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This paper presents in detail our fast semistochastic heat-bath configuration interaction (SHCI) method
for solving the many-body Schrodinger equation. We identify and eliminate computational bottlenecks
in both the variational and perturbative steps of the SHCI algorithm. We also describe the paralleliza-
tion and the key data structures in our implementation, such as the distributed hash table. The improved
SHCI algorithm enables us to include in our variational wavefunction two orders of magnitude more
determinants than has been reported previously with other selected configuration interaction methods.
We use our algorithm to calculate an accurate benchmark energy for the chromium dimer with the X2C
relativistic Hamiltonian in the cc-pVDZ-DK basis, correlating 28 electrons in 76 spatial orbitals. Our
largest calculation uses two billion Slater determinants in the variational space and semistochastically
includes perturbative contributions from at least trillions of additional determinants with better than
10~° Ha statistical uncertainty. Published by AIP Publishing. https://doi.org/10.1063/1.5055390

I. INTRODUCTION

The choice of quantum chemistry methods requires a
trade-off between accuracy and efficiency. Density functional
theory (DFT)'~ methods with approximate density function-
als are popular and efficient, but are often not sufficiently
accurate. Coupled cluster with single, double, and perturba-
tive triple excitations [CCSD(T)]* is very accurate for single
reference systems, but not for strongly correlated systems,
such as systems with stretched bonds. The density matrix
renormalization group (DMRG)’~!2 and full configuration
interaction quantum Monte Carlo (FCIQMC)'*-!7 are system-
atically improvable but rapidly get expensive with the number
of electrons and the size of the basis set.

The recently developed semistochastic heat-bath con-
figuration interaction (SHCI)'®*? is another systematically
improvable method capable of providing essentially exact
energies for small systems. In common with FCIQMC, the
computational cost of the method scales exponentially in the
number of electrons but with a much smaller exponent than
in full configuration interation (FCI). However, SHCI is much
faster than FCIQMC. The comparison with DMRG is more
involved. While SHCI is much faster than DMRG for small
moderately correlated systems, the ratio of costs changes in
DMRG's favor as the system size increases and as the corre-
lation strength increases because the methods have different
scaling with these parameters. In particular, SHCI scales expo-
nentially with system size with a prefactor that is typically
small, but which grows with the strength of the correlation.
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DMRG scales exponentially with the (D — 1)/D-th power of
the system size (where D is the system dimension) with a
prefactor that is typically larger, but is not very sensitive to the
strength of the correlation.

SHCI is an example of the selected configuration inter-
action plus perturbation theory (SCI+PT) methods,’*>® the
earliest of which being the configuration interaction by pertur-
batively selecting iteratively (CIPSI) method?*?° of Malrieu
and collaborators. SCI+PT methods have two stages. In the
first stage, a variational wavefunction is constructed itera-
tively, starting from a determinant that is expected to have
a significant amplitude in the final wavefunction, e.g., the
Hartree-Fock determinant. Each iteration of the variational
stage has three steps: selection of important determinants,
construction of the Hamiltonian matrix, and iterative diag-
onalization of the Hamiltonian matrix. In the second stage,
2nd-order perturbation theory is used to improve upon the
variational energy.

The SHCI algorithm has greatly improved the efficiency
of both stages. First, as discussed in Sec. I A, it greatly speeds
up the determinant selection, and second, as discussed in
Sec. II B, it drastically reduces the central processing unit
(CPU) cost as well as the memory cost of performing the per-
turbation step by using a semistochastic algorithm. These two
modifications have allowed SHCI to be used for systems as
large as hexatriene in an ANO-L-pVDZ basis (32 correlated
electrons in 118 orbitals) which has a Hilbert space of 10°®
determinants.”®> SHCI has also recently been extended to (a)
calculate not just the ground state but also the low-lying excited
states,”’ (b) perform self-consistent field orbital optimization
in very large active spaces,?! and (c) include relativistic effects
including the spin-orbit coupling using “one-step” calculations
with two-component Hamiltonians.?

Since SHCI has greatly reduced the time required to select
determinants, we find, for large systems, that Hamiltonian
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construction is the most time-consuming step of the varia-
tional stage. For around 10® variational determinants, it takes
two orders of magnitude more time to construct the Hamilto-
nian matrix than to select the determinants for most molecules.
In addition, if a small stochastic error is required, the perturba-
tive stage can be expensive, particularly on computer systems
that do not have enough memory. Hence, in this paper, we
present an improved SHCI algorithm that greatly speeds up
these two steps. For the variational stage, we introduce a fast
Hamiltonian construction algorithm that allows us to use two
orders of magnitude more determinants in the wavefunction.
For the perturbative stage, we introduce the 3-step batch per-
turbation method that further speeds up the calculation and
reduces the memory requirement. We also describe important
implementation details of the algorithm, including the key data
structures and parallelization.

We organize the paper as follows: In Sec. II, we review the
SHCI method. In Sec. III, we introduce our faster Hamiltonian
construction algorithm. In Sec. IV, we introduce our 3-step
batch perturbation algorithm. In Sec. V, we describe the key
data structures in our implementation. In Sec. VI, we describe
the parallelization strategy and demonstrate its scalability. In
Sec. VII, we apply our improved SHCI to Cr;. Section VIII
concludes the paper.

Il. SHCI REVIEW

In this section, we review the semistochastic heat-bath
configuration interaction (SHCI) method,'®?° emphasizing
the two important ways it differs from other SCI+PT methods.
In the following, we use V for the set of variational determi-
nants and P for the set of perturbative determinants, that is, the
set of determinants that are connected to the variational deter-
minants by at least one non-zero Hamiltonian matrix element
but are not present in V.

A. Variational stage

SHCI starts from an initial determinant and generates the
variational wavefunction through an iterative process. At each
iteration, the variational wavefunction, Wy, is written as a
linear combination of the determinants in the space V,

¥y = ) cilDy, (1)

D;eV

and new determinants, D,, from the space P that satisfy the
criterion
A D; € Vsuch that |H,c;| > €, 2)
are added to the V space, where H ; is the Hamiltonian matrix
element between determinants D, and D; and €, is a user-
defined parameter that controls the accuracy of the variational
stage.’” (When €, = 0, the method becomes equivalent to
FCI.) After adding the new determinants to V, the Hamiltonian
matrix is constructed and diagonalized using the diagonally
preconditioned Davidson method,*® to obtain an improved
estimate of the lowest eigenvalue, Ey, and eigenvector, Wy.
This process is repeated until the change in Ey falls below a
certain threshold, e.g., 1 uHa.
Other SCI methods, such as CIPSI,2*26 use different
criteria, usually based on either the first-order perturbative
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coefficient of the wavefunction,
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or the second-order perturbative correction to the energy
(Zi Haici)?
-AE; = ——=—"— > €. 4
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The reason we choose instead the selection criterion in Eq. (2)
is that it can be implemented very efficiently without check-
ing the vast majority of the determinants that do not meet
the criterion, by taking advantage of the fact that most of
the Hamiltonian matrix elements correspond to double exci-
tations, and their values do not depend on the determinants
themselves but only on the four orbitals whose occupancies
change during the double excitation. Therefore, before per-
forming an HCI run, for each pair of spin-orbitals, the absolute
values of the Hamiltonian matrix elements obtained by dou-
bly exciting from that pair of orbitals are computed and stored
in decreasing order by magnitude, along with the correspond-
ing pairs of orbitals the electrons would excite to. Then the
double excitations that meet the criterion in Eq. (2) can be
generated by looping over all pairs of occupied orbitals in
the reference determinant and traversing the array of sorted
double-excitation matrix elements for each pair. As soon as the
cutoff is reached, the loop for that pair of occupied orbitals is
exited. Although the criterion in Eq. (2) does not include infor-
mation from the diagonal elements, the HCI selection criterion
is not significantly different from either of the two CIPSI-like
criteria because the terms in the numerator of Eq. (3) span
many orders of magnitude, so the sum is highly correlated
with the largest-magnitude term in the sum in Eq. (3). It was
demonstrated in Ref. 18 that the selected determinants give
only slightly inferior convergence to those selected using the
criterion in Eq. (3). This is greatly outweighed by the improved
selection speed. Moreover, one could use the HCI criterion in
Eq. (2) with a smaller value of €, as a preselection criterion and
then select determinants using the criterion in Eq. (4), thereby
having the benefit of both a fast selection method and a close
to optimal choice of determinants.

B. Perturbative stage

In common with most other SCI+PT methods, the pertur-
bative correction is computed using Epstein-Nesbet perturba-
tion theory.*** The variational wavefunction is used to define
the zeroth-order Hamiltonian, H, and the perturbation, V,

Ho= ) HylD)XDjl+ )’ HualDa)Dal,
D;,D;eV D¢V
V = H - Hy. )

The first-order energy correction is zero, and the second-order
energy correction AE> is

(ZD,EVHaiCi)Z
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where E, = Hg,.
Itis expensive to evaluate the expression in Eq. (6) because
the outer summation includes all determinants in the space P,
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and their number is O(n%v2Ny), where Ny is the number of
variational determinants, » is the number of electrons, and v
is the number of virtual orbitals. For the calculation on Cr;,
described in Sec. VII,n=28,v =62,and Ny = 2 X 10, so the
number of determinants in P is huge. The straightforward and
time-efficient approach to computing the perturbative correc-
tion requires storing the partial sum 3}, oy, H,;c; for each a,
while looping over all the determinants D; € V. This creates a
severe memory bottleneck.

Various schemes for improving the efficiency have
been implemented, including only exciting from a redi-
agonalized array of the largest-weight determinants?® and
its efficient approximation using diagrammatic perturbation
theory.?’” However, this is both more complicated than neces-
sary (requiring a double extrapolation with respect to the two
variational spaces to reach the FCI limit) and is more com-
putationally expensive than necessary since even the largest
weight determinants have many connections that make only
small contributions to the energy. The SHCI algorithm instead
uses two other strategies to reduce both the computational time
and the storage requirement.

First, SHCI screens the sum'® using a second threshold,
€, (Where €; < €]), as the criterion for selecting perturbative
determinants P,

18
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where 3 indicates that only terms in the sum for which
|Hgicil > €3 are included. Similar to the variational stage,
we find the connected determinants efficiently with precom-
puted arrays of double excitations sorted by the magnitude
of their Hamiltonian matrix elements.'® Note that the vast
number of terms that do not meet this criterion are never
evaluated.

Even with this screening, the simultaneous storage of all
terms indexed by a in Eq. (7) can exceed computer mem-
ory when €; is chosen small enough to obtain essentially
the exact perturbation energy. The second innovation in the
calculation of the SHCI perturbative correction is to over-
come this memory bottleneck by evaluating this perturbative
correction semistochastically.'” The most important contribu-
tions are evaluated deterministically, and the rest are sampled
stochastically. The total perturbative correction is

AEy(e2) = [AEj(e2) - AE3(€9)] + AE3 (),  (8)

where AE:‘,_1 is the deterministic perturbative correction
obtained by using a larger threshold 6‘2’ > €2in Eq. (7). AE3 is
the stochastic perturbative correction from randomly selected
samples of the variational determinants and is given by
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where N is the number of variational determinants per sample

and N:niq is the number of different determinants in a sample.
piand w; are the probability of selecting determinant D; and the
number of copies of that determinant in a sample, respectively.
The N, determinants are sampled from the discrete probability
distribution

D= |cil (10)

[ Ny ’
%" e

using the Alias method,*'*? which allows samples to be drawn
in O(1) time. [The more commonly used heatbath method
requires O(log(n)) time to do a binary search of an array of
cumulative probabilities.] AE;[Ez] and AE;[e‘Z’] are calculated
using the same set of samples, and thus, there is signifi-
cant cancellation of stochastic error. Furthermore, because
these two energies are calculated simultaneously, the addi-
tional cost of performing this calculation, compared to a
purely stochastic summation, is very small. Clearly, in the
limit that 6‘2’ = €,, the entire perturbative calculation becomes
deterministic.

The perturbative stage of the SHCI algorithm has the inter-
esting feature that it achieves super-linear speedup with the
number of computer nodes used. There are two reasons for
this, both having to do with the increase in the total computer
memory. First, a larger fraction of the perturbative energy can
be computed deterministically, using a smaller value of eg in
Eq. (8). Second, a larger value of N, in Eq. (9) can be used.
For a given total number of samples, the statistical error is
smaller for a small number of large samples, than for a large
number of small samples, because the number of sampled con-
tributions to the energy correction is a quadratic function of
the number of sampled variational determinants. For example,
N samples, each of size N4, will have NSNg contributions to
the energy, whereas N/2 samples, each of size 2N 4, will have
2NSN3' contributions. Consequently, this too contributes to a
super-linear speedup.

C. Other features of SHCI

We note that although SHCI has a stochastic component,
it has the advantages compared to quantum Monte Carlo algo-
rithms that there is no sign problem and that each sample is
independent. Another feature of the method is that if the calcu-
lation is done for various values of the variational threshold €,
a plot of the total energy (variational plus perturbative correc-
tion) plotted versus the perturbative correction yields a smooth
curve that can be used to assess the convergence and extrap-
olate to the FCI limit, AE = 0.2° We typically use a quadratic
fit, with the points weighted by (AE) 2.2

As is typical in many quantum chemistry methods, we
note that the convergence of both the variational energy and
the total (variational plus perturbative) energy depends on the
choice of orbitals. Natural orbitals, calculated within HCI, are
typically a better choice than Hartree Fock orbitals, and opti-
mized orbitals?! are a yet better choice. For systems with more
than a few atoms, split-localized optimized orbitals lead to yet
better convergence.?

We describe, in Secs. III and IV, improvements we have
made to the variational and the perturbative stages of the SHCI
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algorithm, which speed up the calculations by an order of
magnitude or more for large systems.

lll. FAST HAMILTONIAN CONSTRUCTION

The Hamiltonian matrix is stored in upper-triangular
sparse matrix form. At each variational iteration, we have a set
of old determinants and a set of new determinants. We have
already calculated the Hamiltonian matrix for the old deter-
minants and need to calculate the old-new and the new-new
matrix elements.

The SHCI algorithm greatly speeds up the step of finding
the important determinants, and one can very quickly gener-
ate hundreds of millions or more. With these many determi-
nants, the construction of the Hamiltonian matrix is expensive.
Most of the matrix elements are zero, but finding the non-
zero Hamiltonian elements quickly is challenging because the
determinants in the variational wavefunction do not exhibit any
pattern. (Efficient construction of the Hamiltonian matrix of
the same size in FCI is much more straightforward than that in
SCI.) There are two straightforward “brute force” approaches
to building the Hamiltonian matrix: (a) looping over all pairs
of determinants to find those pairs that are related by single or
double excitations and (b) generating all connections of each
determinant in Vand searching for the connections in the sorted
array of variational determinants. When the number of deter-
minants is not very large, the former is more efficient. Both
of these are much too expensive for the very large number of
variational determinants that we use.

The original SHCI algorithm introduced auxiliary
arrays'® to speed up the Hamiltonian construction, but it still
spends considerable time on elements that are zero. In our
improved SHCI algorithm, we use a larger number of aux-
iliary arrays to further reduce the time. All the relevant data
structures are shown in Table I. Some of these are appended
to at each variational iteration because they contain informa-
tion about all the variational determinants currently included in
the wavefunction, whereas others are constructed from scratch
since part of their information content pertains to only the new
determinants.

The auxiliary arrays are constructed by looping over
just the new determinants. First, each new @ encountered is
appended to array @ and hash map iq(@). Als"o, each new deter-
minant is appended to the arrays ip, (i) and ig,(ie). In order to
speed up the generation of the Hamiltonian matrix (described
later), these are sorted by ip when the number of new determi-
nants is much smaller than the number of old determinants and
by ig otherwise. Then, the hash map i2(aCD) is constructed,
and finally, the array iqo(jo). The purpose of i2(@CD) is sim-
ply to speed up the construction of i, (jo). Note that if two
« strings are a single excitation apart, they will be simulta-
neously present under one and only one key of the hash map
Ta(@D).

Then, we update the Hamiltonian matrix using these aux-
iliary arrays and a loop over all the determinants. Algorithms 1
and 2 describe the algorithm using pseudocode. The Hamilto-
nian matrix elements are nonzero only for determinants that
are at most two excitations apart, namely, diagonal elements,
same-spin single excitations, same-spin double excitations,
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TABLE I. The notation for the data structures in our current algorithm for
efficiently constructing the Hamiltonian matrix. Analogous data structures
with the alpha and beta roles reversed are also used. The text gives details of
how they are constructed efficiently.

Notation Description

D The array of determinants in V, in the order they
were generated.

a The array of all alpha strings, without repeats
that are present in at least one determinant in V,
in the order they were generated.

Hash map that takes an alpha string, @, and
returns its index, i, in &.

io(@)

The array of determinant indices in D such that
the alpha strings of those determinants have
index i, in &.

The elements of ip,(iy) are sorted either by
their values or by the indices of their beta strings
in ﬁ (See text for details.)

;’Da(ia)

The array of all beta string indices in 8 that
appear with @;, in a determinant.

It is sorted so that the elements of ipq (ip) and
;';ga (i) are always in correspondence.

igalia)

T (a! ) Hash map that takes an alpha string with one less
electron, @™, and returns an array of indices
of alpha strings in & that can give a(~!) upon
removing an electron. These are generated only
for the @’s present in the new determinants.

;':m(ja) The array of indices of alpha strings in the
array &, connected by a single excitation to the
j™ alpha string of array &, sorted in ascend-
ing order. These are generated only for the j, s

present in the new determinants.

iDyjDs--- Indices of D.

iasjas--- Indices of &.

a(D;) Alpha string of determinant D;.

and opposite-spin double excitations. For finding the same-
spin connections, we use a method closely related to that
in Ref. 33. Finding the opposite-spin connections is more
computationally expensive and our algorithm speeds this up
significantly.

Algorithm 1. Hamiltonian matrix update for determinants connected by sin-
gle or double alpha excitations. The algorithm for single or double beta
excitations is very similar.

for D; in D do
Use hash map ig(B) to find ig, the index of B(D;)
s is the index of the first new determinant with s > i.
for j in ipg(ip) do
if j > s and D;, D; are connected then
Compute and add Hj; to the Hamiltonian
end if
end for
end for
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Algorithm 2. Hamiltonian matrix update for determinants connected by an
opposite-spin double excitation.

for D; in D do
Use hash maps i, (@) and ig(B) to find iy, ig,
the indices of a(D;) and B(D;).
s is the index of the first new determinant with s > i.
for ko in ipa(ia) do
if number of new determinants is small then
forj > sin ?Da (ko) (reverse loop) do
if ig(B(D))) € ipp(ip) (binary search) then
Compute and add H; to the Hamiltonian
end if
end for
else
Find the intersection fp of sorted arrays
iga(ka) and igg(ig) in O(n) time.
Since igq (ke) and ipa (ka) are in
1-To-1 correspondence, this provides the
corresponding determinants fD
for j in jp do
if j > s then
Compute and add H; to the Hamiltonian
end if
end for
end if
end for
end for

A. Same-spin excitations

For determinants connected by single or double alpha
excitations to a given determinant D;, the beta strings must
be the same as B(D;). Hence, we simply loop over the deter-
minants in the ?D,g(iﬂ) array and check if the alpha strings are
related by a single or a double excitation, and if they are, we
compute that Hamiltonian matrix element. Similarly, we can
find the single and double beta excitations by looping over the
determinants in the ?Da(ia) array.

B. Opposite-spin excitations

For the opposite-spin double excitations, we first loop over
all k,, in the i,,(i,) array, i.e., the indices of @ connected by
single excitations to a(D;). The determinants that have alpha
string k, are in ?Da(ka), but since only some of these have
beta strings are single excitations of B(D;), we need to filter
?Da (ko) to find the connected determinants. This is done in two
different ways as described in Algorithm 2 depending on the
number of new determinants. When the number of new deter-
minants is less than 20% of the total number of determinants
(e.g., in the later iterations of a given €), -i'Da(ia) and ?ﬁa(ia)
are sorted by ip; otherwise, they are sorted by ig. The remain-
ing determinants after filtering are the determinants connected
to the given determinant through opposite-spin double excita-
tions. Each connection is visited only once during this process,
which was not the case in the original SHCI method.

In Fig. 1, we use a copper atom*>2 with a pseudopo-
tential and the cc-pVTZ basis to compare the improved SHCI
algorithm to the original SHCI algorithm and to the brute force
algorithm where we loop over each pair of determinants. The
improved algorithm is about an order of magnitude faster than
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FIG. 1. Hamiltonian matrix construction time fora copper atom ina cc-pVTZ
basis. Hamiltonian construction is the performance bottleneck in the varia-
tional stage. Hamiltonian construction in our improved SHCI algorithm is an
order of magnitude faster than that in our original SHCI algorithm and several
orders of magnitude faster than the faster of the two brute force approaches
(loop over each pair of determinants). Also shown is the number of nonzero
elements in the Hamiltonian, scaled so that the first point coincides with the
first point of the improved SHCI CPU time.

the original SHCI for medium size calculations. For large cal-
culations, e.g., the Cr; calculation described in Sec. VII where
we use billions of variational determinants, the speedup is even
greater.

IV. 3-STEP PERTURBATION THEORY

As described in Sec. II, our original SHCI algorithm'®
solves the memory bottleneck problem of SCI+PT methods by
introducing a semistochastic algorithm for computing the per-
turbative correction to the energy. In Sec. II, we have empha-
sized that the statistical error can be dramatically reduced by
decreasing the value of eg in Eq. (8) and by increasing the size
of the stochastic samples, N4, in Eq. (9). However, decreasing
eg or increasing N, can quickly lead to very large memory
requirements, making the calculations impractical even on
large computers. In this situation, one is left with no choice
but to run relatively inefficient calculations with larger eg and
smaller N ;. For example, in Table II, rows 3 and 4 show a
comparison of the total CPU time of the perturbation stage for
a copper atom in a cc-pVTZ basis on a machine with large
memory versus on a machine with small memory. When we
decrease the memory by a factor of four, the total CPU time of
the original SHCI algorithm increases by almost a factor of 8.

For a given target error, assuming that we have infinite
computer memory, there is an optimal choice of eg and Ny
for reaching that target error using the least computer time.
Our improved algorithm is designed to have an efficiency
that depends only weakly on the available computer mem-
ory. It is always more efficient than the original algorithm,
especially when running on computers with small memory, in
which case the gain in efficiency can be orders of magnitude.
To achieve that, we replace the original 2-step SHCI algo-
rithm with a 3-step algorithm. In each of the three steps, the
perturbative determinants are divided into batches using a hash

function,*** and the energy correction is computed either
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TABLE II. Computational cost of perturbative correction for a copper atom
in a cc-pVTZ basis. The variational space has 19 x 10° determinants for
€; =5 x 1073 Ha, and the perturbative space has 35 x 10° determinants
for €5 = 1077 Ha. HCI uses the deterministic perturbation of Ref. 18. SHCI
uses the 2-step semistochastic perturbation algorithm of Ref. 19. Improved
SHCI introduces the 3-step batch perturbation that significantly improves the
efficiency of SHCI, especially for memory constrained cases. The timings for
the 32 GB machine are obtained by running on the same 128 GB large memory
machine but intentionally tuning the parameters so that the memory usage is
kept below 32 GB throughout the run. We also provide the timing to reach
a 1.8 uHa uncertainty to illustrate that our statistical error goes down much
faster than 1/VT since we use smaller eg‘m and egsm values for smaller target
errors.

Method Memory CPU time (core hours) Error (uHa)
HCI (deterministic) 3TB 1450 0
Original SHCI 32GB 116.6 10
A 128 GB 145 10
32GB 42 9
Improved SHCI 128 GB 37 9
128 GB 59 18

by adding, in succession, the contribution from each batch
or by estimating their sum by evaluating only a subset of these
batches. The hash function maps a determinant to a 64-bit inte-
ger h. A batch contains all the determinants that satisfy 2 mod
n =i, where i is the batch index and # is the number of batches.
We use a high-quality hash function which ensures a highly
uniform mapping, so each batch has about the same number of
determinants, i.e., the fluctuations in the number of determi-
nants in the various batches are the square root of the average
number of determinants in each batch. The contributions of
the various batches fluctuate both because the contributions of
the perturbative determinants within a batch fluctuate and the
number of perturbative determinants in a batch fluctuates. For
both contributions, the ratio of the fluctuation to the expected
value is ~ YN/N — 0 for large N, where N is the average
number of determinants in a batch.

In brief, our improved SHCI algorithm has the following
3 steps:

1. A deterministic step with cutoff eg‘m(< €1), wherein
all the variational determinants are used and all the
perturbative batches are summed over.

2. A “pseudo-stochastic” step, with cutoff € °(< €™),
wherein all the variational determinants are used, and
typically only a small fraction of the perturbative batches
need be summed over to achieve an error much smaller
than the target error.

3. A stochastic step, with cutoff €2(< €, ), wherein a few
stochastic samples of variational determmants each con-
sisting of N4 determinants, is sampled using Eq. (10),and
only one of the perturbative batches is randomly selected
per variational sample.

psto

The total perturbative correction is
AE>(e2) = [AESlO(Ez) _ AES“’ (E;slo)]
[ AEPsto( psto) _ AE;S“) (Egtm)]
+AEgtm(62 ) (1)
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The choice of these parameters depends on the system and
the desired statistical error, but reasonable choices for a target
error around 10~° Ha are €™ = 2x 10° Ha, €)™ = 1077 Ha,

and €, = €,/10°. Of course, if €, < eg‘m the determinis-
tic step is skipped. We next describe each of the 3 steps in
detail.

The first step is a deterministic step similar to the orig-
inal SHCI’s deterministic step, except that when there is
not enough memory to afford the chosen 6‘2’““, we divide
the perturbative space into batches according to the hash
value of the perturbative determinants and evaluate their
contributions batch by batch. The total deterministic cor-
rection is simply the sum of the corrections from all the

batches

( dlm) 2
)3 5, ()
, (12)
B D,eP EV_
h(D,)eB

where (D) is the hash function and B is the hash value space
for a batch. This method solves the memory bottleneck in a
different way than the original SHCI algorithm. We could do
the full calculation in this way, i.e., use a very small value
for eg’m and a large number of batches, but it is much more
efficient to only evaluate the large contributions here and leave
the huge number of small contributions to the later stochastic
steps.

The second step is a pseudo-stochastic step. It is similar
to the deterministic step, except for the following differences:
(a) we use an egs“’ much smaller than €J™ as the selection
criterion, (b) we divide the perturbative space into as many
batches as is needed in order for one batch to fit in mem-
ory, with the constraint that there are at least 16 batches, and
(c) we use the corrections from the perturbative determinants
in a small subset of the batches (often one is enough) to esti-
mate the total correction from all the perturbative determinants,
as well as its standard error. Looping over batches, for each
batch, we calculate the correction from each unique pertur-
bative determinant in that batch. We accumulate the number
of unique determinants, the sum, and the sum of squares of
the corrections from these determinants. At the end of each
batch iteration, we calculate the mean and standard devia-
tion of the corrections from all the evaluated perturbative
determinants and use these to estimate the total correction
from all the perturbative determinants. Note that the standard
deviation of the total correction is the standard deviation of
the sum of only the unevaluated determinants. If we process
all the batches, the pseudo-stochastic step becomes deter-
ministic and has zero standard deviation. When the standard
deviation of the total correction is smaller than 40% of the
target error, we exit the loop over batches. However, a sin-
gle batch is often sufficient to reach a statistical error below
that threshold, for the smallest €; values that we typically
use.

The third step is a stochastic step that is similar to the
stochastic step of the original SHCI algorithm, except that
instead of keeping all the perturbative determinants that sat-
isfy the €, criterion, we keep only one randomly selected
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batch out of several. The available computer memory con-
strains the number of perturbative determinants, and one can
obtain the same number sampling a certain number of varia-
tional determinants and all the perturbative determinants that
satisfy the e, criterion (the original SHCI algorithm) or by
using a larger number of variational determinants and select-
ing just one batch of the perturbative determinants. The latter
allows us to use much larger variational samples. Using larger
variational samples is advantageous because we find that the
additional fluctuations due to sampling the perturbative deter-
minants are much smaller than the reduction in the fluctuations
due to having larger variational samples. Typically, we use
€; = 107 %,. Since the smallest €, that we use is typically
around 10~° Ha, this value is in fact much smaller than is
needed to ensure that the perturbative correction is fully con-
verged. For a statistical error of 107> Ha, 128 batches are
usually a good choice to start with. The size of the variational
sample is chosen so that a single perturbative batch fits in the
available memory. We use a minimum of 10 samples in our
stochastic step in order to get a meaningful estimate of the
uncertainty. On large memory machines, we often achieve a
much smaller statistical error than the target with 10 samples.
In that case, we can decrease the size of the variational sample
in later runs for similar systems.

In Table II, the last four rows compare the original SHCI
to the improved version with 3-step batch perturbation. In the
memory-constrained case, the improved SHCI runs more than
an order of magnitude faster than the original SHCI. Even
when memory is abundant, the improved SHCI is still a few
times faster.

The main reasons that the improved SHCI is much faster
are as follows: (1) It computes a larger fraction of the pertur-
bative correction in the deterministic step. (2) A small fraction
of the batches in the pseudo-stochastic step is usually suffi-
cient to give an accurate estimate of the total correction. (3)
It uses much larger samples of variational determinants in the
stochastic step.

‘We now comment on a couple of aspects of our algorithm
that may not be obvious:

(1) The value of the perturbative correction depends only

on € and not on €™ and €5"°. The latter two quanti-
ties affect only the efficiency of the calculation. By using
batches in the stochastic step, we can use a much smaller

e;“’ and thereby include almost the entire perturbative
space. In our calculations, we usually set e:’;_m =10"%,
which is much smaller than is possible using our previ-
ous 2-step perturbation method and much smaller than
necessary to keep the systematic error within the target
statistical error.

(2) In the pseudo-stochastic step, we estimate the fluctua-
tions of the unevaluated perturbative determinants from
the fluctuation of the evaluated perturbative determi-
nants. This relies on having a sufficiently uniform hash
function. Note that since we are using all the varia-
tional determinants in this step, the fluctuations come
just from the perturbative determinants. By contrast,
in the stochastic step, the fluctuations come both from
the choice of variational determinants and the choice of
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batches. In that case, one cannot simply use the stan-
dard deviation of the corrections from the evaluated
perturbative determinants to estimate the standard devi-
ation of the total correction. So, in the stochastic step, we
use a minimum of 10 samples, calculate the correction
from each of these samples, and use the standard devia-
tion of these sample corrections to estimate the standard
deviation of the total correction.

(3) Inthe stochastic step, the fluctuation between batches of
perturbative determinants is much smaller than the fluc-
tuation between samples of variational determinants.
The reason for this is that there are many more perturba-
tive determinants in a batch (each making only a small
contribution) than there are variational determinants in a
sample. Furthermore, the variational determinants vary
greatly in importance. This is why we use importance
sampling as described by Eq. (10) when selecting vari-
ational determinants and why we precede the stochastic
step with the deterministic and pseudo-stochastic steps,
but even with these improvements, the fluctuations from
the choice of variational samples are much larger than
the fluctuation from the choice of batches. Hence, we use
only one randomly selected batch of perturbative deter-
minants (typically out of 128 batches) per variational
sample.

(4) The use of batches carries a small computational over-
head of having to regenerate the perturbative determi-
nants for each batch. Using our method, generating
determinants is sufficiently fast that the increase in com-
putational cost would be substantial only if this is done
many times. If we employed a purely deterministic algo-
rithm, the number of batches would be very large, but
with our 3-step semistochastic algorithm, the number of
batches actually computed is sufficiently small in each
of the three steps that there is never a large computational
overhead.

Finally, we comment on two other algorithms that have
been recently proposed for calculating the perturbative cor-
rection. First, another very efficient semistochastic algorithm
has been proposed by Garniron et al.3* However, that algo-
rithm has, for each perturbative determinant, a loop over the
variational determinants to find those that are connected. For
the very large number of variational determinants that we
employ here (up to 2 X 10°), this is impractical. To avoid
confusion, we should mention that the reason that their energy
for Cr, is very different from ours is that they used a non-
relativistic Hamiltonian. Second, another algorithm that uses
batches of perturbative determinants to overcome the mem-
ory bottleneck has been proposed very recently.® It is an
efficient deterministic algorithm for memory constrained envi-
ronments, but for a reasonable statistical error tolerance, e.g.,
103 Ha, a semistochastic approach is usually much faster,
as we can see from Table II. Also, in our Cr, calculation, we
stochastically estimate the perturbative correction from at least
trillions of perturbative determinants, for €; = 3 x 10”12 Ha,
which probably involves quadrillions of contributions
(n*v®Ny = 9 x 10"), which is infeasible with a deterministic
algorithm.
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V. KEY DATA STRUCTURES

In this section, we discuss three key data structures used
to store the determinants, the distributed Hamiltonian matrix
and the distributed partial sums in the perturbative stage of the
calculation.

A. Determinants

We use two different representations of determinants. For
storing and accessing determinants locally in memory, we use
arrays of bit-packed 64-bit unsigned integers. Each bit repre-
sents a spin-orbital. The n-th orbital is represented by the (n
mod 64)-th bit of the (n/64)-th integer, where “/” means
integer (Euclidean) division and the counting starts from zero.
(n mod 64) can be implemented as (n & 63),and (n/64)
can be implemented as (n >> 6),where “&” is the bitwise
“and” and “>>" is the bitwise right shift. Both operations cost
only one clock cycle on modern CPUs.

For transferring the determinants to other nodes or saving
them to disk, we use base-128 variable-length integers (Var-
Ints)*® to compress the 64-bit integers. Varlnts take only a few
bit operations to compute and reduce the memory footprint
by up to 87.5% for small integers, which reduces the net-
work traffic and the size of the wavefunction files considerably,
especially for large basis sets.

B. Hamiltonian matrix

We store only the upper triangle of the Hamiltonian
matrix. The rows are distributed to each node in a round-robin
fashion: the first row goes to the first node, the second row
goes to the second node, and when we reach the end of the
node array, we loop back and start from the first node again.
Each row is a sparse vector, represented by two arrays, one
stores the indices of the nonzero elements and the other stores
the values.

During the matrix-vector multiplication, each node will
apply its own portion of the Hamiltonian to the vector to get
a partial resulting vector. The partial results are then merged
together using a binomial tree reduction. The work on each
node is distributed to the cores with dynamic load balancing.
To save space, we store only one copy of the partial result-
ing vector on each node and each thread updates that vector
with hardware atomic operations. In addition, we cache the
diagonal of the matrix on each node to speed up the Davidson
diagonalization.*®

C. Partial sums

In the perturbative stage, we loop over the variational
determinants {D; } to compute the partial sum };H 4;c; foreach
perturbative determinant D,. The map from D, to }};H sic; is
stored in a distributed hash table.*” This choice is dictated by
the enormous number of perturbative determinants we employ.
The time complexity of inserting one element into the hash
table is O(1), while for a sorted array, it is O(log(n)). For
large calculations, the prefactor from using hash tables is small
compared to the log(n) cost from using a sorted array.

The distributed hash table is based on lock-free*® open-
addressing*® linear-probing™ concurrent hash tables' specif-
ically designed for intensive commutative insertion and
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update operations. The linear-probing technique for con-
flict resolution has better efficiency than separate chaining
during parallel insertion, and the lock-free implementation
allows all the threads to almost always operate at their full
speed.

On each node, we have n of these concurrent hash tables,
where 7 is the number of nodes. One of them stores the entries
belonging to that node, and the other (n — 1) tables store the
entries belonging to other nodes’ pending synchronization.
Each concurrent hash table is implemented as lots of segments
(at least four times the number of hardware threads), and each
segment can be modified by only one thread at a time. When
a thread wants to insert or update a (key, value) pair, it first
checks whether the segment that the key belongs to is being
used by other threads. If the segment is being used, the thread
will insert or update the entry to a thread-local hash table,
which will be merged to the main table later periodically. We
can do this because the insertion and the update operations of
the partial sums are commutative. Hence, each insertion and
update is guaranteed to finish within O(1) time without get-
ting blocked, even for perturbative determinants with lots of
connections to the reference determinants. The inter-node syn-
chronization runs periodically so that most of the perturbative
determinants will have only one copy during the entire run on
the entire cluster, except for those with lots of connections to
the reference determinants.

VI. PARALLELIZATION

All the critical parts of SHCI are parallelized with
MPI+OpenMP. This section describes the parallelization and
the scalability of each part.

When finding the connected determinants, performing the
matrix-vector multiplication during the diagonalization, and
constructing the Hamiltonian matrix from the auxiliary arrays,
we use the round-robin scheme to distribute the load across the
nodes and use dynamic load balancing for all the cores on the
same node.

We pa.rallellze the construction of the @-single, t,m(/a),
and B-single, lﬁﬁ([ﬁ) arrays on each node, which is the most
time-consuming part of constructing the auxiliary arrays. For
each entry of ?m, and t?ﬂ,g, we initialize a lock to ensure exclu-
sive modification. We loop over all the i,(a("") arrays, and
for each (la, Je) pair (which are one excitation away) inside
a particular Ta(@CD) array, we lock and append j, to inalia),
and we lock and append i, to tm,(/a) When both i, and j,
occur only in the new determinants, the smaller of the two does
both appends.

In Figs. 2 and 3, we demonstrate the parallel scalability
of our SHCI implementation when applied to a copper atom
in a cc-pVTZ basis. We use up to 16 nodes, and each node has
6 cores.

For the variational part, our implementation scales almost
linearly up to 4 nodes. At 16 nodes, we have 75% parallel
efficiency.

For the perturbative stage, two major factors determine the
speedup. One is the additional communication associated with
shuffling perturbative determinants across the nodes, which
increases with the number of nodes. The other is the speedup
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FIG. 2. Parallel speedup of the variational stage for a copper atom in a
cc-pVTZ basis. There is almost perfect scaling for up to 4 nodes and 75%
parallel efficiency at 16 nodes.

from having more cores. We can see from Fig. 3 that from
1 to 4 nodes, the first factor dominates and there is signifi-
cant deviation from ideal speedup. Starting from 8 nodes, we
have to shuffle almost all the perturbative determinants from
the spawning node to the storage node that each determinant
belongs to, so there is little change in the first factor and the
second factor starts to dominate, pushing the speedup curve
upward and producing almost perfect scaling. Note that in the
original SHCI algorithm,'? there is a superlinear speedup from
using more nodes because many stochastic samples are needed
when running in a memory-constrained environment. Here we
have solved this problem with the 3-step batch perturbation,

Parallel Speedup for the Perturbative Stage
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FIG. 3. Parallel speedup for improved SHCI compared to the original SHCI
for the perturbative stage of the calculation for a copper atom in a cc-pVTZ
basis. From 1 node to 4 nodes, we see a significant deviation from linear
speedup due to the additional communication from shuffling the perturbative
determinants across nodes. Starting from 8 nodes, the number of shuffles
approaches a constant and we can see an almost linear speedup from using
more processors. The estimate of the speedup of the original SHCI is based
on the assumption that the total memory of 10 nodes is enough to support the
optimal choice of eg““ and N4, in Egs. (8) and (9). The “original” curves are
scaled to reflect the relative speed of the original SHCI algorithm to that of
the improved algorithm.
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for which the number of stochastic samples is almost always
10. (We require a minimum of 10 samples in order to have a
reasonable estimate of the stochastic error.) Consequently, on
memory constrained environments, we achieve a few orders

of magnitude speedup.

VIl. RESULTS

In this section, we apply SHCI to the chromium dimer,
which is a challenging strongly correlated system that has been
studied using a variety of methods.”>%53 We will publish the
potential energy surface in a separate publication; here instead,
our goal is just to use it as a test case for the improved SHCI
method. We use a relativistic exact two-component (X2C)
Hamiltonian, the cc-pVDZ-DK basis, and we correlate the
valence and the semi-core electrons. This gives an active space
of (28e, 760) and a Hilbert space of 5 x 10%° determinants,
which is far beyond the reach of FCI. We show how we obtain
an accurate estimate of the FCI energy in this large active space
with our improved SHCI algorithm.

We use PySCF’’ to generate the molecular orbital inte-
grals for orbitals that minimize the HCI variational energy for
€; =2 X 10~* Ha, using the method of Ref. 21. We perform
SHCI with several €; values from 5 X 1075 to 3 x 10~¢ Ha.
The Hamiltonian matrix is constructed only once. We use very
small values of €; = 10~%, to ensure that the perturbative cor-
rection is exceedingly well converged and choose the target
error for the stochastic perturbation energy to be 10~ Ha.

The improved SHCI is fast enough that we can use
over two billion variational determinants and stochastically
include the contributions of at least trillions of perturbative
determinants. The largest variational calculation, where we
iteratively find and diagonalize 2 X 10° determinants for
€1 = 3.0 x 1076 Ha, takes only one day on 8 nodes, each
of which has 4 Intel Xeon E7-8870 v4 CPUs. The correspond-
ing perturbative calculation takes only 6 h using only one of
these nodes. During that perturbative calculation, we skip the
deterministic step and perform a pseudo-stochastic step with

P® = 1x10~7 Haand a stochastic step with €2 =3 x 10”2 Ha.

We skip the deterministic step here because €; = 3 x 1075 is
already close to our default eg‘m of 2 x 1079, so skipping
this will not affect the efficiency of subsequent steps much.
The pseudo-stochastic step uses 25 batches, each of which
has about 8.9 x 10° determinants. We evaluate only one of
them, from which we obtain an estimate of the total correc-
tion for all the 25 batches (223 x 10° determinants) to be
—0.011 681(1) Ha. Since the estimated error is already much
smaller than our target error, we skip the remaining 24 batches.
The pseudo-stochastic step takes 1.6 h. The stochastic step uses
128 batches and 6 x 10° variational determinants in each sam-
ple, which results in about 3.7 x 10° determinants per batch.
We use 10 samples and obtain the additional correction from
€, = 3.0 x 10712 Ha to be —0.001 203(6) Ha. The combined
uncertainty of the entire semistochastic perturbation stage is
6 pHa. It is hard to estimate how many determinants are
stochastically included for €; = 3 x 10”12 Ha, so we esti-
mate a lower bound with €5 = 14 x 10~ Ha and obtain
1.8 trillion unique perturbative determinants. Hence, with
€2 = 3 x 107'2 Ha (the value we are actually using), we
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TABLE III. Results for Cry at r = 1.68 A in the cc-pVDZ-DK basis. The
active space is (28e, 760). Ny is the number of variational determinants.
€, = 10 %¢,. We use weighted quadratic extrapolation, shown in Fig. 4, to
obtain the FCI limit corresponding to AE = 0.

€ (Ha) Ny Eyyr (Ha) E\ora (Ha)
50x1075 24M ~2099.863816 ~2099.909 741(7)
30x1075 53M -2099.875 327 ~2099.912 356(7)
20x1075 102M -2099.883 027 -2099.914 132(8)
10x10°5 309M ~2099.893 761 ~2099.916 595(1)
70x1076 539M ~2099.898 165 ~2099.917 540(1)
50x1076 911M ~2099.901 781 ~2099.918 306(3)
30x1076 2.00B ~2099.906 322 -2099.919 205(6)
0.0 (extrap.) ~2099.922 4(6)

stochastically estimate contributions from at least trillions
of unique perturbative determinants and obtain better than
1073 Ha statistical uncertainty in 6 h using only one
node.

These large calculations enable us to obtain an estimate of
the FCI energy with sub-millihartree uncertainty in this large
active space. Table III reports the results.

We extrapolate our results using a weighted quadratic fit
and obtain for the ground state energy, —2099.9224 Ha as
AE — 0. The weight of each point is (Eyyr — E) 2.
Figure 4 shows the computed energies and the extrapolation.
We also perform a weighted linear fit and use the differ-
ence of the extrapolated values from the quadratic and the
linear fits (0.6 mHa) as the uncertainty. In summary, the esti-
mated FCI energy of Cr; in the cc-pVDZ-DK basis with 28
correlated electrons and the relativistic X2C Hamiltonian is
—2099.9224(6) Ha.

We compare our result with DMRG and p-DMRG, which
are the only essentially exact methods that have been applied
to this large active space of the chromium dimer. The DMRG
calculations use up to bond dimension M = 16 000 and
obtain extrapolated energies of —2099.9195(27) Ha (default

Extrapolation to Full Cl energy limit (£,-0)
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FIG. 4. Weighted quadratic extrapolation of the Cr, ground state energy.
The weight of each point is (Evar — Eiot) 2. The extrapolated energy is
—2099.9224(6), where the uncertainty comes from the difference between
linear extrapolation and quadratic extrapolation. The p-DMRG extrapolation
and the CCSD(T) value are also shown.
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FIG. 5. Contribution from each excitation level to the variational wavefunc-
tion for Cr; with 2 x 10° determinants. Determinants with up to 15 excitations
are present in the variational wavefunction.

schedule) and —2099.9192(24) (reverse schedule).'> These
two values are similar to our most accurate data point but higher
than our extrapolated result by 3 mH, which is about the esti-
mated error of the DMRG results. The p-DMRG calculations
use up to M = 4000, and extrapolated energy obtained from a
linear fit is —2099.9201 Ha.!? If instead we perform a weighted
quadratic fit (shown in Fig. 4), the extrapolated energy is
—2099.9225 Ha, in perhaps fortuitously good agreement with
our result of —2099.9224(6) Ha. However, the extrapolation
uncertainty is larger than the SHCI extrapolation uncertainty.
By contrast, the CCSD(T) energy is considerably higher.

One of the merits of selected-CI methods is the ability to
include all excitations, regardless of the excitation level. To see
the contribution from each excitation level, we plot the number
of selected determinants and the ¥;|c;|? versus excitation level
in Fig. 5. Determinants with excitation levels up to 15 excita-
tions are present in the variational wavefunction even though
we are using optimized orbitals. (Using Hartree-Fock orbitals,
we expect that determinants with even higher excitation levels
will be present.) This implies that truncating the CI expansion
at the double, triple, or quadruple excitation levels (which is
the most that is usually done in systematic CI expansions), will
give poor energies for such strongly correlated systems.

VIil. CONCLUSION

In this paper, we introduced our fast semistochastic
heat-bath configuration interaction algorithm, an efficient and
essentially exact algorithm, for estimating the FCI energy. We
introduced a new Hamiltonian generation algorithm and a 3-
step batch perturbation algorithm to overcome the bottlenecks
in the original SHCI algorithm. We also presented the key
data structures and parallelization strategy, which are also cru-
cial to the performance. These improvements allowed us to
use 2 x 10° variational determinants, which is more than one
order of magnitude larger than the 9 X 107 determinants used
in our earlier SHCI calculation?® and two orders of magnitude
larger than the largest variational space of 2 X 107 determinants
employed to date in any other selected CI method.>*
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Future extensions of the method include going to yet larger
variational spaces using a direct method,’®>° wherein the
Hamiltonian matrix is recalculated at each Davidson iteration
and therefore need not be stored. Although this increases the
computational cost, the increase is not overwhelming because
of the use of the auxiliary arrays introduced in this paper. Other
extensions include increasing the range of applicability of the
method to larger systems by combining SHCI with range-
separated density functional theory® and the use of SHCI as
an impurity solver in embedding theories. Recently, a selected
coupled cluster method has been developed.®' Although the
current version has only been used with small basis sets, it
is possible that with further development, this will become a
highly competitive method, especially for weakly correlated
systems.

Possible applications of the SHCI method include pro-
viding benchmark energies for a variety of organic molecules,
as well as for transition metal atoms, dimers, and monoxides,
and calibration or training data for large scale methods, e.g.,
to calibrate interatomic potentials for molecular dynamics and
exchange-correlation functionals for density functional the-
ory and to train machine learning based quantum chemistry
solvers. Calculations on the homogeneous electron gas are also
underway.
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