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Error Measures for Trajectory Estimations
With Geo-Tagged Mobility Sample Data

Mohsen Parsafard, Guangqing Chi , Xiaobo Qu , Xiaopeng Li , and Haizhong Wang

Abstract—Although geo-tagged mobility data (e.g., cell phone
data and social media data) can be potentially used to estimate
individual space–time travel trajectories, they often have low sam-
ple rates that only tell travelers’ whereabouts at the sparse sample
times while leaving the remaining activities to be estimated with
interpolation. This paper proposes a set of time geography-based
measures to quantify the accuracy of the trajectory estimation
in a robust manner. A series of measures including activity
bandwidth and normalized activity bandwidth are proposed to
quantify the possible absolute and relative error ranges between
the estimated and the ground truth trajectories that cannot be
observed. These measures can be used to evaluate the suitability
of the estimated individual trajectories from sparsely sampled
geo-tagged mobility data for travel mobility analysis. We suggest
cutoff values of these measures to separate useful data with low
estimation errors and noisy data with high estimation errors.
We conduct theoretical analysis to show that these error measures
decrease with sample rates and peoples’ activity ranges. We also
propose a lookup table-based interpolation method to expedite
the computational time. The proposed measures have been
applied to 2013 geo-tagged tweet data in New York City, USA,
and 2014 cell-phone data in Shenzhen, China. The results illus-
trate that the proposed measures can provide estimation error
ranges for exceptionally large datasets in much shorter times
than the benchmark method without using lookup tables. These
results also reveal managerial results into the quality of these data
for human mobility studies, including their distribution patterns.

Index Terms—Geo-tagged data, social media, cellphone, time
geography, trajectory estimation, activity range.

I. INTRODUCTION

THE rapid developments of geo-tagged human mobility
data, such as cell phone data [1]–[3] and social media
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data [4]–[6], enable us to investigate space-time travel patterns
of humans at the individual trajectory level with high-
resolution detail. In general, there are a number of challenges
to collecting the ground truth trajectory data, such as sampling
frequency and error, user privacy, budget constraints, tech-
nological limitation, etc. Such geo-tagged mobility data are
based on objective measurements or samples of human travel
paths and contain massive temporal, spatial, and semantic
information about individuals. They have become increas-
ingly available and have provided substantial opportunities for
understanding human mobility patterns [1], [5], [7]–[9], travel
behaviors, and lifestyles [10], [11] and safety analysis [12].
Such data are critical to planning and operations of an effi-
cient and reliable transportation system and eventually to the
economic prosperity and long-term sustainability of an urban
system [13]. For example, many researchers and practitioners
have started applying geo-tagged mobility data to provide
alternatives for traditional travel mobility surveys [14]–[16].
Such data are also used to characterize traffic flow patterns
for better management of road networks [17]. Further, they
have been also used to predict real-time travel demand for
more responsive and convenient mobility operations [18].

While geo-tagged mobility data provide abundant infor-
mation for human travel characteristics, they are in general
limited in two aspects, i.e., representativeness and granular-
ity. First, representativeness refers to whether the individuals
captured in the data well represent the overall target popu-
lation in the corresponding region. Geo-tagged mobility data
often have certain biases on particular traveler groups. For
example, Twitter data may over-represent young age groups
while under-representing senior age groups [19]. Granularity
refers to whether the sample data are dense or frequent
enough for an accurate estimation of the corresponding space-
time trajectories. Geo-tagged mobility data essentially contain
discrete samples of continuous space-time human (or vehicle)
travel trajectories. Many mobility data sets have been recorded
with very low sampling rates, which can be even further
screened due to privacy concerns [20]. Other than the available
sample locations, the remaining portions of trajectories are
subject to interpolation-based estimation. However, connecting
these discrete samples may not always exactly reconstruct
the ground-truth trajectories. It is easy to imagine that sparse
samples likely yield higher estimation errors. This paper aims
to address the granularity issue while the representativeness
issue would be a separate topic out of this paper’s scope.

Uncertainties due to low granularities of geo-tagged
mobility data have been mainly investigated with two types of
approaches. The first type focuses on deterministic geometric
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or geographical bounds to an individual’s activities based
on known space-time sample points. Trajcevski et al. (2004)
model trajectory bounds as cylinders to facilitate trajectory
database queries. The time geography theory [21], [22] uses a
space-time prism to bound an object’s activity range between
two consecutive space-time samples as a prism, i.e., intersec-
tion of two cones oriented in opposite directions. This concept
is further generalized to incorporate transportation network
structures [23]. The second type assumes stochastic underlying
patterns of individual movements. With such stochastic
settings, developments on probability distributions [24] and
stochastic processes [25] can be applied to describe uncertain-
ties of trajectories estimated with geo-tagged sample points.

Despite these developments in modeling trajectory uncer-
tainties, there is lack of simple and efficient measures on the
quality of using spatiotemporally distributed discrete samples
in estimating an individual’s continuous trajectory and the
suitability of such sample data for studying travel patterns.
Without such measures, transportation planner and operators
may have difficulty in identifying whether a particular geo-
tagged data set can help them accurately quantify human travel
patterns or not. They may also not be able to identify useful
data sets from a vast amount of geo-tagged mobility data while
such data become increasingly available.

To bridge this gap, this research proposes a set of quanti-
tative measures for the errors of trajectory estimations with
discrete geo-tagged mobility data. We apply a spatiotemporal
data model based on time geography for representation and
computation of geo-tagged mobility data. Based on this model,
we propose two error measures to quantify the accuracy of
trajectory estimation in a robust manner, one on the absolute
errors between the estimated and ground truth trajectories
and the other on relative errors with respect to an individ-
ual’s overall activity area. We also suggest cutoff points for
screening data records for mobility analysis. These measures
only have one parameter as an individual’s maximum speed
and are generally applicable to different types of geo-tagged
mobility data. To enable their efficient applications to large-
scale data sets (or Big Data), we develop an efficient interpo-
lation method with a lookup table to efficiently solve these
measures for geo-tagged data involving a large number of
individuals. To demonstrate the applications of these measures,
we test multiple sets of real-world geo-tagged trajectory data,
including cell phone records and geo-tagged twitter data.
We find that the proposed measures can efficiently quantify
the associated mobility estimation errors for a large amount
of individual mobility sample data. Further, these results also
reveal managerial results into the quality of these data for
human mobility studies, including their distribution patterns.
Overall, the outcomes of this study advance our knowledge
in understanding the relationship between the spatiotemporal
distributions of geo-tagged mobility data and the quality of
associated trajectory estimations. They provide a parsimonious
and robust tool for evaluating quality of massive amounts
of geo-tagged mobility data and screening useful information
from such data for mobility studies.

The organization of this paper is as follows.
Section 2 reviews the relevant literature. Section 3 describes

some basic concepts of the time geography theory, such as
space-time path and space-time prism. Section 4 formulates
the proposed measures based on the time geography
framework to quantify trajectory bounds. Section 5 presents
case studies to illustrate the application of these measures and
draw managerial insights with multiple types of geo-tagged
mobility data. Section 6 concludes this paper and discusses
possible directions for future research.

II. PRIOR RESEARCH

Studies on human mobility and activity patterns have been
applied to several fields, including epidemic modeling [26],
traffic prediction [3], urban planning [27], [28], and social
networks [29], [30]. With the emergence of rapidly growing
geo-tagged Big Data from various sources [1], [7], tremendous
efforts have been made in the attempt to understand human
mobility and activity patterns over time and across space.
To name just a few seminal studies, Brockmann et al. [31]
discovered a power-law distribution of human travel
distances from anonymous one-dollar bill transactions.
González et al. [1] tracked traces from over ten thousand
mobile phone users for a six-month period to quantify the
scaling laws of individual humans. With similar cell phone
data, Song et al. [32] showed that individual human trajectories
have a high degree of predictability, although some of their
collective measures demonstrate distribution patterns akin to
those of scale-free random walks [31], [33].

Of the relevant data sources, social media (e.g., Twitter,
Facebook) is arguably the newest and the most rapidly
growing data source and has drawn enormous interest in
many research fields, such as computer science [3], sociol-
ogy [34], and urban and transportation planning [4], [27],
[28], [35]. Social media data are possibly a low-cost, high-
information supplement to conventional travel survey methods
and contain detailed individual information from semantic
messages. In particular, emerging location-based social net-
works (LBSNs) are a popular form of social media that
provide accurate individual location information in addition
to semantics [36]. Check-in records on LBSNs contain rich
social and geographical information and provide a unique
opportunity for researchers to study users’ spatial-temporal
social behavior [6], [35], [37], [38]. However, such data
have several limitations in determining an individual’s activity
chain, including concerns about user privacy, lack of detailed
descriptions of the activities, missing activities, and a defi-
ciency in individual socioeconomic characteristics [38]–[40].

While studies on theoretical path modeling are mature
(e.g., [41], [42]), tracing and predicting an individual’s activ-
ity patterns using geo-tagged mobility data are still in the
exploratory stage. This paper attempts to address the issue
of missing activities, that is, an individual’s whereabouts are
known only at sample time points, but activities at other times
are missing from the data.

The time geography theory can be used to estimate the range
of an individual’s missing whereabouts based on his/her known
locations posted on social media. Time geography reveals how
participating in an activity at a given place and time is directly
related to abilities to participate in activities at other places
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and times [43]. This concept has been recently applied to
transportation network design in innovative ways [44], [45].
Recent developments in time geography can provide intuitive
concepts and quantitative measures to describe how discrete
sample points can confine an object’s path in a space-time
coordinate system. Inspired by the general relativity, time
geography basically quantifies an object’s activity range given
its mobility capability and sometimes geographical barriers as
well [21], [22], [46].

According to the time geography literature, three major
factors can constrain an individual’s ability to conduct
activities in space and time: capability constraints (physio-
logical necessities, such as sleeping), authority constraints
(limited access, such as a military area), and coupling con-
straints (spatial and temporal requirements, such as a meeting
at 3 p.m.) [47], [48]. Considering these factors, researchers
applied time geography to investigate human activity pat-
terns by integrating time geography concepts with geographic
information systems (GIS) [49], [50], three-dimensional geo-
visualization of activity-travel patterns [51], and some ana-
lytical measurement, such as the space-time path, space-time
prism, or station [22].

The space-time path and space-time prism are two funda-
mental concepts in time geography literature, and they serve
as the basis for the proposed measures in this study [21],
[22], [52]–[54]. The space-time path has been applied to
mobile phone logs to study human movement behavior [54]
and individual access to urban opportunities [55]. The space-
time prism is a more powerful measure for assessing the ability
of an individual to travel and participate in activities and is
used for measuring accessibility [22], [56], [57].

Recently, probabilistic model in time geography and spa-
tial databases have been investigated from different perspec-
tives. For instance, studies on measurement error analysis in
measurement-based GIS argue the spatial data quality [58]
and error propagation [59]. Researchers have also developed
mathematical foundations for modeling the distribution of
visit probabilities within the space-time prisms using the Ran-
dom Walk theory [60], [61], the truncated Brownian Bridges
method [62] and the moment-design method [63].

Previous studies on trajectory analysis have investigated
motion pattern description [64], kernel density estimation to
interpolates point data to a continuous surface in activity
spaces [65], and interpolation methods to investigate the
uncertain trajectory of moving objects [66]. If the real human
trajectories are available, one can evaluate various interpola-
tion methods such as linear, nearest and cubic interpolations
by subsampling data set (see [67]–[69] for more information).
These studies develop various means of describing human
activity patterns under various probabilistic modeling assump-
tions. Different from these modeling assumptions, this study
only employs the very simple concept of time geography to
evaluate to what extent such data can reflect an individual’s
activity trajectory. Note that because of irregular geometries,
finding space-time prisms can be challenging for Big Data
with available commercial software. Our proposed measures
can smartly circumvent this computational challenge with a
look-up table method.

III. TIME GEOGRAPHY REVIEW

Since the proposed measures in this study are based on
certain time geography concepts, we briefly review them
in this section. We consider a time period T := [0,T ]
(e.g., a typical day) and a geographical space C (e.g., a city).
We call a traveler’s trajectory in space C over time period T
a space-time path. A space-time path typically comprises
a number of static stays (or activities) at discrete locations
(e.g., home, workplaces, shopping centers, restaurants) accord-
ing to certain schedules and trips connecting these activities,
as illustrated in FIGURE 1a. In that figure, the bottom plane
denotes space C, and the vertical axis marks time period T.
We define a space-time point as a pair of location and time
measurements, denoted by (c, t), which mark the traveler’s
presence at time t ∈ T and location c ∈ C. A space-
time path can be specified by the number of critical space-
time points (c̄1,t̄1), (c̄2,t̄2), …, (c̄N , t̄N ) that mark either the
beginning or the ending of an activity, where N is the total
number of activities. With these critical points, the coordinates
of this path at any time point t ∈ T can be denoted as an
interpolation of the neighboring critical points, as follows:

P̄ (t)

:=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

t̄i+1 − t̄i
((t̄i+1 − t)c̄i

+(t− t̄i )c̄i+1), if t̄i ≤ t ≤ t̄i+1, 1 ≤ i ≤ N;
c̄1, if 0 < t < t̄1;
c̄N , if t̄N < t < T ;

(1)

For the ease of notation, we denote this space-time path by
P̄ := { P̄ (t) ,∀t ∈ T}. Note that when a traveler stays at the
same location to perform a certain activity over a period of
time, the corresponding path segment would be vertical, and its
projection to the space plane is a single location. Otherwise,
when the individual travels between two activities, the path
segment is slanted, and its slope marks the individual’s travel
speed. In this study, we assume that the maximum speed a
traveler could reach is v̄ . This implies that the inverse of the
slope of each path segment should be no greater than v̄.

Although it is difficult to track a complete space-time
path, discrete sample points along the path may be available
in massive geo-tagged mobility data (FIGURE 1b). With
these sample points, we can estimate the individual’s trajec-
tory by simply connecting the points with linear segments,
as illustrated by the solid curve in FIGURE 1b. However, the
estimated path is likely different from the ground truth path,
particularly when the sample points are sparse. Fortunately,
we can use the concept of time geography to quantify the
error range between the estimated trajectory and any possible
ground truth trajectory. We first consider the case when C is
a one-dimensional space. A space-time cone, as illustrated
by the shaded area in FIGURE 2a, represents the movement
boundary that an individual with a speed limit of v̄ can
possibly reach if only one space-time sample point (ci , ti ) on
his/her space-time path P̄ is known. Because of the speed limit,
at a time t ∈ [ti , T ], this individual has to be at a location,
ci − v̄(t − ti ), if he/she travels backward at the maximum
speed and ci + v̄(t − ti ) if he/she travels forward at the
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Fig. 1. (a) Space-time path and (b) accessible control points on space-time
path.

maximum speed. Therefore, his/her possible presence at time t
has to be no less than ci − v̄(t − ti ) and no greater than
ci + v̄(t − ti ). With this, we can formulate the upper cone
(i.e., the shaded area above point (ci , ti )) as follows:

O+
(ci ,ti )

:= {(c, t) ||c − ci | ≤ v̄ (t − ti ) , t ∈ [ti , T ]}. (2)

Similarly, at time t ∈ [0, ti ], this individual has to be between
locations ci − v̄(ti − t) and c := ci + v̄(ti − t). With this
information, we can formulate the lower cone (i.e., the shaded
area below point (ci , ti )) as follows:

O−
(ci ,ti )

:= {(c, t) ||c − ci | ≤ v̄ (ti − t) , t ∈ [0, ti ]} . (3)

Then the space-time cone with respect to (ci , ti ) is simply the
union of O+

(ci ,ti )
and O−

(ci ,ti )
:

O(ci ,ti ) := O+
(ci ,ti )

∪ O−
(ci ,ti )

= {(c, t) ||c − ci | ≤ v̄ |ti − t| , t ∈ [0, T ]} (4)

Now suppose that we observe two sample points (ci , ti )
and (c j , t j ) of P̄. The space-time range this individual can
potentially reach during time period [ti , t j ] is shown as the
shaded area in FIGURE 2b. We call this area a space-time
prism, which is essentially the intersection between O+

(ci ,ti )
and O−

(c j ,t j)
, i.e.,

R(ci ,ti )(c j ,t j) :=
{

(c, t) | |c − ci | ≤ v̄ (t − ti ) ,
∣
∣c − c j

∣
∣

≤ v̄
(
t j − t

)
, t ∈ [

ti , t j
] }

. (5)

These definitions for a one-dimensional space can easily be
extended to a two-dimensional space. FIGURE 3a illustrates
the space-time cones, and FIGURE 3b shows the space-time
prism in a two-dimensional space. We essentially need only

Fig. 2. (a) Space-time cone and (b) space-time prism in one-dimensional
space.

to revise the distance measure to the Euclidean metric in a
two-dimensional space. Then, the cone and prism definitions
in equations (2)-(5) can be adapted as follows:

O+
(ci ,ti )

:= {(c, t) |‖c−ci‖≤ v̄ (t−ti ) , t ∈ [ti , T ]} , (6)

O−
(ci ,ti )

:= {(c, t) |‖c−ci‖ ≤ v̄ (ti−t) , t ∈ [0,ti ]} , (7)

O(ci ,ti ) := {(c, t) |‖c−ci‖ ≤ v̄ |ti−t| , t ∈ [0,T ]} , (8)

R(ci ,ti )(c j ,t j) :=
{

(c, t) | ‖c−ci‖≤ v̄ (t−ti ) ,

∥
∥c − c j

∥
∥ ≤ v̄

(
t j − t

)
, t ∈ [

ti , t j
] }

. (9)

On the basis of these time geography concepts, some new
measures are proposed in the next section for characterizing
the space-time range of a traveler’s trajectory with geo-tagged
mobility data.

IV. PROPOSED MOBILITY MEASURES

A. Activity Bandwidth

Given M consecutive sample points and S := {(ci ,
ti )}i=1,2,...,M along an unknown underlying space-time path P̄
of an individual, we can estimate his/her underlying path
with a proper interpolation method (e.g., linear interpolation).
As long as the interpolation operation complies with speed
limit v̄, an estimated path will always be confined within a
prism chain, as illustrated in FIGURE 4 (i.e., the series of
space-time cones and prisms determined by S:, as follows:

H (S) :=
[
O−

(c1,t1)
,R(c1,t1)(c2,t2),R(c2,t2)(c3,t3), . . . ,

R(cM−1,tM−1)(cM ,tM ),O
+
(cM ,tM )

]
. (10)

Note that the size of H(S) bounds the space-time region for
any possible ground truth P̄. Depending on the size of H(S),
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Fig. 3. (a) Space-time cones and (b) space-time prism in two-dimensional
space.

there may exist many possible P̄ values falling in the space-
time prism, and therefore an estimated path may differ from
the ground truth with some error.

As illustrated in FIGURE 4, we define PS as the centerline
between sample points S in prism chain H (S) , or, equiva-
lently, the estimated trajectory obtained with S using linear
interpolation1:

PS (t)

:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

ti+1 − ti
(ti+1 − t) ci

+ (t − ti ) ci+1, i f ti ≤ t ≤ ti+1, 1 ≤ i < M;
c1, i f 0 < t < t1;
cM , i f tM < t < T ;

(11)

If we consider PS as an estimated trajectory (which is likely
since it is the shortest path and a good approximation of the
ground truth), then the estimated error is highly related to
the size of prisms in FIGURE 4. Therefore, the amount of
error can be quantified with v̄, the sample points S, and the
prism chain H (S) (i.e., smaller errors when the prisms are
narrower and larger errors when we have a wider prism chain).
The objective of this study is to quantify the estimation error.
We define an activity bandwidth with respect to S, denoted
by B(S), which is the average distance between a generic
point c in H (S) and the corresponding PS(t) divided by the
chain volume, as indicated in FIGURE 4:

B (S) =
∫

(c,t)∈H(S) ‖c − PS(t)‖ dcdt
∫

(c,t)∈H(S) dcdt
(12)

1Note that results from other interpolation methods shall also fall within
the space-time prism chain. Therefore, the implication of the proposed error
bounds is applicable to other interpolation methods as well.

Fig. 4. Space-time prism chain.

where operator ‖·‖ in the numerator is the Euclidean distance
between two points on a two-dimensional plane, and the
denominator is the volume of prism chain H(S) (note that
the integral is held on (c, t) ∈ H(S), which is the entire prism
chain).

Note that a large B(S) indicates that the error between PS
and P̄ is likely high, whereas a small B(S) value implies that
PS is likely close to the P̄. The activity bandwidth measures
on average how far a point on the prism chain is apart from
the center line path. A smaller B(S) value means a narrower
activity range (narrower prism chain) and better estimation.
In other words, it implies that centerline PS is likely close to
the ground truth with less estimation error.

Despite the compact formulation, the integral equation (12)
cannot be resolved into an analytical form and has to be
solved numerically. To discuss the problem, we first decom-
pose the prism chain to its cones and prisms. Basically, for
M consecutive sample points, there are M+1 space-time cones
and prisms in the prism chain. After decomposition, both the
numerator and denominator in equation (12) are decomposed
to M + 1 components, where each component corresponds to
a single cone or prism. In other words, B(S) itself can be
considered as a simple summation of several integral terms as
explained in equation (13).

If U c
m and Dc

m (m = 1,M) specify the cone components in
the numerator and denominator, respectively, and Up

m and Dp
m

(m = 2, 3, . . . , M) correspond to the prism components, then
equation (12) could be rewritten as follows:

B (S) = U c
1 + ∑M

m=2 U
p
m +U c

M

Dc
1 + ∑M

m=2 Dp
m + Dc

M

, (13)

where

Dc
1 =

∫

(c,t)∈O−
(c1,t1)

dcdt, (14)

Dp
m =

∫

(c,t)∈R(cm−1,tm−1)(cm ,tm )

dcdt, (15)

Dc
M =

∫

(c,t)∈O+
(cM ,tM )

dcdt, (16)
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and

U c
1 =

∫

(c,t)∈O−
(c1,t1)

‖c − PS(t)‖ dcdt, (17)

Up
m =

∫

(c,t)∈R(cm−1,tm−1)(cm ,tm )

‖c − PS(t)‖ dcdt, (18)

U c
M =

∫

(c,t)∈O+
(cM ,tM )

‖c − PS(t)‖ dcdt . (19)

In equation (13), Dc
1 and U c

1 are associated with the lower
cone O−

(c1,t1)
, Dc

M and U c
M are associated with the upper cone

O+
(cM ,tM ), and Dp

m and Up
m ,∀m = 2, . . . , M are associated

with the prisms between. Note that the terms in the denom-
inator, Dc

1, Dc
M , and Dp

m , are essentially the volumes of the
corresponding cones and prisms, and the terms in numerator,
U c

1 , U c
M and Up

m , correspond to their angular momentums.
Actually, these terms can be calculated as certain functions of
the relative difference between corresponding sample points,
as described in the following propositions (see Appendix A
for the proofs).
Proposition 1: Given (c1, t1) and (cM , tM ), we have

Dc
1 = Dc (t1) and Dc

M = Dc (T − tM ), where function
Dc (t) := 1

3πv̄2t3,∀t∈ [0,∞) (note that v̄ and T are given
parameters).
Proposition 2: Given (c1, t1) and (cM , tM ), we have

U c
1 = U c (t1) and U c

M = U c (T − tM ), where function

U c (t) :=
∫ 2π

0

∫ tan−1(v̄)

0

×
∫ t

cosϕ

0

√

(ρsinϕcosθ)2 + (ρsinϕsinθ)2ρ2sinϕ

×dρdϕdθ,∀t ∈ [0,∞).

Proposition 3: Given two consecutive control points
(cm−1, tm−1) and (cm , tm), Dp

m = Dp(‖cm − cm−1‖,
|tm − tm−1|),∀2 ≤ m ≤ M , where function

Dp (c, t) := 2
∫ 2π

0

∫ tan−1(v̄)

0

∫ v̄2 t2−c2

(2v̄2t)cosθ−(2c)sinθsinϕ

0

×ρ2sinϕ dρdϕdθ,∀c, t ∈ [0,∞)

Proposition 4: Given (cm−1, tm−1) and (cm, tm), Up
m =

Up
(||cm − cm−1||, |tm − tm−1|

)
,∀2 ≤ m ≤ M , where

Up (c, t) := 2
∫ 2π

0

∫ tan−1(v̄)

0

∫ v̄2 t2−c2

(2v̄2 t)cosθ−(2c)sinθsinϕ

0

Qρ2sinϕ dρdϕdθ,∀c, t ∈ [0,∞),

and

Q :=
√

(ρsinϕcosθ)2 +
(
ρsinϕsinθ − (

cρcosϕ

t
)
)2

.

We see that only function Dc (t) can be solved analytically in
a closed form equation defined in Proposition 1, and all other
functions defined in Propositions 2–4 do not have closed form
formulations and thus have to be solved numerically. Because
the numerical solution to a complex integral takes much longer
than an analytical computation, calculating these terms for big

datasets (e.g., tweet data from millions of travelers) would
consume excessive computation resources.

By observing that these functions have at most two vari-
ables, we propose a lookup table–based interpolation method
that circumvents the need for a time-consuming numerical
solution approach to alleviate the computational load. Basi-
cally, for each variable in each function, we identify a finite
interval that can cover most practical values of the variable,
and then we position a number of ticks along that interval.
If we have a set of sample values for the variable, we can place
denser ticks in areas in which more sample values more likely
fall, instead of evenly distributing them. For a variable with
sample values, we first divide their span into K consecutive
intervals with equal length l, and fk denote the number of
samples in the kth interval, ∀k = 1, · · · , K , where K is a
proper number picked based on the sample distribution. Then
we evenly place a number of ticks in each interval k, and this
number is calculated as

ωk =
√

(Ak fk)
∑

j∈K
√

(A j f j )
�,∀k ∈ K , (20)

where � is the total number of ticks selected based on the
computational resource. The number K should be selected
such that each interval has a sufficient number of samples
and there are enough intervals to allow the ticks to be
heterogeneously distributed across the entire feasible range
of the variable. Once we obtain the ticks for all variables,
the combinations of these ticks across the variables form a
mesh that covers the feasible region of this function.

We first pre-calculate the function value at each grid
point on the mesh and store the function value in a lookup
table indexed by the corresponding variable values. This pre-
calculation need be executed only once, and then every time
when receiving a set of variable values, we can quickly
approximate the corresponding function value by linearly
interpolating the lookup table values at the nearest grid points.
Table 1 is a schematic view of a lookup table for a general
function z = f (c, t), where the number of ticks for variable c
is � and for t is � .

The lookup table method provides significant savings in
computational time compared with the numerical approach,
particularly when the data set is big. Although the lookup
table method is essentially an interpolation approach and may
have approximation errors, our case study shows that those
errors are well controlled. More details on the lookup table
method are provided in the case study section.
Discussion: Note that B(S) is a quantitative measure to

judge whether an individual’s sample points S will yield toler-
able errors or not in estimating this individual’s continuous tra-
jectory. As expected, a threshold (or a cutoff point) is required
to differentiate low-error S vs. high error S. This threshold
may differ across different applications depending on the
specific error tolerance requirements. In general, we propose
the following guideline for the threshold settings. From the
perspective of location estimation in relation to the study area,
if B(S) is significantly smaller than the radius of the studied
area, which we denote by R, say, B (S) /R ≤ 1%, then the data
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TABLE I

A SCHEMATIC FORM OF LOOKUP TABLE FOR ESTIMATION OF z = f (c, t)

is very useful for mobility analysis (very good data). If B(S) is
somehow smaller than the radius, say, 0.01 < B (S) /R ≤ 0.1,
then the data is still considered useful for mobility analysis
(good data). All other data with B (S) /R > 0.1 are not rec-
ommended (bad data).

B. Normalized Activity Bandwidth

Activity bandwidth B(S) indicates the absolute error
between an estimated path (e.g., centerline PS) and ground
truth path P̄. A relatively small activity bandwidth means that
PS is likely close to P̄ (note that the ground truth P̄ is not
estimated itself, but the objective is to estimate the errors and
how PS differs from P̄in terms of errors). However, when
control points S are spatially close to each other (clustered
around one location e.g. home), even if the absolute activity
bandwidth value is small, it is still difficult to discern an
individual’s activities. In this case, the person has been either
stationary or participated in some activities without gener-
ating a control point (undiscovered activities). The former
information is valuable (we know the person is stationary),
however that is not the case in many occasions. It is more
likely that we have a person with undiscovered activities even
if there are hundreds of control points clustered around one
location (e.g. his/her home). In case the clustered points are
representing a mixed land use, the individual could conduct a
series of different activities that may not be reflected by the
clustered control points. Let consider two different individuals
with clustered and non-clustered sample points in FIGURE 5.

As illustrated in FIGURE 5, although the activity bandwidth
of the chain on the left is smaller than that on the right
(which indicates smaller estimation errors), the control points
are clustered around the same location, so it is difficult to use
them to estimate the various activities of this individual over
time. On the other hand, although the activity bandwidth of
the chain on the right is larger (which indicates larger estima-
tion errors), the control points are far apart. The associated
activity types may therefore more easily be inferred based
on the different characteristics of these locations; thus, this
chain may better help us understand this individual’s activity
pattern. In another word, for studying travel patterns and
understanding unobserved activities using geo-tagged sample
points, the smaller activity bandwidth does not necessarily
indicate a better performance. There is a trade-off between

Fig. 5. Space-time prism chain with small and large radii of gyration.

the estimation error and detecting individual’s participation in
more activities.

To solve this challenge, we normalize the activity bandwidth
by the radius of gyration [70], which measures the spread
of an individual’s locations around his/her center of mass
(the standard deviation of distances between these locations
and the individual’s center of mass).

For an individual with M consecutive control points
(as defined in FIGURE 5), the center of mass of the control
points is formulated as c̄ := ∑M

m=1 cm/M , and the radius of
gyration is defined as follows:

g :=
√

∑M
m=1 (cm − c̄)2

M
. (21)

In fact, g measures the dispersion of an individual’s sampled
locations and indicates how far he/she moves on average.
A small g value means that, overall, the individual travels
locally, while a large g implies long-distance travels. With
this definition, we can adapt B (S) to normalized activity
bandwidth, defined as follows:

NB (S) := B (S)

g
, (22)

With this measure, suitable data for studying individual activ-
ity patterns are the ones with small normalized activity band-
widths (e.g., with a small activity bandwidth and a large
gyration). In the following case study, we present the proposed
measures for a set of collected geo-tagged tweet data (see
APPENDIX C for more clarification on activity bandwidth
and normalized activity bandwidth).

Discussion: Note that similar to the B(S), it is practically
useful to setup similar thresholds to differentiate data qualities
with NB (S) as well. We recommend two threshold values,
which may be subject to changes depending on the actual error
tolerances in specific applications. From a topological point of
view, if NB (S) ≤ 0.1 the activity pattern information is much
higher than the estimation error and the data is considered
very good. If 0.1 ≤NB (S) ≤ 1, the information is still higher
than the error and acceptable (good data). If NB (S) > 1,
the error is greater than activity pattern information, and
we recommend not to use such data for mobility pattern
analysis.
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V. CASE STUDIES

This section illustrates applications of the proposed mea-
sures with two sets of geotagged mobility data, i.e., geo-
tagged twitter data and cell phone call log data. Each data
set includes location samples for a number of individuals over
a period of time. We apply the proposed lookup table method
to efficiently solve the relevant entries for the corresponding
data set. Based on the look-up table results, we solve the pro-
posed trajectory estimation error measures for each individual.
We used the proposed cutoff points to classify the data into
different categories with different trajectory estimation confi-
dences. Further, we investigate the distribution of these error
measures. The results reveal interesting power-law distribution
patterns.

A. Geo-Tagged Twitter Data

This section presents a case study on a geo-tagged tweet
data set gathered in New York City from 10:47 p.m. on
June 28 through 4:27 a.m. on July 18, 2013. The data set
was downloaded from the public data stream provided at
https://dev.twitter.com/. Note that tweet data have a number
of intrinsic limitations for mobility studies, such as biased
representativeness, sparse sampling rates, and potential loca-
tion errors. Despite so, tweet data are available for free, and
for a study that focuses on the methodology, tweet data are
reasonable for illustrating the applications of the proposed
methods.

Each tweet consists of a number of fields, including the
tweeter’s name, the tweet ID, the date and time of the
tweet, the geographic coordinates of the tweet, the language,
the tweeter’s number of followers, and the text of the tweet.
The format of the tweet data is illustrated below (where we
modified certain fields to anonymize this sample tweet).

“Azama_2_”, 350329451143384562, Thu Jun 27 19:07:04
+0000 2013, 40.6823018, −73.3945501, en, 128, “Hello!”.

This study uses only the tweet ID, the date and time, and
the geographic coordinates. The tweet ID is used to connect
tweets from the same individual. The date and time and
the geographic coordinates in all collected tweets from the
same individual (sorted by time in ascending order) specify
the sample space-time points {(cm, tm)} for the individual.
According to our data set, the basic problem settings and
assumptions are as follows:

1) For more than 98% of individuals traveling in New York
City, the travel speed (v̄) falls below 30 km/h. Thus,
the analysis in this section are presented for six different
v̄ values including 5, 10, 15, 20, 25 and 30 km/h.

2) For two consecutive points (cm−1, tm−1) and (cm, tm) for
an individual, the activity bandwidth is set to zero if one
of the following three events happens: ‖cm − cm−1‖ <
0.1km, |tm−tm−1| < 0.01hr, or ||cm−cm−1||/|tm−tm−1|
is greater than or equal to the corresponding v̄ .

3) We screen out individuals without any tweets in the first
three days (June 28 through July 1) or any tweets in the
last three days (July 15 through July 18) because the
prism chains of those users have larger lower or upper

Fig. 6. The distribution of number of tweets.

cones and do not contain much information about activ-
ity patterns.

The original data contain information on 93,316 individuals
and 1,012,912 tweets during this three-week period. The
distribution of the number of tweets per individual has been
shown in FIGURE 6. Note that this distribution is aggregated
across the time and may not be comprehensive in evaluating
tweet data and understanding the estimation accuracy. For
instance, if a Twitter user tweets very frequently during a short
period of time but keeps silent afterwards, the sample points
may not be as useful as those users that tweet with the same
frequency but more evenly distributed over the time. After
applying the screening criteria explained above, we keep only
11,734 individuals with 486,114 tweets. Note that we assume
that the geo-tagged tweet data is detected from those users
that have been enabled tweeting with location and device’s
precise location is identified. Usually, the GPS devices such
as smartphone’s GPS sensor or wifi hotspots provide location
accuracy to within a few meters. Note that for a few users
the tagged locations (e.g. when one tags a neighborhood to a
tweet) may differ from the actual location. However, it is easy
to identify user tagged locations versus actual GPS locations
and we can only use the actual locations instead.

To calculate B (S) for each individual, we first prepare
the lookup tables for all the terms in equation (13) that
do not have closed form formulations (functions defined in
Propositions 2–4). The entries in the tables are calculated
only once but can be repeatedly used to approximate the
corresponding terms for arbitrary individuals. As explained
in Propositions 1–4, for a given v̄ each of the terms has at
most two variables, t and c. The number of ticks of each
variable is determined by equation (20), where � is set to 100
(which is manageable for our available computational resource
and serves the illustration purpose well). For instance, given
v̄ = 30km/h, Table 2 illustrates the lookup table for function
U c(t) in Proposition 2, where t is the only variable in this
function. Also, TABLE 3 and Table 4 show a snapshot of
the lookup tables for the Dp (c, t) and Up (c, t) functions,
respectively. Both functions include c and t as variables. It is
theoretically difficult to calculate the derivatives of B(S) with
respect to t or c, and examine how its value is changing when
we increase (decrease) these variables. However, considering
Table 2 to TABLE 4 we can see how different terms in B(S)
are changing with respect to c or t . If we integrate these
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TABLE II

LOOKUP TABLE FOR Uc(t)

TABLE III

LOOKUP TABLE FOR Dp (c, t)

TABLE IV

LOOKUP TABLE FOR Up (c, t)

tables together and calculate B(S), we observe that the value
of B(S) increases with the increase of t , and decreases with
the increase of c.

To illustrate the efficiency of the proposed lookup tables in
calculating B (S), Table 5 compares the solution times from
the lookup table approach with those from the traditional
numerical approach for different data sets. For these exper-
iments, we randomly select four different geo@hyphetagged
Twitter data sets of relatively small sample sizes (so that the
experiments are manageable). All the experiments are run on
a typical PC with 2.2 GHz CPU and 8 GB RAM. The Scipy
module in the Python programming language is used for the
numerical approach. We see that for all instances in Table 5,
the lookup table approach dramatically reduces the solution
time compared to the numerical approach: the ratio of the

TABLE V

COMPARISON OF SOLUTION TIME OF B (S) WITH
NUMERICAL APPROACH AND LOOKUP TABLE

numerical approach solution time to the lookup table solution
time is always greater than 20,000. With this performance,
we expect that the absolute computational time savings is
even more considerable as the data size further increases.
Therefore, for larger data sets in realistic mobility pattern
studies, the numerical method may not be feasible (taking
months), while the lookup table approach can yield solutions
in a very short time (a few minutes).

Despite the superior computational performance, the lookup
table approach produces an approximation error caused by
linear interpolation. To quantify this approximation error,
a relative error is formulated to measure the difference between
the activity bandwidth obtained from the numerical approach,
denoted by Bnum (S), and that obtained from the lookup table,
denoted by Blookup (S), for one individual:

Er := |Bnum (S) − Blookup (S) |
Bnum (S)

. (23)

TABLE 5 reports the average Er value and the 95 percentile
Er value across all individuals in each instance. Overall, the
average Er values are no greater than 0.01. Also, Er is no
greater than 0.02 for more than 95% of the population in
all instances. Although the results in TABLE 5 are based on
a given v̄ = 30, the same Er value is gained by replica-
tion of the experiment for all the other predefined v̄ values
(v̄ = 5, 10, 15, 20, 25, 30). Such an error magnitude is accept-
able for most engineering applications. Note that this error
can be reduced even further as we increase the density of the
lookup table ticks.

Sensitivity analyses are conducted to draw insights on
how the traveling speed limit (v̄) as a key input parameter
affect the activity bandwidth and normalized activity band-
width. As shown in FIGURE 7, for both measures the mean
and standard deviation will increase as we increase the v̄ .
In FIGURE 7b the standard deviation of normalized activity
bandwidth will increase dramatically by increasing v̄ . There-
fore, ideally, v̄ should be selected close to an average indi-
vidual’s mobility speed. If such information is not available,
the v̄value can be selected on the slightly higher end. This
way, the estimated errors are likely upper bounds to the actual
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Fig. 7. Sensitivity analyses on v̄ for twitter data (a) activity bandwidth
(b) normalized activity bandwidth.

errors and this ensures that the data with low estimated errors
are with a high probability of good quality.

Finally, the application of the proposed methodology is
illustrated for three cases with different time analysis intervals:
case 1 for one day, case 2 for 16 hours and case 3 for
8 hours of analysis. Different criteria and cutoff points are
considered as discussed in section IV. According to the
results in TABLE 6, as we decrease the analysis time interval
(i.e. from one day to 8 hours) there are more data to be
selected for mobility pattern analysis. For instance, in a one
day analysis, 0.8 % of data are very good or good based
on the first criterion (NB ≤ 1) compared with 1.8 % in
case 3 when we decrease the time interval to 8 hours. The
results are similar if we take the second criterion where 0.43 %
very good or good data in case 1 increases to 0.7% in case 3.
These findings suggest that although the twitter data contain
massive amount of geo-tagged records, only a very small
portion of the data have relatively accurate individual mobility
information. Therefore, in addition to the representativeness
issue, we find that the granularities of most twitter records are
too coarse for high-definition travel pattern analysis. Having
said this, the small portion of the twitter data with good B
and NB values may still contain some useful information on
mobility patterns of this particular group of users. Cautions
are needed in identifying such useful twitter data depending
on the requirements of specific applications.

The following analysis provides a more detailed understand-
ing of the distributions of the proposed measure values in
the twitter data. The distribution of B(S) for all v̄ values is
shown in FIGURE 8. Interestingly, this distribution can be
well fit with a power-law distribution B−β . We used a python
package called “power law” [71] for fitting the power-law
distributions and compare it with the other alternative heavy

TABLE VI

PERCENTAGE OF TWITTER DATA WITHIN THE
RECOMMENDED CUTOFF POINTS

Fig. 8. Power-law and exponential distribution fit for activity bandwidth
for twitter data with different v̄ (km/h): (a) v̄ = 5 (b) v̄ = 10 (c) v̄ = 15
(d) v̄ = 20 (e) v̄ = 25 (f) v̄ = 30.

tailed distributions. As an observation, by increasing v̄ from
5 km/h to 30 km/h, the power-law exponent (β) decreases
from 2.93 to 1.68, which suggests the power-law fit has a
well-defined mean (β> 2) for the smaller v̄ values.

We also use a log likelihood ratio test to compare the
exponential distribution with power-law distribution and iden-
tify which of these two fits the data better. A large positive
log likelihood ratio and a very small p-value for all cases
indicate that the data is more likely in the power-law dis-
tribution (To evaluate the power-law distribution individually,
the goodness-of-fit results are provided in Appendix B). This
finding reveals an interesting pattern about how frequently
people travel and tweet. The long tail of this power-law
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Fig. 9. Power-law and exponential distribution fit for normalized activity
bandwidth for twitter data with different v̄ (km/h): (a) v̄ = 5 (b) v̄ = 10
(c) v̄ = 15 (d) v̄ = 20 (e) v̄ = 25 (f) v̄ = 30.

distribution indicates that the majority of the individuals have
relatively large activity bandwidths; thus, the ground truth
trajectory cannot be accurately estimated. However, around the
head of the distribution, we find a number of people who have
small activity bandwidths as a result of high frequencies of
their tweets, and their data can be used to construct relatively
accurate space-time trajectories.

With the gyration values calculated in equation (21), we cal-
ibrate the preceding activity bandwidths to the normalized
activity bandwidths using equation (22). V-B shows the dis-
tribution of normalized activity bandwidth. Again, by com-
paring the exponential and power-law distribution with the
log likelihood ratio test we found that the normalized activity
bandwidth is well approximated by a power-law distribution.
Here, the increase of v̄ from 5 km/h to 30 km/h will decrease
the β from 1.64 to 1.50 that reveals less sensitivity to the
speed limit. As before, the indication is that the majority of
the tweet data have relatively large Er in quantifying the
mobility patterns of individuals, and there only remains a
small portion of individuals around the head of the distri-
bution that can provide relatively accurate mobility pattern
information. For a given v̄, the β value for the normalized
activity bandwidth (1.50 <β< 1.64) is relatively smaller than
that of the activity bandwidth (1.68 <β< 2.93), which implies
that less data are useful for quantifying relative mobility
patterns.

TABLE VII

PERCENTAGE OF CELLPHONE DATA WITHIN THE
RECOMMENDED CUTOFF POINTS

B. Cellphone Data

The proposed measures are also applied to cellphone data
collected in Shenzhen, China, for two days (Jan 14, 2014
and Jan 15, 2014) with 1,786,077 unique users and
18,485,979 geo-tagged sample points. The data consists of five
fields including “User’s ID”, “Date” “Time”, “Latitude” and
“Longitude”. A similar analysis is performed to the cellphone
data and the results are compared with the Twitter data.

At first, to calculate B (S), the lookup tables are prepared
for the U c(t), Dp (c, t) and Up (c, t). The lookup tables for
cellphone data are alike Twitter data using the same parameters
(see Table 2 to TABLE 4 for more details), except for ticks
on c and t that are distributed using equation (20). Note that
the variable’s domain differs from Twitter data. For instance,
cellphone data is collected for two days, therefore time ticks
on t are distributed on 48 hours and the corresponding values
in the lookup table are calculated accordingly. Similar cutoff
point analysis is presented in Table 7. The results show that
1.19% of data are very good or good in 8 hours analysis based
on the first criterion (NB ≤ 1), and 0.98% of data are very
good or good considering the second criterion B(S)

RS
< 0.1

(Here RS = 25.54 km is the average radius of Shenzhen with
area of 2050 km2).

Again, we can see for shorter analysis time (i.e. 8 hours)
there are more data to be selected for mobility pattern analysis.
Note that although the percentage of good data is slightly
smaller than Twitter data, the large number of cellphone users
(1,786,077 individuals) means that more individuals can be
selected for future mobility analysis. FIGURE 10 represents
the sensitivity analysis results on effect of v̄ on both B (S)
and NB (S) and similar to the Twitter data, both mean and
standard deviation increase by increasing v̄.

Finally, VI and FIGURE 12 represent the distribution fit
results for B(S) and NB(S). Unlike Twitter data, the distri-
bution of B(S) for all v̄ values can be well fitted with an
exponential distribution (λ < 0.003 for all v̄). Note that expo-
nential distribution has thinner tail than power-law distribution
but still around the head of the distribution there are many
users that can be selected for building accurate space-time
trajectories. For NB(S), again power-law distribution can be
fitted to the data and the increase of v̄ from 5 km/h to 30 km/h
decrease the exponent (β) from 1.26 to 1.10 (less sensitivity
to v̄). This conveys consistent findings for both cellphone and



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 10. Sensitivity analyses on v̄ for cellphone data (a) activity bandwidth
(b) normalized activity bandwidth.

Fig. 11. Power-law and exponential distribution fit for activity bandwidth
for cellphone data with different v̄ (km/h): (a) v̄ = 5 (b) v̄ = 10 (c) v̄ = 15
(d) v̄ = 20 (e) v̄ = 25 (f) v̄ = 30.

Twitter data, where a small portion of individuals around the
head of the distribution that can provide relatively accurate
mobility pattern information.

Fig. 12. Power-law distribution fit for normalized activity bandwidth for
cellphone data with different v̄ (km/h): (a) v̄ = 5 (b) v̄ = 10 (c) v̄ = 15
(d) v̄ = 20 (e) v̄ = 25 (f) v̄ = 30.

VI. CONCLUSION

This study proposes a set of parsimonious measures based
on time geography concepts to answer an important question
about mobility studies using geo-tagged mobility sample data:
How accurate it would be to utilize such samples in estimating
continuous individual mobility trajectories?

In this study, the estimated trajectory between a set of
limited space-time sample points is obtained by connecting
these sample points with linear segments. However, since the
estimated trajectory may differ from the unknown ground truth
trajectory, a set of fundamental measures are proposed to quan-
tify the accuracy of the estimation error in a robust manner.
The estimation error depends on the density of the sample
points. In the proposed methodology, an individual’s activity
range around the estimated trajectory is constructed by a chain
of space-time prisms. Then the proposed measures, including
activity bandwidth and normalized activity bandwidth, are
calculated on this chain. The activity bandwidth quantifies the
possible absolute error range between the estimated and the
ground truth trajectories, while the normalized activity band-
width measures the relative difference between the mobility
pattern of the estimated trajectory and that of the ground truth
trajectory.

In travel mobility analysis, these measures can be used
to evaluate the suitability of estimated individual trajectories
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from generic geo-tagged social media data. Since it is time
consuming to calculate these measures working with massive
mobility data, we also propose a lookup table–based interpo-
lation method to expedite the calculation.

The proposed measures and the associated lookup table
method have been tested with two sets of real-world geo-
tagged mobility data from social-media and cell phone logs.
These cases studies demonstrate that the proposed measures
can efficiently quantify errors of using sample individual
mobility data in estimating their continuous trajectories. These
case studies also draw a number of interesting managerial
insights. For the Twitter data, we find that both measures
proposed in this study follow power-law distributions at
different traveling speed limits (v̄). For the cellphone data,
the normalized activity bandwidth again follows a power-law
distribution, although the activity bandwidth measure can be
better described with an exponential distribution. Sensitivity
analyses are conducted to draw insights on how v̄ can affect
the proposed measures. Our findings show that most individ-
uals in these data sets likely yield high estimation errors and
may not be suitable for mobility studies with high accuracy
requirement. However, because of the massive amount of
geo-tagged data available, there are still a good number of
individuals with relatively accurate mobility information for
mobility pattern analysis. Nonetheless, cautions should be
taken in screening these data for specific applications.

This study provides a methodological foundation for ana-
lyzing error bounds of mobility measures for emerging geo-
tagged mobility data, which can be extended in several
directions. For specific applications, it will be interesting to
use our proposed measures for investigating different cutoff
points for the separation between useful data with less noise
and valueless data with large noise based on the needs of
these applications. When other geo-tagged data sources are
available, it is useful to apply the proposed methodology to
these data sets to draw implications of their mobility patterns.
In particular, it will be interesting to compare the proposed
error bounds with actual errors when ground truth trajec-
tory data are available. While the measured geo-coordinates
have significant errors, this proposed methodology needs to
be properly calibrated to account for such sampling data
noise.

APPENDIX A

This section discusses the proofs of the proposition in
Section 4.
Proposition 1: Given (c1, t1) and (cM , tM ), we have Dc

1 =
Dc (t1) and Dc

M = Dc (T − tM ), where function Dc (t) :=
1
3πv̄2t3,∀t ∈ [0,∞) (note that v̄ and T are given parameters).
Proof: It can be seen from FIGURE 4 in the manuscript

that the lower cone O−
(c1,t1)

’s height and the base radius are
t1 and v̄ t1, respectively, and therefore the volume of O−

(c1,t1)
would be

Dc
1 = 1

3
π(v̄ t1)

2t1 = 1

3
πv̄2t31 = Dc (t1) .

For upper cone O+
(cM ,tM ), again the height and the base

radius are (T − t M ) and v̄ (T − tM ) , respectively, and as

a result,

Dc
M = 1

3
π(v̄(T − t M ))2 (T − tM ) = 1

3
πv̄2 (T − tM )3

= Dc (T − tM ) .

�
Proposition 2: Given (c1, t1) and (cM , tM ), we have U c

1 =
U c (t1) and U c

M = U c (T − tM ), where function

U c (t) :=
∫ 2π

0

∫ tan−1(v̄)

0

×
∫ t

cosϕ

0

√

(ρsinϕcosθ)2 + (ρsinϕsinθ)2ρ2sinϕ

×dρdϕdθ,∀t ∈ [0,∞).

Proof: Essentially, function U c (t) solves the angular
momentum of a cone with a height of t and a base radius
of t v̄ . We define a spherical coordinate system (ρ, θ, ϕ) |ρ ≥
0, θ ∈ [0, π] , ϕ ∈ [0, 2π], where ρ is the radial distance,
θ is the polar angle, and ϕ is the azimuthal angle. Let us
consider a cone in this spherical coordinate system while
the cone vertex is placed at the origin and its axis is on
the radius with θ = 0 (so the cone’s base is facing up).
Note that this spherical coordinate system is equivalent to the
orthogonal coordinate system (x, y, z) |x, y, z ∈ (−∞,∞)},
where x = ρsinϕcosθ , y = ρsinϕsinθ , and z = ρcosϕ.
Then the angular momentum of this cone in the orthogonal
coordinate system can be formulated as

U c (t) :=
∫ t

0

∫ v̄z

−v̄z

∫ √
v̄2z2−x2

−√
v̄2z2−x2

√

x2 + y2dydxdz. (24)

We can translate this expression into the spherical coordinate
system as follows:

U c (t) :=
∫ 2π

0

∫ tan−1(v̄)

0

∫ t
cosϕ

0

×
√

(ρsinϕcosθ)2 + (ρsinϕsinθ)2ρ2sinϕdρdϕdθ.

(25)

Note that in equations (17) and (19) in the manuscript, either
cone can be rotated and repositioned in the coordinate system
as specified in equation (25) and the operations will not change
the values of the functions we are looking for. This yields a
cone with a height of t1 for equation (17) or T − tM for equa-
tion (19). Here, in the integrand, PS (t) = (0, 0) and c is a gen-
eral point (x ∈ (−v̄ t, v̄t), y ∈ (−√

v̄2t2 − x2,
√

v̄2t2 − x2)).
Then, apparently U c (t1) and U c (T − tM ) defined in (25)
are equivalent to equations (17) and (19), respectively. This
completes the proof. �
Proposition 3: Given two consecutive control points

(cm−1, tm−1) and (cm , tm), Dp
m = Dp(‖cm − cm−1‖, |tm −

tm−1|),∀2 ≤ m ≤ M , where function

Dp (c, t)

:= 2
∫ 2π

0

∫ tan−1(v̄)

0

×
∫ v̄2 t2−c2

(2v̄2 t)cosθ−(2c)sinθsinϕ

0
ρ2sinϕdρdϕdθ,∀c, t ∈ [0, ∞)
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Fig. 13. (a) Space-time prism after shifting and rotating coordinates and (b)
position of points in y − t plane and specification of angle β.

Proof: For the convenience of the presentation, we
decompose cm−1 = (xm−1, ym−1) and cm = (xm, ym).
Then we investigate the prism between two control points
(xm−1, ym−1, tm−1) and (xm , ym, tm). Because shifting and
rotating operations will not affect Dp

m , we can obtain the value
of Dp

m with the following steps:
Step 1: Shift and rotate the original orthogonal coordinate

system to translate points (xm−1, ym−1, tm−1) and (xm, ym, tm)
into A:= (0, 0, 0) and B:= (0,δcm, δtm), respectively, where

δcm = ‖cm − cm−1‖ =
√

(xm − xm−1)
2 + (ym − ym−1)2 and

δtm = |tm − tm−1| (FIGURE 13a). Note that now both control
points are in the y − t plane.

Step 2: Find the coordinates of points G and E in y − t
plane by crossing the lines AE, BE and AG, BG as follows
(these lines are also in y − t plane):

AE:y = v̄ t, BE:y = −v̄ t + (δcm + v̄ .δtm)

⇒ E =
(

0,Ey := δcm + v̄.δtm
2

, Et := v̄.δtm + δcm
2v̄

)

AG:y = −v̄t, BG:y =v̄ t + (δcm − v̄ .δtm)

⇒ G = (0,Gy := δcm − v̄.δtm
2

, Gt := v̄.δtm − δcm
2v̄

).

Step 3: Find the equation of plane S, the interphase between
the two cones in the prism. This plane can be formulated with
point E and angle β (FIGURE 13b) as follows:

− sin β
(
y − Ey

) + cos β (t − Et ) = 0.

This indicates that the normal vector of plane S is
(0,− sin β, cos β). Again, in the equivalent spherical coordi-
nate system defined in the above proposition, plane S can be

represented as

− sin β
(
ρsinϕsinθ − Ey

) + cos β (ρcosϕ − Et ) = 0

⇒ ρ = cos βEt − sin βEy

cos βcosθ − sin βsinθsinϕ
.

Step 4: By substituting β, Et , and Ey with their respective
formulations, the preceding equation of plane S becomes

ρ = v̄2δtm2 − δcm2

(2v̄2δtm)cosθ − (2δcm)sinθsinϕ
.

Then, using the triple integral in the spherical coordinates, the
volume between the plane S and truncated cone in the bottom
of R(cm−1,tm−1)(cm ,tm) is

V :=
∫ 2π

0

∫ tan−1(v̄)

0

∫ v̄2δtm2−δcm2

(2v̄2δtm )cosθ−(2δcm )sinθsinϕ

0
ρ2sinθdρdθdϕ.

Step 5: Because of symmetry, we obtain Dp
m = 2V =

Dp (δcm, δtm) ,∀2 ≤ m ≤ M . This completes the proof. �
Proposition 4: Given (cm−1, tm−1) and (cm, tm), Up

m =
Up

(||cm − cm−1||, |tm − tm−1|
)
,∀2 ≤m ≤ M , where

Up (c, t) := 2
∫ 2π

0

∫ tan−1(v̄)

0

∫ v̄2 t2−c2

(2v̄2t)cosθ−(2c)sinθsinϕ

0

×Qρ2sinϕdρdϕdθ,∀c, t ∈ [0,∞),

and :=
√

(ρsinϕcosθ)2 + (
ρsinϕsinθ − ( cρcosϕt )

)2.
Proof: This proof follows the same notation defined in

Proposition 3. Shift and rotate the prism R(cm−1,tm−1)(cm ,tm)

to put it into the position specified in FIGURE 13a. Now
the centerline becomes PS (t) = (0, δcmt/δtm), and for a
generic point c = (x, y) and a generic time t , the integrand
of equation (18) in the manuscript can be formulated in the
equivalent spherical coordinates as follows:

‖c − PS(t)‖

=
√

x2 + (y − (
δcmt

δtm
))2

=
√

(ρsinϕcosθ)2 + (ρsinϕsinθ − (
δcmρcosϕ

δtm
))2,

which is identical to Q defined in the proposition statement.
Therefore, similar to Step 4 in Proposition 3, we obtain Up

m =
2 ∗ ∫ 2π

0

∫ tan−1(v̄)
0

∫ v̄2δtm2−δcm 2

(2v̄2δtm )cosθ−(2δcm )sinθsinϕ

0 Qρ2sinθdρdθdϕ.
As a result, Up

m = Up (δcm, δtm) ,∀2 ≤ m ≤ M . �

APPENDIX B

To investigate the goodness-of-fit test, we use the
Kolmogorov-Smirnov (K-S) test, which simply measures the
maximum distance between the cumulative distribution func-
tion (CDF) of the data and the fitted power-law distribution.
To do that, we need to calculate a KS statistic as follows [72]:

K S = max |F − G|, (26)

where F is the cumulative distribution of the best fit and
G is the cumulative distribution of the synthetic data. The
synthetic data are generated from the fitted distribution, and
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Fig. 14. Goodness-of-fit test based on K Sw for displacement.

Fig. 15. Goodness-of-fit test based on K Sw for activity bandwidth.

then the best fit for the empirical data can be tested by the
K S value. González, Hidalgo, and Barabási (2008) proposed
a weighted K S statistic (K Sw) because the regular K S is
not very sensitive on the edges of the cumulative distribution.
Hence, we also used K Sw, defined as

K Sw = max
|F − G|√
G (1 − G)

. (27)

We calculate K Sw for the empirical data and its best fit and
compare it with that obtained for 2,000 synthetic data sets
generated from the best fit. Empirical data are statistically
consistent with their best fit if their K Sw behaves as good
as or better than those obtained for the synthetic data. For the
goodness-of-fit test for each of the measures, the distribution
of K Sw values generated with the synthetic data is compared
with the distribution of the ones representing the empirical
distribution.

We summarize the goodness-of-fit test by calculating the
p-value based on the distribution of K Sw generated with
the synthetic data and the value of K Sw representing the
empirical distribution. The p-value quantifies the plausibility
of the hypothesis. The p-value is defined to be the fraction of
the synthetic data values that is larger than the empirical data
values. We assume the critical p-value is equal to 0.05; that
means if the resulting p-value is greater than 0.05, the power
law is a plausible hypothesis for the data; otherwise, it is
rejected. FIGURE 14 through FIGURE 16 show the goodness-
of-fit test results for displacement, activity bandwidth, and
normalized activity bandwidth, respectively. In all cases we
find the p-value is greater than 0.05, and thus the empirical
data passes the goodness-of-fit test.

Fig. 16. Goodness-of-fit test based on K Sw for normalized activity
bandwidth.

Fig. 17. (a) Space-time prism, v̄ = 15 and (b) space-time prism, v̄ = 30.

APPENDIX C

Let consider a simple example in a one-dimensional space
with two sample points (ci , ti ) and (c j , t j ). Using two different
speed limits (e.g. v̄ = 15 versus v̄ = 30) we can draw
the prisms for these sample points as shown in FIGURE 17.
Based on our discussion in section III, there are many feasible
space-time paths falling in the space-time prism between these
two sample points, and of course an estimated path may
differ from the ground truth with some error. In general, the
estimated trajectories in FIGURE 17a have relatively smaller
errors because of narrower prisms compared with those in
FIGURE 17b. To this end, the objective of this study is to
quantify this error with the proposed measures, e.g. activity
bandwidthand normalized activity bandwidth. The activity
bandwidth measures on average how far a point on the prism
chain is apart from the center line path. A smaller B(S) value
means a narrower activity range (narrower prism chain) and
better estimation. In other words, it implies that the centerline
PS is likely close to the ground truth with less estimation error.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 18. Two trajectories with different t and c, but equal B(S), (a) short
trajectory, (b) long trajectory.

To clarify the normalized activity bandwidth, let consider
two trajectories with different t and c in a one dimensional
space as shown in FIGURE 18, and let assume they have
the same B(S). For mobility analysis, we prefer the trajec-
tory in FIGURE 18b because of its potentials for capturing
unobserved activities. Since both trajectories in FIGURE 18a
and FIGURE 18b have the same B(S), normalized activity
bandwidth is defined to distinguish between these trajectories.
In other words, there is a trade-off between the estimation
error and detecting individual’s participation in more activities.
To address this trade-off, we normalize the activity bandwidth
by the radius of gyration, which measures the spread of an
individual’s locations around his/her center of mass.
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