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Abstract

Poverty has been studied across many social science disciplines, resulting in a large
body of literature. Scholars of poverty research have long recognized that the poor
are not uniformly distributed across space. Understanding the spatial aspect of pov-
erty is important because it helps us understand place-based structural inequalities.
There are many spatial regression models, but there is a learning curve to learn and
apply them to poverty research. This manuscript aims to introduce the concepts of
spatial regression modeling and walk the reader through the steps of conducting
poverty research using R: standard exploratory data analysis, standard linear regres-
sion, neighborhood structure and spatial weight matrix, exploratory spatial data
analysis, and spatial linear regression. We also discuss the spatial heterogeneity and
spatial panel aspects of poverty. We provide code for data analysis in the R environ-
ment and readers can modify it for their own data analyses. We also present results
in their raw format to help readers become familiar with the R environment.
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1 Introduction

Throughout human history, poverty has been associated with many social prob-
lems and historic events, including inequality, wars, and revolutions. Even in
developed countries, poverty persists. Thus, it is not a surprise that poverty is a
topic that has been studied across many social science disciplines, generating a
large body of literature. Poverty, like many other social phenomena, can be spa-
tial and scholars of poverty research have long recognized that the poor are not
uniformly distributed across space (Nord et al. 1995; Thiede et al. 2018; Voss
et al. 2006; Weber et al. 2005). Understanding the spatial distribution of pov-
erty helps us to understand place-based structural inequalities (Lobao et al. 2008;
Tickamyer and Duncan 1990). This school of research is also referred to as the
study of “place poverty,” in contrast with “people poverty,” as the former empha-
sizes structural and contextual forces while the latter emphasizes individual or
family forces (Voss et al. 20006).

The spatial aspect of poverty has been increasingly studied using formal spatial
analysis and spatial regression models (e.g., Curtis et al. 2018; Curtis, Voss, and
Long 2012). While the methods are many, there is a learning curve to learn and
apply them to poverty research. This manuscript aims to introduce the concepts
of spatial regression modeling and walk the reader through the steps of conduct-
ing poverty research using R, an open-source statistical software that is gaining
increasing popularity among social scientists (R Development Core Team 2008).
Similar to other teaching notes (Sparks 2013a, b), we provide code for data anal-
ysis in the R environment and readers can modify it for their own data analy-
ses. We also present results in their raw format to help readers become familiar
with the R environment. Poverty research has been reviewed in several articles
and books (e.g., Iceland 2013; Jennings 1999; Sandoval et al. 2009; Weber et al.
2005) and thus is not reviewed in this manuscript. Readers are suggested to refer
to these review articles for the status of poverty research.

In the following sections, we introduce our data (Sect. 2), walk the readers
through the steps of exploratory data analysis (Sect. 3), standard linear regression
(Sect. 4), neighborhood structure and spatial weight matrix (Sect. 5), exploratory
spatial data analysis (Sect. 6), and spatial linear regression (Sect. 7), all in R, and
discuss other spatial aspects of poverty that could be addressed (Sect. 8).

2 Data and Units of Analysis

This manuscript provides an example in R of quantifying the spatial relationship
between county-level poverty rates and several socioeconomic factors in the 48
states of the contiguous United States. Among the existing place poverty studies,
county is often used as the unit of analysis; counties are salient units in policy
making and planning perspectives such that many policy decisions potentially rel-
evant to poverty rates are made at the county level (Greenlee and Howe 2009;
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Lichter and Johnson 2007; Thiede et al. 2018; Voss et al. 2006). Moreover, com-
pared with the boundaries of other administrative units, county boundaries are
subject to little boundary change, therefore facilitating scholarly study of poverty
trends over time. Studies have found that county-level poverty is associated with
many other structural disadvantages, especially when it comes to some major
health indicators, such as cancer stage (Greenlee and Howe 2009), obesity (Ben-
nett et al. 2011), and HIV prevalence (Vaughan et al. 2014). Commonly identi-
fied factors associated with the spatial concentration of county-level poverty rates
include economic structure (Goetz and Swaminathan 2006; Lobao et al. 2008),
racial composition (Thiede et al. 2018; Wimberley and Morris 2002), and human
capital stock (Levernier et al. 2000).

The variable of interest is poverty (povty), measured as the percentage of indi-
viduals age 18-64 living in poverty in a county in year 2000. We include a set of
economic, social, and demographic factors that may relate with county-level pov-
erty rates. Specifically, three variables, agriculture (ag), manufacturing (manu), and
retail (retail), are the percentages of workers in the agricultural sector, the manufac-
turing sector, and the retail sector, respectively. For socially-related factors, foreign
is the percentage of the foreign-born population in a county and female employment
(feemp) is the percentage of female employment in the total population. Human
capital stock is captured by high school (hsch), which indicates the percentage of
the population that completed a high school education. Lastly, we use percentage
Blacks (black) and percentage Hispanics (hisp) to capture racial and ethnic com-
positions. These variables are measured in 2000 based on the Decennial Census
data. We download the data using SocialExplorer, an online demographic research
tool that pre-processed the raw Census data and reports calculated percentages by
county. While other variables have been used in poverty research, in this manuscript
we focus on these selected variables for the purpose of illustrating spatial regression
modeling for poverty research in R. We have made the dataset (uspoverty2000.csv)
and supplementary tutorials available at https://mkamenet3.github.io/SpatialReg
PovertyR/.

3 Standard Exploratory Data Analysis
After initial installation, we first load the R libraries that the analysis needs.

library (sp)
library (spdep)
library (ggplot2)
library(tidyverse)
library(tigris)
library (dplyr)
library(sf)
library (readr)
(

library (car)
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After the census data are downloaded and the variables of interest are
extracted, we streamline the data and save them to a proper data file to be read
into R as a data frame before performing statistical data analysis. We use the
read csv () function from the readr package (Wickham et al. 2018a) to
import the csv file into R and to specify that the variable FIPS N is imported as
a character variable (col types=cols (FIPS N=col character()))
and that the import does not omit leading zeros from FIPS_N variable (trim
ws =FALSE). We immediately pipe (% > %) to the arrange () function from
the dplyr package (Wickham et al. 2018b) to sort by FIPS N.

povdf = read_csv("uspoverty2000.csv",
col_types = cols(FIPS_N = col_character()),
trim_ws = FALSE) %>%
arrange(as.numeric(as.character(FIPS_N)))
nrow(povdf)

## [1] 3070

The counties are identified by their five-digit federal information processing
(FIP) standards code, with the first two digits corresponding to a state code and
the last three digits corresponding to a county code. The data frame povdf fea-
tures the poverty rate and the socioeconomic variables from the census year 2000
in the 3070 counties of the 48 contiguous states. Using the R function head (),
we view the first six counties in the data frame povdf:

head(povdf)

## # A tibble: 6 x 12
##  FIPS_N ag black feemp foreign hisp hsch manu povty retail STATEFP
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <«dbl> <dbl>

## 1 0le01 2.13 17.1 53.2 1.17 1.4 33.8 16.5 9.06 12.9 1
## 2 01003 1.57 10.3 50. 2.11 .76 29. 12.5 9.13 14.2
## 3 01005 3.97 46.3  43. 1.5 .65 32. 31.4 21.9 10.5

## 5 01009 2.18 1.19 48. 3.10 .33 36. 5 9.89 11.6
## 6 01011 10.5 73.1 36. 3.06 .75 35. 23.2 28.6 7.53
## . with 1 more variable: COUNTYFP <chr>

R R R R R

1 6
1 4
0.430 1.1 35.7 23.8 17.7 9.93
5 [
2 2

vik wuwunm

1
2
3
## 4 01007 3.30 22.2 44,
5
6
#

To perform exploratory data analysis, we use summary statistics and graphi-
cal methods. Most commonly used summary statistics and graphical methods for
exploratory data analysis are applied to either one variable at a time (i.e., univari-
ate) or two variables at a time (i.e., bivariate). Using the R function summary (),
we obtain several univariate summary statistics for each of the variables in the
data frame povdf:
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summary (povdf)

#it FIPS_N ag black feemp

## Length:3070 Min. : 0.030  Min. : 0.000 Min. 123,21
## Class :character 1st Qu.: 1.680 1st Qu.: 0.290 1st Qu.:46.94
## Mode :character Median : 3.790 Median : 1.675 Median :51.88
#H# Mean : 6.129 Mean : 8.710 Mean :51.64
## 3rd Qu.: 7.810 3rd Qu.: 9.865 3rd Qu.:56.30
#H# Max. :55.600 Max. :86.490 Max. :78.47
#H# foreign hisp hsch manu

## Min. 0.000 Min. : 0.080 Min. :10.93 Min. : 0.000
## 1st Qu.: 0.890 1st Qu.: 0.910 1st Qu.:30.86 1st Qu.: 8.945
## Median : 1.710 Median : 1.780 Median :34.91 Median :14.965
## Mean 3.419 Mean 6.230 Mean :34.80 Mean :15.938
## 3rd Qu.: 3.900 3rd Qu.: 5.107 3rd Qu.:38.99 3rd Qu.:21.997
## Max. :50.940 Max. :97.540 Max. :53.25 Max. :48.550
## povty retail STATEFP COUNTYFP

## Min. : 2.04  Min. : 1.72  Min. : 1.00 Length:3070

## 1st Qu.: 8.51 1st Qu.:10.30 1st Qu.:19.00 Class :character
## Median :11.61 Median :11.56 Median :29.00 Mode :character
## Mean :12.69 Mean :11.48 Mean :30.36
## 3rd Qu.:15.70 3rd Qu.:12.72 3rd Qu.:45.00
## Max. :53.83 Max. :26.90 Max. :56.00

For a continuous variable, the summary statistics are its minimum, first quartile,
median, mean, third quartile, and maximum. The summary statistics of the response
variable of poverty rate show that the lowest county-level poverty rate was 2.04%
and the highest county-level poverty rate was 53.83% among the 3070 counties in
the contiguous United States in 2000. The center of the county-level poverty rates is
11.61% measured by median and 12.69% measured by mean (i.e., average). In addi-
tion, the interquartile range is between the first quartile of 8.51% and the third quartile
of 15.70%. That is, half of the counties had poverty rates below 11.61% and the other
half had poverty rates above 11.61%, while the middle half of the counties had pov-
erty rates between 8.51 and 15.70%. Among the explanatory variables, we use female
employment rate as an example. The summary statistics of the female employment rate
tell us that county-level female employment rates ranged between the lowest at 23.21%
and the highest at 78.47% among the 3070 counties in the contiguous United States in
2000. Half of the counties had female employment rates below the median of 51.88%
and the other half had female employment rates above 51.88%, while the middle half of
the counties had female employment rates between 46.94 and 56.30%.

Using the R function cor (), we obtain the sample correlation, a bivariate sum-
mary statistic, between poverty rate and any given socioeconomic factor. For example,
the correlation between poverty rate and female employment rate is:

cor(povdf$povty, povdf$feemp)

## [1] -0.6900635
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The sign of this sample correlation is negative, indicating a negative correlation
between the poverty and female employment rates. That is, higher female employ-
ment rates are associated with lower poverty rates, whereas lower female employ-
ment rates are associated with higher poverty rates. The magnitude of this correla-
tion is 0.69 (rounded from 0.6900635) and reflects a moderate amount of association
between the poverty and female employment rates for such an observational study in
the social sciences.

Among the many graphical methods used for exploratory data analysis, in this
manuscript we demonstrate two often-used graphs, one univariate and the other
bivariate. In particular, we draw a histogram and a scatter plot by the ggplot2
R package (Wickham 2016), using the geometries, geom histogram() and
geom_point (), respectively:

ggplot(povdf, aes(x=povty)) +
geom_histogram(aes(y=..density..),fill="grey", col="black") +
theme_bw() +
xlab("Poverty Rate") + ylab("Density")

ggplot(povdf, aes(x=feemp, y=povty)) +
geom_point(size = 0.5) +
theme_bw() +
xlab("Female Employment Rate") + ylab("Poverty Rate")

Figure 1 shows the histogram of povty and the scatter plot for povty by feemp.
The histogram shows that the range of poverty rates is between 0 and 55% with a
center around 10% (Fig. 1a). The histogram is also right skewed, revealing coun-
ties with high poverty rates in the right tail. The histogram is based on density such
that the areas of the vertical bars at 5% increments add up to a total probability of
1. Alternatively, we could plot the histogram by the number of counties at the 5%
increments and the shape of the histogram would be the same.

The scatter plot shows a negative trend (Fig. 1b). As the female employment rate
increases from 20% to nearly 80%, the poverty rate declines. This finding is consist-
ent with the negative sample correlation, indicating a negative association between
female employment rate and poverty rate.

4 Standard Linear Regression
4.1 Model Fitting

To quantify the relationships between the poverty rate and the socioeconomic varia-
bles, we perform standard linear regression such that the response variable is poverty
rate and the eight explanatory variables are percentage of agricultural workers (ag),
percentage of manufacturing workers (manu), percentage of retail workers (retail),
percentage of foreign-born residents (foreign), percentage of female employment
(feemp), percentage of high school graduates (hsch), percentage of Blacks (black),
and percentage of Hispanics (hisp).
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Fig. 1 Histogram of poverty (a) and scatter plot between the poverty rate and the female employment
rate (b)

The analysis in the remainder of this note focuses on interpretation and relies on
the large sample size of exploring all counties in the continental United States (3070
counties). Given that our response ranges from 0 to 100% and that the models in
this analysis are linear models, it is possible that fitted values may lie outside of
the range leading to predictions of negative poverty or poverty over 100%. In the
interest of interpretability and because consideration of appropriate transformations
depends on a case by case basis, we do not use any transformations to address this.
For smaller area studies, we encourage the reader to consider linear transformation
of the response (ex: logit, log, square root, arcsine) in order to meet the normality
assumptions imposed by these models. Weighting by the population size may also
be explored. Supplementary tutorials can be found at https://mkamenet3.github.io/
SpatialRegPovertyR/.

The R function 1m () is applied to the data frame povty and the output m1 is an
1m object. We then apply the R function summary () to the m1 object and obtain
the results of the standard linear regression:
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ml = Im(povty ~ ag + manu + retail + foreign + feemp + hsch + black + hisp,
data=povdf)

summary(ml)

##

## Call:

## lm(formula = povty ~ ag + manu + retail + foreign + feemp + hsch +
## black + hisp, data = povdf)

#it

## Residuals:

#t Min 1Q Median 3Q Max

## -12.9991 -2.2388 -0.3421 1.7029 29.0205

##

## Coefficients:

Hit Estimate Std. Error t value Pr(>|t])

## (Intercept) 46.462367 1.019860 45.558 < 2e-16 ***
## ag 0.104110 0.012701 8.197 3.58e-16 ***
## manu -0.028851 0.009740 -2.962 0.00308 **
## retail -0.064335 0.039627 -1.624 0.10458

## foreign -0.171651 0.021274 -8.069 1.0le-15 ***
## feemp -0.526357 0.011166 -47.141 < 2e-16 ***
## hsch -0.188037 0.014749 -12.749 < 2e-16 ***
## black 0.081289 0.005466 14.872 < 2e-16 ***
## hisp 0.061865 0.008176 7.567 5.03e-14 **x*
## ---

## Signif. codes: @ '***' 9,001 '"**' 9.01 '*' 9.05 '.' 0.1 ' ' 1
##

## Residual standard error: 3.809 on 3061 degrees of freedom
## Multiple R-squared: ©0.5861, Adjusted R-squared: ©0.585
## F-statistic: 541.7 on 8 and 3061 DF, p-value: < 2.2e-16

There are four parts to the summary of this standard linear regression. The
initial function call is echoed in the first part. The second part reports the sum-
mary statistics of residuals (minimum, first quartile, median, third quartile, and
maximum). Here the residual is defined as the difference between an observed
response (poverty rate) and its fitted value by the linear regression. We use resid-
uals for model diagnostics near the end of this subsection. The third part reports,
for each explanatory variable, a fitted regression coefficient (under Estimate),
its standard errors (under Std. Error), the ratio of the two values as a T test
statistic (under t value), and a p value for testing whether the true regres-
sion coefficient is zero or not (under Pr (>|t|)). For example, the estimated
regression coefficient for feemp is —0.526 (rounded from —0.52635676) with
standard error 0.011166. The T test statistic is —47.141 and the p value is <2.2E-
16. This tells us that a 1% increase in the female employment rate is associated
with a 0.526% decrease in the poverty rate when all other explanatory variables
are held constant. How significant is this result? Relative to the standard error of
about 1.12%, the T statistic is very large and the p value is extremely small. There
is very strong evidence that the true regression coefficient for female employ-
ment rate is not zero. The last part of the output provides a residual standard
3.809 on 3061 degrees of freedom, which estimates the standard deviation of the
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error term in the standard linear regression model. In addition, a multiple and an
adjusted R-squared are reported, indicating that about 58% of the variation in the
response variable of poverty rate is explained by the relationship with the socio-
economic variables considered herein. Finally, an F-test is carried out for testing
whether all of the regression coefficients are zero. The p value is <2.2E—16 and
there is very strong evidence that the not all the regression coefficients are zero.

In addition, we may extract the estimated regression coefficients and the cor-
responding 95% confidence intervals by applying the R functions coef () and
confint () to the m1 object. By the R function cbind () below, we combine
these results into a table of three columns, one for the estimated regression coef-
ficients (named coefest) and the other two for the lower and upper limits of the
95% confidence intervals.

cbind(coefest = coef(ml), confint(ml))

## coefest 2.5 % 97.5 %
## (Intercept) 46.46236736 44.46268723 48.462047496
## ag 0.10410987 ©0.07920740 ©.129012335
## manu -0.02885059 -0.04794830 -0.009752886
## retail -0.06433542 -0.14203379 0.013362963
## foreign -0.17165122 -0.21336404 -0.129938403
## feemp -0.52635676 -0.54824943 -0.504464081
## hsch -0.18803678 -0.21695614 -0.159117430
## black 0.08128912 ©.07057202 ©.092006219
## hisp 0.06186454 ©0.04583405 ©.077895030

For example, the estimated regression coefficient for feemp is —0.526 with a
95% confidence interval of [—0.548, —0.504]. That is, there is a 95% confidence
of between 0.504 and 0.548% decrease in the poverty rate associated with a 1%
increase in the female employment rate when all other explanatory variables are
held constant.

4.2 Model Selection

Among the socioeconomic explanatory variables, one of them, retail, is not sig-
nificant (p value=0.10458). It is common practice to perform model selection in
search of a more parsimonious model that has possibly fewer explanatory variables.
We use the R function step () to perform a backward elimination based on Akai-
ke’s information criterion (AIC) and save the result to an 1m object m2. That is, we
start with the full model m1, which has all the socioeconomic explanatory variables,
and we drop the explanatory variable that results in the largest decrease in AIC itera-
tively until there is no further decrease in AIC. Recall that a smaller AIC indicates a
better model fit balanced with model parsimony. It should be noted that the stepwise
exercise could result in biased p values and thus should be avoided when possible.
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#backward elimination based on AIC
m2 = step(ml)

## Start: AIC=8219.82
## povty ~ ag + manu + retail + foreign + feemp + hsch + black + hisp

##
#it Df Sum of Sq RSS AIC
## <none> 44402 8219.

## - retail
## - manu

38 44440 8220.
127 44529 8226.

PO OUANOOUV O

1

1
## - hisp 1 831 45232 8274.
## - foreign 1 944 45346 8282.
## - ag 1 975 45376 8284.
## - hsch 1 2358 46759 8376.
## - black 1 3208 47610 8432.

1

## - feemp 32236 76638 9893.

When the explanatory variable retail is dropped, the AIC value increases from
8219.8 to 8220.5. This indicates that the model without retail is not as good a
model as the full model with all the explanatory variables m1. This holds for all the
other explanatory variables as well, and thus none of the explanatory variables are
dropped from the full model based on AIC. The final model m2 is the same as the
full model m1.

Alternatively, we could use the R function step () to perform backward elimi-
nation based on Schwartz’s Bayesian information criterion (BIC) by setting the pen-
alty coefficient to the log of the sample size (k=1log(n)) and save the result to an 1m
object m3. Like AIC, a smaller BIC indicates a good model fit balanced with model
parsimony. We thus start with the full model m1, which has all the socioeconomic
explanatory variables, and we drop the explanatory variable that results in the larg-
est decrease in BIC iteratively until there is no further decrease in BIC:
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#backward elimination based on BIC
n = nrow(povdf) #n is the sample size
m3 = step(ml, k=log(n))

## Start: AIC=8274.08
## povty ~ ag + manu + retail + foreign + feemp + hsch + black + hisp

#it

#it Df Sum of Sq RSS AIC
## - retail 1 38 44440 8268.7
## <none> 44402 8274.1
## - manu 1 127 44529 8274.8
## - hisp 1 831 45232 8322.9
## - foreign 1 944 45346 8330.7
## - ag 1 975 45376 8332.7
## - hsch 1 2358 46759 8424.9
## - black 1 3208 47610 8480.2
## - feemp 1 32236 76638 9941.7

#H#
## Step: AIC=8268.69
## povty ~ ag + manu + foreign + feemp + hsch + black + hisp

i

#it Df Sum of Sq RSS AIC
## - manu 1 102 44542 8267.7
## <none> 44440 8268.7
## - hisp 1 845 45285 8318.5
## - foreign 1 933 45373 8324.5
## - ag 1 1576 46016 8367.7
## - hsch 1 2404 46844 8422.4
## - black 1 3332 47772 8482.6
## - feemp 1 32207 76647 9934.0
##

## Step: AIC=8267.73
## povty ~ ag + foreign + feemp + hsch + black + hisp

##

#it Df Sum of Sq RSS AIC
## <none> 44542 8267.7
## - hisp 1 893 45436 8320.7
## - foreign 1 987 45529 8327.0
## - ag 1 2211 46754 8408.4
## - black 1 3233 47775 8474.8
## - hsch 1 3572 48115 8496.5
## - feemp 1 32912 77454 9958.2

There are three steps in this model selection by BIC. In the first step, the retail
explanatory variable is dropped from the reference model with all the explanatory
variables because the BIC value of 8268.7 without retail is smaller than the BIC
value of 8274.1 for the reference model with retail, whereas dropping any of
the other explanatory variables would result in a BIC value larger than 8274.1 for
the reference model. In the second step, the reference model without retail has a
BIC value of 8268.7 and the manu explanatory variable is dropped because the BIC
value of 8267.7 without manu is smaller than the BIC value of 8268.7 for the refer-
ence model with manu, whereas dropping any of the other explanatory variables
would result in a BIC value larger than 8268.7 for the reference model. In the third
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and last step, the reference model without retail and manu has a BIC value of
8267.7. Because leaving out any of the remaining explanatory variables would result
in an increase in the BIC value, the model selection is finished. The final best model
is m3 without retail and manu, with the following summary of the model fit:

summary(m3)

#H#

## Call:

## lm(formula = povty ~ ag + foreign + feemp + hsch + black + hisp,
#i data = povdf)

##

## Residuals:

#it Min 1Q  Median 3Q Max

## -13.1475 -2.2578 -0.3776 1.6626 29.3469

##

## Coefficients:

Hit Estimate Std. Error t value Pr(>|t|)

## (Intercept) 45.911167 0.858997 53.447 < 2e-16 ***
## ag 0.125505 0.010178 12.331 < 2e-16 ***
## foreign -0.174881 0.021227 -8.239 2.55e-16 ***
## feemp -0.528419 0.011108 -47.573 < 2e-16 ***
## hsch -0.206914 0.013202 -15.673 < 2e-16 ***
## black 0.079324 0.005320 14.910 < 2e-16 ***
## hisp 0.063941 0.008159 7.837 6.31e-15 ***
#H# ---

## Signif. codes: @ "***' @9.001 '**' 0.01 '*' ©.05 '.' 0.1 ' ' 1
#it

## Residual standard error: 3.813 on 3063 degrees of freedom
## Multiple R-squared: ©0.5847, Adjusted R-squared: ©.5839
## F-statistic: 718.8 on 6 and 3063 DF, p-value: < 2.2e-16

This standard linear regression summary for m3 provides estimates for the regres-
sion coefficients that are similar to those of m1. For example, in m3 the estimated
regression coefficient for feemp is —0.528 with standard error 0.011108, compared
with an estimate of —0.526 with standard error 0.011166 in m1. There is a very
slight decrease of the multiple and the adjusted R-squared values, but the amount of
variation in the response variable explained by this final best model remains about
58%. We proceed with this set of six explanatory variables (ag, foreign, feemp,
hsch, black, and hisp) in the remainder of this manuscript.

4.3 Model Diagnostics

Now that we have fitted standard linear regression models and selected a final model
m3, we perform model diagnostics for the purpose of evaluating the model assump-
tions. There are four model assumptions to evaluate: linearity, independence, equal
variance, and normality. For linearity and equal variance, it is common to use the
plot of residuals versus fitted responses. This is the first option in the R function
plot () applied to m3 (plot (m3, which=1)) . For normality, it is com-
mon to use the normal quantile-quantile (QQ) plot of the standardized residuals,
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which is the second option in the R function plot () applied to m3 (plot (m3,
which=2)) . These two plots can also be created using ggplot?2. For the resid-
uals versus fitted response, we extract the fitted and residual values from m3 and use
geom_smooth () layered over geom point () to create the plot. For the QQ
plot, we extract the standardized residuals from m3 and use stat gg line ()
layered over geom_qq () to create the plot.

#00 Plot

ggplot(m3,aes(sample=rstandard(m3))) +
geom_qq(size=0.5) +
stat_qq_line() +
theme_bw() +
xlab("Theoretical Quantiles") + ylab("Standardized Residuals")

#Residuals vs. Fitted Plot

ggplot(m3,aes(x=.fitted, y=.resid)) +
geom_point(size=0.5) +
geom_smooth() +
theme_bw() +
xlab("Fitted Values") + ylab("Residuals")

The normal Q-Q plot (Fig. 2a) shows a departure from the straight line at the
upper end, indicating right skewness in the residuals (i.e., more large positive resid-
uals than a normal distribution would typically have). The right skewness is also
reflected in the plot of the residuals versus the fitted responses (Fig. 2b), while the
remaining residuals appear to be scattered fairly randomly.

When model diagnostics like those above indicate any departure from the stand-
ard linear regression assumptions, remedial measures are not always needed due to
the robustness of the regression. When remedial measures are needed, a commonly
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Fig.2 Quantile—quantile (Q—Q) plot of the standard linear regression model residuals
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used approach is transformation of the response variable and/or the explanatory var-
iables. For illustration, we take the logit transformation of the response variable

log <1pr )) and fit a linear regression model. We use the 1ogit () function from

the car package (Fox and Weisberg 2011) as it adjusts proportions that are per-
fectly O or 1. Then we perform model diagnostics as before by a residual versus fit-
ted response plot and a normal Q-Q plot (Fig. 3):

m3.logit = Im(car::logit(povty, percents = TRUE) ~ ag + foreign + feemp + hsc
h + black + hisp, data=povdf)

ggplot(m3.logit, aes(sample = rstandard(m3.logit))) +
geom_qq(size = 0.5) +
stat_qq_line() +
theme_bw() +
xlab("Theoretical Quantiles") + ylab("Standardized Residuals")

ggplot(m3.logit,aes(x=.fitted, y=.resid)) +
geom_point(size=0.5) +
geom_smooth() +
theme_bw() +
xlab("Fitted Values") + ylab("Residuals")

The normal Q—Q plot (Fig. 3a) shows less departure from the straight line at the
upper end but more departure at the lower end, indicating a possible overcorrection
of the right skewness in the untransformed data. In the plot of the residuals versus
the fitted responses (Fig. 3b), several large negative residuals are marked and there
is some indication of smaller variance for larger fitted values (i.e., unequal vari-
ance). This example demonstrates some of the challenges in model selection and
model diagnostics. Taking a remedial measure to correct the departure from one

(a) (b)
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Fig. 3 Quantile—quantile (Q—Q) plot of the standard linear regression model residuals with the response
variable transformed
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assumption could lead to the departure from another assumption. For the remainder
of this manuscript, we model the original poverty rate without any transformation.

Thus far we have evaluated the assumptions of linearity, equal variance, and nor-
mality. The independence assumption, however, is not an option in the R function
plot () ; we evaluate the independence assumption in Sect. 7.1.

5 Neighborhood Structure and Spatial Weight Matrix

In Sects. 3 and 4, we performed exploratory data analysis and standard linear regres-
sion analysis of the poverty rate data without considering spatial information in
the data. In this section, we create a neighborhood structure and a spatial weight
matrix in preparation for spatial analysis. In the following two sections, we perform
exploratory spatial data analysis (Sect. 6) and carry out spatial regression analysis
(Sect. 7).

Recall that the data frame povdf comprises of the response variable and the
explanatory variables as well as the FIP code that identifies the counties in the 48
states of the contiguous United States.

head(povdf)

## # A tibble: 6 x 12
##  FIPS_N ag black feemp foreign hisp hsch manu povty retail STATEFP
##  <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

## 1 01001 2.13 17.1 53.2 1.17 1.40 33.8 16.5 9.06 12.9 1
## 2 01003 1.57 10.3 50.5 2.11 1.76 29.6 12.5 9.13 14.2 1
## 3 01005 3.97 46.3 43.5 1.5 1.65 32.4 31.4 21.9 1.5 1
## 4 01007 3.30 22.2 44.3 0.430 1.01 35.7 23.8 17.7 9.93 1
## 5 01009 2.18 1.19 48.1 3.10 5.33 36.0 19.5 9.89 11.6 1
## 6 01011 10.5 73.1 36.5 3.06 2.75 35.2 23.2 28.6 7.53 1
#it # . with 1 more variable: COUNTYFP <chr>

We now create neighbors and their corresponding spatial weights. First, we
import U.S. counties shape file into R using the counties () function from the
tigris package (Walker 2018). In order to only import counties that correspond
to the counties in the poverty data set povdf (the contiguous United States), we
specify (state = povdf$SSTATEFP). We set the resolution of the shape file to
be 500 k with (cb = TRUE) and the census year for the shape files to be 2000. The
county shape files are automatically imported into a SpatialPolygonsData-
Frame. For faster performance and easier manipulation, we convert uscounties
to a “simple features” data frame using the st as sf () function from the sf
package (Pebesma 2018).

uscounties <- counties(state = povdf$STATEFP,
cb=TRUE,year=2000)
uscounties_sf <- st_as_sf(uscounties)
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Now that we have the counties prepared, we need to connect the counties to the
povdf data frame. To merge the two data frames, we use the merge () func-
tion from the sp package (Pebesma et al. 2018). Prior to merging, we first create
the data vector FIPS N by combining the state and county FIPs codes and set it
as a variable in the uscounties_sf data frame. This gives us a unique identi-
fier for each county which we can merge with FIPS N from the povdf data
frame.

uscounties_sf$FIPS_N <- paste@(uscounties_sf$STATEFP, uscounties_sf$COUNTYFP)
#merge sf to povdf
povdf_uscounties_sf <- sp::merge(uscounties_sf, povdf, by="FIPS_N")

The object povdf uscounties sf is both a simple features (sf) object
and a data. frame, being associated multi-polygon geometries. In order to cre-
ate the neighborhood structure of counties in the continental United States, we
use the poly2nb () function from the spdep package (Bivand et al. 2013). We
first coerce povdf uscounties sf to a SpatialPolygonsDataFrame
using the as_Spatial () function (from the sf package) and specify IDs =
povdf uscounties sfSFIPS N. After setting the row names of povdf
uscounties spdf to be the row names of the povdf data frame, we apply
poly2nb ().

povdf_uscounties_spdf <- as_Spatial(povdf_uscounties_sf,
IDs = povdf_uscounties_sf$FIPS_N)
row.names (povdf_uscounties_spdf) <- row.names(povdf)
pov_nb <- poly2nb(povdf_uscounties_spdf,
row.names = povdf_uscounties_spdf$FIPS_N)

The output pov _nb is a neighborhood object which explicitly lists who
are neighbors with whom and, in our case, which county is a neighbor with
which county. We then create spatial weights by the R function nb21listw ()
from the spdep package using the default option of row standardization
(style="W") and binary weights (style="B"):

#W - default row-standardized weights

listw_povW = nb2listw(pov_nb, style="W",zero.policy = TRUE)
#B - binary weights

listw_povB = nb2listw(pov_nb, style="B", zero.policy = TRUE)

We specify zero.policy=TRUE above because some counties do not
have any neighbors, such as Nantucket County in Massachusetts, and the neigh-
borhood object pov_nb has entries that are null. The zero policy allows spa-
tial weights to be created for counties with one or more neighbors despite the
null entries. The output 1istw povB is a spatial weight object, which can be
visualized by a map as shown in Fig. 4. The plot () function applied to a list of
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Fig.4 Neighborhood structure

spatial weights takes the list of spatial weights and coordinates of the centroids
as arguments. We extract geometries of the county polygons using st geome-
try (), the centroids using st centroid (), and finally the coordinates using
st coordinates().

county_geoms <- st_geometry(povdf_uscounties_sf)
cntrd <- st_centroid(county_geoms)

coords <- st_coordinates(cntrd)

plot(listw_povB, coords, col="blue", cex=0.1)

The centroids of all pairs of neighboring counties are connected by a line and the
map can be thought of as a network or a graph such that the county centroids are the
vertexes and the connecting lines between neighboring counties are the edges.

6 Exploratory Spatial Data Analysis

We performed exploratory data analysis by summary statistics and graphical meth-
ods in Sect. 4. However, standard exploratory data analysis does not take into
account the spatial nature of the data. In this section we consider exploratory spatial
data analysis by summary statistics and graphical methods that utilize the spatial
information in the data. The goal of exploratory spatial data analysis is for the reader
to gain insights into the spatial nature of their data as a way to inform them how
best to proceed with their choice of model, determination of outliers, and scope of
the inferences that can be made from the data via confirmatory analysis. A natural
graphical method to use for exploratory spatial data analysis is a heat map, where
the levels of a variable are color coded on a map. We can draw the heat map of the
poverty rates as well as heat maps of the socioeconomic explanatory variables over
the 3070 counties in the contiguous United States.

We use ggplot2 to plot the response variable, povty, by passing the sf
data frame povdf uscounties sf to the ggplot () function. We add the
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geometry geom_sf () and specify the aesthetic aes (fill=povty) . Additional
features specify the black and white plot theme (theme bw () ) and the grey color
scale ((scale fill continuous (low="white”, high="black”))).

ggplot(povdf_uscounties_sf) +
geom_sf(aes(fill=povty)) +
theme_bw() +
scale_fill_continuous(low="white", high="black")

For illustration, we use ggplot () to plot one of the explanatory variables,
female employment rate feemp.

ggplot(povdf_uscounties_sf) +
geom_sf(aes(fill=feemp)) +
theme_bw() +
scale_fill_continuous(low="white", high="black")

The spatial pattern of povty (Fig. 5a) indicates relatively low poverty rates in
the northern and western states, whereas the poverty rates are relatively high in the
southeastern states. The spatial pattern of feemp (Fig. 5b) indicates relatively high
female employment rates in eastern states. The relationship between poverty and
female employment rates shown in Fig. 5 is not as obvious as in Fig. 1.

It should be noted that the tmap R package and extensions can also be used
to create high quality thematic maps. We provide a supplementary tutorial online
(https://mkamenet3.github.io/SpatialRegPovertyR/) and encourage the reader to fur-
ther explore spatial visualizations using tmap (Lovelace et al. 2019).

6.1 Moran’s|and Geary’s c

For exploratory spatial data analysis, summary statistics such as Moran’s I and
Geary’s ¢ can be used to quantify spatial dependence. With the neighborhoods cre-
ated in Sect. 5, we use the R function moran.test () to estimate the Moran’s /
statistic and perform a Moran’s I test for the null hypothesis that there is no spa-
tial dependence versus a two-sided alternative hypothesis that there is spatial
dependence:
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#Moran's I test based on randomization
moran.test(povdf$povty, listw_povB, zero.policy = TRUE,

alternative = "two.sided")

##

## Moran I test under randomisation
##

## data: povdf$povty

## weights: listw_povB n reduced by no-neighbour observations
##

## Moran I statistic standard deviate = 53.934, p-value < 2.2e-16
## alternative hypothesis: two.sided

## sample estimates:

## Moran I statistic Expectation Variance

## 0.5668859074 -0.0003260515 0.0001106021

Based on the output above, the Moran’s [ statistic is 0.5669, indicating positive
spatial dependence among neighboring counties. If there is no spatial dependence,
then the expected value and the variance of the Moran’s [ statistic are —0.000326
and 0.0001106, respectively. This results in a standard deviation (or Z-value) of
53.934 with a p value less than 2.2E—16 (i.e., 2.2 X 107'%), which is virtually zero.
There is very strong evidence for spatial dependence in the poverty rates across
counties in the continental U.S.

The Moran’s [ test by moran.test () is based on a normal approximation and
the variance estimation is based on randomization. Alternatively, a Monte Carlo test
can be performed by the R function moran.mc (), where we pre-specify the num-
ber of Monte Carlo simulations (here, nsi1m=999) and compare the Moran’s I statis-
tic of 0.5669 against the null distribution of the Moran’s I statistic under the assump-
tion of no spatial dependence. We set the randomization seed to 1 so that when the
code is re-run we get the same test result:

#Moran's I test based on Monte Carlo
set.seed(1)
moran.mc(povdf$povty, listw_povB, zero.policy = TRUE, nsim=999)

##

## Monte-Carlo simulation of Moran I

#H#

## data: povdf$povty

## weights: listw_povB

## number of simulations + 1: 1000

##

## statistic = 0.56641, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater

This Monto Carlo test shows that the rank of the observed Moran’s I test statistic
of 0.5664 is larger than any of the test statistics from the nsim=999 simulations
and thus has the highest rank. The p value is 1 out of 1000, which is 0.001 for a null
hypothesis that there is no spatial dependence versus a one-sided alternative that
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there is positive spatial dependence. That is, there is very strong evidence for posi-
tive spatial dependence in the poverty rates among counties. For a two-sided alter-
native that there is spatial dependence (positive or negative), we double 0.001 and
obtain a p value of 0.002. There is still very strong evidence for spatial dependence
in the poverty rates among counties.

Besides Moran’s I, we may use the R function geary.test () to estimate the
Geary’s c statistic and perform a Geary’s c test for the null hypothesis that there is
no spatial dependence versus a two-sided alternative hypothesis that there is spatial
dependence:

geary.test(povdf$povty, listw_povB, zero.policy=TRUE,

alternative = "two.sided")

##

## Geary C test under randomisation
##

## data: povdf$povty

## weights: listw_povB

##

## Geary C statistic standard deviate = 40.714, p-value < 2.2e-16
## alternative hypothesis: two.sided

## sample estimates:

## Geary C statistic Expectation Variance

## 0.4287877788 1.0000000000 0.0001968414

Based on this output, the Geary’s c statistic is 0.4288, indicating a positive spatial
dependence among neighboring counties. If there were no spatial dependence, the
expected value and the variance of the Geary’s ¢ statistic would be 1 and 0.0001968,
respectively. This results in a standard deviation (or Z-value) of 40.714 with a p
value that is also virtually zero. There is again very strong evidence for spatial
dependence in the poverty rates across counties.

The Geary’s ¢ test by geary.test () is based on a normal approximation and
the variance estimation is based on randomization. Alternatively, a Monte Carlo
test can be performed by the R function geary.mc (), where we pre-specify the
number of Monte Carlo simulations (by nsim=999) and compare the Geary’s c
statistic of 0.4288 against its null distribution under the assumption of no spatial
dependence:
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set.seed(1)
geary.mc(povdf$povty, listw_povB, zero.policy = TRUE, nsim=999)

##

## Monte-Carlo simulation of Geary C

##

## data: povdf$povty

## weights: listw_povB

## number of simulations + 1: 1000

##

## statistic = 0.42879, observed rank = 1, p-value = 90.001
## alternative hypothesis: greater

This Monto Carlo test shows that the rank of the observed Geary’s c test statistic
of 0.42879 is larger than any of the test statistics from the nsim=999 simulations and
thus ranks the highest. The p value is thus 0.002 (0.001) for a two-sided (one-sided)
alternative and there is very strong evidence for spatial dependence (positive spatial
dependence) in the poverty rates across counties.

6.2 Local Moran’s |

To apply local Moran’s  to the data, we use the R function 1localmoran () from the
spdep package. The output is extensive, so here we apply the R function head () to
take a look at the first six counties as an example. We also use the R function round ()
to round the output values to two digits after the decimal point:

head(round(localmoran(povdf$povty, listw_povB, zero.policy = TRUE),2))

## Ii E.Ii var.Ii Z.Ii Pr(z > @)
## 01001 -2.78 0  4.99 -1.24 0.89
## 01003 -2.64 O 5.98 -1.08 0.86
## 01005 15.38 0 7.97 5.45 0.00
## 01007 3.77 @ 5.98 1.54 0.06
## 01009 0.08 © 5.98 0.03 0.49
## 01011 18.14 O 4.99 8.12 0.00

For example, for the county identified by FIPS_N 01001 in the output above
(Autauga County, Alabama), the local Moran’s I (I1) is —4.99, with virtually zero
expectation (E. I1i) and a variance of 4.99 (Var.Ii). Thus, the standard deviate (Z .
TIi)is —1.24 and the p value (1-Pr(z>0)) is 1-0.89=0.11 for a one-sided
alternative (the p value is 0.22 for a two-sided alternative). There is no evidence of
local spatial dependence for this county.
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7 Spatial Linear Regression
7.1 Diagnostics for Spatial Dependence

In Sect. 4, we fitted and selected standard linear regression models to quantify the
relationship between poverty rates and socioeconomic variables. We also carried out
model diagnostics using residuals plots to evaluate the model assumptions of linear-
ity, equal variance, and normality (but not yet independence). We are now ready to
evaluate the independence assumption.

Here we use row-standardized spatial weights and recall the spatial weights
object 1istw_ povW. We apply the R function Im.morantest () to the residu-
als of the fitted standard linear regression models. The null hypothesis is that there
is no spatial dependence in the error term of the standard linear regression model.

Im.morantest(m3, listw_povW, zero.policy = TRUE, alternative = "two.sided")

##

## Global Moran I for regression residuals

##

## data:

## model: 1lm(formula = povty ~ ag + foreign + feemp + hsch + black +
## hisp, data = povdf)

## weights: listw_povW

##

## Moran I statistic standard deviate = 25.358, p-value < 2.2e-16
## alternative hypothesis: two.sided

## sample estimates:

## Observed Moran I Expectation Variance

## 0.2704016625 -0.0015987855 0.0001150541

Based on the output above, the Moran’s [ statistic is 0.2701, indicating a posi-
tive spatial dependence among neighboring counties. The standard deviation (or
Z-value) is 25.358 with a p value less than 2.2E—16, which is virtually zero. There is
very strong evidence for spatial dependence among the errors of the standard linear
regression model. This calls for more complex spatial linear regression analysis. The
next subsection presents spatial lag models and spatial error models including the
simultaneous autoregressive (SAR) and conditional autoregressive (CAR) models.

7.2 Spatial Lag Models

We consider fitting a spatial lag model to the poverty rates data. The R function
lagsarlm () is applied to the data frame povdf and the outputism3 lag.

m3_lag = lagsarlm(povty ~ ag + foreign + feemp + hsch + black + hisp, data=p
ovdf, listw = listw_povW,type="1lag",zero.policy=TRUE)
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Coefficients estimated from spatial lag models cannot be interpreted directly
because of spillovers between the terms in the data generation process. We refer
the reader to Golgher and Voss (2016) regarding spatial confounding and spillo-
ver effects. We calculate impacts using the impacts () function from the spdep
package.

impacts(m3_lag, listw=1listw_povW) # this takes several minutes

## Impact measures (lag, exact):

#i# Direct Indirect Total
## ag 0.09941542 0.05776276 ©.15717818
## foreign -0.07402554 -0.04301063 -0.11703616
## feemp -0.38979879 -0.22648252 -0.61628131

## hsch -0.14686715 -0.08533336 -0.23220051
## black 0.06168646 0.03584133 0.09752779
## hisp 0.03206871 0.01863269 0.05070140

The output gives us the direct (or local) effect, indirect (or spillover) effect, and
total effect (or sum of the direct and indirect effects). The total effect can be inter-
preted similarly to our interpretation of regression coefficients in the standard linear
model. The total effect of feemp is —0.616 (rounded from —0.61628131). A 1%
increase in female employment is associated with a 0.616% decrease in poverty.
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summary(m3_lag, correlation=FALSE)

#H#

## Call:lagsarlm(formula = povty ~ ag + foreign + feemp + hsch + black +

#it hisp, data = povdf, listw = listw_povW, type = "lag", zero.policy = TR
UE)

#H#

## Residuals:

## Min 1Q Median 3Q Max

## -14.28213 -2.03550 -0.34323 1.40795 31.92721

#H#

## Type: lag

## Regions with no neighbours included:

## 25019 36085 53055

## Coefficients: (asymptotic standard errors)

## Estimate Std. Error 2z value Pr(>|z])
## (Intercept) 31.1828042 1.0847285 28.7471 < 2.2e-16

## ag 0.0963964 0.0094252 10.2275 < 2.2e-16
## foreign -0.0717775 ©.0198912 -3.6085 0.000308
## feemp -0.3779615 0.0126199 -29.9495 < 2.2e-16
## hsch -0.1424071 0.0128045 -11.1216 < 2.2e-16
## black 0.0598132 0.0051485 11.6175 < 2.2e-16
## hisp 0.0310949 0.0077062 4.0350 5.46e-05
#i

## Rho: 0.38694, LR test value: 409.57, p-value: < 2.22e-16
## Asymptotic standard error: 0.018873

## z-value: 20.502, p-value: < 2.22e-16
## Wald statistic: 420.35, p-value: < 2.22e-16
#H#

## Log likelihood: -8257.118 for lag model

## ML residual variance (sigma squared): 12.334, (sigma: 3.512)
## Number of observations: 3070

## Number of parameters estimated: 9

## AIC: 16532, (AIC for 1lm: 16940)

## LM test for residual autocorrelation

## test value: 47.6, p-value: 5.2258e-12

There are five parts to this spatial linear regression output. The initial function
call is in the first part. The second part reports the summary statistics of resid-
vals (minimum, first quartile, median, third quartile, and maximum). Here the
residual is defined as the difference between an observed response and its fitted
value by the spatial linear regression. The third part reports, for each explanatory
variable, a fitted regression coefficient (under Estimate), its standard errors
(under Std. Error), the ratio of the two values as a Z test statistic (under
z value), and a p value for testing whether the true regression coefficient is
zero or not (under Pr (> | z | )). For the spatial lag model, we use the impacts to
assess coefficient estimates. For example, the estimated regression coefficient for
feemp is —0.378 with standard error 0.01262. The Z test statistic is —29.9495
and the p value is less than 2.2E-16. This tells us that a 1% increase in the female
employment rate is associated with a 0.378% decrease in the poverty rate when
all other explanatory variables are held constant. Relative to the standard error of
about 1.262%, the Z statistic —29.9495 is very large and the p value is extremely
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Residuals vs. Fitted

Residuals

Fitted Values

Fig. 6 Fitted values versus residuals of the spatial lag model

small. There is very strong evidence that the true regression coefficient for female
employment rate is not zero.

The fourth part of the output provides the estimate of the spatial correlation coef-
ficient rho, which is 0.387. Two hypothesis tests—a likelihood ratio (LR) test and
a Wald test—are applied for testing whether the true spatial correlation coefficient
rho is zero or not. The LR test value is 409.57 with a p value of less than 2.2E—16.
The Wald test is presented as a Z test with a z-value of 20.502 and a p value of less
than 2.2E—16. Equivalently, the Wald test statistic is 420.35, which is the square of
the z-value, and the p value of less than 2.2E—16 is the same as the Z test. Both the
LR test and the Wald test indicate there is very strong evidence that the spatial cor-
relation coefficient rho is not zero.

The fifth and last part of the output provides several useful statistics and tests.
The log-likelihood value for the fitted spatial lag model is —8257.118 and the AIC
value is 16532, which is smaller than the AIC value of 16,940 for the standard linear
regression model. The maximum likelihood estimate of the error variance sigma
squared is 12.334, with the error standard deviation sigma estimated to be its
square root, 3.512. Finally, the Lagrange multiplier (LM) test for the spatial depend-
ence in the error term has a test value of 47.6 and a small p value, indicating that
there is additional spatial dependence unaccounted for by the spatial lag model.

We have already tested for spatial dependence in the error term and learned that
there is strong evidence for spatial dependence. In addition, we may plot the residu-
als against the fitted responses (Fig. 6) as follows:

m3_lag.df <- cbind.data.frame(resids = residuals(m3_lag), fit = fitted(m3_lag

))

ggplot(m3_lag.df, aes(x = fit, y = resids)) +
geom_point(size = 0.5) +
geom_hline(yintercept = @, linetype="dashed") +
theme_bw() +
xlab("Fitted Values") + ylab("Residuals")

From the residual plot (Fig. 6), we see that the residuals are distributed fairly ran-
domly around the zero horizontal line and the variation tends to be higher for larger
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fitted values. This suggests no obvious departure from the linearity assumption, but
there is indication of unequal variances among the errors.

We apply the Breusch—Pagan (BP) test for the null hypothesis that the error vari-
ance is constant versus the alternative that the error variance is not constant by the R
function bptest.sarlm():

bptest.sarlm(m3_lag)

##

## studentized Breusch-Pagan test

#H#

## data:

## BP = 218.63, df = 6, p-value < 2.2e-16

The observed BP test statistic is 218.63 and the p value is extremely small. There
is very strong evidence for unequal variance in the error term of the spatial lag
model.

7.3 Spatial Durbin Error Models

As an alternative to the spatial lag model, we consider fitting a spatial Durbin error
model to the poverty rates data. The R function errorsarlm () is applied to the
data frame povdf and the option Durbin is to TRUE to specify the Durbin error
model. The output is m3 err. We then apply the R function summary () to the
m3_err object and obtain the results of the spatial error model fit:
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m3_err = errorsarlm(povty ~ ag + foreign + feemp + hsch + black + hisp, data=
povdf, listw = listw_povW, zero.policy = TRUE, Durbin=TRUE)
summary(m3_err)

##

## Call:errorsarlm(formula = povty ~ ag + foreign + feemp + hsch + black +
## hisp, data = povdf, listw = listw_povW, Durbin = TRUE, zero.policy =T
RUE)

##

## Residuals:

#it Min 1Q Median 3Q Max

## -12.82154 -1.89410 -0.35771 1.35667 29.29013

#H#

## Type: error

## Regions with no neighbours included:

## 25019 36085 53055

## Coefficients: (asymptotic standard errors)

it Estimate Std. Error z value Pr(>|z|)
## (Intercept) 44.3359709 1.4348067 30.9003 < 2.2e-16

## ag 0.0807951 0.0125397 6.4431 1.170e-10
## foreign -0.0485734 0.0286496 -1.6954 0.089995
## feemp -0.4338157 0.0142404 -30.4636 < 2.2e-16
## hsch -0.2383383 0.0147707 -16.1358 < 2.2e-16
## black 0.1470144 ©.0083749 17.5541 < 2.2e-16
## hisp 0.1070956 ©.0146375 7.3165 2.545e-13
## lag.ag 0.0848673 0.0204621 4.1475 3.361e-05
## lag.foreign -0.1326324 0.0448534 -2.9570 ©.003106
## lag.feemp -0.1384157 0.0195142 -7.0931 1.312e-12
## lag.hsch 0.1359980 ©0.0238282 5.7074 1.147e-08
## lag.black -0.0747138 0.0113379 -6.5897 4.406e-11
## lag.hisp -0.0430697 0.0192686 -2.2352 0.025402
#Hi#

## Lambda: ©.50771, LR test value: 464.16, p-value: < 2.22e-16
## Asymptotic standard error: ©.021888

#it z-value: 23.195, p-value: < 2.22e-16
## Wald statistic: 538.03, p-value: < 2.22e-16
##

## Log likelihood: -8055.921 for error model

## ML residual variance (sigma squared): 10.564, (sigma: 3.2503)
## Number of observations: 3070

## Number of parameters estimated: 15

## AIC: 16142, (AIC for 1lm: 16604)

There are five parts to this spatial linear regression output. The initial function
call is in the first part. The second part reports the summary statistics of residu-
als (minimum, first quartile, median, third quartile, and maximum. The third part
reports each explanatory and fitted coefficients. However, these cannot be directly
interpreted due to the spatial lag in the model. As with the spatial lag model, we
use the impacts to assess coefficient estimates in this spatial Durbin error model
because there is a spatial lag in the model.
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impacts(m3_err)

## Impact measures (SDEM, estimable):

it Direct Indirect Total
## ag 0.08079511 0.08486734 0.16566245
## foreign -0.04857337 -0.13263237 -0.18120574
## feemp -0.43381574 -0.13841569 -0.57223143

## hsch -0.23833829 0.13599803 -0.10234026
## black 0.14701435 -0.07471384 ©.07230051
## hisp 0.10709563 -0.04306973 ©.06402590

For example, the total effect of feemp is —0.572 (rounded from
—0.57223143). A 1% increase in female employment is associated with a 0.572%
decrease in poverty.

The fourth part of the summary output provides the estimate of the spatial
correlation coefficient 1ambda, which is 0.508. The LR test value is 464.16 with
a p value of virtually zero. The Wald test has a p value that is also virtually zero.
Both the LR test and the Wald test indicate there is very strong evidence that the
spatial correlation coefficient 1ambda is not zero.

The fifth and last part of the summary output provides several useful statistics
and tests. The log-likelihood value for the fitted spatial lag model is —8055.921
and the AIC value is 16,142, which is smaller than the AIC value of 16,940 for
the standard linear regression model, smaller than the AIC value of 16,604 for the
standard linear regression model with demographic lag terms included, and the
AIC value of 16,532 for the spatial lag model. The maximum likelihood estimate
of the error variance sigma squared is 10.564, with the error standard deviation
sigma estimated to be its square root, 3.2503.

Unlike the spatial lag model fit, there is no test for spatial dependence in the
residuals. Thus, we apply the R function moran.mc () to test for spatial depend-
ence in the error term of the spatial error model:

moran.mc(residuals(m3_err), listw_povW, zero.policy=TRUE, nsim=999)

#H#

## Monte-Carlo simulation of Moran I

#H#

## data: residuals(m3_err)

## weights: listw_povW

## number of simulations + 1: 1000

##

## statistic = -0.021028, observed rank = 23, p-value = 0.977
## alternative hypothesis: greater

The observed Moran’s [ test statistic is —0.021028 with an observed rank of
23. Thus, the p value is (1 — 0.977) X2, which is 0.046. There is weak evidence
of additional spatial dependence unaccounted for by the spatial error model.

@ Springer



M. Kamenetsky et al.

7.4 Spatial SAR Models

An alternative to lagsarlm () is the R function spautolm () applied to the data
frame povty; the output is m3 sar. We apply the R function summary () to
m3_sar and obtain the results of the spatial linear regression that assumes a simul-
taneous autoregressive (SAR) model for the error term:

m3_sar = spautolm(povty ~ ag + foreign + feemp + hsch + black + hisp, data=po
vdf, listw = listw_povW, zero.policy = TRUE, family="SAR")
summary(m3_sar)

##

## Call: spautolm(formula = povty ~ ag + foreign + feemp + hsch + black +
## hisp, data = povdf, listw = listw_povW, family = "SAR", zero.policy =
TRUE)

##

## Residuals:

#it Min 1Q Median 3Q Max

## -14.66286 -1.86254 -0.36497 1.41605 29.96495

H#H#

## Regions with no neighbours included:

## 25019 36085 53055

#H#

## Coefficients:

## Estimate Std. Error 2z value Pr(>|z])
## (Intercept) 41.5028349 1.0719155 38.7184 < 2.2e-16

## ag 0.0771771 0.0126031 6.1236 9.146e-10
## foreign -0.0719826 0.0270897 -2.6572 0.007879
## feemp -0.4412998 0.0143189 -30.8193 < 2.2e-16
## hsch -0.2296389 0.0148251 -15.4898 < 2.2e-16
## black 0.1267021 ©.0076672 16.5253 < 2.2e-16
## hisp 0.0901874 0.0123613 7.2960 2.967e-13
H#it

## Lambda: 0.61632 LR test value: 596.03 p-value: < 2.22e-16
## Numerical Hessian standard error of lambda: ©.020278

#H#

## Log likelihood: -8163.891

## ML residual variance (sigma squared): 11, (sigma: 3.3166)
## Number of observations: 3070

## Number of parameters estimated: 9

## AIC: 16346

Percentages of agricultural workers, black, and Hispanic are positively associated
with poverty rates, whereas percentages of foreign born, female employment, and
high school graduates are negatively associated with poverty rates. For example, the
estimated regression coefficient for feemp is —0.441 (rounded from —0.4412998)
with standard error 0.0143189. The Z test statistic is —30.8193 and the p value is
less than 2.2 x 107'®, This suggests that a 1% increase in the female employment
rate is associated with a 0.441% decrease in the poverty rate, with all other explana-
tory variables held constant. Relative to the standard error of about 1.431, the Z sta-
tistic —30.8193 is very large and the p value is extremely small. There is very strong
evidence that the true regression coefficient for female employment rate is not zero.
The output also provides the estimate of the spatial correlation coefficient lambda,
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which is 0.61632. The LR test value is 596.03 with a p value of virtually zero. There
is very strong evidence that the spatial correlation coefficient lambda is not zero.

7.5 Spatial CAR Models

In the R function spautolm(), we may specify a conditional autoregressive
(CAR) model for the error term as follows:

m3_car = spautolm(povty ~ ag + foreign + feemp + hsch + black + hisp, data=p
ovdf, listw = listw_povW, zero.policy = TRUE, family="CAR")
summary(m3_car)

#Hi

## Call: spautolm(formula = povty ~ ag + foreign + feemp + hsch + black +
## hisp, data = povdf, listw = listw_povW, family = "CAR", zero.policy =
TRUE)

Hi#

## Residuals:

#it Min 1Q Median 3Q Max

## -15.22966 -1.86101 -0.28561 1.42590 29.18291

#H#

## Regions with no neighbours included:

## 25019 36085 53055

##

## Coefficients:

it Estimate Std. Error z value Pr(>|z|)
## (Intercept) 38.8446396 1.1526919 33.6991 < 2.2e-16

## ag 0.0502052 0.0132623 3.7856 0.0001534
## foreign -0.1126881 0.0288758 -3.9025 9.52e-05
## feemp -0.4024270 0.0149676 -26.8866 < 2.2e-16
## hsch -0.2421201 0.0153654 -15.7575 < 2.2e-16
## black 0.1624423 0.0085434 19.0137 < 2.2e-16
## hisp 0.1278227 ©.0145159 8.8057 < 2.2e-16
H#it

## Lambda: ©.971 LR test value: 712.59 p-value: < 2.22e-16

## Numerical Hessian standard error of lambda: ©.016928

##

## Log likelihood: -8105.608

## ML residual variance (sigma squared): 9.8422, (sigma: 3.1372)
## Number of observations: 3070

## Number of parameters estimated: 9

## AIC: 16229

Similar to the spatial SAR model fit, the percentages of agricultural workers,
Black, and Hispanic are positively associated with poverty rates, whereas the per-
centages of foreign-born residents, female employment, and high school graduates
are negatively associated with poverty rates. For example, the estimated regression
coefficient for feemp is —0.402 with standard error 0.0149676. The Z test sta-
tistic is —26.8866 and the p value is less than 2.2E—16. This tells us that a 1%
increase in the female employment rate is associated with a 0.402% decrease in the
poverty rate when all other explanatory variables are held constant. Relative to the
standard error of about 1.450%, the absolute value of the Z statistic —26.8866 is
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very large and the p value is extremely small. There is very strong evidence that the
true regression coefficient for female employment rate is not zero.

The output also provides the estimate of the spatial correlation coefficient
lambda, which is 0.971. The LR test value is 712.59 with a p value of virtually
zero. There is very strong evidence that the spatial correlation coefficient 1ambda
is not zero.

The log likelihood value for the fitted spatial CAR model is —8105.608 and
the AIC value is 16,229, which is smaller than the AIC values of 16,940, 16,532,
16,346 for the standard linear regression, the spatial lag model, and the spatial SAR
model, respectively. It is larger than the AIC for the spatial Durbin error model
(AIC=16,142). The maximum likelihood estimate of the error variance sigma’
is 9.8422, with the error standard deviation sigma estimated to be its square root
3.1372.

We apply the R function moran.mc () to test for spatial dependence in the error
term of the spatial CAR model:

moran.mc(resid(m3_car), listw_povW, zero.policy = TRUE, nsim=999)

H##

## Monte-Carlo simulation of Moran I

##

## data: resid(m3_car)

## weights: listw_poviW

## number of simulations + 1: 1000

##

## statistic = -0.20909, observed rank = 1, p-value = 0.999
## alternative hypothesis: greater

The observed Moran’s / test statistic is —0.20909 with an observed rank of 1.
Thus, the p value is 0.001 X 2, which is 0.002. There is strong evidence of additional
spatial dependence unaccounted for by the spatial CAR model. The spatial CAR
model has a smaller AIC value than the spatial SAR model. The AIC value of the
spatial SAR model is close to that for the spatial CAR model and the fitted regres-
sion coefficients and their standard errors are similar between the two models with
qualitatively the same interpretation of the relationship between poverty rates and
the social-economic explanatory variables. There is evidence of spatial dependence
in the error terms of both the spatial SAR and CAR models.

8 Summary

In this manuscript we illustrate the general steps of spatial regression modeling of
poverty in R. The spatial methods are limited to spatial dependence, one aspect of
spatial regression modeling. At least two other spatial aspects could be considered in
poverty research—spatial heterogeneity and spatial panel.

Spatial heterogeneity could refer to the fact that individual variables or the
regression coefficients between a response variable and explanatory variables vary
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systematically across space (Dutilleul 2011; LeSage 1999). Frequently it is found
that the associations of the response variable with the explanatory variables vary
across the studied area. There are at least three approaches to deal with spatial het-
erogeneity. The first approach, widely used by sociologists, is to use aspatial meth-
ods, such as using dummy variables indicating the category of regions, combining
dummy variables with explanatory variables, partitioning the study area into several
regions that exhibit different spatial patterns, and then separately fitting standard lin-
ear regression for each region (Baller and Richardson 2002). The disadvantage of
this approach is that it makes it difficult to practically control spatial dependence
when any of the partitioned regions are not contiguous or when they change over
time. The second approach is using the geographically weighted regression (GWR)
method (Fotheringham, Brunsdon, and Charlton 1998), which enables modeling
of the spatially-varying coefficients. However, GWR does not consider the spatial
lag and error dependence in the spatial regression context; this makes it difficult to
consider the spatial lag and error dependence simultaneously. The third approach is
to apply a spatial regime model to estimate coefficients separately for each regime
(Anselin 1990; Patton and McErlean 2003). This approach allows diagnosing each
variable’s coefficient stability as well as the overall structural stability.

Spatial panel data are geographically referenced and have observations at each
areal unit over multiple time points. Spatial panel data might exhibit both spatial
dependence among observations of areal units at each time point and temporal
dependence among observations of each areal unit over time. Such spatial panel data
present researchers with various modeling possibilities. Spatio-temporal regression
models refer to regression models that consider both spatial and temporal depend-
ence exhibited in the data, i.e., a combination of the capacity of spatial regression
modeling and time-series analysis. Generally, there are two approaches for spatio-
temporal regression modeling.

The first approach for spatio-temporal regression modeling is to fit spatial regres-
sion models separately for each time point (or period) and then compare the results,
especially model parameters (including regression coefficients, variance compo-
nents, and spatial parameters), across the multiple time points (or periods). How-
ever, the temporal dimension is considered only by comparing the temporal dif-
ference of model parameters rather than through temporal dependence. Therefore,
this approach does not consider both spatial dependence and temporal dependence
simultaneously. One advantage, though, is that it allows us to conduct spatial panel
data analysis without knowledge beyond the basic spatial regression models—spa-
tial lag models and spatial error models—while at the same time providing insights
into the spatial dependence in the data and the temporal variation of the model
parameters.

The second approach for spatio-temporal regression modeling is to formally con-
sider spatial and temporal dependence simultaneously in linear regression models.
There are a number of spatio-temporal regression models, and each has different
strengths and limitations. Readers are suggested to refer to these methods for a com-
prehensive review of spatio-temporal regression models (e.g., Anselin 1988; Anse-
lin and Bera 1998; Baltagi and Li 2004; Cressie 1993; Elhorst 2001, 2010; Huang
et al. 2010; Lee and Yu 2010; LeSage and Pace 2009).
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