Enabling Intra-Plane Parallel Block Erase in NAND Flash to
Alleviate the Impact of Garbage Collection

Tyler Garrett
University of Pittsburgh
Pittsburgh, Pennsylvania

Jun Yang
University of Pittsburgh
Pittsburgh, Pennsylvania

Youtao Zhang
University of Pittsburgh
Pittsburgh, Pennsylvania

m itt.edu ju itt.edu zhan cs.pitt.edu
tmg61@pitt.ed juy9@pitt.ed hangyt@cs.pitt.ed
ABSTRACT Controller

Garbage collection (GC) in NAND flash can significantly decrease o Chi';ze T

1/0O performance in SSDs by copying valid data to other locations, é s E” o Plan_ﬁ]

thus blocking incoming I/O requests. To help improve performance, g s

NAND flash utilizes various advanced commands to increase in- T

ternal parallelism. Currently, these commands only parallelize op- g Nz |3 N chp2 \\

erations across channels, chips, dies, and planes, neglecting the Szzti -
block level due to risk of disturbances that can compromise valid » » i oo
data by inducing errors. However, due to the triple-well structure e et Slockn o

of the NAND flash plane architecture, it is possible to erase mul-
tiple blocks within a plane, in parallel, without diminishing the
integrity of the valid data. The number of page movements due to
multiple block erases can be restrained so as to bound the overhead
per GC. Moreover, more capacity can be reclaimed per GC which
delays future GCs and effectively reduces their frequency. Such
an Intra-Plane Parallel Block Erase (IPPBE) in turn diminishes the
impact of GC on incoming requests, improving their response times.
Experimental results show that IPPBE can reduce the time spent
performing GC by up to 50.7% and 33.6% on average, read/write
response time by up to 47.0%/45.4% and 16.5%/14.8% on average
respectively, page movements by up to 52.2% and 26.6% on average,
and blocks erased by up to 14.2% and 3.6% on average. An energy
analysis conducted indicates that by reducing the number of page
copies and the number of block erases, the energy cost of garbage
collection can be reduced up to 44.1% and 19.3% on average.

CCS CONCEPTS

« Information systems — Flash memory; - Hardware — Mem-
ory and dense storage;

KEYWORDS
NAND Flash, Garbage Collection, Storage

1 INTRODUCTION

SSDs have become a staple choice for storage in servers and data
centers over the last decade [7]. As the industry and marketplace
have shifted towards a heavier reliance on services such as the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISLPED ’18, July 23-25, 2018, Seattle, WA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5704-3/18/07...$15.00
https://doi.org/10.1145/3218603.3218627

Figure 1: SSD Internal Architecture

adoption of cloud computing, it is important to ensure the perfor-
mance of SSDs keep up with the demand of the system. One of the
biggest issues that exists in SSDs is the need to perform garbage
collection (GC) in order to reclaim pages that no longer contain
useful data. This operation is related to the organization of the
internal components of the SSD, as depicted in Figure 1.

Inside the SSD is an array of NAND flash chips. Several chips
are strung together sharing a channel over which read, write, and
erase commands, along with their corresponding data, can be sent.
The array typically consists of multiple channels that can operate
in parallel with each other. Inside each chip are one or more dies.
Within each die are two planes (sometimes four) which are divided
into blocks, while the blocks are further divided into pages. Read
and write operations occur at the page granularity, while erase
operations occur at the block granularity. The difference in the
scope of these operations is because erasing a single page, given
the structure of NAND flash, would cause a disturbance to all other
pages in within the block, thus leaving the data unreliable[2]. When
data in a page needs to be updated, a direct overwrite of the page
cannot be performed as NAND flash requires that the page must
first be erased. However, as an erase occurs at the block granularity,
all other pages in the block are also erased causing data loss. For
this reason, SSDs invoke an out-of-place write policy[8]. When a
page’s data is updated, the Flash Translation Layer (FTL) remaps
the logical page of the old data to a new physical page while the
original page is marked as invalid leaving two copies: 1) a valid
page that holds the new data and 2) an invalid page that holds the
out dated data.

As the SSD accumulates more data it eventually needs to reclaim
the space being taken up by the invalid pages. GC is triggered
when the number of free pages within a plane drops below a given
threshold. When a block is selected for GC it may still contain
some valid pages. In order to ensure these pages are not lost, the
valid data is first copied to another block in a different part of the
SSD. After all copies are created, the previously valid pages are

marked invalid, along with the rest of the block, allowing the erase
operation to take place.

The internal movement of data and erasing latency have a nega-
tive impact on the response times to service read and write requests.
In order to improve performance SSDs rely on the parallelization of
operations. Given the internal structure of the SSD, parallelism can
be achieved at the channel, chip, die, and plane levels. Commands
can be dispatched over all channels and then on all chips simul-
taneously. To further parallelize within the chip itself, advanced
commands are utilized. The Multi-Die Interleave command allows
for the same operation to be performed on all dies of a chip at
the same time. Take a step deeper and the Multi-Plane advanced
command executes the same command on both planes of a die [3].
However, within the plane itself there are currently no commands
to parallelize operations.

To try and mitigate the impact GC has on the system this pa-
per proposes a new advanced command called Intra-Plane Parallel
Block Erase (IPPBE) that leverages the structure of the NAND flash
plane to parallelize the erase operations. This command brings
parallelism a step deeper to the block-level. By reclaiming more
space in the given erase latency, it is possible to reduce the num-
ber of times GC is triggered, thus reducing the response times of
I/O requests and the number of valid pages copied. Experimenta-
tion shows that read/write response times can be reduce by up
to 47.0%/45.4% and 16.5%/14.8% on average respectively and the
number of page copies by up to 52.2% and 26.6% on average. An
analysis of energy consumption was also investigated and shows
that energy used by GC operations can save up to 44.1% and 19.3%
respectively.

2 MOTIVATION AND RELATED WORK

The copying of valid pages and the erase operation during GC
impose a performance and endurance burden on the SSD. As the
demand for SSDs to have more space continues, more bits are being
stored per cell. However, by doing so there is a decrease in the
lifetime of each page causing the number of tolerable writes prior
to wearing out to decrease significantly. The extra writes that occur
during GC can accelerate this degradation process and decrease the
overall lifetime of the SSD.

When GC takes place in a plane, it stalls incoming I/O requests to
itself and other planes in the die [11]. This stalling happens because
the planes of the die share a common register. (1) As the contents
of the valid pages are being copied out, the data must first be read
from the page to the die register. (2) Then the data is transferred
out via the channel to the channel controller where ECC is used
to correct any errors[13]. During this transfer time the channel is
also blocked. (3) Next, the data is sent to the die register of its new
physical address and (4) then written to a clean page. The blocking
of the channels and dies delays other requests from being serviced
along these paths. The erase operations is also an issue as it is the
longest single operation on the order of several milliseconds. Figure
2 illustrates this process.

Prior works have attempted to address these issues in different
ways and can be generally summarized into the following three
categories: 1) Decrease the latency of GC [2], 2) Decrease the fre-
quency of/delay GC [4, 11], and 3) Try to circumvent GC when it is

[: FuLL Block
[: CLeAN Block
S Block Selected for GC

[0« New Block of Copied Data (3) [©)
v ﬂ
I
. -

®

=

Figure 2: Garbage Collection Process

happening [13]. In [13] another advanced command is used called
Copyback where instead of pages being moved out over the channel
and dispatched to a new physical page, they are read to the register
and written to a page of a different block within the same plane.
This frees up the channel, however, by not sending the data over
the channel to the controller the data does not run through ECC at
the controller. In addition, [13] utilizes RAIN to build in redundancy
so that in the event a request is blocked by a plane performing GC
the parity can be used to generate the blocked data. Unfortunately,
the need for redundancy requires additional capacity. [2] uses a
different approach to try and decrease the latency of GC by eras-
ing portions of a block called sub-blocks. These sub-blocks require
some pages (or wordlines) to serve as buffers to prevent the erasing
of sub-blocks from disturbing data in the other sub-blocks of the
block. Pages serving as buffers cannot hold any data and therefore
reduce the capacity of the SSD. Dividing the block up in this way
means it is easier to find a section to reclaim with few valid pages
to move. However, it was found that the erase latency of erasing a
single sub-block is essentially equal to that of the latency to erase
the entire block. This is due to the fact that the erasing process
does not change by having less pages. Therefore, less space may be
cleared given the same amount of time. As previously stated, when
a plane goes through the GC procedure it occupies the register
when copying pages, thus blocking the other plane on the die from
servicing incoming requests. [11] decides to make use of this idle
time that the other plane experiences by running GC on both by
using the Multi-Plane advanced command to move pages and erase
in parallel. The idea is that performing GC early in the other plane
will delay the need for GC in the future. Although, this method has
its limitations. Due to the nature of the Multi-Plane command these
operations must share the same block address and page index. For
the read and write commands the pages being read or written to
must share an index, otherwise they will be moved one at a time,
serially. Additionally, the plane that needs to reclaim space will
select the candidate block with the least number of valid pages
in order to copy less pages. However, the Multi-Plane command
requires that the block in the other plane be the same block index
and this block may have many valid pages to move, worsening
the latency of GC. Endurance may also be harmed as the adjacent
plane may not need to reclaim space yet and therefore the page
movements and erasing are unnecessarily speeding wearing.

The GC problem is not one that exists equally at all points in the
lifetime of the SSD. It is a by-product of SSD aging and more data
being stored/updated overtime. The issue worsens as blocks and
pages wear out and are replaced with a finite amount of built-in
spares. In particular, once GC begins to happen it will occur much

more frequently. Since GC is based on a threshold of how many
free pages remain in a plane, the GC process fights to get back over
the acceptable threshold. However, if reclaiming one block is not
enough then it must continue to serially erase blocks until enough
space as been reclaimed.

Since SSDs have become a prominent storage media, it is advan-
tageous to find solutions that do not impose drastic changes to the
internal architecture that may require changes to the infrastructure
of the system. With these previous designs in mind, this paper
seeks to address GC by leveraging the NAND flash structure as it is
without making sacrifices to capacity and maximize the efficiency
of each GC. Intra-Plane Parallel Block Erase is able to meet these re-
quirements as well as be combined with existing designs to further
enhance them.

3 INTRA-PLANE PARALLEL BLOCK ERASE

3.1 Overview

Intra-Plane Parallel Block Erase, or IPPBE as it will be referred to
throughout the rest of this paper, is, to the best of the author’s
knowledge, the first advanced command to parallelize at the block-
level within the same plane. Its design is based on exploiting the
triple-well structure shared by all blocks residing in a plane[8, 12].
The well plays an important role during the erase operation. As
the well is biased with a high voltage, the wordlines of the block
being erased are grounded to allow the electrons stored in each
cell to be flushed out. The blocks that are not being erased float
their wordlines. Blocks are selected via a block decoder in the plane.
By redesigning the decoder to select multiple blocks at a time,
multiple blocks can be grounded during the erase operation and
therefore be erased simultaneously. Erasing more than one block
at a time increases the space reclaimed during an erase operation
without increasing the erase latency. In addition, future GCs will
be delayed due to more space being reclaimed per GC. IPPBE can
also accelerate the process of getting a plane’s free page count back
over the GC barrier so that it can resume servicing reads and writes
sooner.

3.2 Erase Operation

To understand IPPBE’s design it is important to understand the
erase operation’s protocol. [2] found that erasing portions of a
block did not reduce the latency of the erase operation. This makes
sense as the steps taken during the erase operation do not change
regardless of the number of pages in a block. [8] describes this
process in detail and Figure 3 provides a visual for the steps taken
to erase a block.

After all the data has been copied out, the erasing can being. First,
all the wordlines of the selected block are programmed to get each
cell into the same state. Next, the wordlines of the selected block are
grounded and the remaining blocks are left floating. From this point
the process enters a loop of electrical pulses and verification. The
iP-well, common to all blocks in the plane, receives an electrical
pulse of V_Erase. After which, all worldlines are read to verify
that the cells have been erased and read as 1. If not, V_Erase is
increased by V_step and the electrical pulse is once again applied
to the iP-well. This process continues until it can be verified that
all cells have been successfully erased. It is normal for erase pulses
to be applied several times before an erase is successful. It should

| Copy Out Valid Data |

!

| Program Before Erase |

!

Ground WLs of Selected Block and Float |

WLs of Unselected Blocks

V_Erase = V_Erase + V_step
| Bias iP-Well to V_Erase |<—

}
| No

Verify Erase Was Successful
| End of Erase Operation |

l Yes

Figure 3: Erase Operation Procedure

be noted that there is a limit to the number of times this loop can
run before the erase is deemed a failure.

This procedure is the same regardless if the number of pages
per block is 64 or 256. Rather than reducing the size of the erase
unit to a portion of a block, IPPBE does the opposite by adding
more blocks. By doing so, multiple blocks can be reclaimed in the
same amount of time it takes to erase a single block, maximizing
the erase operation.

3.3 NAND Flash Plane Triple-Well

In this design the triple-well structure is not altered, however, it is
the key component of enabling IPPBE. In NAND flash a triple-well
structure is used to construct the plane. There are three sections that
the well is divided into: 1) iP-well, 2) N-well, and 3) P-type substrate
[6, 8, 12]. As mentioned prior, the iP-well receives the high voltage
electrical pulse during the erase operation. When a block being
erased has its wordlines grounded during this pulse, the electric
potential between the wordlines and the iP-Well induces Fowler-
Nordheim tunneling, enabling the trapped electrons in each cell to
be flushed out[8]. It is not desirable to have all blocks experience this
electron tunneling. Since this iP-well is shared by all blocks in each
plane, the other blocks need to inhibit their wordlines to prevent
unexpected erasure and loss of data. To do so, blocks not selected
for erasure leave their wordlines floating. This maneuver raises
the capacitive coupling so that the electric potential between the
wordlines and the well is not sufficient to induce electron tunneling.
IPPBE takes advantage of this phenomena. Rather than instructing
only one block to ground its wordlines, multiple can be instructed to
ground their wordlines during the electric pulse. Since the biasing
of the well has a duration that lasts a fixed interval of time, then
erasing more than one block does not result in additional time spent
performing the operation. An energy analysis was conducted using
the FlashPower simulator and shows that for every block added
during this erase operation the energy expended grows linearly[9].
However, by using IPPBE, GC is called less frequently and therefore
overall energy consumption is decreased. This is discussed further
in the Section 5.

3.4 Decoder and Command Addressing

When the SSD decides which block will be erased a block decoder
is used to set the wordlines. However, given that in IPPBE’s design

additional blocks are necessary, a slight modification needs to be
made to the decoder to allow multiple blocks to be addressed at the
same time. [3] notes that the addressing for operations is simply
channel, package, chip, die, plane, block, page, and sub-page. Since
the erase operation is not concerned with pages or sub-pages these
bits could be repurposed to add the address of other blocks being
addressed simultaneously. IPPBE addressing could potentially be
modified to combine with and enhance previous GC schemes. For
instance, IPPBE could be altered to address multiple sub-blocks
across different blocks within a plane. In addition, if combined
with the Multi-Plane command multiple block erasure could occur
simultaneously within a plane as well as in other planes belonging
to the same die.

3.5 Block Selection

Prior to IPPBE, determining which block is best to reclaim was fairly
simple. The most traditional approach is termed Greedy GC, which
means the block selected was the one with the largest number of
invalid pages [8]. The idea being that by selecting the block with
the most invalid pages there would be less valid pages that need to
be copied out. This way the most space possible is reclaimed when
erased. However, with IPPBE careful attention should be made to
selecting which blocks to reclaim. For simplicity, consider selecting
two blocks to erase. The plane free page count is reduced to the
point of triggering the need for GC. Within the plane, two blocks
have all invalid pages except for two valid pages each. IPPBE can
erase both blocks after all four valid pages are moved out prior. In
this case a few extra pages are moved initially to reclaim twice as
much space. This will delay the need for GC longer than erasing
only one. However, there is also a scenario where GC is triggered
and there are many valid pages in the plane. In this case a block
that is entirely invalid may be selected, however, the block with
the second least number of valid pages only has 60 percent of its
pages invalid. This means that, assuming no free pages in the block,
40 percent of the pages must be copied out. In this case it is better
to only erase one block. If both were selected to be reclaimed, the
time spent moving all the valid pages would counter-act the benefit
of simultaneously erasing blocks.

To solve this problem, thresholds are introduced to limit the
number of pages being copied. The SSD first finds the best block to
erase similar to Greedy. Then, it finds the second best block. Next,
an analysis is done to determine if the number of pages that would
need to be copied are below the threshold. If yes, then both can
be reclaimed. If not, then the second block is not selected to be
reclaimed.

3.6 Garbage Collection Barrier

One of the issues with GC is that once it starts to occur it typi-
cally will continue to happen. The trigger is usually the passing
of a threshold that brings the number of free pages below a given
percentage of the total number of pages in the plane. Once this
happens, space must be reclaimed continuously until the number
of free pages has crossed back over the threshold, or Garbage Col-
lection Barrier (GCB). However, once enough space is reclaimed
the plane can return to servicing read and write requests. Because
not enough time may be provided to claim more space, there may

10% Free 7% Free 5% Free
Hard GC
IPPBE GC ‘ Threshold
(2 Blocks)
| Single Block |
Erase GC _T_

of Free Pages Left in the Plane

Figure 4: Comparison of IPPBE and Single Block Erase with
Garbage Collection Triggered at 7 Percent Free Page Count

be thrashing between the plane reclaiming space and writing to
the plane. IPPBE helps to prolong this need to return to GC by
reclaiming more space and further distancing the number of free
pages from the GCB. Figure 4 illustrates this concept. On the other
hand, there may be a large write that pushes the free page count far
past the barrier. IPPBE can accelerate the process of returning to the
other side of the GCB by reducing the number of erase operations
it takes to get there. Figure 5 visualizes IPPBE’s implementation.

Command Address Plane

—~
Channel Block 1

Block 2

plane. Block 3
Block

—
Block Decoder Block4

Page A
:

Sub-P:
st Block N - 1

- Block N
Additional Bits for Block Addressing -

Figure 5: IPPBE Design
4 EXPERIMENTAL SETUP

IPPBE performance was evaluated using a combination of two dif-
ferent simulators SSDSim [3] and FlashPower [9]. SSDSim is an
event based simulator that uses traces[10] of I/O requests to track
read, write, and erase operations through a desired SSD configu-
ration. The configurations for the evaluation of this paper can be
seen in Table 1. SSDSim’s GC algorithm was modified to imple-
ment IPPBE’s design by introducing additional mechanisms to find
multiple candidate blocks to reclaim. Timing schemes also received
alterations to ensure that erasing multiple blocks only occupies
the channel and chip the same way as erasing a single block. For
the purpose of this work the maximum number of blocks erased
at a time was limited to two. A static allocation scheme was im-
plemented, prioritizing in the following order: channel, chip (also
referred to in some works as way), die, and plane with channel
being highest and plane being lowest. Since not every trace is the
same size the SSD needs to be aged to force GC to occur. SSDSim
does this by injecting invalid pages into the SSD. However, this
aging process has been found to not be consistent with how SSDs
truly age [5]. To solve this issue, the configuration used is rela-
tively small. This allows GC to occur naturally rather than being
artificially imposed. GC was set to trigger when the number of
free pages in a plane dropped below 7%. FlashPower was used to
evaluate the the energy consumption of the design. Given the same

configuration as in Table 1 the simulation can output the energy
consumption of the read, write, and erase operations. Both of these
simulators have been validated against the real device.

SSD Configuration

Channels: 2 Read Latency: 75us
Chips Per Channel: 2 Write Latency: 1.5ms
Dies Per Chip: 1 Erase Latency: 3.8ms
Planes Per Die: 2 Channel Transfer: 25ns
Blocks Per Plane: 2048 Overprovision: 25%
Pages Per Block: 64 GC Threshold: 7%
Page Size: 2KB

Table 1: Simulation Configurations
5 RESULTS

Evaluation of IPPBE’s design is divided into endurance, perfor-
mance, and energy. For comparative purposes Greedy GC is used
as a baseline for which IPPBE is normalized against. Each scheme
was evaluated using a suite of traces from [10].

5.1 Endurance

The SSDs lifetime is a growing concern especially given that SSDs
using MLC or TLC designs to hold multiple bits per cell have a
significant reduction in the lifetime of pages due to accelerated
wear-out[1]. GC worsens this problem by requiring pages be moved
thus inducing extra writes. IPPBE tries to limit this by reducing the
number of pages movements and block erases. Figure 6 and Figure 7
compare the total number of pages moved and blocks erased during
GC. Experimentation shows that the number of page movements
are reduced by up to 52.2% and 26.6% on average and the reduction
in the number of blocks erased in some traces can be up to 14.2%
and 3.6% on average. When IPPBE is applied, both blocks move
their pages together then perform the erase. Since no operations
occur in between moving pages of the different blocks when using
IPPBE, the pages are likely written to the same active block. Data
in pages that are being moved are most likely read intensive data
since they are among the last few pages yet to invalidate in the
block. These frequently read pages are less likely to be updated
and may need moved in a later GC. The more fragmented the valid
pages are across the plane, the likelihood of needing to copy data
during the next GC increases. IPPBE naturally clusters this type
of data into the same block. As a result the next GC on the plane
moves less pages because there is a higher chance of being able
to select a block with less valid pages. The traces able to reduce
page copying, due to clustering of valid pages, saw a decrease in
blocks erase because IPPBE was able to reclaim more blocks with
a larger number of invalid pages, thus increasing the amount of
space reclaimed per erase. This increase in erase efficiency can
accumulate overtime leading to less blocks needing to be erased
because enough space has already been reclaimed. This is more
apparent in larger and longer traces such as prxy0 and prn0. This
reduction in page copies and block erasures helps to alleviate the
endurance burden imposed by GC.

5.2 Performance

GC is detrimental to performance of SSDs because when required
it takes priority over all other requests to the die. Therefore, it is

0.8

0.6

0.4

0.2

prno prxy0 projo

m Baseline IPPBE

Figure 6: Valid Pages Moved During Garbage Collection

1.05

m Baseline S IPPBE

Figure 7: Blocks Erased

advantageous to limit the time spent reclaiming space. Figure 8
demonstrates that IPPBE can reduce the total time spent perform-
ing GC by up to 50.7% and 33.6% on average. The reduction is very
closely related to the number of times the GC mechanism is invoked.
Figure 9 helps show the relationship between the number of times
GC is triggered and the time spent on GC. GC frequency is reduced
up to 56.4% and 46.7% on average. The reason being is IPPBE can
more quickly get back to the other side of the GCB by reclaiming
more space per unit of time. However, reducing the frequency of
GC operations does not always result in a linear reduction in time
spent on GC. The reduction in time spent can be attributed to its
heavy reliance on the ability to reduce the number of valid page
copies. For instance, stg0’s reduction in page copies is the smallest
and in turn sees the smallest reduction in time spent on GC. This is
because the cumulative latency of moving pages is often worse than
that of the erase operation. Nevertheless, being able to efficiently
erase and move pages leads to a long term reduction. While it is
possible the initial use of IPPBE could see a longer GC latency due
to page movements, this eventually leads to high efficiency of GC
thus limiting its need and time spent performing the operations
associated. Figures 10 and 11 demonstrate that reducing the time
spent on GC has a ripple affect on the overall average read/write re-
sponse times of the trace. The average read response time is reduced
up to 47.0% and 16.5% on average. The average write response time
also decreases by up to 45.4% and 14.8% on average. The results
vary based on how large of a portion the baseline’s time is spent
on GC.

5.3 Energy Analysis

An energy analysis was conducted to investigate the energy im-
pact of using the IPPBE command. The FlashPower simulator was
used to calculate the energy consumption of the read, write, and
erase operations given the SSD configuration provided in Table
1. The results indicated the following energy consumptions: Read
= 2.1uJ; Write = 12.3u]; and Erase = 22.5u]. Calculation of energy
consumption for GC was as follows: Each page copy requires a

projo

m Baseline IPPBE

Figure 8: Total Time Spent on Garbage Collection

1.2

)

prno

m Baseline IPPBE

Figure 9: Garbage Collection Calls

= Baseline IPPBE

Figure 10: Average Trace Write Response Times

m Baseline IPPBE

Figure 11: Average Trace Read Response Times

read and write command so the energy to move pages during GC is
the sum of the read and write energy multiplied by the number of
pages moved. Then, this value is summed with the product of the
erase energy and number of blocks erased. Using FlashPower and
[9] it can be concluded that the energy consumption of adding an
additional block during the erase pulse causes the erase energy to
increase linearly as the majority of the energy is consumed by the
bitlines. Figure 12 shows that the savings in energy expended by
GC can be as high as 44.1% and 19.3% on average. The results are
a by-product of the reduction of pages moved and blocks erased
in each trace. The GC energy savings most closely resembles the
results of the pages movements because there tends to be signif-
icantly more pages moved than blocks erase, therefore the write
energy becomes the dominate contributor. It should be noted that
these values change based on the size of the plane.

hmo prxy0

m Baseline IPPBE

Figure 12: Garbage Collection Energy Analysis

6 CONCLUSIONS

Intra-Plane Parallel Block Erase (IPPBE) is the first advanced com-
mand, to the best of the authors knowledge, to bring parallelism
to the NAND flash block-level. By taking advantage of the well
structure of the plane and modifying the block decoder, IPPBE can
improve endurance, performance, and energy consumption by re-
ducing the time spent performing GC. IPPBE alleviates GC’s impact
by reclaiming more space per erase operation and clustering valid
pages in the same block to reduce future page copies. IPPBE can
also be modified to operate in conjunction with previous GC design
schemes for further enhancement.

REFERENCES

[1] Y.Cai,S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu. 2017. Error Characterization,
Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives. Proc. IEEE
105, 9 (Sept 2017), 1666-1704. https://doi.org/10.1109/JPROC.2017.2713127

[2] T.Y. Chen, Y. H. Chang, C. C. Ho, and S. H. Chen. 2016. Enabling sub-blocks

erase management to boost the performance of 3D NAND flash memory. In

2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1-6. https:

//doi.org/10.1145/2897937.2898018

Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Shuping Zhang. 2011.

Performance Impact and Interplay of SSD Parallelism Through Advanced Com-

mands, Allocation Strategy and Data Granularity. In Proceedings of the Interna-

tional Conference on Supercomputing (ICS ’11). ACM, New York, NY, USA, 96-107.

https://doi.org/10.1145/1995896.1995912

Myoungsoo Jung, Ramya Prabhakar, and Mahmut Taylan Kandemir. 2012. Taking

Garbage Collection Overheads off the Critical Path in SSDs. In Proceedings of

the 13th International Middleware Conference (Middleware ’12). Springer-Verlag

New York, Inc., New York, NY, USA, 164-186. http://dl.acm.org/citation.cfm?

1d=2442626.2442638
[5] JKim, M Park, and I Shin. 2017. Improving SSD Simulator for High Reliability of
Performance Evaluation. International Journal of Applied Engineering Research
12, 15 (2017), 4836-4839.
[6] Jin-Ki Kim. 2010. Partial block erase architecture for flash memory. (Sept. 28
2010). US Patent 7,804,718.
[7] Rino Micheloni. 2016. 3D flash memories. Springer, Dordrecht, [Netherlands].
[8] Rino Micheloni, Luca Crippa, A. Marelli, and Inc Books24x7. 2010;2014;. Inside
NAND Flash memories (1st ed.). Springer, Heidelberg;New York;.
V. Mohan, T. Bunker, L. Grupp, S. Gurumurthi, M. R. Stan, and S. Swanson. 2013.
Modeling Power Consumption of NAND Flash Memories Using FlashPower. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 32, 7
(July 2013), 1031-1044. https://doi.org/10.1109/TCAD.2013.2249557
[10] Microsoft production server traces. 2008. http://iotta.snia.org/traces/list/BlockIO
[11] N. Shahidi, M. T. Kandemir, M. Arjomand, C. R. Das, M. Jung, and A. Siva-
subramaniam. 2016. Exploring the Potentials of Parallel Garbage Collection
in SSDs for Enterprise Storage Systems. In SC16: International Conference for
High Performance Computing, Networking, Storage and Analysis. 561-572. https:
//doi.org/10.1109/SC.2016.47

[12] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho Lim, Jin-Ki Kim, Young-Joon Choi,
Yong-Nam Koh, Sung-Soo Lee, Suk-Chon Kwon, Byung-Soon Choi, Jin-Sun Yum,
Jung-Hyuk Choi, Jang-Rae Kim, and Hyung-Kyu Lim. 1995. A 3.3 V 32 Mb NAND
flash memory with incremental step pulse programming scheme. IEEE Journal of
Solid-State Circuits 30, 11 (Nov 1995), 1149-1156. https://doi.org/10.1109/4.475701

[13] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swaminathan Sun-
dararaman, Andrew A. Chien, and Haryadi S. Gunawi. 2017. Tiny-Tail Flash:
Near-Perfect Elimination of Garbage Collection Tail Latencies in NAND SSDs.
In 15th USENIX Conference on File and Storage Technologies (FAST 17). USENIX
Association, Santa Clara, CA, 15-28. https://www.usenix.org/conference/fast17/
technical-sessions/presentation/yan

[3

=

[4

=

[

—

