

MicroCT based FE model of single bone trabeculae with tissue heterogeneity and anisotropy

Listed in Datasets

[About](#) [Supporting Docs](#) [Versions](#) [Citations](#) [Usage](#)

By [Max Hammond¹](#), [Joseph Wallace²](#), [Matthew R Allen³](#), [Thomas Siegmund¹](#)

1. Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA 2. Department of Biomedical Engineering, Indiana University-Purdue University at Indianapolis, IN, USA 3. Department of Anatomy and Cell Biology, Indiana University School of Medicine, IN, USA

This publication contains a finite element model for the analysis of single bone trabeculae under consideration of bone tissue heterogeneity and tissue anisotropy.

[Download Bundle \(57 MB\)](#)

[Additional materials available](#)

[0 citation\(s\)](#)

101 total view(s), 21 download(s)

Share: [Facebook](#) [Twitter](#) [Email](#) ...

Archived on 26 Jul 2018

Licensed under [CC0 1.0 Universal](#)

Description

The model for bone tissue heterogeneity and anisotropy follows:

Hammond, M.A., Wallace, J.M., Allen, M.R. and Siegmund, T., 2018. Incorporating tissue anisotropy and heterogeneity in finite element models of trabecular bone altered predicted local stress distributions. *Biomechanics and Modeling in Mechanobiology*, 17(2), pp.605-614.

In this publication the finite element model, material set assignment and local orientations are provided.

This dataset contains an inp file in the syntax of Abaqus/Standard software v2017.

Cite this work

Researchers should cite this work as follows:

Hammond, M. A., Wallace, J. M., Allen, M. R., Siegmund, T. H. (2018). **MicroCT based FE model of single bone trabeculae with tissue heterogeneity and anisotropy**. Purdue University Research Repository. doi:10.4231/R7H41PP9

[BibTeX](#) [EndNote](#)

Tags

[Biomedical Engineering](#) [Bone](#) [Finite Element Analysis](#) [Mechanical Engineering](#)

Notes

Version 1 of Trabeculae Model with Heterogeneity and Anisotropy

Acknowledgement:

This material was supported by the National Science Foundation under Grant No. 1643164.