
Enabling Intra-Plane Parallel Block Erase in NAND Flash to
Alleviate the Impact of Garbage Collection

Tyler Garrett
University of Pittsburgh

Pittsburgh, Pennsylvania

tmg61@pitt.edu

Jun Yang
University of Pittsburgh

Pittsburgh, Pennsylvania

juy9@pitt.edu

Youtao Zhang
University of Pittsburgh

Pittsburgh, Pennsylvania

zhangyt@cs.pitt.edu

ABSTRACT

Garbage collection (GC) in NAND flash can significantly decrease

I/O performance in SSDs by copying valid data to other locations,

thus blocking incoming I/O requests. To help improve performance,

NAND flash utilizes various advanced commands to increase in-

ternal parallelism. Currently, these commands only parallelize op-

erations across channels, chips, dies, and planes, neglecting the

block level due to risk of disturbances that can compromise valid

data by inducing errors. However, due to the triple-well structure

of the NAND flash plane architecture, it is possible to erase mul-

tiple blocks within a plane, in parallel, without diminishing the

integrity of the valid data. The number of page movements due to

multiple block erases can be restrained so as to bound the overhead

per GC. Moreover, more capacity can be reclaimed per GC which

delays future GCs and effectively reduces their frequency. Such

an Intra-Plane Parallel Block Erase (IPPBE) in turn diminishes the

impact of GC on incoming requests, improving their response times.

Experimental results show that IPPBE can reduce the time spent

performing GC by up to 50.7% and 33.6% on average, read/write

response time by up to 47.0%/45.4% and 16.5%/14.8% on average

respectively, page movements by up to 52.2% and 26.6% on average,

and blocks erased by up to 14.2% and 3.6% on average. An energy

analysis conducted indicates that by reducing the number of page

copies and the number of block erases, the energy cost of garbage

collection can be reduced up to 44.1% and 19.3% on average.

CCS CONCEPTS

• Information systems→ Flashmemory; •Hardware→Mem-

ory and dense storage;

KEYWORDS

NAND Flash, Garbage Collection, Storage

1 INTRODUCTION

SSDs have become a staple choice for storage in servers and data

centers over the last decade [7]. As the industry and marketplace

have shifted towards a heavier reliance on services such as the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISLPED ’18, July 23–25, 2018, Seattle, WA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5704-3/18/07. . . $15.00
https://doi.org/10.1145/3218603.3218627

Controller

Plane1

Register

Plane2

Ch
an

ne
l 1

Ch
an

ne
l N

Chip 1

Chip 2

Chip N

Chip 1

Chip 2

Chip N

Die 1

Block 1

Block 2

Block N

Page 1
Page 2

Page N

Chip 2

Figure 1: SSD Internal Architecture

adoption of cloud computing, it is important to ensure the perfor-

mance of SSDs keep up with the demand of the system. One of the

biggest issues that exists in SSDs is the need to perform garbage

collection (GC) in order to reclaim pages that no longer contain

useful data. This operation is related to the organization of the

internal components of the SSD, as depicted in Figure 1.

Inside the SSD is an array of NAND flash chips. Several chips

are strung together sharing a channel over which read, write, and

erase commands, along with their corresponding data, can be sent.

The array typically consists of multiple channels that can operate

in parallel with each other. Inside each chip are one or more dies.

Within each die are two planes (sometimes four) which are divided

into blocks, while the blocks are further divided into pages. Read

and write operations occur at the page granularity, while erase

operations occur at the block granularity. The difference in the

scope of these operations is because erasing a single page, given

the structure of NAND flash, would cause a disturbance to all other

pages in within the block, thus leaving the data unreliable[2]. When

data in a page needs to be updated, a direct overwrite of the page

cannot be performed as NAND flash requires that the page must

first be erased. However, as an erase occurs at the block granularity,

all other pages in the block are also erased causing data loss. For

this reason, SSDs invoke an out-of-place write policy[8]. When a

page’s data is updated, the Flash Translation Layer (FTL) remaps

the logical page of the old data to a new physical page while the

original page is marked as invalid leaving two copies: 1) a valid

page that holds the new data and 2) an invalid page that holds the

out dated data.

As the SSD accumulates more data it eventually needs to reclaim

the space being taken up by the invalid pages. GC is triggered

when the number of free pages within a plane drops below a given

threshold. When a block is selected for GC it may still contain

some valid pages. In order to ensure these pages are not lost, the

valid data is first copied to another block in a different part of the

SSD. After all copies are created, the previously valid pages are

marked invalid, along with the rest of the block, allowing the erase

operation to take place.

The internal movement of data and erasing latency have a nega-

tive impact on the response times to service read and write requests.

In order to improve performance SSDs rely on the parallelization of

operations. Given the internal structure of the SSD, parallelism can

be achieved at the channel, chip, die, and plane levels. Commands

can be dispatched over all channels and then on all chips simul-

taneously. To further parallelize within the chip itself, advanced

commands are utilized. The Multi-Die Interleave command allows

for the same operation to be performed on all dies of a chip at

the same time. Take a step deeper and the Multi-Plane advanced

command executes the same command on both planes of a die [3].

However, within the plane itself there are currently no commands

to parallelize operations.

To try and mitigate the impact GC has on the system this pa-

per proposes a new advanced command called Intra-Plane Parallel

Block Erase (IPPBE) that leverages the structure of the NAND flash

plane to parallelize the erase operations. This command brings

parallelism a step deeper to the block-level. By reclaiming more

space in the given erase latency, it is possible to reduce the num-

ber of times GC is triggered, thus reducing the response times of

I/O requests and the number of valid pages copied. Experimenta-

tion shows that read/write response times can be reduce by up

to 47.0%/45.4% and 16.5%/14.8% on average respectively and the

number of page copies by up to 52.2% and 26.6% on average. An

analysis of energy consumption was also investigated and shows

that energy used by GC operations can save up to 44.1% and 19.3%

respectively.

2 MOTIVATION AND RELATED WORK

The copying of valid pages and the erase operation during GC

impose a performance and endurance burden on the SSD. As the

demand for SSDs to have more space continues, more bits are being

stored per cell. However, by doing so there is a decrease in the

lifetime of each page causing the number of tolerable writes prior

to wearing out to decrease significantly. The extra writes that occur

during GC can accelerate this degradation process and decrease the

overall lifetime of the SSD.

When GC takes place in a plane, it stalls incoming I/O requests to

itself and other planes in the die [11]. This stalling happens because

the planes of the die share a common register. (1) As the contents

of the valid pages are being copied out, the data must first be read

from the page to the die register. (2) Then the data is transferred

out via the channel to the channel controller where ECC is used

to correct any errors[13]. During this transfer time the channel is

also blocked. (3) Next, the data is sent to the die register of its new

physical address and (4) then written to a clean page. The blocking

of the channels and dies delays other requests from being serviced

along these paths. The erase operations is also an issue as it is the

longest single operation on the order of several milliseconds. Figure

2 illustrates this process.

Prior works have attempted to address these issues in different

ways and can be generally summarized into the following three

categories: 1) Decrease the latency of GC [2], 2) Decrease the fre-

quency of/delay GC [4, 11], and 3) Try to circumvent GC when it is

: FULL Block

: CLEAN Block
: Block Selected for GC

: New Block of Copied Data

Figure 2: Garbage Collection Process

happening [13]. In [13] another advanced command is used called

Copyback where instead of pages being moved out over the channel

and dispatched to a new physical page, they are read to the register

and written to a page of a different block within the same plane.

This frees up the channel, however, by not sending the data over

the channel to the controller the data does not run through ECC at

the controller. In addition, [13] utilizes RAIN to build in redundancy

so that in the event a request is blocked by a plane performing GC

the parity can be used to generate the blocked data. Unfortunately,

the need for redundancy requires additional capacity. [2] uses a

different approach to try and decrease the latency of GC by eras-

ing portions of a block called sub-blocks. These sub-blocks require

some pages (or wordlines) to serve as buffers to prevent the erasing

of sub-blocks from disturbing data in the other sub-blocks of the

block. Pages serving as buffers cannot hold any data and therefore

reduce the capacity of the SSD. Dividing the block up in this way

means it is easier to find a section to reclaim with few valid pages

to move. However, it was found that the erase latency of erasing a

single sub-block is essentially equal to that of the latency to erase

the entire block. This is due to the fact that the erasing process

does not change by having less pages. Therefore, less space may be

cleared given the same amount of time. As previously stated, when

a plane goes through the GC procedure it occupies the register

when copying pages, thus blocking the other plane on the die from

servicing incoming requests. [11] decides to make use of this idle

time that the other plane experiences by running GC on both by

using the Multi-Plane advanced command to move pages and erase

in parallel. The idea is that performing GC early in the other plane

will delay the need for GC in the future. Although, this method has

its limitations. Due to the nature of the Multi-Plane command these

operations must share the same block address and page index. For

the read and write commands the pages being read or written to

must share an index, otherwise they will be moved one at a time,

serially. Additionally, the plane that needs to reclaim space will

select the candidate block with the least number of valid pages

in order to copy less pages. However, the Multi-Plane command

requires that the block in the other plane be the same block index

and this block may have many valid pages to move, worsening

the latency of GC. Endurance may also be harmed as the adjacent

plane may not need to reclaim space yet and therefore the page

movements and erasing are unnecessarily speeding wearing.

The GC problem is not one that exists equally at all points in the

lifetime of the SSD. It is a by-product of SSD aging and more data

being stored/updated overtime. The issue worsens as blocks and

pages wear out and are replaced with a finite amount of built-in

spares. In particular, once GC begins to happen it will occur much

2

more frequently. Since GC is based on a threshold of how many

free pages remain in a plane, the GC process fights to get back over

the acceptable threshold. However, if reclaiming one block is not

enough then it must continue to serially erase blocks until enough

space as been reclaimed.

Since SSDs have become a prominent storage media, it is advan-

tageous to find solutions that do not impose drastic changes to the

internal architecture that may require changes to the infrastructure

of the system. With these previous designs in mind, this paper

seeks to address GC by leveraging the NAND flash structure as it is

without making sacrifices to capacity and maximize the efficiency

of each GC. Intra-Plane Parallel Block Erase is able to meet these re-

quirements as well as be combined with existing designs to further

enhance them.

3 INTRA-PLANE PARALLEL BLOCK ERASE

3.1 Overview

Intra-Plane Parallel Block Erase, or IPPBE as it will be referred to

throughout the rest of this paper, is, to the best of the author’s

knowledge, the first advanced command to parallelize at the block-

level within the same plane. Its design is based on exploiting the

triple-well structure shared by all blocks residing in a plane[8, 12].

The well plays an important role during the erase operation. As

the well is biased with a high voltage, the wordlines of the block

being erased are grounded to allow the electrons stored in each

cell to be flushed out. The blocks that are not being erased float

their wordlines. Blocks are selected via a block decoder in the plane.

By redesigning the decoder to select multiple blocks at a time,

multiple blocks can be grounded during the erase operation and

therefore be erased simultaneously. Erasing more than one block

at a time increases the space reclaimed during an erase operation

without increasing the erase latency. In addition, future GCs will

be delayed due to more space being reclaimed per GC. IPPBE can

also accelerate the process of getting a plane’s free page count back

over the GC barrier so that it can resume servicing reads and writes

sooner.

3.2 Erase Operation

To understand IPPBE’s design it is important to understand the

erase operation’s protocol. [2] found that erasing portions of a

block did not reduce the latency of the erase operation. This makes

sense as the steps taken during the erase operation do not change

regardless of the number of pages in a block. [8] describes this

process in detail and Figure 3 provides a visual for the steps taken

to erase a block.

After all the data has been copied out, the erasing can being. First,

all the wordlines of the selected block are programmed to get each

cell into the same state. Next, the wordlines of the selected block are

grounded and the remaining blocks are left floating. From this point

the process enters a loop of electrical pulses and verification. The

iP-well, common to all blocks in the plane, receives an electrical

pulse of V_Erase. After which, all worldlines are read to verify

that the cells have been erased and read as 1. If not, V_Erase is

increased by V_step and the electrical pulse is once again applied

to the iP-well. This process continues until it can be verified that

all cells have been successfully erased. It is normal for erase pulses

to be applied several times before an erase is successful. It should

Copy Out Valid Data

Program Before Erase

Ground WLs of Selected Block and Float nd WLs of Selected Block and
WLs of Unselected Blocks

Bias s iPiP-PP-Well to o V_Erase

Verify Erase Was Successful

End of Erase Operation

V_Erasee = = V_Erasee + + V_step

No

Yes

Figure 3: Erase Operation Procedure

be noted that there is a limit to the number of times this loop can

run before the erase is deemed a failure.

This procedure is the same regardless if the number of pages

per block is 64 or 256. Rather than reducing the size of the erase

unit to a portion of a block, IPPBE does the opposite by adding

more blocks. By doing so, multiple blocks can be reclaimed in the

same amount of time it takes to erase a single block, maximizing

the erase operation.

3.3 NAND Flash Plane Triple-Well

In this design the triple-well structure is not altered, however, it is

the key component of enabling IPPBE. In NAND flash a triple-well

structure is used to construct the plane. There are three sections that

the well is divided into: 1) iP-well, 2) N-well, and 3) P-type substrate

[6, 8, 12]. As mentioned prior, the iP-well receives the high voltage

electrical pulse during the erase operation. When a block being

erased has its wordlines grounded during this pulse, the electric

potential between the wordlines and the iP-Well induces Fowler-

Nordheim tunneling, enabling the trapped electrons in each cell to

be flushed out[8]. It is not desirable to have all blocks experience this

electron tunneling. Since this iP-well is shared by all blocks in each

plane, the other blocks need to inhibit their wordlines to prevent

unexpected erasure and loss of data. To do so, blocks not selected

for erasure leave their wordlines floating. This maneuver raises

the capacitive coupling so that the electric potential between the

wordlines and the well is not sufficient to induce electron tunneling.

IPPBE takes advantage of this phenomena. Rather than instructing

only one block to ground its wordlines, multiple can be instructed to

ground their wordlines during the electric pulse. Since the biasing

of the well has a duration that lasts a fixed interval of time, then

erasing more than one block does not result in additional time spent

performing the operation. An energy analysis was conducted using

the FlashPower simulator and shows that for every block added

during this erase operation the energy expended grows linearly[9].

However, by using IPPBE, GC is called less frequently and therefore

overall energy consumption is decreased. This is discussed further

in the Section 5.

3.4 Decoder and Command Addressing

When the SSD decides which block will be erased a block decoder

is used to set the wordlines. However, given that in IPPBE’s design

3

additional blocks are necessary, a slight modification needs to be

made to the decoder to allow multiple blocks to be addressed at the

same time. [3] notes that the addressing for operations is simply

channel, package, chip, die, plane, block, page, and sub-page. Since

the erase operation is not concerned with pages or sub-pages these

bits could be repurposed to add the address of other blocks being

addressed simultaneously. IPPBE addressing could potentially be

modified to combine with and enhance previous GC schemes. For

instance, IPPBE could be altered to address multiple sub-blocks

across different blocks within a plane. In addition, if combined

with the Multi-Plane command multiple block erasure could occur

simultaneously within a plane as well as in other planes belonging

to the same die.

3.5 Block Selection

Prior to IPPBE, determining which block is best to reclaimwas fairly

simple. The most traditional approach is termed Greedy GC, which

means the block selected was the one with the largest number of

invalid pages [8]. The idea being that by selecting the block with

the most invalid pages there would be less valid pages that need to

be copied out. This way the most space possible is reclaimed when

erased. However, with IPPBE careful attention should be made to

selecting which blocks to reclaim. For simplicity, consider selecting

two blocks to erase. The plane free page count is reduced to the

point of triggering the need for GC. Within the plane, two blocks

have all invalid pages except for two valid pages each. IPPBE can

erase both blocks after all four valid pages are moved out prior. In

this case a few extra pages are moved initially to reclaim twice as

much space. This will delay the need for GC longer than erasing

only one. However, there is also a scenario where GC is triggered

and there are many valid pages in the plane. In this case a block

that is entirely invalid may be selected, however, the block with

the second least number of valid pages only has 60 percent of its

pages invalid. This means that, assuming no free pages in the block,

40 percent of the pages must be copied out. In this case it is better

to only erase one block. If both were selected to be reclaimed, the

time spent moving all the valid pages would counter-act the benefit

of simultaneously erasing blocks.

To solve this problem, thresholds are introduced to limit the

number of pages being copied. The SSD first finds the best block to

erase similar to Greedy. Then, it finds the second best block. Next,

an analysis is done to determine if the number of pages that would

need to be copied are below the threshold. If yes, then both can

be reclaimed. If not, then the second block is not selected to be

reclaimed.

3.6 Garbage Collection Barrier

One of the issues with GC is that once it starts to occur it typi-

cally will continue to happen. The trigger is usually the passing

of a threshold that brings the number of free pages below a given

percentage of the total number of pages in the plane. Once this

happens, space must be reclaimed continuously until the number

of free pages has crossed back over the threshold, or Garbage Col-

lection Barrier (GCB). However, once enough space is reclaimed

the plane can return to servicing read and write requests. Because

not enough time may be provided to claim more space, there may

10% Free 5% Free7% Free
Hard GC
Threshold

of Free Pages Left in the Plane

IPPBE GC
(2 Blocks)

Single Block
Erase GC

Figure 4: Comparison of IPPBE and Single Block Erase with

Garbage Collection Triggered at 7 Percent Free Page Count

be thrashing between the plane reclaiming space and writing to

the plane. IPPBE helps to prolong this need to return to GC by

reclaiming more space and further distancing the number of free

pages from the GCB. Figure 4 illustrates this concept. On the other

hand, there may be a large write that pushes the free page count far

past the barrier. IPPBE can accelerate the process of returning to the

other side of the GCB by reducing the number of erase operations

it takes to get there. Figure 5 visualizes IPPBE’s implementation.

Block Block
Decoder

Block 1

Block 2

Block 3

Block 4

Block N N -- 1

Block N

0V

0V

Plane
Channel

Chip

Die

Plane

Block

Page

Subbubub-bbbbbb--Page

Command Address

Additional Bits for Block k Addressing

Figure 5: IPPBE Design

4 EXPERIMENTAL SETUP

IPPBE performance was evaluated using a combination of two dif-

ferent simulators SSDSim [3] and FlashPower [9]. SSDSim is an

event based simulator that uses traces[10] of I/O requests to track

read, write, and erase operations through a desired SSD configu-

ration. The configurations for the evaluation of this paper can be

seen in Table 1. SSDSim’s GC algorithm was modified to imple-

ment IPPBE’s design by introducing additional mechanisms to find

multiple candidate blocks to reclaim. Timing schemes also received

alterations to ensure that erasing multiple blocks only occupies

the channel and chip the same way as erasing a single block. For

the purpose of this work the maximum number of blocks erased

at a time was limited to two. A static allocation scheme was im-

plemented, prioritizing in the following order: channel, chip (also

referred to in some works as way), die, and plane with channel

being highest and plane being lowest. Since not every trace is the

same size the SSD needs to be aged to force GC to occur. SSDSim

does this by injecting invalid pages into the SSD. However, this

aging process has been found to not be consistent with how SSDs

truly age [5]. To solve this issue, the configuration used is rela-

tively small. This allows GC to occur naturally rather than being

artificially imposed. GC was set to trigger when the number of

free pages in a plane dropped below 7%. FlashPower was used to

evaluate the the energy consumption of the design. Given the same

4

configuration as in Table 1 the simulation can output the energy

consumption of the read, write, and erase operations. Both of these

simulators have been validated against the real device.

Channels: 2 Read Latency: 75us
Chips Per Channel: 2 Write Latency: 1.5ms
Dies Per Chip: 1 Erase Latency: 3.8ms
Planes Per Die: 2 Channel Transfer: 25ns
Blocks Per Plane: 2048 Overprovision: 25%
Pages Per Block: 64 GC Threshold: 7%
Page Size: 2KB

SSD Configuration

Table 1: Simulation Configurations

5 RESULTS

Evaluation of IPPBE’s design is divided into endurance, perfor-

mance, and energy. For comparative purposes Greedy GC is used

as a baseline for which IPPBE is normalized against. Each scheme

was evaluated using a suite of traces from [10].

5.1 Endurance

The SSDs lifetime is a growing concern especially given that SSDs

using MLC or TLC designs to hold multiple bits per cell have a

significant reduction in the lifetime of pages due to accelerated

wear-out[1]. GC worsens this problem by requiring pages be moved

thus inducing extra writes. IPPBE tries to limit this by reducing the

number of pages movements and block erases. Figure 6 and Figure 7

compare the total number of pages moved and blocks erased during

GC. Experimentation shows that the number of page movements

are reduced by up to 52.2% and 26.6% on average and the reduction

in the number of blocks erased in some traces can be up to 14.2%

and 3.6% on average. When IPPBE is applied, both blocks move

their pages together then perform the erase. Since no operations

occur in between moving pages of the different blocks when using

IPPBE, the pages are likely written to the same active block. Data

in pages that are being moved are most likely read intensive data

since they are among the last few pages yet to invalidate in the

block. These frequently read pages are less likely to be updated

and may need moved in a later GC. The more fragmented the valid

pages are across the plane, the likelihood of needing to copy data

during the next GC increases. IPPBE naturally clusters this type

of data into the same block. As a result the next GC on the plane

moves less pages because there is a higher chance of being able

to select a block with less valid pages. The traces able to reduce

page copying, due to clustering of valid pages, saw a decrease in

blocks erase because IPPBE was able to reclaim more blocks with

a larger number of invalid pages, thus increasing the amount of

space reclaimed per erase. This increase in erase efficiency can

accumulate overtime leading to less blocks needing to be erased

because enough space has already been reclaimed. This is more

apparent in larger and longer traces such as prxy0 and prn0. This

reduction in page copies and block erasures helps to alleviate the

endurance burden imposed by GC.

5.2 Performance

GC is detrimental to performance of SSDs because when required

it takes priority over all other requests to the die. Therefore, it is

0

0.2

0.4

0.6

0.8

1

1.2

hm0 prn0 prxy0 proj0 src20 stg0 ts0 src12

Baseline IPPBE

Figure 6: Valid Pages Moved During Garbage Collection

0.75

0.8

0.85

0.9

0.95

1

1.05

hm0 prn0 prxy0 proj0 src20 stg0 ts0 src12

Baseline IPPBE

Figure 7: Blocks Erased

advantageous to limit the time spent reclaiming space. Figure 8

demonstrates that IPPBE can reduce the total time spent perform-

ing GC by up to 50.7% and 33.6% on average. The reduction is very

closely related to the number of times the GCmechanism is invoked.

Figure 9 helps show the relationship between the number of times

GC is triggered and the time spent on GC. GC frequency is reduced

up to 56.4% and 46.7% on average. The reason being is IPPBE can

more quickly get back to the other side of the GCB by reclaiming

more space per unit of time. However, reducing the frequency of

GC operations does not always result in a linear reduction in time

spent on GC. The reduction in time spent can be attributed to its

heavy reliance on the ability to reduce the number of valid page

copies. For instance, stg0’s reduction in page copies is the smallest

and in turn sees the smallest reduction in time spent on GC. This is

because the cumulative latency of moving pages is often worse than

that of the erase operation. Nevertheless, being able to efficiently

erase and move pages leads to a long term reduction. While it is

possible the initial use of IPPBE could see a longer GC latency due

to page movements, this eventually leads to high efficiency of GC

thus limiting its need and time spent performing the operations

associated. Figures 10 and 11 demonstrate that reducing the time

spent on GC has a ripple affect on the overall average read/write re-

sponse times of the trace. The average read response time is reduced

up to 47.0% and 16.5% on average. The average write response time

also decreases by up to 45.4% and 14.8% on average. The results

vary based on how large of a portion the baseline’s time is spent

on GC.

5.3 Energy Analysis

An energy analysis was conducted to investigate the energy im-

pact of using the IPPBE command. The FlashPower simulator was

used to calculate the energy consumption of the read, write, and

erase operations given the SSD configuration provided in Table

1. The results indicated the following energy consumptions: Read

= 2.1uJ;Write = 12.3uJ; and Erase = 22.5uJ. Calculation of energy

consumption for GC was as follows: Each page copy requires a

5

0

0.2

0.4

0.6

0.8

1

1.2

hm0 prn0 prxy0 proj0 src20 stg0 ts0 src12

Baseline IPPBE

Figure 8: Total Time Spent on Garbage Collection

0

0.2

0.4

0.6

0.8

1

1.2

hm0 prn0 prxy0 proj0 src20 stg0 ts0 src12

Baseline IPPBE

Figure 9: Garbage Collection Calls

0

0.2

0.4

0.6

0.8

1

1.2

hm0 prn0 prxy0 proj0 src20 stg0 ts0 src12

Baseline IPPBE

Figure 10: Average Trace Write Response Times

0

0.2

0.4

0.6

0.8

1

1.2

hm0 prn0 prxy0 proj0 src20 stg0 ts0 src12

Baseline IPPBE

Figure 11: Average Trace Read Response Times

read and write command so the energy to move pages during GC is

the sum of the read and write energy multiplied by the number of

pages moved. Then, this value is summed with the product of the

erase energy and number of blocks erased. Using FlashPower and

[9] it can be concluded that the energy consumption of adding an

additional block during the erase pulse causes the erase energy to

increase linearly as the majority of the energy is consumed by the

bitlines. Figure 12 shows that the savings in energy expended by

GC can be as high as 44.1% and 19.3% on average. The results are

a by-product of the reduction of pages moved and blocks erased

in each trace. The GC energy savings most closely resembles the

results of the pages movements because there tends to be signif-

icantly more pages moved than blocks erase, therefore the write

energy becomes the dominate contributor. It should be noted that

these values change based on the size of the plane.

0

0.2

0.4

0.6

0.8

1

1.2

hm0 prn0 prxy0 proj0 src20 stg0 src12

Baseline IPPBE

Figure 12: Garbage Collection Energy Analysis

6 CONCLUSIONS

Intra-Plane Parallel Block Erase (IPPBE) is the first advanced com-

mand, to the best of the authors knowledge, to bring parallelism

to the NAND flash block-level. By taking advantage of the well

structure of the plane and modifying the block decoder, IPPBE can

improve endurance, performance, and energy consumption by re-

ducing the time spent performing GC. IPPBE alleviates GC’s impact

by reclaiming more space per erase operation and clustering valid

pages in the same block to reduce future page copies. IPPBE can

also be modified to operate in conjunction with previous GC design

schemes for further enhancement.

REFERENCES
[1] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu. 2017. Error Characterization,

Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives. Proc. IEEE
105, 9 (Sept 2017), 1666–1704. https://doi.org/10.1109/JPROC.2017.2713127

[2] T. Y. Chen, Y. H. Chang, C. C. Ho, and S. H. Chen. 2016. Enabling sub-blocks
erase management to boost the performance of 3D NAND flash memory. In
2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https:
//doi.org/10.1145/2897937.2898018

[3] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Shuping Zhang. 2011.
Performance Impact and Interplay of SSD Parallelism Through Advanced Com-
mands, Allocation Strategy and Data Granularity. In Proceedings of the Interna-
tional Conference on Supercomputing (ICS ’11). ACM, New York, NY, USA, 96–107.
https://doi.org/10.1145/1995896.1995912

[4] Myoungsoo Jung, Ramya Prabhakar, and Mahmut Taylan Kandemir. 2012. Taking
Garbage Collection Overheads off the Critical Path in SSDs. In Proceedings of
the 13th International Middleware Conference (Middleware ’12). Springer-Verlag
New York, Inc., New York, NY, USA, 164–186. http://dl.acm.org/citation.cfm?
id=2442626.2442638

[5] J Kim, M Park, and I Shin. 2017. Improving SSD Simulator for High Reliability of
Performance Evaluation. International Journal of Applied Engineering Research
12, 15 (2017), 4836–4839.

[6] Jin-Ki Kim. 2010. Partial block erase architecture for flash memory. (Sept. 28
2010). US Patent 7,804,718.

[7] Rino Micheloni. 2016. 3D flash memories. Springer, Dordrecht, [Netherlands].
[8] Rino Micheloni, Luca Crippa, A. Marelli, and Inc Books24x7. 2010;2014;. Inside

NAND Flash memories (1st ed.). Springer, Heidelberg;New York;.
[9] V. Mohan, T. Bunker, L. Grupp, S. Gurumurthi, M. R. Stan, and S. Swanson. 2013.

Modeling Power Consumption of NAND Flash Memories Using FlashPower. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 32, 7
(July 2013), 1031–1044. https://doi.org/10.1109/TCAD.2013.2249557

[10] Microsoft production server traces. 2008. http://iotta.snia.org/traces/list/BlockIO
[11] N. Shahidi, M. T. Kandemir, M. Arjomand, C. R. Das, M. Jung, and A. Siva-

subramaniam. 2016. Exploring the Potentials of Parallel Garbage Collection
in SSDs for Enterprise Storage Systems. In SC16: International Conference for
High Performance Computing, Networking, Storage and Analysis. 561–572. https:
//doi.org/10.1109/SC.2016.47

[12] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho Lim, Jin-Ki Kim, Young-Joon Choi,
Yong-Nam Koh, Sung-Soo Lee, Suk-Chon Kwon, Byung-Soon Choi, Jin-Sun Yum,
Jung-Hyuk Choi, Jang-Rae Kim, and Hyung-Kyu Lim. 1995. A 3.3 V 32 Mb NAND
flash memory with incremental step pulse programming scheme. IEEE Journal of
Solid-State Circuits 30, 11 (Nov 1995), 1149–1156. https://doi.org/10.1109/4.475701

[13] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sun-
dararaman, Andrew A. Chien, and Haryadi S. Gunawi. 2017. Tiny-Tail Flash:
Near-Perfect Elimination of Garbage Collection Tail Latencies in NAND SSDs.
In 15th USENIX Conference on File and Storage Technologies (FAST 17). USENIX
Association, Santa Clara, CA, 15–28. https://www.usenix.org/conference/fast17/
technical-sessions/presentation/yan

6

