
Wear Leveling for Crossbar Resistive Memory

Wen Wen
Department of Electrical and

Computer Engineering
University of Pittsburgh

wew55@pitt.edu

Youtao Zhang
Department of Computer Science

University of Pittsburgh
zhangyt@cs.pitt.edu

Jun Yang
Department of Electrical and

Computer Engineering
University of Pittsburgh

juy9@pitt.edu

ABSTRACT

Resistive Memory (ReRAM) is an emerging non-volatile memory

technology that has many advantages over conventional DRAM.

ReRAM crossbar has the smallest 4F 2 planar cell size and thus is

widely adopted for constructing dense memory with large capacity.

However, ReRAM crossbar suffers from large sneaky currents and

IR drop. To ensure write reliability, ReRAM write drivers choose

larger than ideal write voltages, which over-SET/over-RESET many

cells at runtime and lead to severely degraded chip lifetime.

In this paper, we propose XWL, a novel table based wear leveling

scheme for ReRAM crossbars. We study the correlation between

write endurance and voltage stress in ReRAM crossbar. By esti-

mating and tracking the effective write stress to different rows

at runtime, XWL chooses the ones that are stressed the most to

mitigate. Our experimental results show that, on average, XWL

improves the ReRAM crossbar lifetime by 324% over the baseline,

with only 6.1% performance overhead.

CCS CONCEPTS

• Computer systems organization → Processors and mem-

ory architectures; Embedded systems; • Hardware→Memory

and dense storage;

KEYWORDS

Resistive memory, crossbar array, wear leveling, endurance

ACM Reference Format:

Wen Wen, Youtao Zhang, and Jun Yang. 2018. Wear Leveling for Crossbar

Resistive Memory. In DAC ’18: DAC ’18: The 55th Annual Design Automation

Conference 2018, June 24–29, 2018, San Francisco, CA, USA. ACM, New York,

NY, USA, 6 pages. https://doi.org/10.1145/3195970.3196138

1 INTRODUCTION

Modern applications, e.g., big data analytics, video streaming and

graphical games, exhibit increasing demand for large capacity mem-

ory. However, DRAM, the de facto choice for main memory, faces

low density, short refreshing interval and scalability challenges at

20nm and beyond [10]. ReRAM (Resistive Memory) has recently

emerged as a promising candidate for constructing future large

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’18, June 24–29, 2018, San Francisco, CA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3196138

capacity main memory [16, 18, 19, 21]. It has many advantages

such as non-volatility, no refreshing, high density and almost-zero

standby power. Comparing to other non-volatile memory tech-

nologies, ReRAM has better density and scalability than those of

STT-MRAM, and better write performance than that of PCM. How-

ever, ReRAM suffers from unsatisfactory write endurance [23]. Re-

cent studies showed that the endurances of ReRAM chips adopting

different resistive materials range from 103 to 109 [20].

ReRAMcell arrays often adopt the crossbar architecture to achieve

the smallest 4F 2 planar cell size [21]. ReRAM crossbars enable the

construction of dense main memory with large capacity, but face

large sneaky currents and IR drop issues [16, 18, 22] — the leakage

currents flowing through half-selected cells during writes are not

negligible. Adopting access diodes helps to mitigate the issue, but

cannot eliminate it completely.

To mitigate sneaky current and IR drop in ReRAM crossbars,

ReRAM writes, in particular, RESET operations, conservatively

adopt the worst-case latency. Recent studies have optimized the

write latency from one latency fitting all cells in the crossbar to

different latencies based on row address, i.e., writing the rows that

are close to the write drivers can finish faster due to smaller IR drop

on their cells [21, 22]. Considering the data patterns inside the cell

array can further improve the average write latency [18], resulting

in significantly improved write performance for ReRAM crossbars.

However, prior studies [3, 8, 13] showed that programming

ReRAM cells with longer than necessary pulse length over-SETs

or over-RESETs the corresponding cells, leading to orders of mag-

nitude degradation in ReRAM cell lifetime [3]. While optimized

write strategies [18, 21, 22] write different rows using different

write latencies, the rows being close to the write drivers still get

stressed more than others. Adopting traditional wear leveling tech-

niques that evenly distribute writes across all rows in ReRAM space

would become less effective — the rows that close to the drivers

are approaching their lifetime while others may still have a lot of

endurance to use. Thus, it is important to devise a wear leveling

approach that considers the stress difference at runtime.

In this paper, we propose XWL, a novel table based wear leveling

design for addressing the write endurance degradation from IR drop

in ReRAM crossbars. We summarize our contributions as follows.

• We study write endurance variation in ReRAM crossbar, which

reveals that the effective write, i.e., the actual degree of ReRAM

wearing out, depends on data patterns and row addresses at

runtime. To the best of our knowledge, this is the first study

revealing the unique wearing characteristic in ReRAM crossbars.

• We propose XWL, a novel table based wear leveling design that

tracks the effective writes at runtime. XWL periodically remaps

the ReRAM rows that are stressed the most, rather than the ones

accumulating the most write counts.

• We evaluate the proposed wear leveling scheme. The experimen-

tal results reveal that, our design improves write endurance by

324%, compared to the baseline design.

In the rest of the paper, we introduce backgrounds and motiva-

tions in Section 2. We elaborate the wear leveling scheme in Section

3. We present the evaluations in Section 4. We discuss prior related

work in Section 5 and conclude the paper in Section 6.

2 BACKGROUNDS AND MOTIVATIONS
2.1 ReRAM Basics and Crossbar Structure

As Figure 1 (a) shows, a ReRAM cell has two metal layers, and

an oxide layer that is sandwiched between the metal layers. A

ReRAM cell uses two resistance states, i.e., low resistance state

(LRS) and high resistance state (HRS), to represent logical ‘1’ and

‘0’, respectively. Programming a ReRAM cell is to apply a write

voltage with appropriate pulse width and magnitude to the cell,

which switches the cell’s resistance state either from HRS to LRS,

or from LRS to HRS, referred to as SET and RESET, respectively.

Figure 1: The ReRAM basics: (a) the cell structure; (b) the

three typical ReRAM array structures; and (c) the sneak cur-

rent issue in ReRAM crossbar array.
A wide range of metal oxide materials, such as HfOx-based and

TiOx-based materials, have been proposed to construct ReRAM

cells. According to previous studies, the ReRAM cells using different

materials present different energy, scalability, and most importantly,

write endurance characteristics. The techniques developed in this

paper are generally applicable to all kinds of ReRAM cells.

There are three typical ReRAM array structures, as shown in

Figure 1 (b). The 1T1R structure has an access transistor, which is

similar to that of conventional DRAM cells. It has largest cell size.

Both of 0T1R and 1D1R structures are fabricated as ReRAM crossbar

arrays that have the smallest 4F 2 planar cell size. The difference is
that the 1D1R structure adopts an access diode that helps to reduce

sneak currents in the crossbar. In this work, our ReRAM crossbar

adopts 1D1R cell structure.

2.2 Motivation

We next study the IR drop issue in the crossbar, and analyze its

impact on ReRAM cell write endurance.

2.2.1 IR Drop Issue. Writing a ReRAM line with multiple cells

consists of two steps: a SET phase to write 1s, and a RESET phase

to write all 0s. As shown in Figure 1 (c), to program one cell in

ReRAM crossbar, e.g., a SET or RESET operation, a write driver

activates several cells along a wordline by applying with VWRIT E

voltage, while the voltage bias of bitlines that have selected cells

is set to 0V. In order to fully switch resistance state, these selected

cells have the largest voltage stress. In contrast, for all other bitlines

and wordlines, the voltage bias is set to VWRIT E . These ReRAM

cells can be further categorized into half-selected cells that are on

the selected bitlines and wordline, and unselected cells that are the

rest of cells in the ReRAM crossbar. Ideally, there is no voltage

stress on unselected cells. Prior work shows that SET operation

are much faster when compared to RESET operation, therefore the

long RESET latency dominates the write timing [18, 21, 22].

Previous reports showed that there are large sneaky currents

flowing through half-selected cells in ReRAM crossbars, even after

adopting diode selectors, while the sneak currents on unselected

cells are negligible. These sneaky currents lead to large leakage

power, and introduce significant voltage drop, i.e., IR drop, along the

long wordlines and bitlines. With fast technology scaling, future

ReRAM crossbars would have larger array size and larger wire

resistance such that IR drop issue tends to worsen. The IR drop

issue exists in all crossbar based memory architectures.

2.2.2 Endurance variation in ReRAM crossbar. A recent study [23]

revealed a tradeoff between write latency and endurance of ReRAM

cell — the endurance degrades when write latency increases. The

relationship can be analytically modeled using the following equa-

tion:

Endurance ≈ (
tW
t0

)C (1)

where tW is write latency, t0 and C are constants. In this paper, we

choose the same C = 2 as in [23] to model a quadratic correlation

between write endurance and latency.

Recent studies [18, 22] has shown that IR drop results in RE-

SET latency discrepancy among the ReRAM cells due to different

physical locations and dynamic bitline data patterns. According to

Equation 1, the cells in ReRAM crossbar would exhibit endurance

discrepancy.

To study the endurance discrepancy in a ReRAM crossbar, we

use HSPICE to build a 512 × 512 crossbar model. We adopt the pub-

licly available Verilog-A ReRAM cell model from [9], and integrate

DSGB [21] to mitigate voltage discrepancy. The parameters of our

model is presented in Table 1. Figure 2 summarizes the endurance

discrepancy across the crossbar. We divide 512 rows to eight ad-

dress groups with each group containing consecutive 64 rows. Row

Address Group 0 is the one that is the closest group to the write

drivers. LRS cell ratio indicates the percentage of LRS cells in one

bitline. We adopt the worst-case voltage drop and RESET latency

in every 64 rows to represent one Row Address Group.

Table 1: Parameters in ReRAM Crossbar Modeling
Metric Description Value

A Mat Size: A wordlines × A bitlines 512 × 512
n Number of bits to read/write 8

Ion RESET current of a LRS Cell 88μA
RW IRE Wire resistance between adjacent cells 2.82Ω
Kr Nonlinearity of the selector 200

VWRIT E Full selected voltage during write 3.0V

VREAD Read voltage 1.5V

From Figure 2 (a) and (b), the more LRS cells on selected bitlines,

the larger sneak current flows through half-selected cells. Thus we

observe smaller voltage drop and longer RESET latency. Also, the

farthest rows from write drivers are more vulnerable to the impact

of bitline data patterns on RESET latency. The observation is similar

to that in [18, 22]. In conclusion, the discrepancy of RESET latency

leads to write endurance variation in ReRAM crossbar.

2.2.3 Effective Write. In this paper, we use effective write to

summarize the overall wearing effect of one write at runtime. Intu-

itively, let us assume that one cell can sustain 105 times writes if

(a) (b) (c)
Figure 2: Subfigures show that the variations of (a) voltage drop on selected cells and (b) RESET latency and (c) effective writes

at different LRS cell percentages in bitlines when accessing to different row address in ReRAM array. The Row Address Group

0 represents farthest rows from drivers, and Row Address Group 7 consists of nearest rows to the drivers.

using write pulse width X and 106 times writes if using write pulse

width Y. Assume other conditions are the same. We conclude that

each write with pulse X corresponds to ten writes with pulse Y .
According to Equation 1, the effective write depends on the write

pulse width while an optimized write strategy [18] chooses pulse

width based on (1) target row address and (2) the numbers of LRS

cells in the bitline. Therefore, the actual effective write depends on

the latter two factors.

Figure 2 (c) depicts the relationship between effective writes and

row addresses and LRS ratios. In our experiments, when writing

Row Address Group 0 with 100% LRS cell ratio, the write takes

longest duration to complete. Such a write has the smallest wearing

effect, as shown in Equation 1. We normalize all other writes to

this baseline, that is, the effective write of writing address group 0

under 100% LRS cell ratio is the normalized ‘1’. For all other writes,

we calculate the effective writes with following equation:

EW =

⌈
(
tL
t
)2
⌉

(2)

where tL is the longest write latency (i.e., writing group 0 with

100% LRS ratio); and t is the actual write latency of the given write.

2.2.4 Design Challenge. Given that writes to ReRAM crossbar

exhibit different effective writes at runtime, to extend chip lifetime,

we should evenly distribute effective writes across all ReRAM cells.

Unfortunately, existing wear leveling approaches evenly distribute

raw writes across all ReRAM cells. As a result, it is highly possible

that rows in the address group 7 are worn out while the rows in

the address group 0 are very healthy.

There are two families of wear leveling schemes: one is to track

writes to blocks using a table and periodicallymitigate the block that

is stressed themost [6, 24, 25]; the other is having physical addresses

randomly mapped to device addresses and periodically changes to

a new random mapping [14, 15]. In this paper, we propose a table

based wear leveling scheme that evenly distributes effective writes

at runtime. We leave the development of randomized mapping

based wear leveling on effective writes as our future work.

3 XWL: WEAR LEVELING FOR CROSSBAR
RERAM MEMORY

3.1 An Overview

The workflow of XWL follows typical table-based wear leveling

schemes, which consists of three stages: prediction, address remap-

ping & data swapping and running, as shown in Figure 3. These

three stages repeat in every interval, i.e., a number of writes.

Figure 3: The basic workflow of XWL.

XWL splits the whole ReRAM space into chunks and tracks

writes to each chunk. In this paper, one chunk is a page. We differen-

tiate two addresses in the following discussion. Physical address

(PA) refers to the address after OS page table mapping. Raw ad-

dress (RA) refers to the device address where the data are actually

saved. As shown in Figure 3, XML attaches one interval entry to

each PA chunk and one lifetime entry to each RA chunk.

In prediction stage, XWL tracks the number of writes to each

PA chunk in the corresponding interval entry and the number of

lifetime effective writes to each RA chunk in its lifetime entry. The

major difference between XWL and conventional wear leveling

is, instead of tracking raw write accesses for both tables, XWL

records effective writes to update the li f etime table and raw writes

to update interval write table.

In address remapping & data swapping stage, XWL chooses one

RA chunk and one PA chunk that are not mapped to each other.

The choice involves two pairs, we change their PA to RA mapping

accordingly. For example, in Figure 3, we choose PA-chunk-2 and

RA-chunk-1, since PA-chunk-1 maps to RA-chunk-1, and PA-chunk-

2 maps to RA-chunk-2, the swap results in PA-chunk-1 maps to

RA-chunk-2 and PA-chunk-2 maps to RA-chunk-1, as shown in

the figure. The candidate selection policy determines what pages

are chosen to get remapped. We will present different algorithms

in the next section. The design is to map hot physical pages to

the ReRAM pages with the least degree of wearing out, similar to

those previously design table-driven wear leveling algorithms [24].

Remapping involving reading two blocks and write two blocks.

Clearly, the bigger the chunk is, the larger overhead the swap is.

XWL cleared the interval entries after the swap.

In the running stage, each ReRAM page tracks incoming writes

with predicted distribution, matching hot pages to low wearing

out domains and cold pages to high wearing out domains, which

achieves the aim of enhancing lifetime for overall crossbar ReRAM

memory. During the running phase, both of two write tables keep

updating with new write operations.

3.2 Design Details

3.2.1 Effective and Raw Write. In the proposed XWL scheme,

we track both of the number of effective writes and raw writes

at runtime. The effective write total of each chunk indicates how

much lifetime the corresponding chunk has experienced while the

raw write reflects the intrinsic access patterns of applications. The

raw count would not change if having PA chunk remapped to a

different RA location. However, their effective write counts depend

on mapping. We use the number of raw writes in each interval

to indicate how many incoming writes will reach to each ReRAM

page. In contrast, to determine the degree of wearing out of each

page, we need to adopt the proposed effective write for lifetime

write table since it measures how many more writes each page can

undertake before failures.

3.2.2 Updating Write Tables. While it is straightforward to up-

date the interval raw write table, i.e., increment after each read or

write, to update the lifetime table, we adopt Equation 2 and com-

pute the effective write based on the write pulse width. Figure 4

illustrates the profiling scheme we used for dynamic RESET latency

as well as updating effective write table.

As we adopted the bitline data pattern profiling and dynamic

RESET latency in [18], the RESET latency is determined by row

addresses and runtime bitline data patterns. In order to ensure the

correctness of write timing, we conservatively assume each write

after profiling always introduce onemore LRS cell on the worst-case

bitline, which prolongs the RESET latency. Similarly, we also have

conservative assumption of updating effective writes. However, in

contrast to dynamic RESET latency, we assume writes will bring

more HRS cells instead, since more HRS cells lead to larger voltage

drop on selected cells. Therefore, we have to track the worst-case

LRS cell ratio to look up dynamic RESET timing as well as worst-

case HRS cell ratio to update effective write table. In the case shown

in Figure 4, in one row address group n of a simplified ReRAM

crossbar, the worst-case LRS cell number is 5, and the worst-case

HRS cell number is 3, both of which are incremented by 1 for each

write request after profiling.

The dynamic RESET timing is simply determined by the table

shown in Figure 2(b), which maps LRS cell ratio in a particular

row address group to a conservative RESET timing. For discussion

purpose, we assume the RESET latency is tR in this case. As we

want to RESETmultiple cells, e.g. at most 8 bits in our design, within

one ReRAM crossbar, the tR is most conservative RESET timing to

ensure write success, but it is too aggressive to use this latency to

estimate effective writes with Equation 2. This is since the tR may

be too long for other bits that have larger voltage drop on selected

cells owing to more HRS cells on their bitlines. When we RESET all

bits with same tR , those victim cells that take much longer RESET

time than ideal one may be over-RESET, which leads to a endurance

degradation. Therefore, we need to calculate the most conservative

effective writes by using following formula:

EWaddr = EW0 · eC ·(V−V0) (3)

where EWaddr is the most conservative effective writes at address

addr , EW0 is

⌈
(tRt)2

⌉
with RESET timing tR , V0 is the voltage drop

at the worst-case LRS cell ratio, andV is the one at worst-case HRS

cell ratio, and C is a fitting constant. Equation 3 is derived from

experimental data of the different over-RESET voltages with same

RESET pulse width on endurance degradation in [3].

Figure 4: Profiling bitline data pattern for (1) optimized RE-

SET latency and (2) estimating effective writes.

3.2.3 Address-Remapping Algorithm. As write tables are up-

dated for each interval in memory controller, the physical addresses

from CPU need to remap to ReRAM page real addresses while mi-

grating data accordingly. As evaluated in experiment section, the

naïve wear leveling technique, which simply remaps PAwith largest

raw writes to RA with smallest number of effective writes, helps

to improve lifetime of ReRAM crossbars to certain extent. How-

ever, obviously this scheme ignores the fact that all pages are not

worn out equally, and they actually depend on dynamic bitline data

patterns and physical locations. Therefore, with only taking write

access patterns of applications into consideration, it may be not able

to effectively leverage incoming writes after address remapping.

In addition to raw write access patterns, we also want to exploit

the impact of ReRAM crossbar features on endurance for address

remapping. We introduce the weights to indicate the tendency of

remapping a PA to a physical ReRAM crossbar page. Figure 5 illus-

trates our address remapping scheme. In this example, we partition

ReRAM crossbar into 5 address groups. According to preceding

discussion, the closer the group is from the write drivers, the more

stress its cells accumulate from each write. Therefore, each group

is assigned a different weight as follows.

weiдhtaddr =

∑n−1
r=0 EW

r
addr

n
(4)

whereweiдhtaddr is the weight at page address addr and EW r
addr

is the effective writes at page address addr with LRS cell ratio of r .
It is worth noting that we average effective writes at same address

with n different LRS cell ratios. This is since the data pattern can

significantly change after prediction with much longer interval

(104 writes) than profiling (64 writes), and we are no longer able

to exploit bitline data pattern to estimate actual wearing out for

future writes.

Moreover, we adopt the Predict Write, which estimates upper

limit of effective writes if all writes reach to a particular page. It

can be calculated by following equation:

PredictWraddr = EWaddr +weiдhtaddr × interval (5)

where PredictWraddr is the Predict Writes at page address addr and
interval is a parameter of how many writes between an address

remapping.

Finally, as Figure 5 shown, the PA with the largest number of

raw writes remaps to RA with smallest predict writes instead of

effective writes, and vice versa.

Figure 5: An example of PA to RA address remapping.

3.2.4 Design Overhead. XWL adds two tables with two entries

per 4KB data chunk — we use 20 bits and 14 bits for the effective

writes and interval raw writes counter, respectively. We add one

16-bit remapping entry for each chunk. The total space overhead is

approximately 50bits/4KB = 1.56×10−3. We assume the optimized

write scheme exploits the LRS cell ratio information [18]. If not,

adding online profiling introduces negligible overhead, as shown in

[18]. We use CACTI [26] to model the two tables as direct mapped

cache, the area and energy overheads are also negligible.

3.3 Process Variation Issue

We do not consider process variation (PV) in this paper. When

taking PV into consideration, some of cells/rows would be more

vulnerable to write operations than others. Several PV aware wear

leveling techniques [6, 24, 25] have been recently proposed to miti-

gate this issue. XWL is a table based wear leveling scheme, which

has the ability to address PV more flexibly. These designs are or-

thogonal to XWL in the paper.

4 EVALUATIONS

In this section, we first present our experimental setup, and then

demonstrate the effectiveness of the proposed XWL scheme in

endurance improvement. Finally, we estimate the data swapping

overhead of XWL in performance.

4.1 Experiment Setup

In section 2.2, we model and simulate a 512 × 512 ReRAM crossbar

to investigate the correlation between RESET latency and effec-

tive writes. In addition, we used an in-house architectural Chip

Multiprocessor simulator to evaluate the proposed XWL scheme

and compare it with baseline as well as naïve design. The system

configuration is presented in Table 2. We used Pintool [12] to col-

lect memory access traces from PARSEC [2], BioBench [1] and

SPEC2006 [7] benchmark suites. All benchmarks are executed with

or without wear leveling until first ReRAM page is worn out. We

also use flip-n-write [5] to reduce the number of written bits. With

a representative ReRAM device, we assume the ReRAM cell en-

durance is 1.6 × 106. For the proposed XWL, the default interval is

104 while we also evaluate different intervals in experiments. The

benchmarks are characterized in Table 3 with write bandwidth to

ReRAM memory. We adopt the profiling approach and dynamic

RESET latency from [18].

In the paper, we compared the following wear leveling schemes:

• NoWL: baseline scheme, which adopts dynamic RESET latency

and data pattern profiling, does not use any wear leveling

techniques.

• Naïve: the wear leveling scheme, which follows the work-

flow introduced in Section 3.2, does not use proposed address

remapping algorithm.

• XWL: the proposed wear leveling design.

Table 2: System Configuration

Processor 4 cores@1.8Ghz; single issue in-order CMP

L1 I/D-cache Private; 16KB/core; 4-way; 2 cycles

L2 cache Private; 1MB/core; 8-way; 64B; 10 cycles

Main memory
2Gb ReRAM; 4KB page; 64B per line;
1 rank; 8 chips/rank;8 banks/chip;
128 mats/bank;

ReRAM Timing
Read Latency 18ns@1.5V; SET latency 10ns@3V;
RESET latency based on profiling@-3V

Table 3: Benchmark Summary

Name Benchmark Suite
Write Bandwidth to ReRAM

(MBps)

ferret PARSEC 139.0

fasta_dna BioBench 129.4

GemsFDTD SPEC2006 123.2

bzip2 SPEC2006 61.3

zeusmp SPEC2006 60.8

gcc SPEC2006 56.6

4.2 Results

4.2.1 Endurance Improvement. Figure 6 presents the endurance

improvements (normalized to NoWL). On average, by applying the

proposed wear leveling techniques, we observed the significant

endurance improvements by 285% and 324% for Naïve and XWL,
respectively. Moreover, the proposed wear leveling XWL shows 14%

more lifetime enhancement. In conclusion, by using proposed con-

cept of effective write as well as the address remapping algorithm,

the lifetime of crossbar ReRAM memory is effectively improved.

Figure 6: Comparison of normalized endurance.

To evaluate the impact of interval length, Figure 7 compares the

normalized endurance improvements with different intervals, i.e.,

104, 5× 104 and 105. From the figure, the effectiveness of endurance

improvement diminishes as interval gets longer for most bench-

marks. On average, the normalized endurance improvements by

using XWL with intervals of 104, 5 × 104 and 105 are 324%, 216% and

166%, respectively. This indicates that the proposed XWL can still

significantly improve the endurance of crossbar ReRAM memory

even with longer address remapping intervals.

4.2.2 Performance Overhead. The data swapping after address

remapping is inevitable for wear leveling, while it also contributes

major performance overhead [6, 24]. We also evaluate the perfor-

mance overhead of introducing the proposed wear leveling tech-

niques. Figure 8 shows the swapping overhead in performance by

using Naïve and XWL designs. The swapping overhead is defined as

follows:

Swappinд Overhead =
tdata_swappinд

texecution
(6)

Figure 7: Comparison of normalized endurance with differ-

ent remapping intervals.

where tdata_swappinд and texecution represent total data swap-

ping time and and execution time in cycles through whole memory

system lifetime, which indicates the overall percentage of ReRAM

crossbar lifetime are used for datamigration. Overall, Naïve and XWL
incur 6.5% and 6.1% performance overheads respectively. Though

the XWL may potentially result in less hot ReRAM pages write to

the rows with smaller RESET latency as well as a larger number of

data swapping through the whole system lifetime, its performance

loss is slightly better than Naïve since the XWL can much better

improve the endurance cycles than Naïve.

Figure 8: Comparison of data swapping overhead.

5 RELATEDWORK

Wear leveling for non-volatilememories.Many prior work [14,

15] on enhancing PCM lifetime can apply to other resistive mem-

ories, and they shared the same general idea to evenly distribute

write across all memory pages. Recent studies [24, 25, 25] on wear

leveling for non-volatile memories took process variation (PV) issue

into consideration, which leads that different page has non-uniform

endurance. However, compared to this work, they all ignored the

impact of array structures on write endurance, and fail to exploit

the intrinsic features in ReRAM crossbars.

Crossbar resistivememory. The crossbar ReRAM architecture

has recently attracted much attention [16, 18, 21, 22] owing to its

smallest 4F 2 planar cell size. In addition, due to its intrinsic analogy

current accumulation feature, the crossbar resistive memory is also

adopted to accelerate dot-product operation based convolutional

neural network computations [4, 17]. Similar to crossbar ReRAM

memory, the dot-product operation accelerators also suffer from

limited write endurance when programming cells. Therefore, this

work is critically important to crossbar resistive memory design as

well as in-memory computing.

RESET latency discrepancy in ReRAM crossbar. Liang et

al. [11] explored the correlation between data storage patterns and

voltage drop in crossbar resistive memory without cell selectors.

Zhang et al. [22] observed and leveraged the RESET latency discrep-

ancy caused by row physical distance from write drivers to improve

write performance. Wen et al. [18] presented that, in addition to

row address impact, the bitline data patterns also lead to RESET

latency discrepancy in ReRAM crossbar.

6 CONCLUSION

In this paper, we focus on mitigating the write endurance degra-

dation from IR drop by proposing a novel wear leveling scheme

for crossbar ReRAM memory. Specifically, we study the write en-

durance variation issue in crossbar ReRAM memory, and observe

that the effective write, which indicates actual the degree of ReRAM

wearing out, dynamically changes in runtime with different data

patterns and row addresses. We propose a novel wear leveling

scheme based on effective write to enhance lifetime of crossbar

ReRAM memory. To the best of our knowledge, this paper is the

first study specifically on addressing the write endurance issue for

crossbar ReRAM memory. The final evaluation results reveal that,

our design improves write endurance by 324%, compared to the

baseline design.

ACKNOWLEDGMENTS

This research is supported in part by NSF CCF-1617071.

REFERENCES
[1] K. Albayraktaroglu, et al. Biobench: A benchmark suite of bioinformatics appli-

cations. In ISPASS, 2005.
[2] C. Bienia, et al. Parsec 2.0: A new benchmark suite for chip-multiprocessors. In

Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simula-
tion, volume 2011, 2009.

[3] Y. Chen, et al. Balancing set/reset pulse for > 1010 endurance in Hf O2/Hf
1t1r bipolar rram. In IEEE Trans. on Electron devices, 2012.

[4] P. Chi, et al. Prime: A novel processing-in-memory architecture for neural
network computation in reram-based main memory. In ISCA, 2016.

[5] S. Cho, et al. Flip-n-write: A simple deterministic technique to improve pram
write performance, energy and endurance. In MICRO, 2009.

[6] J. Dong, et al. Wear rate leveling: Lifetime enhancement of pram with endurance
variation. In DAC, 2011.

[7] J. Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News, 2006.

[8] P. Huang, et al. Analytic model of endurance degradation and its practical
applications for operation scheme optimization in metal oxide based rram. In
IEDM, 2013.

[9] Z. Jiang, et al. Verilog-a compact model for oxide-based resistive random access
memory (rram). In SISPAD, 2014.

[10] U. Kang, et al. Co-architecting controllers and dram to enhance dram process
scaling. In The memory forum, 2014.

[11] J. Liang and et al. Cross-point memory array without cell selectors-device
characteristics and data storage pattern dependencies. IEEE Trans. on Electron
Devices, 2010.

[12] C. Luk, et al. Pin: building customized program analysis tools with dynamic
instrumentation. In PLDI, 2005.

[13] C. Nail, et al. Understanding rram endurance, retention and window margin
trade-off using experimental results and simulations. In IEDM, 2016.

[14] M. Qureshi, et al. Enhancing lifetime and security of pcm-based main memory
with start-gap wear leveling. In MICRO, 2009.

[15] N. Seong, et al. Security refresh: prevent malicious wear-out and increase dura-
bility for phase-change memory with dynamically randomized address mapping.
In ISCA, 2010.

[16] M. Shevgoor, et al. Improving memristor memory with sneak current sharing.
In ICCD, 2015.

[17] L. Song, et al. Pipelayer: A pipelined reram-based accelerator for deep learning.
In HPCA, 2017.

[18] W. Wen, et al. Speeding up crossbar resistive memory by exploiting in-memory
data patterns. In ICCAD, 2017.

[19] H. Wong, et al. Metal–oxide rram. Proceedings of the IEEE, 2012.
[20] H. Wu, et al. Resistive random access memory for future information processing

system. Proceedings of the IEEE, 2017.
[21] C. Xu, et al. Overcoming the challenges of crossbar resistivememory architectures.

In HCPA, 2015.
[22] H. Zhang, et al. Leader: Accelerating reram-based main memory by leveraging

access latency discrepancy in crossbar arrays. In DATE, 2016.
[23] L. Zhang, et al. Mellow writes: Extending lifetime in resistive memories through

selective slow write backs. In ISCA, 2016.
[24] X. Zhang et al. Toss-up wear leveling: Protecting phase-change memories from

inconsistent write patterns. In DAC, 2017.
[25] M. Zhao, et al. Slc-enabled wear leveling for mlc pcm considering process

variation. In DAC, 2014.
[26] N. Muralimanohar, et al. CACTI 6.0: A tool to model large caches In HP Labora-

tories, 2009.

