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ABSTRACT
In this paper, we propose a new continuous verification platform
on smart mobile devices. To this end, we integrate gesture-based
features with interaction with social networking apps to verify user
identities without minimum requirement for a password, pin code
or biometric means. The continuous verification subsystem of this
work proposes a novel two-step system for verification of users.
The subsystem works by having two accurate models working as
a primary and backup; when the primary fails the backup takes
over to confirm or deny the conclusion of the primary model. The
false acceptance rate (FAR) and false rejection rate (FRR) achieved
under the proposed two-step system are shown to be 2.54% and
1.98% respectively, compared to the FAR and FRR of single-step
verification, which achieved 3.15% and 9.13% respectively. Further-
more, the proposed system also improves the stability of continuous
verification. In this work we show that the single step systems are
inconsistent when analyzing small feature sets or slightly varied
datasets. During both of these instances, the proposed system stays
consistent, maintaining a high verification rate.
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1 INTRODUCTION
Human-Computer Interaction (HCI) is a mix of human psychology
and computing, making software design a science. The field often
involves the classification and identification of types of users and
their behavior. [23]. By integrating a machine learning component
to HCI the identification and classification of a user’s behavior be-
comes a much easier task. Many forms of supervised learning are
suitable for usage pattern analysis [3]. Putting this into practice,
the authors of [10] study using mobile usage as a means for user
identification. In the course of this work they account for many
factors, ranging from button presses to actual numbers dialed. The
authors test multiple different methods of analysis, including differ-
ent hash sets and algorithms as well as different feature set choices.
Their bloom filter and hash set show promising results in their
experiments by reporting that real-time analysis of mobile usage
patterns is not only possible but it can be quite accurate. In a work
by Anjomshoa et al. [4], the authors create and use a mobile ap-
plication called TrackMaison ("Track My Social Activity in Social
Networks") that is capable of monitoring social media activity and
the sensors being used during the activity. Their analysis use a
supervised learning mechanism in the form of an SVM as well as
an unsupervised mechanism, namely DBSCAN. The results in that
research show that it is possible to verify users with less than 10%
false rejection rate, and up to 90% accuracy for biometric authentica-
tion. An analytic work by Ramadan et al. [22], analyzes touchscreen
monitoring and shows that session analysis performs better than
raw analysis of touchscreen data. The researchers also found that
the more abstract the model of feature set, the more training is
needed for machine learning algorithms to be accurate. They rec-
ommend training a final product machine learning algorithm on
various models, screen sizes and resolutions among other variables.

As mentioned by various and widely accepted sources, smart-
phones and personalized smart devices combined with effective
HCI solutions are strong candidates of non-dedicated sensing sys-
tems, commonly known as mobile crowd-sensing systems (MCS).
One of the biggest issues in a MCS system is user trustworthiness.
In [20], the authors state that the correctness and truthfulness of
the acquired data must be verified. This is because a user could be
malicious and submit untruthful data, or a device could be malfunc-
tioning and submitting invalid data. This notion is reinforced in
multiple works [18, 19, 21]. In both [20] and [18], the authors define
new ways of trying to overcome the issue of trustworthiness using
scoring and game theory respectively. In the works [21] and [19],
the trustworthiness verification systems are applied to applications
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through simulations and their results seem to be effective, how-

ever below what a real-world application of an MCS should aim

for. One way to start overcoming the trustworthiness issues, is to

introduce a sociability-based verification system where sociability

is the usage of different social media applications by individual

users. This is a topic that has already been partially explored. In [5]

the authors show a sociability based verification can dramatically

improve trustworthiness of the users and their data. This can be

improved further by adding in another set of user-specific data, in

this case gestures on mobile devices. Having these two sets of data

combined can improve the verification process for the users and

help overcome the trustworthiness issues.

In this paper, we aim to address this issue by a continuous verifi-

cation platform that bridges gestures and sociability. The proposed

system utilizes two machine learning-based verification models

that would complement each other. In this system sociability and

gestural features complement each other. In the case of a failure

in the verification of a user on the smartphone under one of these

models, verification through the other model is called for through

a posterior test in order to verify or reject the user profile based on

the behaviometric data. On small scale test scenarios, we achieve

99.99% verification success, which is a remarkable improvement

over the 93.28% success of a single-model system.

2 BRIDGING GESTURES AND SOCIABILITY

IN CONTINUOUS VERIFICATION

A cyber-physical identity (CPI) is a digital representation for a

physical known for a specific user. For this work, we can form CPIs

to improve continuous verification where the physical known is

the touch-screen data yielded from gestures. The previous work

involving TrackMaison [4, 6] identified users using sociability (i.e.,

social activity and sociability factor) which shows it has a similar

quality to CPI; users produce unique data. Since both CPI, in the

form of gestures, and sociability can be used to identify users, their

data can be combined to improve their verification rate. Since the

previous sociability verification was done using machine learning

(ML) techniques we adopt the sociability-based verification and

extend it to improve verification success by introducing gesture

tracking into sociability tracking. Machine learning (ML) exploits

historical and/or current data to solve problems including those

involving prediction of behavior [2]. Therefore ML has been a

popular method to address user verification and authentication

based on behavioral biometrics [14, 15, 24].

Our approach is to study various ML models and choose one

based on the model accuracy. To start, two different ML models are

tested for use on the gesture data. They serve as an entry point to

understanding the data. Both were built and tested by the scikit-

learn package 1. First, a simple linear logistic regression (LLR) is

modeled as seen in Equation (1) [25],

P =
1

1 + e−t (1)

In the equation, t is represented as β0 + β1x where β0 and β1
represent the intercept from the linear regression and the regression

coefficient respectively. The goodness of fit is either calculated by

1http://scikit-learn.org/

the classic R2 value or the newer Pseudo-R2s. R2 is the square of
the correlation between the predicted and actual values. This can

be represented as

R2 = 1 −
∑N
i=1(yi − ŷi )2

∑N
i=1(yi − ȳ)2 . (2)

with N representing the size of the data, y being the output, ȳ is
the average of all output values and ŷ is the expected outputs [13].

Similar to R2, the pseudo-R2s represents the fitness of the model.
There are several versions of these calculations each with their own

benefits and failings, but they all center around using R2 as a base
for categorical data such as in machine learning. Since they are

variations of R2 they have often been labeled as pseudo-R2. Freese
and Long present a comprehensive breakdown of the common

pseudo-R2s and their benefits in [13].
Training and execution is performed using the data collected

during the first session. This particular model can achieve an accu-

racy level up to 55%. We chose to test with this model first due to its

simple nature; This serves as a good baseline against the RF-based

modeling since LLR models have similar performance in terms of

speed, and for a system like this a faster analysis is ideal.

We adopt a random forest (RF) model trained and run on the

behavioral data. Random forest works on a data setD represented as

shown in Equation (3) where xk is a feature vector of d dimensions
(i.e., features) as shown in Equation (4).

D = {(x1,y1), ..., (xn ,yn )} (3)

xk = (xk1, ...,xkd ) (4)

An RF classifier is a large classification tree with a classification

function that outputs a binary value. This makes RF a large binary

tree where each decision is based on determining if a given feature,

Xi is less than a predetermined threshold, a. In order to build this
tree the model must split the data in a half and continue that down

the tree until the splitting is no longer significant. The splitting

is determined by minimizing the residual sum of squares (RSS) as

shown in Equation (5) where yL and yR represent the mean y-value
for the left and right sides, respectively. Once the tree is built via

splitting, it can be used for testing. In anML application the training

done on top of random forest is called bootstrap aggregation. In

simple terms the training data is randomly broken up and sepa-

rate trees are developed for these subsets of data. Predictions and

probabilities for unseen samples are then made by averaging the

prediction across all the individual trees. This technique is com-

monly used because it decreases the variance of the model without

increasing the bias. It also helps reduce the issues with typical RF

classifiers where outliers or noisy data cause erratic results.

RSS =
∑

lef t

(yi − yL)2 +
∑

r iдht

(yi − yR )2 (5)

In our study, the RF goes through two different tests each having

a separate criterion. The first criterion is the entropy values, this

yields an accuracy of 94.4%. The second criterion, Gini index (impu-

rity index), leads to an accuracy of 93.4%. Although the difference

between the two is small, it is safe to state that the entropy criterion

performs better and is thus used going forward. The next stage of
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the analysis is to build a similar model for the new sociability data.
The model’s accuracy performs similarly with a 93.7% accuracy.

Building a model containing separate datasets which are not
guaranteed to be correlated is a complicated process. The computa-
tion time for training and testing is often increased for these more
complex models. Instead, in the interest of time as well as realistic
computational limitations, it would be beneficial to leave the two
as separate models that work together during the verification.

To this end, in this system the authentication is handled by the
primary model until a failure in verification. In that case, the backup
ML model is used to double-check the failure of the primary model.
With the backup model for this system being proven to identify
and verify accurately in the previous works, if the primary model is
also accurate the overall system becomes very accurate. Specifically
in this work, we test both gestures as primary and sociability as
primary.

To build this system, an ML model type needs to be chosen. It is
worth noting that various ML algorithms can be used in this system;
however the purpose of this study is to show the applicability
of a two-stage ML-based approach in continuous verification of
smartphone users. To this end, one candidate is random forest
(RF) classifier. RF performs very efficiently and accurately when
encountering data similar to what it was trained on, and in our
testing outperformed the LLR classifier. One of its main drawbacks
is that the accuracy falters significantly when encountering data
that does not follow any of its predetermined patterns or could be
considered an outlier. However, this work is focusing on increasing
accuracy of verifying already known users without introducing
spoofing into the system. This also makes finding a way to improve
to spoof-protection of RF into a possible future work. In the next
section, we also include an analytic justification for the selection
of RF as the ML model for both sociability and gesture datasets.

3 PERFORMANCE EVALUATION
The feasibility study of the proposed two-stage verification has
been performed with a limited participant set of users across two
different sessions. Each of these sessions used a different tracking
service (i.e., TrackMaison 1.0 and TrackMaison 2.0). In the first
session which ran for five weeks, the participants used the energy
efficient service in TrackMaison 2.0 [1]. In the second session, the
non-optimized service in TrackMaison 1.0 was used for only two
weeks. This shortened session is only to serve as an additional
control for comparison between usability of the two apps. The
previous version of TrackMaison was done with this service so
there is already sufficient data. The collected data is provided by
NEXTCON Research Laboratory and can be found at [17].

3.1 Feature Set and Its Reduction
In addition there is an entirely new set of data being added in this
work. The new data comes from the gestures performed while us-
ing the TrackMaison application. The data that can obtained from
gesture tracking varies from gesture to gesture since some gestures
have multiple events. One example of this is a double tap, since
there are two touches in a double tap there is twice the data of
a single tap. The gestures being tracked in this work are the fol-
lowing: single press, long press, double press, fling, and scroll. The

default case is that the gesture contains one event, an x location, a
y location, and the type. The last two events–fling and scroll–both
have two events and a different set of initial data. Instead of loca-
tion, they have velocity and distance respectively. Each event is
comprised of its own set of data. This includes the following: action,
actionButton, id, x, y, toolType, buttonState, metaState, flags, edge-
Flags, pointerCount, historySize, eventTime, downTime, deviceId,
and source.

The correlation matrix has been obtained using the ’pandas’
and ’seaborn’ packages in a python environment. The ’pandas’
package is used for the analysis as it has become a standard in the
python environment. ’Seaborn’ is a package that helps with the
visualization of the data by creating a heatmap for the matrix. The
result of correlation analysis is illustrated in Figure 1.

Figure 1: Correlation matrix for gesture data.

The high correlation along the y = −x axis of the figure shows
the correlation of each feature to itself, which is intuitive that all the
values on the diagonal are 1. Some other highly correlated features
includeMotionEvent1eventTime andMotionEvent1downTime. This
makes sense because on the Android platform for the first motion
event in a gesture, these two values are always the same hence the
value of 1 on the figure.

Another noteable relationship is the higher correlation between
MotionEvent2x0 and MotionEvent1x0. The high correlation be-
tween these features can be explained by fling and scroll gestures
being the only ones with two events. When users want to fling
through or scroll a list they tend to do so in a vertical manner
restraining their movement in the x direction.

Although feature set reduction has been done in previous works
for the sociability data the new battery related features could have
correlations that were not known. To rectify this, the sociability
data went through the same process as the gesture data resulting
in the correlation matrix seen in Figure 2.

As can be seen in the figure, there are several highly correlated
features. Timestamp, timestart, and timeend are highly correlated
with one another, therefore two of them should be removed leav-
ing timestart. Furthermore, batteryStart and batteryEnd are also
correlated as this can occur due to the battery levels not changing
much when opening and closing a social application. BatteryDrain

Session: Routing and Authentication MobiWac’18, October 28-November 2, 2018, Montréal, QC, Canada

53



Figure 2: Correlation matrix for sociability data.

is highly correlated with timespent, and slightly correlated with
datausage. While correlations under both cases are intuitive for this
system, since batteryDrain and timespent are both highly correlated
so one must be removed. In this case, it is more viable to remove
batteryDrain since it has a higher overall correlation with the rest
of the features, mostly due to its slight correlation with datausage.

3.2 Results under Selected ML Model
To determine the threshold in the RF algorithm, the threshold should
be varied and compared to the overall performance of the system.
Like any other test this should be averaged over several runs, in
the case of this work it was repeated and averaged 500 times. Ver-
ification here and for this work is the accuracy with which users
were properly authenticated as themselves. The result of this test
can be seen in Figure 3.
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Figure 3: Performance of variousmethods on the first collec-
tion session.

For this system 0.6 allowed for very high performance and accu-
racy and should still deny most spoofing attempts in future works.
This is because when the genuine user had a low probability such
as 0.6 while the other users only reached a maximum of 0.4 which
leaves significant room. Additionally according to the graph, 0.6 is

the highest threshold that can be used before significantly perfor-
mance impacts are seen; dropping from 91.22% to 80.80% between
0.6 and 0.7. It is also significant in itself that 0.6 happens to be
the highest thresholds to be above 90% which is generally the bare
minimum to look for in these tests.

Upon determining the threshold, in order to ensure stable and
reliable results the algorithm ran on each dataset (gestures and
sociability) 1000 times with the final result being the average per-
formance. For the first collection session the accuracy for gestures
and sociability were 92.45% and 98.12% respectively. The results for
the second session were 93.25% and 99.52% for gestures and socia-
bility respectively. The results for the sociability data are skewed
high due to having a smaller dataset which does not allow for as
much testing, as well as have a larger number of features than the
gesture data.

To complete the two-model analysis the previous methods need
to be altered to have a fall-back. In this methodology, during a
failing test case for the primary model, the most closely related
data is found and tested by the secondary model. If both models fail
then it is considered a fail, otherwise either model is able to verify.

For the gesture and sociability data, the close relation is deter-
mined by the smallest difference in event times between the two
sets. That is, if a gesture fails to verify, the sociability data with
the closest timestamp for that device is used to verify. Both possi-
bilities of this model are tested; gestures and sociability switching
off as the primary model. For the gestures-sociability (G-S) model,
gesture-based verification serves as the primary model whereas
in the sociability-gestures (S-G) model, sociability serves as the
primary model.

In the G-S model, the overall accuracy in the two sessions end
up being 99.25% and 99.99% respectively. The mirrored model, S-G
perform similarly yielding 99.99% and 99.81% for the respective
two sessions. From these overall results one would refrain from
favoring one particular version of the dual-model system, however
both S-G and G-S outperform the single-model analyses.

An interesting way to view the performance is on a user-by-user
basis. Not only does this give a unique perspective on the perfor-
mance of the algorithm, but it can help uncover deeper insights into
the data itself. It is to be expected that the results for the second
session are less consistent than the first session due to the smaller
dataset size. This limits not only the amount of data that can be
tested on but the amount of data that can be trained with. Here, we
go through a selection of users to show different performances. We
start with the anonymous user A in Figure 4.
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Figure 4: Performance of various methods for User A.

For all the user-by-user charts, the labels on the x-axis represent

the different analyses run on the data.G represents the gesture-only

model, S represents the sociability-only model, G − S represents
the dual model approach with gestures acting as the primary and

sociability as the backup, and S−G represents the flipped version of

that where sociability is the primary model backed up by gestures.

Looking at the gesture-only model, one can see the accuracy

varies quite heavily, this is due to having a small feature set. If

the anomalies were eliminated and those additional features added

back in the performance would likely be a lot more consistent.

The results for User B depict a similar situation, except in this

case both the single model analyses vary in accuracy. As can be

seen in Figure 5.
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Figure 5: Performance of various methods for User B.

The single model analyses for User C also have a slightly larger

variation than the dual model analyses. It can also be seen that

overall the dual model systems yield higher accuracy in tandem

with the consistency. This can be seen in Figure 6.
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Figure 6: Performance of various methods for User C.

Overall, user C performs worse when using the gesture data as

primary. That is, the gestures-only model perform worse overall

than the sociability-only model and the G-S model perform slightly

worse than the sociability-gestures model. This can indicate that

this user is a social media user that uses media more heavily. This

would mean that they have more sociability data since they are

using the application, but in the case of media like video they would

not be directly interacting with the application itself.

The final user, User D, is the one with the anomalous data so the
results for this user will likely be worse than the others. At a quick

glance of Figure 7, one can see that user’s second session perform

significantly worse than the first session.
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Figure 7: Performance of various methods for User D.

Although this user has anomalous data, the final results for

the first session were all very high. This could indicate that the

anomalous data from the user is more prevalent in the second

session. Here we also see the largest variation from either of the

dual-model systems by the sociability-gestures model; dipping from

99.91% to 95.3%. However, this is still more consistent for the user

than either single model system by a significant amount. The single

model system dropped by 10.32 per cent points at minimum versus

the dual model’s 4.61.

Overall for the two single model analyses, the accuracy dips as

low as 69.01%. There is a similarity between the graphs for both

these in that User A still performs quite poorly for the gesture only
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model. We can also see that although the two single model analyses

are unstable with the smaller dataset, from gestures and the second

session overall, the dual-model system stays reliable and consistent.

The lowest dip between these two models is down to 95.3% for User

D. The user has an unusually low number of sociability data points

during the second session which could lead to a less reliable model.

Significant results like these are tabulated in Table 1.

Table 1: User verification testing results.

Model Average Accuracy Lowest Accuracy Largest Variation

G 88.57% 69.01% 19.56%

S 96.22% 87.85% 10.32%

G-S 99.68% 98.24% 1.76%

S-G 99.62% 95.3% 4.61%

From the table, it can be seen that the single model systems

performed worse on average, had worse lowest accuracies, and had

a large variation between the two sessions. On the other hand, the

two model systems performed well in each category with system

G−S slightly outperforming the other. In a real world system,G−S
would be an ideal model due to the minimal variation between

sessions.

In the previous work involving TrackMaison 1.0 [7], the verifi-

cation tests yielded an average accuracy of 95.56% for sociability

data alone. The performance of their model closely resembles that

of model S as they use the same type of data. Versus the two dual
model analyses however, the new dual model systems outperform

the old system. Previously, the authors faced issues properly ver-

ifying users that fell into different categories of amount of data

produced ranging from 90% to 100% accuracy. This is quite similar

to how S performed across the two sessions of varied sizes. The
dual model systems improve upon this aspect as well performing

consistently regardless of the dataset size.

In another similar work, authors Meng, Wong, Schlegal and

Kwok [16] use a gesture-based verification system to verify users

without biometric means. Their maximum reported accuracy was

92.2% which slightly outperforms the model G. When compared

with the gestures-primary dual model G − S , the previous work’s
accuracy falls short; the dual model systems beat the previous work

by ≈ 7.5% percentage points.

The dual-model system has shown that not only can it boost

accuracy over the two single model system like in the first collec-

tion session, it can also perform stably when faced with a reduced

size data set like in the second collection session. Both of these

improvements can help significantly in continuous verification as

these systems need higher accuracy and want to be able to do it

quickly with as little data as possible.

3.3 Cross-Validation Results

In the previous section we explored pure verification where the

users were tested only against themselves. In cross-validation, the

data from every user is tested against every user to determine

which data would be falsely accepted or falsely rejected by their

model. The metric to test each model on are called false acceptance

rate (FAR) and false rejection rate (FRR). FAR is the rate at which
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Figure 8: Results of the cross-validation testing.

impostors are incorrectly accepted as someone else as shown in

Eq. 6. FRR is the rate at which the genuine users are rejected as

themselves as seen in Eq. 7.

FAR =
impostors accepted

# o f impostor tests
(6)

FRR =
дenuine users rejected

# o f дenuine tests
(7)

Because FRR is testing users against themselves, the results will

be quite similar to the previous section however this metric will

also be tested and shown here.

The testing setup is the same as the previous section, the only

difference is that each data point will be tested against all users as

opposed to testing exclusively that user. Here when testing a user’s

data against itself that is referred to as a genuine test. When it is

tested against another user’s data it is referred to as an impostor

test. The tests here, like in the previous section are the average

result of 1000. In these tests the goal is to have the lowest score for

both FAR and FRR.

For the resulting values we average the results from each user

across both sessions to arrive at an average FAR and FRR. The

results for the cross-validation are visualized here in Fig. 8.

From a glance at the figure, both the single model analysesG and

S have significantly higher FRRs than their dual model counterparts
by at least 4%. For FRR we can see the best result is S −G barely

beating model G − S On the side of FAR, we can see model G − S
performs better than the other three models with modelG and S−G
being about equal.

Using Table 2, we can attach more solid numbers to each model

by viewing their performance between the two sessions.

Table 2: Cross-validation results across each session.

Session 1 Session 2

Model FAR FRR FAR FRR

G 2.62% 7% 2.91% 15.87%

S 0.99% 10.17% 6.1% 5.23%

G-S 1.35% 3.7% 3.2% 0.99%

S-G 0.15% 1.9% 5.46% 2.01%
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From the table we can see the FAR of model G was better than
model S −G on average however model S −G significantly outper-
formed G in FRR. Model G − S performed better than both single
model analyses for both FAR and FAR and was only slightly beaten
in FRR by the other dual model S −G. From these results and the
results from the previous section we can safely say the dual model
analyses outperform the single model analyses presented here.

To get a sense of how consistent each model performs, we can
view how each model performed for each user across both sessions.
This is listed in Table 3.

Looking at the results for G and S , we can see a wide variability
in their performance between each user. Some users perform really
well while others vary by over 10%. We can see here, like before, the
two single model analyses perform poorly for FRR with multiple
results over 10% for each model.

Moving on to the dual model systems we can see that they main-
tain consistent performance across all users. Although between
the two S −G has more variation of results between users, it still
has better results for FRR than G − S . G − S on the other hand has
a lower FAR which is an important metric in these systems. For
a real world application, both the dual models have shown they
could perform well, with G − S having the edge due to its better
FAR performance.

It is also important to verify results other existing works. Zheng
et al. used raw touchscreen data for verification [27]. In their testing
they also performed cross-validation testing. Their final result was
an equal error rate of 3.65%. Compared to this work we can see that
model S performed around the same for FAR but was significantly
worse for FRR. Model G performed better for FAR but like model S
was significantly worse for FRR. In contrast, both the dual model
systems outperformed that work in both FAR and FRR.

Not only were the dual model systems able to accurately verify
the users in the previous section, in this section they were able to
accurately deny other users from being verified as another user.

4 RELATED WORK
Anjomshoa et al. introduce and develop a social network track-
ing mobile crowdsensing system named TrackMaison (Track My
Activity In Social Networks) [5]. This was able to track data usage,
location, usage frequency, and session duration of five different
social network services namely, Facebook, Twitter, Skype, LinkedIn,
and WhatsApp. The authors also introduce a social activity rate,
the data usage rate of the user and sociability factor metrics, a func-
tion of the user’s relative session durations. This gets broken down
into three behavior types: highly active, moderately active, and low
active. Using this setup, their initial analysis was able to show that
the system could function as a form of continuous verification for
mobile users. Furthermore, they present a relevant case study about
Instagram users. In this case study, it is broken down much the
same way with the three types of users. The results here are also
very promising. The low active users are identified with a negligible
false acceptance rate and the highly active users are identified with
a false acceptance as low as 3%.

Research using TrackMaison was expanded on this in another
work [7] where the researchers collected a large amount of data and
did a full experiment with their own framework TrackMaison. The

authors looked into using the data with machine learning to be able
to identify the users. More specifically they looked into using SVM
as well as DBSCAN in verification. In that research, they collected
data from around a dozen participants for over two months. They
showed that slightly more than 90% of the time an active user can
be identified without any need for biometric authentication.

There are many potential fields for applying continuous verifi-
cation where the benefits would be significant. One of the most
direct applications of continuous verification would be in cyber-
security. In [9], Ceccarelli et al. explore applying continuous user
verification to cybersecurity, but more specifically the security of
Internet services. The authors devise a large-scale high security
Internet service to test with both mobile devices as well as desktop
computers. The proposal is based primarily of the newer session
establishment protocol of using biometric systems over a typical
username and password login. The protocol is considered sufficient
as a replacement over the typical login, however both succumb
to the downfall of being a single verification where the entire ses-
sion is considered to be of the same user. The authors state this
as a downfall for multiple reasons: In the real world, a device can
be compromised during usage, and people may use each others’
devices which would be a change in user.

In a similar work by Bu et al. [8], the authors explored how
continuous verification can help decrease the attacks on mobile
ad-hoc networks (MANETs). This proves to be a more difficult
task than the internet service from before because in an ad-hoc
network, the sensors and biosensors that are accessible through
mobile devices are not guaranteed to be consistent.

Continuous verification and identification of users through HCI
have been shown perform well in a work by Vural et al [26] where
the authors used the time difference between keystrokes in order to
profile the users and test their data. The study was able to achieve
a False Acceptance Rate (FAR) of 3.45% and a False Rejection Rate
(FRR) of 8.82%. These results are quite accurate and are close to
what were seen in other works with a similar idea such as the work
by Leggett [12]. Both these works adopt a similar principle, and
they both test the incoming data based on an expected distribution
and known values for each user. This works very well for their
test conditions since these works are not currently in a widespread
use-case such as MCS.

In [11], the impact of data size on the accuracy of continuous
identification was explored. This is a very important proportionality
to explore for HCI in the realm of continuous verification since
the amount of incoming data from the users will not always be
constant. The authors showed that even with a smaller set of testing
data, the results for both FAR and FRR can be quite accurate. This
result is promising for an HCI-based continuous verification system
as small usages in the HCI application in the real world can only
produce minimal data sets. The more interesting of the results is
the following: If the reference profile for a user is large, the testing
data can be fairly small but is still able to produce accurate results.

5 CONCLUSION
We have proposed a dual-model system that relies on gestures and
sociability. The dual model systems performed very well boasting
an average accuracy of 99.68% for gestures-primary and 99.62%
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Table 3: Average user results from cross-validation.

User 1 User 2 User 3 User 4
Model FAR FRR FAR FRR FAR FRR FAR FRR
G 0.25% 24.72% 6.67% 3.83% 3.78% 6.4% 0.35% 10.78%
S 3.06% 0.56% 4.77% 10.43% 3.74% 8.42% 2.6% 11.39%

G-S 1.7% 2.6% 1.74% 1.91% 3.02% 2.5% 2.55% 2.37%
S-G 2.84% 3.28% 3.03% 0% 2.2% 0.53% 3.16% 2.61%

for sociability-primary. This is an improvement over both single-
models having accuracies of 88.57% and 96.22% for gesture and
sociability data respectively. Not only did the dual model system
improve the overall accuracy, but it was also able to stabilize the
verification across all the users. The single-model system was not
consistent between sessions or even between the two datasets.
Lastly, the new system was also able to maintain its accuracy and
stability when used in the second session which has significantly
less data and would be considered a small dataset.

During cross validation tests, the dual model systems signifi-
cantly outperformed the single model systems. They allowed less
impostors to be verified as another user, which is an important
metric when working with these systems. They were also able to
properly authenticate genuine users more often than the single
model systems. Quantitatively, the single model systems had an
average of 3.15% and 9.13% for FAR and FRR respectively. The dual
model systems averaged 2.54% for FAR and 1.98% for FRR.

For both verification and cross-validation testing, the two single
model systems shown here performed about the same as systems
shown in related works. On the other hand, the two dual model
systems outperformed these same systems in both rounds of testing.
Between the two dual model systems the gestures-primary model
G − S performed better than S −G in most metrics while staying
close in others.
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