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Abstract

Let l be a large enough cardinal number (assuming the Generalized Continuum Hypothesis it
suffices to let l = Àw). If X is a Banach space with Xdens l( ) ³ , which admits a coarse (or uni-
form) embedding into any c0 G( ), then X fails to have non-trivial cotype, i.e. X contains ℓ n

¥
C-uniformly for every C 1> . In the special case when X has a symmetric basis, we may even
conclude that it is linearly isomorphic with c Xdens0 ( ).

1. Introduction

The classical result of Aharoni states that every separable metric space (in particular every separ-
able Banach space) can be bi-Lipschitz embedded (the definition is given below) into c0.

The natural problem of embeddings of metric spaces into c0 (G), for an arbitrary set Γ, has been
treated by several authors, in particular Pelant and Swift. The characterizations that they obtained,
and which play a crucial role in our argument, are described below.

Our main interest, motivated by some problems posed in [1], lies in the case of embeddings of
Banach spaces into c0 (G).

We now state the main results of this paper. We first define the following cardinal numbers
inductively. We put 0 0l w= , and, assuming that n 0Î , nl has been defined, we put 2n 1 nl = l

+ .
Then we let

lim . 1.1
n

nl l= ( )
¥

It is clear that assuming the generalized continuum hypothesis (GCH) l = Àw.

†E-mail: hajek@math.cas.cz
‡Corresponding author. E-mail: schlump@math.tamu.edu

211
© 2017. Published by Oxford University Press. All rights reserved.

For permissions, please email: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article-abstract/69/1/211/4080339 by Texas A&M
 U

niversity user on 08 M
arch 2019

mailto: hajek@math.cas.cz
mailto: schlump@math.tamu.edu


THEOREM 1.1 If X is a Banach space with density Xdens l( ) ³ , which admits a coarse (or uni-
form) embedding into any c0 (G), then X fails to have non-trivial cotype, that is X contains ℓ n

¥
C-uniformly for some C 1> (equivalently, every C 1> ).

Our method of proof gives a much stronger result for Banach spaces with a symmetric basis.
Namely, under the assumptions of Theorem 1.1, such spaces are linearly isomorphic with c0 (G)
(Theorem 4.2).

Theorem 1.1 will follow from the following combinatorial result which is of independent interest.
For a set Λ and n Î , we denote by n[L] the set of subsets of Λ whose cardinality is n.

THEOREM 1.2 Assume that Λ is a set whose cardinality is at least λ, n Î , and : n s [L]  is a
map into an arbitrary set  . Then (at least) one of the following conditions holds:

(1) There is a sequence Fj j 1( ) =
¥ of pairwise disjoint elements of n[L] , so that F Fi js s( ) = ( ), for all

i j, Î .
(2) There is an F n 1Î [L] - so that F F:s g g({ È { } Î L })⧹ is infinite.

The above Theorem 1.2 was previously deduced in [4, Lemma 4.3] from a combinatorial result
of Baumgartner, provided Λ is a weakly compact cardinal number (whose existence is not prov-
able in ZFC, as it is inaccessible [3, p. 325, 52]). The authors in [4, Question 3] pose a question
whether assuming that Γ is uncountable is sufficient in Theorem 1.2.

Theorem 1.2 is used in order to obtain a scattered compact set K of height 0w , such that C K( )
does not uniformly embed into c0 (G). It is easy to check that our version of Theorem 1.2 implies a
ZFC example of such a C K( ) space. It is further shown in [4] that the space C 0, 1w[ ] does not
uniformly embed into any c0 (G).

Let us point out that a special case of Theorem 1.1 was obtained by Pelant and Rödl [6,
Theorem], namely it was shown there that ℓ p, 1p l( ) £ < ¥, spaces (which are well known to
have non-trivial cotype) do not uniformly embed into any c0 (G).

The paper is organized as follows. In Section 2, we recall Pelant’s [4, 5] and Swift’s [8] condi-
tions for Lipschitz, uniform and coarse embeddability into c0 (G). In Section 3, we provide a proof
for Theorem 1.2. Finally, in Section 4, we provide a proof of Theorem 1.1 as well as the sym-
metric version of the result.

All set theoretic concepts and results used in our note can be found in [3], whereas for facts
concerning non-separable Banach spaces, [2] can be consulted.

We want to finish this introductory section by thanking the anonymous referee for his or her
efforts which improved the paper considerably.

2. Pelant’s and Swift’s criteria for Lipschitz, uniform and coarse embeddability into c0(Γ)

In this section, we recall some of the notions and results by Pelant [4, 5] and Swift [8] about
embeddings into c0 (G).

For a metric space M d,( ), a cover is a set  of subsets of M such that M UU = Î⋃ . A cover
 of M is called uniform if there is an r 0> so that for all x MÎ , there is a U Î , so that
B x x M d x x r U: ,r ( ) = { ¢ Î ( ¢ ) < } Ì . It is called uniformly bounded if the diameters of the
U Î are uniformly bounded, and it is called point finite if every x MÎ lies in only finitely
many U Î . A cover  of M is a refinement of a cover  , if for every V Î , there is a U Î ,
for which V UÌ .
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DEFINITION 2.1 [4] A metric space M d,( ) is said to have the uniform Stone property if every
uniform cover  of M has a point finite uniform refinement.

DEFINITION 2.2 [8] A metric space M d,( ) is said to have the coarse Stone property if every uni-
formly bounded cover is the refinement of a point finite uniformly bounded cover.

DEFINITION 2.3 Let M d,1 1( ) and M d,2 2( ) be two metric spaces. For a map f M M: 1 2 , we define
the modulus of uniform continuity w : 0, 0,f [ ¥)  [ ¥], and the modulus of expansion

: 0, 0,r [ ¥)  [ ¥] as follows:

w t d f x f y x y M d x y t

t d f x f y x y M d x y t

sup , : , , , and

inf , : , , , .
f

f

2 1 1

2 1 1r
( ) = { ( ( ) ( )) Î ( ) £ }

( ) = { ( ( ) ( )) Î ( ) ³ }

The map f is called uniformly continuous if w tlim 0t f0 ( ) = , and it is called a uniform embedding
if, moreover, t 0fr ( ) > for every t 0> . It is called coarse if w tf ( ) < ¥, for all t0 < < ¥ and
it is called a coarse embedding, if, furthermore, tlimt fr ( ) = ¥¥ . The map f is called Lischitz
continuous if

f
d f x f y

d x y
Lip sup

,

,
,

x y

2

1
( ) =

( ( ) ( ))
( )

< ¥
¹

and a bi-Lipschitz embedding, if, furthermore, f is injective and fLip 1( )- (being defined on the
range of f) is also finite.

The following result recalls results from [4, Theorem 2.1] (for (i) ⟺ (ii) ⟺ (v)) and [8,
Lemma 2.3, Corollary 3.11] (for (ii) ⟺ (iii) ⟺ (iv)).

THEOREM 2.4 For a Banach space X, the following properties are equivalent:

(i) X has the uniform Stone property.
(ii) X is uniformly embeddable into c0 (G), for some set Γ.
(iii) X has the coarse Stone property.
(iv) X is coarsely embeddable into c0 (G), for some set Γ.
(v) X is bi-Lipschitzly embeddable into c0 (G), for some set Γ.

It is easy to see, and was noted in [4, 8], that the uniform Stone property and the coarse Stone
property are inherited by subspaces. The equivalence (i) ⟺ (ii) was used in [4] to show that
C 0, 1w[ ] does not uniformly embed in any c0 (G). It was also used to prove that certain other
C K( )-spaces do not uniformly embed into c0 (G): let Λ be any set and denote for n Î by n[L]£

and n[L] the subsets of Λ which have cardinality at most n and exactly n, respectively. Endow
n[L]£ with the restriction of the product topology on 0, 1{ }L (by identifying each set with its

characteristic function). Then define KL to be the one-point Alexandroff compactification of the
topological sum of the spaces n[L]£ , n Î . It was shown in [4] that if Λ satisfies Theorem 1.2,
then C K( )L is not uniformly Stone, and thus does not embed uniformly into any c0 (G).

213ON COARSE EMBEDDINGS INTO C0(Γ)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article-abstract/69/1/211/4080339 by Texas A&M
 U

niversity user on 08 M
arch 2019



3. A combinatorial argument

We start by introducing property P a( ) for a cardinal α as follows. We say that a cardinal number
satisfies P a( ) if

P a( ( )) For every n Î and any map : n s a[ ]  ,  being an arbitrary set, (at least) one of the
following two conditions hold:

(a) There is a sequence Fj( ) of pairwise disjoint elements of na[ ] , with F Fi js s( ) = ( ) for
any i j, Î .

(b) There is an F n 1aÎ [ ] - , so that F F:s g g a({ È { } Î })⧹ is infinite.

As remarked in Section 2, if κ is an uncountable weakly compact cardinal number, then P k( )
holds. But the existence of weakly compact cardinal numbers requires further set theoretic axioms,
beyond ZFC [3]. In [4, Question 3], the authors ask if P 1w( ) is true.

THEOREM 3.1 For λ defined by (1.1), P l( ) holds.

For our proof of Theorem 3.1, it will be more convenient to reformulate it into a statement about
n-tuples, instead of sets of cardinality n. We will first introduce some notation.

Let n Î and 1G , , , n2G ¼ G be sets of infinite cardinality, and put i
n

i1G =  G= . For a Î G and
i n1 £ £ , we denote the ith coordinate of a by a i( ). We say that two points a and b in Γ are

diagonal, if a i b i( ) ¹ ( ), for all i n1, 2, ,Î { ¼ }.
Let a Î G and i n1, 2 ,Î { ¼ }. We call the set

H a i b b b a i b b b j n i, , , , , , , , : , for 1, , ,i i n j j1 2 1 1( ) = {( ¼ ( ) ¼ ) Î G Î { ¼ } { }}- + ⧹

the hyperplane through the point a orthogonal to i. We call the set

L a i a a i b a i a n b, 1 , , 1 , , 1 , , : ,i i i( ) = {( ( ) ¼ ( - ) ( + ) ¼ ( )) Î G}

the line through the point a in direction of i.
For a cardinal number γ, we define recursively the following sequence of cardinal numbers

n nexp , : : exp , 00g g g( ( ) Î ) ( ) =+ + , and, assuming nexp ,g( )+ has been defined for some
n 0Î , we put

nexp , 1 2 .nexp ,g( + ) = ( )g
+

( ) ++
+

Here g+ denotes the successor cardinal, for a cardinal γ, that is the smallest cardinal number g¢ with
g g¢ > . Note that since exp , 1 222g( ) £+

g

, it follows for the above-defined cardinal number λ, that

nlim exp , .
n

0l w= ( )
¥

+

Secondly, successor cardinals are regular [3], and thus every infinite set of cardinality γ, with γ

being a successor cardinal, can be partitioned for n Î into n disjoint sets 1G , , , n2G ¼ G , all of
them having also cardinality γ, and the map n i

n
i

n
1 2 1G ´ G ´ ´ G  [ G]= ⋃ , a a a, , , n1 2( ¼ ) ↦

a a a, , , ,n1 2{ ¼ } is injective. We, therefore, deduce that the following statement implies Theorem 3.1.
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THEOREM 3.2 Let n Î and a assume that the sets 1G , , , n2G ¼ G have cardinality at least
nexp ,1

2w( )+ . For any function,

: ,
i

n

i
1

s G G 
=

≔

where  is an arbitrary set, at least one of the following two conditions hold:

(a) There is a sequence a j
j 1( )( )
=

¥ , of pairwise diagonal elements in Γ, so that a ai js s( ) = ( )( ) ( ) ,
for any i j, Î .

(b) There is a line L Ì G, for which Ls ( ) is infinite.

Before proving Theorem 3.2. We need the following observation.

LEMMA 3.3 Let n Î and 1G , , , n2G ¼ G be non-empty sets. Let

: ,
i

n

i
1

s G G 
=

≔

be a function that fails both conditions (a) and (b) in the definition P a( ( )).
Then there is a set ̃ and a function

: ,
i

n

i
1

s G G 
=

˜ ≔ ˜

that fails both, (a) and (b), and, moreover, has

(c) for all c Î ˜ , there is a hyperplane Hc Ì G so that b b c H: cs{ Î G ( ) = } Ì˜ .

Proof. We may assume without loss of generality that σ is surjective. Since (a) is not satisfied, for
each c Î , there exists an m c ( ) Î and a (finite) sequence a cc j

j
m c,

1
1s( ) Ì ({ })( )

=
( ) - , which is

pairwise diagonal, and maximal. Hence

c H a i, .
j

m c

i

n
c j1

1 1

,s ({ }) Ì ( )-

=

( )

=

( )⋃ ⋃

Indeed, from the maximality of a cc j
j
m c,

1
1s( ) Ì ({ })( )

=
( ) - , it follows that each b c1sÎ ({ })- must

have at least one coordinate in common with at least one element of a c j
j
m c,

1( )( )
=
( ).

We define

m c n c1, 2, , 1, 2 ,
c




= ({ ¼ ( )} ´ { ¼ } ´ { })
Î

˜ ⋃

and b j i c: , , ,s G  ( )˜ ˜ ↦ , where
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c b j j b H a i i i b H a i, min : , , and min : , .
i

n
c j c j

1

, ,s= ( ) =
ì
í
ïï
îïï
¢ Î ( ¢)

ü
ý
ïï
þïï

= { ¢ Î ( ¢)}
¢=

( ¢) ( )⋃

It is clear that s̃ satisfies (c). Since j i b j i d, , , ,s s( ) = ( ¢ ¢ )˜ ˜ implies b ds s( ) = ( ) for
j i b j i d, , , , ,( ) ( ¢ ¢ ) Î G̃, (a) fails for s̃. In order to verify that (b) is not satisfied, assume L Ì G is
a line, and let c c c, , , p1 2{ ¼ } be the image of L under σ. By construction,

L j i c k p j m c i n, , , , , ,k ks( ) Ì {( ) £ £ ( ) £ }˜

which is also finite. □

Proof of Theorem 3.2. We assume that : n1 2 s G = G ´ G ´ ´ G  is a map which fails both
(a) and (b). By Lemma 3.3, we may also assume that σ satisfies (c). For each a Î G, we fix a
number h a n1, 2, ,( ) Î { ¼ } so that a H a h a,1s s({ ( )}) Ì ( ( ))- . Thus, h a( ) is the direction, for
which all b Î G, with b as s( ) = ( ), lie in the hyperplane through a orthogonal to h a( ). It is
important to note that since (b) is not satisfied, it follows that each line L, whose direction is some
j n1, 2, ,Î { ¼ }, can only have finitely many elements b for which h b j( ) = . Indeed, if h b j( ) = ,
then b is uniquely determined by the value bs ( ). To continue with the proof, the following
Reduction Lemma will be essential. □

LEMMA 3.4 Let β be an uncountable regular cardinal. Assume that 1 1G Ì G˜ , , , n n2 2G Ì G ¼ G Ì G˜ ˜
are such that nexp ,i bG ³ ( )+∣ ˜ ∣ , for all i n1, 2, ,Î { ¼ }. Then, for any i n1, 2 ,Î { ¼ }, there are a
number Ki Î , and subsets , , , n n1 1 2 2G¢ Ì G G¢ Ì G ¼ G¢ Ì G˜ ˜ ˜ , with i bG¢ ³∣ ∣ , so that

a a a a a

h a a a a a i K

, , , , , ,

: , , , , , , , . 3.1

i i n
j j i

n

i

i i i n i

1 2 1 1
1,

1 2 1 1



a a

"( ¼ ¼ ) Î G¢

{ Î G¢ ( ¼ ¼ ) = } £ ( )

- +
= ¹

- +∣ ∣

Proof. We assume without loss of generality that i n= . Abbreviate jexp ,jb b= ( )+ , for j = n1, 2, , .¼
We first choose (arbitrary) subsets j j

0G Ì G( )˜ ˜ , for which j n j
0

1bG =( )
+ -∣ ˜ ∣ .

Since the jb ’s are regular, it follows for each j n1, 2 , 2= ¼ - that

f

2

2

: .

j n j

j j n

0
1

1
0

2
0

1
0

n j

j j n1
0

2
0

1
0



bG =

>

=

= { G ´ G ´ ´ G  }

b

( )
+ -

G ´G ´ ´G

+
( )

+
( )

-
( )

-

+
( )

+
( )

-
( )





∣ ˜ ∣

∣ ˜ ˜ ˜ ∣

∣ ˜ ˜ ˜ ∣

Here we are using for the second equality the assumption that n n
0

1
0G < G <( )
-

( )∣ ˜ ∣ ∣ ˜ ∣ j 1
0< G =+
( ) ∣ ˜ ∣

,n jb - and the assumption that n jb - is regular. For the third equality, we are using the fact that
f f: : 0, 1 2{ L  } = { L  { }} = L∣ ∣ ∣ ∣ ∣ ∣ for infinite sets Λ. Abbreviate for j n1, , 1= ¼ - :

f :j j j n
0

1
0

1
0

 = { G ´ G ´ ´ G  }( )
+

( )
-

( )˜ ˜ ˜
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and note that by above estimates j j1
0

 < G+
( )∣ ∣ ∣ ˜ ∣, for j n1, 2, , 1= ¼ - . We consider the function

a a a h a a a n: , , , , : , , , , .
j

n

j n n n1
1

1
0

1 2 1
0

1 2 1f a aG  ( ¼ ) { Î G ( ¼ ) = }
=

-
( )

-
( )

-˜ ↦ ∣ ˜ ∣

For fixed a1 1
0Î G( )˜ , a ,1 1 2f ( ) Î· , and the cardinality of 2 is by the above estimates smaller than

nb , the cardinality of 1
0G( )˜ , which is regular. Therefore, we can find a function 2 2f Î and a subset

1 1
0G¢ Ì G( )˜ of cardinality nb so that a ,1 1 2f f( ) =· for all a1 1Î G¢. Now we can apply the same argu-

ment to the function : j
n

j2 2
1 0 f  G =

- ( )˜ and obtain a function 3 3f Î and 2 2
0G¢ Ì G( )˜ of cardinality

n 1b - so that a ,2 2 3f f( ) =· for all a2 2Î G¢ . We continue the process and find j j
0G¢ Ì G( )˜ , for

j n1, 2, , 2= ¼ - of cardinality n j1b + - and functions Fj jf Î , for j n1, 2, , 1= ¼ - , so that for
all a a a, , , n j

n
j1 2 2 1

2( ¼ ) Î  G¢- =
- and an n1 1

0Î G- -
( )˜ we have

a a a a a a, , , , , . 3.2n n n n1 1 2 1 2 2 1 1 1f f f( ¼ ) = ( ¼ ) = ¼ = ( ) ( )- - - -

Then, since n 1f - is  valued, we can finally choose Kn Î and a subset n n1 1
0G¢ Ì G- -
( )˜ , of cardi-

nality at least β, so that a Kn n n1 1f ( ) £- - , for all an n1 1Î G¢- - , which finishes our argument.

Continuation of the proof of Theorem 3.2. We apply Lemma 3.4 successively to all
i n1, 2, ,Î { ¼ }, and the cardinals n n iexp ,i

1b w= ( ( - ))( )
+ . We obtain numbers K K K, , , n1 2 ¼ in

 and infinite sets j jL Ì G , for j n1, 2, ,= ¼ , so that for all i n1, 2, ,Î { ¼ } and all
a a j n i: 1, 2, ,j j j i

n
j1,= ( Î { ¼ } { }) Î  L= ¹\

h a a a a a i K: , , , , , , , .i i i n i1 2 1 1a a{ Î L ( ¼ ¼ ) = } £- +∣ ∣

In order to deduce a contradiction, choose for each j n1, ,= ¼ a subset Aj of jL of cardinality
l n K1j j= ( + ) . Then it follows that

l A

A h a a a a a i

K l
n

n
l

: , , , , , , ,

1

j

n

j
j

n

j

i

n

a A
i i i n

i

n

i
j j i

n

j
j

n

j

1 1

1
1 2 1 1

1 1, 1

j j i
n

j1,

 

å å

å  

a a

=

= { Î ( ¼ ¼ ) = }

£ £
+

= =

= Î
- +

= = ¹ =

= ¹

∣ ∣

which is a contradiction and finishes the proof of the Theorem. □

We can now state the ZFC version of [4, Theorem 4.1], in which it was shown that for weakly
compact cardinalities 0k the space C K 0( )k , where K 0k was defined at the end of Section 2, cannot
be uniformly (or coarsely) embedded into any c0 (G), where Γ has any cardinality. Since the only
property of 0k , which is needed in [4], is the fact that P 0k( ) holds, we deduce
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COROLLARY 3.5 C K( )l does not coarsely (or uniformly) embed into c0 (G), for any cardinality Γ.

4. Proof of Theorem 1.1

In this section, we use our combinatorial Theorem 1.2 from Section 3 to show Theorem 1.1.
Recall that a long Schauder basis of a Banach space X is a transfinite sequence e 0{ }g g=

G such
that for every x XÎ , there exists a unique transfinite sequence of scalars a 0{ }g g=

G such that
x a e0= åg g g=

G . Similarly, a long Schauder basic sequence in a Banach space X is a transfinite
sequence e 0{ }g g=

G which is a long Schauder basis of its closed linear span. Recall that the
w Xdens* *- ( ) is the smallest cardinal such that there exists a w*-dense subset of X*.
Analogously to the classical Mazur construction of a Schauder basic sequence in a separable
Banach space, we have the following result, proved for example in [2, p. 135] (the fact that the
basis is normalized, that is e 1=g  , is not a part of the statement in [2], but it is easy to get it by
normalizing the existing basis).

THEOREM 4.1 Let X be a Banach space with w Xdens 0* * wG = - ( ) > . Then X contains a
monotone normalized long Schauder basic sequence of length Γ.

Proof of Theorem 1.1. Using the Hahn–Banach theorem, it is easy to see that
w X Xdens dens* *- ( ) £ ( ). On the other hand, since every x XÎ is uniquely determined by its
values on a w*-dense subset of X*, it is clear that

X Xdens card 2 . 4.1w Xdens* *l £ ( ) £ ( ) £ ( )- ( )

But this implies that w Xdens* * l- ( ) ³ . Indeed, otherwise we had w Xdens* * l- ( ) < , and
thus w Xdens n* * l- ( ) £ , for some n Î ( nl was defined before the statement of Theorem 1.1),
and thus 2 2w X

n
dens

1n* * l l£ = <l- ( )
+ , which contradicts (4.1).

In order to prove Theorem 1.1, we may assume without loss of generality that X has a long
normalized and monotone Schauder basis e( )m m l< , of length λ.

Suppose that F , , n
n

1g g l= { ¼ } Î [ ] where n1g g< < is arranged in an increasing order.
Consider the corresponding finite set

M e : 1, 1 ,F
i

n

i i
1

iå e e=
ì
í
ïï
îïï

Î {- }
ü
ý
ïï
þïï

g
=

containing 2n distinct vectors of X, and put a linear order  on this set according to the arrange-
ment of the signs ie , setting

e e
i

n

i
i

n

i
1 1

i iå åe eg g
= =

 ˜

if and only if for the minimal i, such that i ie e¹ ˜ , it holds i ie e< ˜ . In order to prove Theorem 1.1, it
suffices to show that if M M XF n F,n = È ÌlÎ[ ] Î has the coarse Stone property, then X fails to
have non-trivial cotype. To this end, starting with B x x M:2 = { ( ) Î }, we find a uniformly
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bounded cover  , which is point finite and so that  refines  , and we fix for all x MÎ a Vx Î
with B x Vx2 ( ) Ì . Let r 0> be such that each V Î is a subset of a ball of radius r.

Let  be the set consisting of all finite tuples of  . We now define the function : n s l[ ]  as
follows. If F F, , ,n

n1l g gÎ [ ] = { ¼ } where n1g g< < , we let

F V V, , , 4.2y y n1 2
s ( ) = ( ¼ ) ( )

where y y1 2n are the elements of MF arranged in the increasing order defined above.
Applying Theorem 1.2 to the function σ, for a fixed n Î , yields only two possibilities:

Case 1: The set F F:s t t l({ È { } Î })⧹ is infinite for some F , , n1 1g g= { ¼ }- , where

n1 1g g< < - .
In this case, pick an infinite sequence of distinct j j 1t{ } =

¥ witnessing the desired property. By
passing to a subsequence, we may assume without loss of generality that either there exists
k k n, 1 1£ £ - , so that for all j Î , k j k 1g t g< < + , or j 1t g< for all j Î , or n j1g t<- for
all j Î . For simplicity of notation, assume the last case, that is n j1 1g g t< < <- holds for
all j Î . Denoting F , , ,j

n j1 1g g t= { ¼ }- , we conclude that there exists a fixed selection of signs
, , n1e e¼ such that the set

B V y e e j: ,y
i

n

i n
1

1

i j å e e=
ì
í
ïï
îïï

= + Î
ü
ý
ïï
þïï

g t
=

-

is infinite. Indeed, otherwise the set of values j, , , ,n j1 1 s g g t{ ({ ¼ }) Î }- , which are determined
by the definition (4.2), would have only a finite set of options for each coordinate, and would, there-
fore, have to be finite. This is a contradiction with the point finiteness of the system  , because

e V V B, for all .
i

n

i y y
1

1

iå e Î Îg
=

-

Case 2: there is a sequence Fj( ) of pairwise disjoint elements of nl[ ] , with F Fi js s( ) = ( ), for
any i j, Î .

In fact, it suffices to choose just a pair of such disjoint elements (written in an increasing order
of ordinals) F , , n1g g= { ¼ }, G , , n1b b= { ¼ }, such that F Gs s( ) = ( ). This means, in particular,
that for every fixed selection of signs , , n1e e¼ ,

V V .e e
i
n

i i i
n

i i1 1
=å åe eg b= =

By our assumption, the elements of  are contained in a ball of radius r, hence

e e r2 4.3
i

n

i
i

n

i
1 1

i iå åe e- £ ( )g b
= =

holds for any selection of signs , , n1e e¼ . Let u e ej j j= -g b , j n1, ,Î { ¼ }. Because e{ }g is a mono-
tone normalized long Schauder basis, we have the trivial estimate u1 2j£ £  . Equation (4.3)
means that

219ON COARSE EMBEDDINGS INTO C0(Γ)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article-abstract/69/1/211/4080339 by Texas A&M
 U

niversity user on 08 M
arch 2019



u r1 2 4.4
i

n

i i
1

å e£ £ ( )
=

holds for any selection of signs , , n1e e¼ . Since norm functions are convex, this means that for the
unit vector ball BE of E u i nspan :i= ( £ ) it follows that

a u a
r

B a u a:
1

2
: 2 ,

j

n

j j j E
j

n

j j j
1 1

å å
ì
í
ïï

î
ïï

£
ü
ý
ïï

þ
ïï
Ì Ì

ì
í
ïï

î
ïï

£
ü
ý
ïï

þ
ïï= =

∣ ∣ ∣ ∣

which means that uj j
n

1( ) = is r4 -equivalent to the unit vector basis of ℓ n
¥. □

In fact, our proof gives a much stronger condition than just failing cotype, because our copies
of ℓ k

¥ are formed by vectors of the type e e-a b. This fact can be used to obtain much stronger
structural results for spaces with special bases. Recall that a long Schauder basis e 1{ }g g=

L is said to
be symmetric if

a e a e
i

n

i
i

n

i
1 1

i iå å=g b
= =

for any selection of ai Î , and any pair of sets 1,i i
n

1g{ } Ì [ L)= , 1,i i
n

1b{ } Ì [ L)= . It is well-
known (cf. [7, Proposition II.22.2]) that each symmetric basis is automatically unconditional, that
is there exists K 0> such that

K
a e a e K a e

1
.

i

n

i
i

n

i
i

n

i
1 1 1

i i iå å å£ £g g g
= = =

∣ ∣ ∣ ∣

In particular,

K
a e a e

1

i A
i

i B
ii iå å£g g

Î Î

whenever A BÌ .

THEOREM 4.2 Let X be a Banach space of density lL ³ , with a symmetric basis e 1{ }g g=
L , which

coarsely (or uniformly) embeds into some c0 (G). Then X is linearly isomorphic with c0 (L).

Proof. By the proof of the above results, if X embeds into c0 (G), there exists a C 0> , such that
for each k Î , there are some vectors vi i

k
1{ }= of the form v e ei i i= -g b satisfying the conditions

a a v C a
1

2
max max . 4.5

j
i

i

k

i i
j

j
1

å£ £ ( )
=

∣ ∣ ∣ ∣

Using the fact that the basis e{ }g is unconditional and symmetric, we obtain that there exist
some constants A B, 0> such that
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A a e a v B a e . 4.6
i

k

i
i

k

i i
i

k

i
1 1 1

i iå å å£ £ ( )g g
= = =

Combining (4.5) and (4.6), we finally obtain that for some D 1³ , and any k Î ,

D
a a e D a

1
max max 4.7

j
i

i

k

i
j

j
1

iå£ £ ( )b
=

∣ ∣ ∣ ∣

for all , , 1,k1b b{ ¼ } Ì [ L), which proves our claim. □

5. Final comments and open problems

Let us mention in this final section some problems of interest.
First of all, we do not know whether or not Theorem 1.1 is true if we replace λ by smaller car-

dinal numbers.

PROBLEM 5.1 Assume that X is a Banach space with Xdens 1w( ) ³ , and assume that X coarsely
embeds into c0 (G) for some cardinal number Γ. Does X have trivial co-type? If, moreover, X has
a symmetric basis, must it be isomorphic to c0 1w( )?

Of course, Problem 5.1 would have a positive answer if the following is true.

PROBLEM 5.2 Is Theorem 1.2 true for 1w ?

Connected to Problems 5.1 and 5.2 is the following.

PROBLEM 5.3 Does ℓ¥ coarsely embed into c0 k( ) for some uncountable cardinal number κ?

Another line of interesting problems asks which isomorphic properties do non-separable
Banach spaces have which coarsely embed into c0 (G).

PROBLEM 5.4 Does a non-separable Banach space which coarsely embeds into some c0 (G), Γ
being uncountable, contain copies of c0, or even c0 1w( )?
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