase
to write all 0s. As shown in Figure 1 (c), to program one cell in
ReRAM crossbar, e.g., a SET or RESET operation, a write driver
activates several cells along a wordline by applying with ViyrrTE
voltage, while the voltage bias of bitlines that have selected cells
is set to OV. In order to fully switch resistance state, these selected
cells have the largest voltage stress. In contrast, for all other bitlines
and wordlines, the voltage bias is set to Vyygr7E. These ReRAM
cells can be further categorized into half-selected cells that are on

the selected bitlines and wordline, and unselected cells that are the
rest of cells in the ReRAM crossbar. Ideally, there is no voltage
stress on unselected cells. Prior work shows that SET operation
are much faster when compared to RESET operation, therefore the
long RESET latency dominates the write timing [18, 21, 22].

Previous reports showed that there are large sneaky currents
flowing through half-selected cells in ReRAM crossbars, even after
adopting diode selectors, while the sneak currents on unselected
cells are negligible. These sneaky currents lead to large leakage
power, and introduce significant voltage drop, i.e., IR drop, along the
long wordlines and bitlines. With fast technology scaling, future
ReRAM crossbars would have larger array size and larger wire
resistance such that IR drop issue tends to worsen. The IR drop
issue exists in all crossbar based memory architectures.

2.2.2 Endurance variation in ReRAM crossbar. A recent study [23]
revealed a tradeoff between write latency and endurance of ReRAM
cell — the endurance degrades when write latency increases. The
relationship can be analytically modeled using the following equa-
tion:

Endurance = (ttl)c (1)
0

where tyy is write latency, tp and C are constants. In this paper, we
choose the same C = 2 as in [23] to model a quadratic correlation
between write endurance and latency.

Recent studies [18, 22] has shown that IR drop results in RE-
SET latency discrepancy among the ReRAM cells due to different
physical locations and dynamic bitline data patterns. According to
Equation 1, the cells in ReRAM crossbar would exhibit endurance
discrepancy.

To study the endurance discrepancy in a ReRAM crossbar, we
use HSPICE to build a 512 X 512 crossbar model. We adopt the pub-
licly available Verilog-A ReRAM cell model from [9], and integrate
DSGB [21] to mitigate voltage discrepancy. The parameters of our
model is presented in Table 1. Figure 2 summarizes the endurance
discrepancy across the crossbar. We divide 512 rows to eight ad-
dress groups with each group containing consecutive 64 rows. Row
Address Group 0 is the one that is the closest group to the write
drivers. LRS cell ratio indicates the percentage of LRS cells in one
bitline. We adopt the worst-case voltage drop and RESET latency
in every 64 rows to represent one Row Address Group.

Table 1: Parameters in ReRAM Crossbar Modeling

Metric Description Value

A Mat Size: A wordlines X A bitlines 512 X 512
n Number of bits to read/write 8

Ion RESET current of a LRS Cell 88uA
RwIRE Wire resistance between adjacent cells | 2.82Q

Ky Nonlinearity of the selector 200
VwRriTE | Full selected voltage during write 3.0V
VREAD Read voltage 1.5V

From Figure 2 (a) and (b), the more LRS cells on selected bitlines,
the larger sneak current flows through half-selected cells. Thus we
observe smaller voltage drop and longer RESET latency. Also, the
farthest rows from write drivers are more vulnerable to the impact
of bitline data patterns on RESET latency. The observation is similar
to that in [18, 22]. In conclusion, the discrepancy of RESET latency
leads to write endurance variation in ReRAM crossbar.

2.2.3 Effective Write. In this paper, we use effective write to
summarize the overall wearing effect of one write at runtime. Intu-
itively, let us assume that one cell can sustain 10° times writes if

3 300]

2.95 % 250
2

—Row Address Group 0 -B-Row Address Group 1+ Row Address Group 18
Row Address Group 3 -Row Address Group 4 Row Address Group
-8-Row Address Group 6 =—Row Address Group 7

16|+ Row Address Group 3 ~<Row Address Group 4 ~-Row Address Group

——Row Address Group 0 #-Row Address Group 1 +-Row Address Group %

 14/-8-Row Address Group 6 +—Row Address Group 7

=
® . = 2
8 2.9 i g 200 ““\\ = 1(23
a 2 %
2 2.85 9 5 150 g s
£ 28 15 100 o 6
< | &4 ~
2.75[—Row Address Group 0 -®-Row Address Group 1-+-Row Address Group J & 50 5 * 3 S 2
Row Address Group 3 - Row Address Group 4 ~#Row Address Group —=
2.7|-®-Row Address Group 6 =+Row Address Group 7 0 0
R R R R R P RN 1Y o o S op R S TR R . S (P P . Y
S PSS S P S O RO S H S ° LSS S PSS
@ & 2 XV @ & % N 5 & A NG

LRS Cell Ratio

LRS Cell Ratio

LRS Cell Ratio

(a) (b) (©)
Figure 2: Subfigures show that the variations of (a) voltage drop on selected cells and (b) RESET latency and (c) effective writes
at different LRS cell percentages in bitlines when accessing to different row address in ReRAM array. The Row Address Group
0 represents farthest rows from drivers, and Row Address Group 7 consists of nearest rows to the drivers.

using write pulse width X and 10° times writes if using write pulse
width Y. Assume other conditions are the same. We conclude that
each write with pulse X corresponds to ten writes with pulse Y.
According to Equation 1, the effective write depends on the write
pulse width while an optimized write strategy [18] chooses pulse
width based on (1) target row address and (2) the numbers of LRS
cells in the bitline. Therefore, the actual effective write depends on
the latter two factors.

Figure 2 (c) depicts the relationship between effective writes and
row addresses and LRS ratios. In our experiments, when writing
Row Address Group 0 with 100% LRS cell ratio, the write takes
longest duration to complete. Such a write has the smallest wearing
effect, as shown in Equation 1. We normalize all other writes to
this baseline, that is, the effective write of writing address group 0
under 100% LRS cell ratio is the normalized ‘1’. For all other writes,
we calculate the effective writes with following equation:

EW = [(%ﬂ @

where 7, is the longest write latency (i.e., writing group 0 with
100% LRS ratio); and ¢ is the actual write latency of the given write.

2.24 Design Challenge. Given that writes to ReRAM crossbar
exhibit different effective writes at runtime, to extend chip lifetime,
we should evenly distribute effective writes across all ReRAM cells.
Unfortunately, existing wear leveling approaches evenly distribute
raw writes across all ReRAM cells. As a result, it is highly possible
that rows in the address group 7 are worn out while the rows in
the address group 0 are very healthy.

There are two families of wear leveling schemes: one is to track
writes to blocks using a table and periodically mitigate the block that
is stressed the most [6, 24, 25]; the other is having physical addresses
randomly mapped to device addresses and periodically changes to
a new random mapping [14, 15]. In this paper, we propose a table
based wear leveling scheme that evenly distributes effective writes
at runtime. We leave the development of randomized mapping
based wear leveling on effective writes as our future work.

3 XWL: WEAR LEVELING FOR CROSSBAR
RERAM MEMORY

3.1 An Overview

The workflow of XWL follows typical table-based wear leveling

schemes, which consists of three stages: prediction, address remap-

ping & data swapping and running, as shown in Figure 3. These
three stages repeat in every interval, i.e., a number of writes.

Addr.
Remapping

Table Prediction
prev. Interval Raw Wr. | PA RA_|ReRAM | Lifetime Eff. Wi
interval Interval Raw Wr. el ifetime Eff. Wr.
4 (Med) PA, —>|RA;|Data; |16 (Low)
10 (Hot) PA;, —>|RA;|Data, |24 (Med)
3 (Cold) PA; —*[RA;|Data; |95 (High)
V Addr. Remapping & Data Swapping
Interval Raw Wr.| PA RA_|ReRAM] Lifetime Eff. Wr.
0 PA; RA; |Data, |16
0 PA, XRA; Data, |24
0 PA; —*|RA;[Data; |95
v Running
’.n’t'e:/t ! Interval Raw Wr. | PA RA |ReRAM | Lifetime Eff. Wr.
erval 100" PA, RA, |Data, |316"
. 40" PA, XRA; Data, |144*
30 PA; —*|RA;[Data, |1785*

*Expected # of writes

Figure 3: The basic workflow of XWL.

XWL splits the whole ReRAM space into chunks and tracks
writes to each chunk. In this paper, one chunk is a page. We differen-
tiate two addresses in the following discussion. Physical address
(PA) refers to the address after OS page table mapping. Raw ad-
dress (RA) refers to the device address where the data are actually
saved. As shown in Figure 3, XML attaches one interval entry to
each PA chunk and one lifetime entry to each RA chunk.

In prediction stage, XWL tracks the number of writes to each
PA chunk in the corresponding interval entry and the number of
lifetime effective writes to each RA chunk in its lifetime entry. The
major difference between XWL and conventional wear leveling
is, instead of tracking raw write accesses for both tables, XWL
records effective writes to update the [i fetime table and raw writes
to update interval write table.

In address remapping & data swapping stage, XWL chooses one
RA chunk and one PA chunk that are not mapped to each other.
The choice involves two pairs, we change their PA to RA mapping
accordingly. For example, in Figure 3, we choose PA-chunk-2 and
RA-chunk-1, since PA-chunk-1 maps to RA-chunk-1, and PA-chunk-
2 maps to RA-chunk-2, the swap results in PA-chunk-1 maps to
RA-chunk-2 and PA-chunk-2 maps to RA-chunk-1, as shown in
the figure. The candidate selection policy determines what pages
are chosen to get remapped. We will present different algorithms
in the next section. The design is to map hot physical pages to
the ReRAM pages with the least degree of wearing out, similar to
those previously design table-driven wear leveling algorithms [24].
Remapping involving reading two blocks and write two blocks.
Clearly, the bigger the chunk is, the larger overhead the swap is.
XWL cleared the interval entries after the swap.

In the running stage, each ReRAM page tracks incoming writes
with predicted distribution, matching hot pages to low wearing

out domains and cold pages to high wearing out domains, which
achieves the aim of enhancing lifetime for overall crossbar ReRAM
memory. During the running phase, both of two write tables keep
updating with new write operations.

3.2 Design Details

3.2.1 Effective and Raw Write. In the proposed XWL scheme,
we track both of the number of effective writes and raw writes
at runtime. The effective write total of each chunk indicates how
much lifetime the corresponding chunk has experienced while the
raw write reflects the intrinsic access patterns of applications. The
raw count would not change if having PA chunk remapped to a
different RA location. However, their effective write counts depend
on mapping. We use the number of raw writes in each interval
to indicate how many incoming writes will reach to each ReRAM
page. In contrast, to determine the degree of wearing out of each
page, we need to adopt the proposed effective write for lifetime
write table since it measures how many more writes each page can
undertake before failures.

3.2.2 Updating Write Tables. While it is straightforward to up-
date the interval raw write table, i.e., increment after each read or
write, to update the lifetime table, we adopt Equation 2 and com-
pute the effective write based on the write pulse width. Figure 4
illustrates the profiling scheme we used for dynamic RESET latency
as well as updating effective write table.

As we adopted the bitline data pattern profiling and dynamic
RESET latency in [18], the RESET latency is determined by row
addresses and runtime bitline data patterns. In order to ensure the
correctness of write timing, we conservatively assume each write
after profiling always introduce one more LRS cell on the worst-case
bitline, which prolongs the RESET latency. Similarly, we also have
conservative assumption of updating effective writes. However, in
contrast to dynamic RESET latency, we assume writes will bring
more HRS cells instead, since more HRS cells lead to larger voltage
drop on selected cells. Therefore, we have to track the worst-case
LRS cell ratio to look up dynamic RESET timing as well as worst-
case HRS cell ratio to update effective write table. In the case shown
in Figure 4, in one row address group n of a simplified ReRAM
crossbar, the worst-case LRS cell number is 5, and the worst-case
HRS cell number is 3, both of which are incremented by 1 for each
write request after profiling.

The dynamic RESET timing is simply determined by the table
shown in Figure 2(b), which maps LRS cell ratio in a particular
row address group to a conservative RESET timing. For discussion
purpose, we assume the RESET latency is fg in this case. As we
want to RESET multiple cells, e.g. at most 8 bits in our design, within
one ReRAM crossbar, the tp is most conservative RESET timing to
ensure write success, but it is too aggressive to use this latency to
estimate effective writes with Equation 2. This is since the tg may
be too long for other bits that have larger voltage drop on selected
cells owing to more HRS cells on their bitlines. When we RESET all
bits with same tg, those victim cells that take much longer RESET
time than ideal one may be over-RESET, which leads to a endurance
degradation. Therefore, we need to calculate the most conservative
effective writes by using following formula:

EWaaar = EWp - V) ®)

where EW, 44, is the most conservative effective writes at address
addr, EW, is (tTR)2 with RESET timing g, Vp is the voltage drop

at the worst-case LRS cell ratio, and V is the one at worst-case HRS
cell ratio, and C is a fitting constant. Equation 3 is derived from
experimental data of the different over-RESET voltages with same
RESET pulse width on endurance degradation in [3].

worst-case

HRS # E voltage drop table as Fig. 2(a)
LRs #[[5[372 4[5} RESET Timing table as Fig. 2(b)
_‘ 1
= I t by 1
— nerementby 1| RESET Latency
_‘
—q
-—
Bitlines lifetime Effective Writes table
@LRS Cell © HRS Cell
Row Address Group n

bitline data pattern profiling dynamic RESET timing &

lating Effective Writes

Figure 4: Profiling bitline data pattern for (1) optimized RE-
SET latency and (2) estimating effective writes.

3.2.3 Address-Remapping Algorithm. As write tables are up-
dated for each interval in memory controller, the physical addresses
from CPU need to remap to ReRAM page real addresses while mi-
grating data accordingly. As evaluated in experiment section, the
naive wear leveling technique, which simply remaps PA with largest
raw writes to RA with smallest number of effective writes, helps
to improve lifetime of ReRAM crossbars to certain extent. How-
ever, obviously this scheme ignores the fact that all pages are not
worn out equally, and they actually depend on dynamic bitline data
patterns and physical locations. Therefore, with only taking write
access patterns of applications into consideration, it may be not able
to effectively leverage incoming writes after address remapping.

In addition to raw write access patterns, we also want to exploit
the impact of ReRAM crossbar features on endurance for address
remapping. We introduce the weights to indicate the tendency of
remapping a PA to a physical ReRAM crossbar page. Figure 5 illus-
trates our address remapping scheme. In this example, we partition
ReRAM crossbar into 5 address groups. According to preceding
discussion, the closer the group is from the write drivers, the more
stress its cells accumulate from each write. Therefore, each group
is assigned a different weight as follows.

n=1 pyr
X r=0 addr (4)

weightgqqr = n

where weight, 44, is the weight at page address addr and EWarddr
is the effective writes at page address addr with LRS cell ratio of r.
It is worth noting that we average effective writes at same address
with n different LRS cell ratios. This is since the data pattern can
significantly change after prediction with much longer interval
(10* writes) than profiling (64 writes), and we are no longer able
to exploit bitline data pattern to estimate actual wearing out for
future writes.

Moreover, we adopt the Predict Write, which estimates upper
limit of effective writes if all writes reach to a particular page. It
can be calculated by following equation:

PredictWragar = EW,q4y + weight ,qq, X interval (5)

where PredictWr g4, is the Predict Writes at page address addr and
interval is a parameter of how many writes between an address
remapping.

Finally, as Figure 5 shown, the PA with the largest number of
raw writes remaps to RA with smallest predict writes instead of
effective writes, and vice versa.

Raw Wr. | PA RA | Eff. Wr. | Weight | Predict Wr.
5 PA; RA; 15 1.0 25
7 PA, RA, 30 i3 45
9 PA; RA;| 17 2.0 37
1 PA, RA, 6 A3 31
3 PA;

Predict Wr. = Eff. Wr. + weightinterval

Figure 5: An example of PA to RA address remapping.

3.24 Design Overhead. XWL adds two tables with two entries
per 4KB data chunk — we use 20 bits and 14 bits for the effective
writes and interval raw writes counter, respectively. We add one
16-bit remapping entry for each chunk. The total space overhead is
approximately 50bits/4KB = 1.56 X 103, We assume the optimized
write scheme exploits the LRS cell ratio information [18]. If not,
adding online profiling introduces negligible overhead, as shown in
[18]. We use CACTI [26] to model the two tables as direct mapped
cache, the area and energy overheads are also negligible.

3.3 Process Variation Issue

We do not consider process variation (PV) in this paper. When
taking PV into consideration, some of cells/rows would be more
vulnerable to write operations than others. Several PV aware wear
leveling techniques [6, 24, 25] have been recently proposed to miti-
gate this issue. XWL is a table based wear leveling scheme, which
has the ability to address PV more flexibly. These designs are or-
thogonal to XWL in the paper.

4 EVALUATIONS

In this section, we first present our experimental setup, and then
demonstrate the effectiveness of the proposed XWL scheme in
endurance improvement. Finally, we estimate the data swapping
overhead of XWL in performance.

4.1 Experiment Setup

In section 2.2, we model and simulate a 512 X 512 ReRAM crossbar
to investigate the correlation between RESET latency and effec-
tive writes. In addition, we used an in-house architectural Chip
Multiprocessor simulator to evaluate the proposed XWL scheme
and compare it with baseline as well as naive design. The system
configuration is presented in Table 2. We used Pintool [12] to col-
lect memory access traces from PARSEC [2], BioBench [1] and
SPEC2006 [7] benchmark suites. All benchmarks are executed with
or without wear leveling until first ReRAM page is worn out. We
also use flip-n-write [5] to reduce the number of written bits. With
a representative ReRAM device, we assume the ReRAM cell en-
durance is 1.6 x 10°. For the proposed XWL, the default interval is
10* while we also evaluate different intervals in experiments. The
benchmarks are characterized in Table 3 with write bandwidth to
ReRAM memory. We adopt the profiling approach and dynamic
RESET latency from [18].

In the paper, we compared the following wear leveling schemes:

o NoWL: baseline scheme, which adopts dynamic RESET latency
and data pattern profiling, does not use any wear leveling
techniques.

e Naive: the wear leveling scheme, which follows the work-
flow introduced in Section 3.2, does not use proposed address
remapping algorithm.

e XWL: the proposed wear leveling design.

Table 2: System Configuration

Processor 4 cores@1.8Ghz; single issue in-order CMP

L1 I/D-cache Private; 16KB/core; 4-way; 2 cycles

L2 cache Private; 1IMB/core; 8-way; 64B; 10 cycles

2Gb ReRAM; 4KB page; 64B per line;

1 rank; 8 chips/rank;8 banks/chip;

128 mats/bank;

Read Latency 18ns@1.5V; SET latency 10ns@3V;
RESET latency based on profiling@-3V

Main memory

ReRAM Timing

Table 3: Benchmark Summary

Name Benchmark Suite Write Bandwidth to ReRAM
(MBps)

ferret PARSEC 139.0
fasta_dna BioBench 129.4
GemsFDTD SPEC2006 123.2
bzip2 SPEC2006 61.3
zeusmp SPEC2006 60.8
gee SPEC2006 56.6

4.2 Results

4.2.1 Endurance Improvement. Figure 6 presents the endurance
improvements (normalized to NoWL). On average, by applying the
proposed wear leveling techniques, we observed the significant
endurance improvements by 285% and 324% for Naive and XWL,
respectively. Moreover, the proposed wear leveling XWL shows 14%
more lifetime enhancement. In conclusion, by using proposed con-
cept of effective write as well as the address remapping algorithm,
the lifetime of crossbar ReRAM memory is effectively improved.

<

ONoWL ® Naive B XWL

IS

Normalized Endurance

o

fer fas gem bzi zeu gcec gmean
Figure 6: Comparison of normalized endurance.

To evaluate the impact of interval length, Figure 7 compares the
normalized endurance improvements with different intervals, i.e.,
10%, 5x 10% and 10°. From the figure, the effectiveness of endurance
improvement diminishes as interval gets longer for most bench-
marks. On average, the normalized endurance improvements by
using XWL with intervals of 10%, 5 x 10* and 10° are 324%, 216% and
166%, respectively. This indicates that the proposed XWL can still
significantly improve the endurance of crossbar ReRAM memory
even with longer address remapping intervals.

4.2.2 Performance Overhead. The data swapping after address
remapping is inevitable for wear leveling, while it also contributes
major performance overhead [6, 24]. We also evaluate the perfor-
mance overhead of introducing the proposed wear leveling tech-
niques. Figure 8 shows the swapping overhead in performance by
using Naive and XWL designs. The swapping overhead is defined as

follows: t
Swapping Overhead = —214=5vapping ©

texecution

Normalized Endurance

fer fas gem bzi zeu gce gmean

Figure 7: Comparison of normalized endurance with differ-
ent remapping intervals.

where {4414 swapping @0d lexecution represent total data swap-
ping time and and execution time in cycles through whole memory
system lifetime, which indicates the overall percentage of ReRAM
crossbar lifetime are used for data migration. Overall, Naive and XWL
incur 6.5% and 6.1% performance overheads respectively. Though
the XWL may potentially result in less hot ReRAM pages write to
the rows with smaller RESET latency as well as a larger number of
data swapping through the whole system lifetime, its performance
loss is slightly better than Naive since the XWL can much better
improve the endurance cycles than Naive.

0.12
0.1
0.08
0.06
0.04
0.02
0

M Naive XWL

Swapping Overhead

fer fas gem bzi zeu gcc gmean
Figure 8: Comparison of data swapping overhead.

5 RELATED WORK

Wear leveling for non-volatile memories. Many prior work [14,
15] on enhancing PCM lifetime can apply to other resistive mem-
ories, and they shared the same general idea to evenly distribute
write across all memory pages. Recent studies [24, 25, 25] on wear
leveling for non-volatile memories took process variation (PV) issue
into consideration, which leads that different page has non-uniform
endurance. However, compared to this work, they all ignored the
impact of array structures on write endurance, and fail to exploit
the intrinsic features in ReRAM crossbars.

Crossbar resistive memory. The crossbar ReRAM architecture
has recently attracted much attention [16, 18, 21, 22] owing to its
smallest 4F2 planar cell size. In addition, due to its intrinsic analogy
current accumulation feature, the crossbar resistive memory is also
adopted to accelerate dot-product operation based convolutional
neural network computations [4, 17]. Similar to crossbar ReRAM
memory, the dot-product operation accelerators also suffer from
limited write endurance when programming cells. Therefore, this
work is critically important to crossbar resistive memory design as
well as in-memory computing.

RESET latency discrepancy in ReRAM crossbar. Liang et
al. [11] explored the correlation between data storage patterns and
voltage drop in crossbar resistive memory without cell selectors.
Zhang et al. [22] observed and leveraged the RESET latency discrep-
ancy caused by row physical distance from write drivers to improve
write performance. Wen et al. [18] presented that, in addition to
row address impact, the bitline data patterns also lead to RESET
latency discrepancy in ReRAM crossbar.

6 CONCLUSION

In this paper, we focus on mitigating the write endurance degra-
dation from IR drop by proposing a novel wear leveling scheme
for crossbar ReRAM memory. Specifically, we study the write en-
durance variation issue in crossbar ReRAM memory, and observe
that the effective write, which indicates actual the degree of ReRAM
wearing out, dynamically changes in runtime with different data
patterns and row addresses. We propose a novel wear leveling
scheme based on effective write to enhance lifetime of crossbar
ReRAM memory. To the best of our knowledge, this paper is the
first study specifically on addressing the write endurance issue for
crossbar ReRAM memory. The final evaluation results reveal that,
our design improves write endurance by 324%, compared to the
baseline design.

ACKNOWLEDGMENTS
This research is supported in part by NSF CCF-1617071.
REFERENCES

[1] K. Albayraktaroglu, et al. Biobench: A benchmark suite of bioinformatics appli-
cations. In ISPASS, 2005.

[2] C.Bienia, et al. Parsec 2.0: A new benchmark suite for chip-multiprocessors. In
Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simula-
tion, volume 2011, 2009.

[3] Y. Chen, et al. Balancing set/reset pulse for > 10'* endurance in Hf O,/Hf
1t1r bipolar rram. In IEEE Trans. on Electron devices, 2012.

[4] P. Chi, et al. Prime: A novel processing-in-memory architecture for neural
network computation in reram-based main memory. In ISCA, 2016.

[5] S. Cho, et al. Flip-n-write: A simple deterministic technique to improve pram
write performance, energy and endurance. In MICRO, 2009.

[6] J. Dong, et al. Wear rate leveling: Lifetime enhancement of pram with endurance
variation. In DAC, 2011.

[7] J. Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News, 2006.

[8] P. Huang, et al. Analytic model of endurance degradation and its practical
applications for operation scheme optimization in metal oxide based rram. In
IEDM, 2013.

[9] Z.Jiang, et al. Verilog-a compact model for oxide-based resistive random access
memory (rram). In SISPAD, 2014.

[10] U.Kang, et al. Co-architecting controllers and dram to enhance dram process
scaling. In The memory forum, 2014.

[11] J. Liang and et al. Cross-point memory array without cell selectors-device
characteristics and data storage pattern dependencies. IEEE Trans. on Electron
Devices, 2010.

[12] C.Luk, et al. Pin: building customized program analysis tools with dynamic
instrumentation. In PLDI, 2005.

[13] C. Nail, et al. Understanding rram endurance, retention and window margin
trade-off using experimental results and simulations. In IEDM, 2016.

[14] M. Qureshi, et al. Enhancing lifetime and security of pcm-based main memory
with start-gap wear leveling. In MICRO, 2009.

[15] N. Seong, et al. Security refresh: prevent malicious wear-out and increase dura-
bility for phase-change memory with dynamically randomized address mapping.
In ISCA, 2010.

[16] M. Shevgoor, et al. Improving memristor memory with sneak current sharing.

In ICCD, 2015.

L. Song, et al. Pipelayer: A pipelined reram-based accelerator for deep learning.

In HPCA, 2017.

[18] W. Wen, et al. Speeding up crossbar resistive memory by exploiting in-memory
data patterns. In ICCAD, 2017.

[19] H. Wong, et al. Metal-oxide rram. Proceedings of the IEEE, 2012.

[20] H. Wu, et al. Resistive random access memory for future information processing
system. Proceedings of the IEEE, 2017.

[21] C.Xu, et al. Overcoming the challenges of crossbar resistive memory architectures.
In HCPA, 2015.

[22] H. Zhang, et al. Leader: Accelerating reram-based main memory by leveraging

access latency discrepancy in crossbar arrays. In DATE, 2016.

L. Zhang, et al. Mellow writes: Extending lifetime in resistive memories through

selective slow write backs. In ISCA, 2016.

[24] X. Zhang et al. Toss-up wear leveling: Protecting phase-change memories from
inconsistent write patterns. In DAC, 2017.

[25] M. Zhao, et al. Slc-enabled wear leveling for mlc pcm considering process
variation. In DAC, 2014.

[26] N. Muralimanohar, et al. CACTI 6.0: A tool to model large caches In HP Labora-
tories, 2009.

[17

[23

