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Abstract

Predicting the intelligibility of noisy recordings is difficult and

most current algorithms treat all speech energy as equally impor-

tant to intelligibility. Our previous work on human perception

used a listening test paradigm and correlational analysis to show

that some energy is more important to intelligibility than other

energy. In this paper, we propose a system called the Bubble Co-

operative Network (BCN), which aims to predict important areas

of individual utterances directly from clean speech. Given such a

prediction, noise is added to the utterance in unimportant regions

and then presented to a recognizer. The BCN is trained with a

loss that encourages it to add as much noise as possible while

preserving recognition performance, encouraging it to identify

important regions precisely and place the noise everywhere else.

Empirical evaluation shows that the BCN can obscure 97.7% of

the spectrogram with noise while maintaining recognition accu-

racy for a simple speech recognizer that compares a noisy test

utterance with a clean reference utterance. The masks predicted

by a single BCN on several utterances show patterns that are sim-

ilar to analyses derived from human listening tests that analyze

each utterance separately, while exhibiting better generalization

and less context-dependence than previous approaches.

Index Terms: Auditory importance, neural network interpreta-

tion, noise robustness, speech cues, deep learning.

1. Introduction

Noise and reverberation are among the biggest problems in au-

tomatic speech recognition (ASR) [1], hearing aids [2, 3], and

other speech communication technologies [4]. These systems are

in fact still much less noise robust than normal human listeners

[5, 6]. One theory of the remarkable noise robustness of human

speech perception is that listeners are able to identify glimpses

of relatively clean speech in a noisy mixture through bottom-up

processes and then use top-down knowledge of speech and lan-

guage to fill in the missing information between these glimpses

[7]. Our paper aims to train models to create glimpses through

a noise field that are maximally useful to a listener, in this case

a simple automatic speech recognizer. In order to do this, the

model must predict the importance of individual time-frequency

regions of an utterance to its being correctly identified by the

recognizer. As a byproduct, such a model provides insight into

the cues used by the recognizer to identify speech in noise, al-

lowing direct comparisons of them for different systems. With

certain modifications, they could also be compared with those

used by human listeners.

The combination of noise generator and discriminative rec-

ognizer leads to a network that is related to a generative adversar-

ial network (GAN) [8], but differs in several important respects.

First, instead of generating entirely new signals, the generator

component of the model creates masks that are applied to noise

and then added to the speech. Second, instead of the genera-

tor and discriminator competing against one another, they are

cooperating to correctly identify the speech in the presence of

a maximal amount of noise. Thus we call this combination of

components the bubble cooperative network.

2. Relation to prior work

The proposed technique for identifying important speech cues

builds on our previous work to do so using randomized “bubble

noise” stimuli [9]. In that system, an individual utterance was

mixed with many different instances of “bubble noise”, very loud

speech-shaped noise with bubbles of silence placed at random

times and frequencies. The intelligibility of each mixture was

measured by presenting it to a listener and the importance of

individual time-frequency points was characterized by the cor-

relation across mixtures between the audibility of the speech at

each point with the intelligibility of the mixture. We used this

technique to directly compare the cues used by human listeners

with those used by an ASR based on MFCCs and a GMM-HMM

acoustic model [10], and found them to be quite different. Due

to the need for many mixtures of each clean utterance, the tech-

nique of [9] requires approximately 10 minutes of listening time

to analyze a single utterance.

Classifiers trained on the data from [9] to predict whether a

given mixture would be intelligible to a listener were able to gen-

eralize to new productions of the same words, new talkers, and

to some extent new words. Those results utilized a different clas-

sifier trained for each word, making it somewhat cumbersome to

generalize these predictions to new contexts. The proposed BCN,

in contrast, provides a single model predicting importance for

all words, making it much more straightforward to generalize to

new words and new contexts. In addition, the task performed by

listeners in [9] is a forced choice between a small, closed set of

options, causing the importance for one utterance to potentially

be influenced by the options it is contrasted against. In the pro-

posed work, the BCN predicts a single mask for a given utterance

that must maintain its intelligibility in all contexts, making it

more informative about the utterance itself. See Figures 2 and 3

for a comparison of predicted machine importance functions and

measured human importance functions on the same utterances.

The BCN provides insight into why the recognizer makes

a particular decision and there is a great deal of interest in tech-

niques of this nature in the field of machine learning to aid in

model development and to provide explanations that could build

trust with consumers of model predictions and decisions. [11]

searched for data points that maximally activated particular neu-

rons. [12] proposed an approach that approximates the partial

derivative of a particular network output with respect to input





correct identification of the speech. The term weighted by λn

encourages the mask to contain as many 1’s as possible, due to its

preceding negative sign, maximizing the amount of noise. The

term weighted by λe encourages lower entropy of the mask en-

tries, so that they are closer to either 0 or 1. The terms weighted

by λf and λt together comprise a total variation penalty, but

with different weighting in the time and frequency directions,

encouraging the mask to be piece-wise constant. The ∆f and

∆t operators represent the first difference along frequency and

time, respectively. Note that the continuity encouraged by the

total variation penalty leads to masks that are more interpretable,

but lower resolution.

4. Experiments

4.1. Datasets

We perform experiments on the speech material from Shan-

non et al [22]. This dataset includes all combinations of three

vowels and 20 consonants in consonant-vowel (CV) and vowel-

consonant-vowel (VCV) syllables. The vowels are /A/, /i/, and

/u/, so the words are of the form “aCa”, “eeCee”, and “ooCoo”

for medial consonants and “Ca”, “Cee”, and “Coo” for initial

consonants. The 20 consonants are /b, d, g, p, t, k, m, n, l, r, w,

j, f, v, s, z, S, D, tS, dZ/. We used recordings of these words from

eight talkers, four men (M1, M3, M4, M5) and four women (W1,

W3, W4, W5). The dataset recommends avoiding M2 and W2.

This gives a total of 960 utterances made up of 8 speakers, 2

forms, 3 vowels, and 20 consonants. The signals were sampled

at 44.1 kHz. This simple stimulus set allows us to focus on

developing the BCN technique.

4.2. Training the network

We use the Librosa library [23] to transform the time domain

signal into log-magnitude spectrograms by short-time Fourier

transform (STFT) with a frame size of 64 milliseconds (ms), a

hop size of 16 ms. Because the words have different durations,

all utterances are padded to be the same length by inserting zeros

before the speech. All operations on audio signals occur in the

complex STFT domain. Before the complex STFTs are input

to any neural network layer, the square magnitude is derived

from the sum of square of real and imaginary matrices, and

then the magnitude is converted to dB and normalized across

time to have zero mean and unit variance. After this processing,

the spectrograms have 1412 frequency bands and 94 time steps.

Finally, we represent complex STFTs by stacking the real and

imaginary matrices on top of one another in Tensorflow.

The generator is an LSTM network. The discriminator in-

cludes two LSTMs and an MLP. The hidden representations of

the two LSTMs at the last time step of each utterance are con-

catenated together and fed into the MLP, which has two hidden

layers and a single sigmoid output. The MLP uses the ReLU

activation function. The LSTM weights are initialized using the

Glorot method [24] and the MLP weights are initialized using

the method of [25]. All the biases are initialized to 0. The net-

work is trained using back propagation with Adam stochastic

gradient descent [26].

4.3. Experiments

We performed two experiments to evaluate the BCN. The first

uses just the discriminator to show that it can successfully rec-

ognize words from different speakers without additional noise.

The second trains the generator to add noise to the input of the

Table 1: Recognition accuracy (%) for the BCN (exps 1 and 2)

Model Training Development Test

Discriminator 89.1 85.4 84.0
Discriminator + Generator 88.5 84.8 83.8

pre-trained discriminator.

Experiment 1: In this experiment, our network only in-

cludes the discriminator without the generator. Its purpose is to

train the discriminator and find the best hyperparameters for it

based on classification accuracy on the development set using a

randomized hyperparameter search. Speakers M1, M3, W1, and

W3 were used for the training set; M4 and W4 were used for

the development set; and M5 and W5 were used for the test set.

To train the model, we form pairs of words, with equal numbers

of matching pairs and non-matching pairs. For each word in

the training set, we generate three positive pairs by matching

it with the same word spoken by the three other talkers, and

three negative pairs by matching it with three randomly selected

non-matching words, also from other talkers. Similarly, for the

development and test sets, there is one positive pair and one

negative pair, since a production is never paired with itself. Thus

there are 2880, 480, and 480 pairs in the training, development,

and test sets, respectively. The dither noise reduces over-fitting

on this relatively small dataset by introducing variability in both

the masks and the speech references between epochs. All mod-

els were trained using early stopping on the development set,

using the weights from the epoch with the highest development

set accuracy. The discriminator with the best development set

accuracy has the following hyperparameters: both LSTMs have

200 hidden units, the MLP has two hidden layers consisting of

100 units each, the learning rate is 6 × 10
−5, batch size is 24,

and the dither noise (a in Figure 1) has the value 0.05.

Experiment 2: In this experiment, we add the generator

to the discriminator trained in experiment 1, the discriminator

parameters are frozen. It uses the same input pairs as experiment

1. Its purpose is to find the mask that reveals as little speech as

possible while allowing the discriminator to correctly identify

the speech. The generator that minimizes the loss (3) on the

development set has the following parameters: the LSTM has

100 hidden units, the gain A = 4.0, λd = 2.0, λn = 1.1,

λe = 0.05 λf = 20, and λt = 0.03753.

5. Results

Table 1 shows the results of experiments 1 and 2. As expected,

accuracy for both models is slightly higher on the training set

than on the development set. Early stopping prevents this gap

from growing too large. Additionally, both models generalize

well to the test set of utterances from completely different talkers,

achieving classification accuracies of 84.0% and 83.8%. This

is well above the chance level of 50%, showing that this simple

speech recognizer can accurately generalize across productions

of the same word from different talkers. In addition, we compute

that on average, 97.7% of spectrogram points on the 480 test

utterances are obscured by noise (a mask value of at least 0.95),

yielding an average signal to noise ratio (SNR) of −27.29 dB.

The fact that the discriminator can achieve almost the same word

identification accuracy when the generator obscures almost all of

the test word with noise shows that the generator can accurately

predict important regions from the clean speech.

Figure 2 shows example masks created by the generator on



/di/ /idi/ /udu/ /AdA/ /AtA/ /tA/

Figure 2: Important regions for six utterances from talker W5 in the test set predicted by the BCN mask generator. Important regions are

set to full lightness in the HSV color space, transitioning to half lightness for completely unimportant regions.

the test set words /di/, /idi/, /udu/, /AdA/, /AtA/, and /tA/. These

were selected so that they could be compared to the results for

/AdA/ and /AtA/ from [9] (shown in Figure 3), and to provide an

additional variety of vowels and word forms. First, focusing

on /AdA/ and /AtA/, it can be seen that both human-derived and

generator-predicted importance is high during and around the

stop and burst of the consonant in the areas between the first two

formants. Additionally, both show importance for the lowest

frequencies around the fundamental, although for humans this

only appears in /AdA/.

The largest difference between the human and machine im-

portance is in the high frequencies around the stop burst. While

the generator produces several smaller noise-free areas in this

region, the human importance spans a large frequency range.

This could be an artifact of the bubble measurement process for

humans [9], because the bubbles are scaled to the ERB scale

[27], which makes them “taller” at higher frequencies, reduc-

ing their resolving power. While the λf term in (3) attempts

to create consistency in mask values at adjacent frequencies, it

does not do so in a frequency-dependent way, as the ERB would.

Formulating the mask prediction task in ERB frequency might

make it more consistent with the human results.

Comparing the masks predicted for /idi/, /udu/, and /AdA/ in

Figure 2 shows interesting differences between importance in

vowels, which we did not previously investigate with humans

because of the time required to perform the corresponding listen-

ing tests. It seems that for all of these words, the mask generator

reveals specific regions during the vowels that differ between

them, and a region at the beginning of the second syllable around

1300 Hz for all three vowels. They additionally all include

some revealed regions during the stop burst. The masks for the

consonant-initial words appear to be very similar to the second

half of the consonant-medial counterparts. Surprisingly, the

mask generator reveals a relatively large proportion of the ends

of the utterances, where there is little speech energy in certain

cases. It is possible that it is in fact this lack of speech energy

that is informative. For example, /di/ and /idi/ show an important

region between 1 and 2 kHz after 1200 ms, even though this area

does not contain speech energy. Speech energy is present, how-

ever, in the same region in the words /udu/, /AdA/, /AtA/, and /tA/.

It appears that a lack of energy helps to distinguish the vowel /i/

from /u/ and /A/. Alternatively, it is possible that these trailing

importance regions are caused by the time assymmetry of the

uni-directional LSTM we are using. In future work, we will

compare this with a bidirectional LSTM for mask prediction.

6. Conclusions and future work

In this paper, we introduce a deep neural network structure to

identify the important regions of speech in noisy conditions. We

/AdA/ /AtA/

Figure 3: Importance derived from human responses to random

bubble noise (from [9]). Important regions are set to full light-

ness in the HSV color space, transitioning to half lightness for

completely unimportant regions.

show that a simple paired-input speech recognizer with a clean

speech reference can produce accurate classifications of whether

two utterances from different talkers contain the same word or

not. Furthermore, we show that it is possible to train an LSTM

neural network to identify from clean speech, large regions of the

spectrogram where noise can be added without disrupting this

recognition performance. These masks show patterns that are

similar to analyses derived from much more expensive human

listening tests [9], but the mask generator model provides a single

predictor for all words and produces more general predictions of

speech importance that are not dependent on the specific context

of the choices offered to the listener.

Going forward, we will train mask generators for more so-

phisticated automatic speech recognizers to be able to compare

more directly their performance and the cues that they use to

identify specific utterances. The mask generator provides a data

augmentation method that could help improve the noise robust-

ness of these systems. Ultimately, we hope that it will be possible

to use this system with human listeners to identify the cues that

they use to recognize speech in noise and then to make ASR

systems focus on these cues directly, hopefully improving the

noise robustness of the ASR systems by doing so.
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