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Abstract

The collapse process of a submerged granular column is strongly affected by its initial packing.
Previous models for particle response time, which is used to quantify the drag force between the
solid and liquid phases in rheology-based two-phase flow models, have difficulty in simulating the
collapse process of granular columns with different initial concentrations (initial packing conditions).
This study introduces a new model for particle response time, which enables us to satisfactorily model
the drag force between the two phases for a wide range of volume concentration. The present model
can give satisfactory results for both loose and dense packing conditions. The numerical results have
shown that (i) the initial packing affects the occurrence of contractancy/diltancy behavior during the
collapse process, (ii) the general buoyancy and drag force are strongly affected by the initial packing
through contractancy and diltancy, and (iii) the general buoyancy and drag force can destabilize
the granular material in loose packing condition but stabilize the granular material in dense packing
condition. The results have shown that the collapse process of a densely-packed granular column is
more sensitive to particle response time than that of a loosely-packed granular column.
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1. Introduction

Submarine landslides may occur on continental margins and slopes (Masson et al., [2006). The
ability to accurately simulate submarine landslides has practical importance because the sediment
volumes released by submarine landslides may damage submarine cables and other subsea facilities
. To understand the fundamental physics involved in landslides on land or sub-
marine landslides, the collapse of a granular column has often been used in the past as an idealized
model for studying landslides in both laboratory experiments (Lajeunesse et al., 2004, 2005; Lube
et al. [2004} |2007, 2005) and discrete element simulations (Zenit, 2005} |Girolami et al., 2012; Lacaze
et al., 2008). Most of these studies focused on dry granular columns in either two dimensional (2D)
(Lajeunesse et al. [2005; Lube et al, 2005) or axisymmetric (Lajeunesse et al. 2004} 2005; Lube|
let al. [2004} [2007)) geometries.

For landslides on land, which involve the collapse of dry granular materials, the granular flow is a
solid-air two-phase flow. In the laboratory experiment using a 2D geometry, the granular material is
initially confined by two vertical walls; the collapse of the granular column starts when the front wall
is suddenly removed. In the laboratory experiment using an axisymmetric geometry, the granular
material is initially inside a standing cylinder, and the collapse of the granular column starts when
the cylinder is suddenly lifted up. After the wall or the cylinder has been removed, the granular
material spreads out and eventually stops moving due to internal friction. Because the density of the
air is about 1000 times smaller than the density of the granular material (e.g., sand), the particle-
particle interaction dominates the dynamics of the dry granular flow, and the flow dynamics and the
deposit morphology depend primarily on the initial aspect ratio of the granular column
let al., |2004} 2005; [Lube et al., 2004}, 2007, 2005). The normalized runout has been found to be a
power-law function of the initial aspect ratio (Lajeunesse et al., 2004} 2005} |Lube et al., 2004} |2007,
. For a 2D geometry, the deposit morphology can be either triangular-shaped or trapezoid-
shaped, depending on the initial aspect ratio (Lajeunesse et all 2004). Other factors such as basal
and internal frictions play insignificant roles (Lube et al., 2004).

For the collapse of a submerged granular column, the granular flow is a solid-liquid two-phase
flow. Because the densities of the liquid (e.g., water) and granular material have the same order of
magnitude, the particle-fluid interaction provides additional forces important to the dynamics of the
granular flow: the drag force between the particle and the fluid decreases the kinetic energy of the
granular flow, and the lubrication force (Rognon et al., 2011) reduces the chance of surface contact
among particles. These two types of forces have significant effects on the rheological characteristics
of submerged granular flows, especially when a granular flow involves small particles
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[2011} [Cassar et al.l [2005; Trulsson et al. [2012); this is because the variation of the pore pressure in
the granular flow can either stabilize or destabilize the granular material (Iverson et al., [2000).

Unlike in dry and dense granular flows where the initial volume fraction plays no significant
role (Lagrée et al) 2011} Tonescu et al., [2015} |Lee et al., |2015a), the initial volume fraction is very
important for the collapse of submerged granular columns. This is because the dilatancy (if initially
over-consolidated) or contractancy (if initially under-consolidated) behavior can
induce a relative motion between the solid grains and the liquid, which in turn can induce an
additional force on the granular skeleton and affect the flow (Pailha et al.,[2008). For the collapse of
a submerged granular column, a previous study using a 2D discrete-element method
2012) suggests that the combined effect of the drag and lubrication may either reduce or enhance
the runout distance. Experiments (Rondon et al., |2011; Bonnet et al., 2010) have found that the
initial volume fraction has a significant effect on the collapse of a submerged granular column: for
an initially-loose packing, the collapse process is rapid and the deposition layer is thin and long;
for an initially-dense packing, the collapse process is slow and the runout distance is much shorter
(Rondon et al., 2011)).

Rondon et al.| (2011)) conjecture that the dilatancy or contractancy behavior plays an important
role in the collapse process. The conjecture of Rondon et al.| (2011)) is described below:

1. For an initially-loose packing, the granular column first contracts locally when the column
starts to collapse; at the initial stage, a high pore-pressure zone forms inside the column,
causing some pore water to flow out which helps to destabilize the granular material near the
surface.

2. For an initially-dense packing, the granular column will first dilate when the granular column
starts to collapse. At the initial stage, a low pore-pressure zone forms inside the granular
column, causing the water to be absorbed into the granular material which helps to stabilize
and the granular material near the surface.

However, this conjecture has not been proved by either experimental measurements or numerical
simulations. It is also not clear how the dilatancy and contractancy behaviors affect the interfacial
forces.

Many continuum models (Lagrée et all, [2011} Tonescu et al [2015} [Lee et al) [2015a) have been
proposed in the past to simulate the collapse of incompressible dry granular columns. Because the
dilatancy and contractancy behaviors affect the pore pressure in the collapse process of a submerged
granular column, the existing models developed for dry granular materials may not be suitable for
submerged granular columns. Meruane et al.| (2010) first developed a two-phase model to simulate
the collapse of a submerged granular column, which was later extended by [Meruane et al.| (2012) to
deal with granular flows of binary mixtures of particles. However, Meruane et al. (2010} [2012) used
a combination of Coulomb friction and the kinetic theory to develop their constitutive model for
solid-phase stress, which needs to be modified for high concentration flows. Furthermore, Meruane]
et al| (2010, [2012) did not study the effect of the initial volume fraction on the collapse. [Savage
et al.| (2014)) proposed a mixture model to study the collapse of a submerged granular column and
examined both the initially-loose and dense packings; however, their model neglects the pore pressure
and the interaction between the particles and interstitial fluid, and thus cannot reproduce the flow
behavior observed in the collapse of submerged granular columns. We are not aware of any models
in the literature that are suitable for simulating the collapse of submerged granular columns with
different initial packing conditions.

Using a new rheological characteristics for high concentration flows, extended
the model of Lee et al.| (2015a), which was developed for the collapse of dry granular columns, to
study solid-liquid two-phase flows where the packing of the solid phase is not dense. We have tried
to use the model of to simulate the collapse of submerged granular columns, but
the results for the initially-dense packing are not satisfactory when compared with the experimental
results of [Rondon et al.| (2011). We conjectured that the parametrization of particle response time
adopted in |Lee et al| (2016) might have contributed to the difference between the numerical and




experimental results; this is because the particle response time 7,, which is used to parametrize
the drag force between the two phases, affects the dissipation of high/low pore pressure built up in
the granular material (Das| |2013)). The particle response time in |Lee et al.| (2016) was computed
using the terminal velocity of a particle with a concentration correction proposed by Richardson
and Zaki| (1954); however, this model may not be suitable in very high concentration regions where
the contact among particles prevents the particles to freely fall. We have also tried to compute the
particle response time based on the pressure drop in steady flows through a homogenous porous
media (Engelund, [1953); however, this model cannot yield satisfactory results for initially-dense
packing condition as well. For reference, the collapse processes simulated by using the models of
Richardson and Zaki| (1954) and |[Engelund, (1953) are included in Appendix A.

For very high concentrations, (Camenen| (2005) further modified the concentration correction of
Richardson and Zakil (1954)); but the model of |(Camenen| (2005) is singular close to the maximum
concentration at which contact networks form. In this study, we introduce a new model for particle
response time to compute the drag force in submerged granular flows. The new model combines
the concentration correction of |Camenen| (2005)) to the terminal velocity with a limiter derived from
the model of |[Engelund| (1953). One of the main objectives of this study is to find a new model
for particle response time that can work for both initially loose and dense packing conditions. The
performance of the new model is evaluated by comparing the numerical results, obtained by the new
model and two existing models, with the experimental results of [Rondon et al.| (2011)).

2. Model descriptions

For completeness and later discussion, the governing equations and main constitutive models are
briefly presented first, followed by a description of three models for particle response time.

2.1. Governing equations

For the two-phase model used in this study, the equations governing the fluid and solid phases
are obtained by taking two averages over the microscopic governing equations for each phase (Hsu
et al.l |2003)). The resulting equations governing the conservation of mass and momentum are
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for the solid phase. In these equations, py and p, are the mass densities of the fluid and solid phases,
respectively; ¢ is the solid volume friction (i.e., concentration); u’/ and u® are the mean velocities of



the fluid and solid phases, respectively; g is the acceleration due to gravity; p; is the total pressure
of the fluid phase (or pore pressure in this study); p, is the pressure of the solid phase; T/ and
T? are the stresses of the fluid and solid phases, respectively; 7, is the particle response time used
to parameterize the inter-phase drag force; vy, is the eddy viscosity of the fluid phase; o, is the
Schmidt number. The term —cVpy in Eq. is the pressure force of the fluid phase and referred
to as general buoyancy in the literature (Meruane et al.l [2010). The two terms in the curly-brackets
in Egs. and are related to the inter-phase momentum transfer.

A k — € model with a low-Reynolds-number correction is adopted to compute T (Lee et al.l
2016). The turbulence kinetic energy k and its dissipation rate € are governed by
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where C¢1, Ce, 0c, 0 , f1 and fy are model parameters. The adopted values for these parameters
are the same as those in the & — ¢ model for clear fluid under low Reynolds number conditions
(Launder and Sharmal, [1974). The two terms inside the curly brackets in Eqgs. and @ account
for the turbulence modulation due to the presence of particles. The first term is associated with
the general buoyancy, and the second term is due to the correlation of the fluctuating velocities of
solid (sediment) and fluid phases. At present, the value of C3 is not well understood, and Ce3 = 1
is adopted here as in the previous study (Lee et all 2016). A sensitivity analysis of the numerical
results to C¢s will be given later. The parameter a reflects the correlation between the sediment
and fluid turbulent motions and is given by

a:(umn()) (7)

with 7, = 0.165k/e being the time scale of the turbulent flow and 7. the time scale of particle
collisions (Lee et al.l 2016]).

Strictly speaking, the presence of sediment in turbulent flow may enhance (for large particles)
or reduce (for small particles) the turbulence (Crowel 2000)), but Egs. and @ can only reflect
the reduction of turbulence. Other turbulence models (Crowe, 2000; Lee et al., |2015b) include a
term describing the enhancement of turbulence; however, we have found including that term in the
present model may induce numerical instability.

2.2. Pressure and stress of the solid phase

We follow |Lee et al.| (2016)) to compute ps and T#. In order to cover various sediment transport
regimes, [Lee et al.| (2016) combined the constitutive relations that are applicable to dilute flows,



dense flows, and compact beds. Accordingly, p, includes three components:

Ps = Pst + Psr + Pse, (8)

where pg; accounts for the turbulent motion of sediment particles, which is important for dilute
flows; ps, reflects the rheological characteristics for dense flows and it includes the enduring-contact,
particle inertial, and fluid viscosity effects; pse accounts for the elastic effect important when sediment
is static in a compact bed. The shear stress tensor for the sediment phase is computed by

2
TS = — <3p51/3V . us) + 2psvsD?, (9)
where v; is the kinematic viscosity and D? the tensor of strain rate. To consider both the turbulence
behavior (for dilute flows) and the visco-plastic behavior (for dense flows and compact beds), v; is
divided into two components:

Vs = Vst + Vs, (10)

where v and vy, represent the turbulence and visco-plastic effects, respectively.
An analysis of heavy and small particles in homogeneous steady turbulent flows (Hinze, |1959))
suggests that ps; and v, can be expressed as (Eq. 5-207 and Eq. 5-209 in [Hinze, (1959))

2
Dst = gpsak, (11)
and
Vst = Qyy. (12)

For sediment in a compact bed, the formula proposed by [Hsu et al.| (2004]) is adopted to compute
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where ¢, = random close packing fraction; c,, K and x are model parameters. Obviously, K is
associated with Young’s modulus and the other terms are related to material deformation.

For dense flows, the visco-plastic rheological characteristics highly depend on a combined dimen-
sionless parameter, I = I, + alf7 where I, is the viscous number, I; is the inertial number, and a
is a constant (Trulsson et al., 2012)). The viscous number describes the ratio of the viscous stress
to the quasi-static shear stress associated with the weight (resulting from the enduring contact),
and it is defined by I, = 2pyvyD®/cp, where vy = the kinematic viscosity of the fluid, D* = the
second invariant of the strain rate, and d = the particle diameter. The inertial number, defined by
I; = 2dD*/+\/cps/ps, describes the ratio of the inertial stress to the quasi-static stress. The relative
importance of the inertial number to the viscous number in the dimensionless parameter I can be
measured by the Stokes number st, = I?/I,. Some formulas have been proposed to describe ¢ — I
and 7 — I relationships, where n = T /ps with T being the second invariant of T*. |Trulsson et al.
(2012) proposed
M2 —M
1+ 1,/1°

where 1y and I, are constants and 7; = tan 6, with 8, = the angle of repose. Following the work of
Boyer et al.| (2011)), [Lee et al.| (2016]) assumed

n=mn+ (14)

Cc

C=1ren (15)

where ¢, is a critical concentration representing the maximum packing fraction of an homogeneously
sheared assembly of frictional spheres (Boyer et al., |2011) and b is a model parameter. Eq.



implies that ¢ must be smaller than c. at all time in two-phase flow simulations, which means that
¢;, the volume fraction of the initial packing in the simulation, must be smaller than c.; in other
words, the granular material does not behave like a frictional flow before c is internally adjusted to a
value slightly smaller than c.. Boyer et al.| (2011) have pointed out that c. significantly differs from
the random-close packing volume fraction and is not sensitive to the initial packing. According to
Campbell| (2006), c. can be either larger or smaller than that of the initial packing because of the
way it is defined and measured.
Based on Egs. and (1F)), Lee et al] (2016) suggested
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Eq. (17) considers sediment in its static state as a very viscous fluid. Because Eq. ensures that
c is always smaller than c., there is no singularity in Eq. caused by ¢ = ¢, in our two-phase
flow simulations.

(17)
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2.3. Models for particle response time

During the collapse process of a submerged granular column, either a high or low pore-pressure
zone may occur inside the granular flow. The duration of the presence of the high or low pore
pressure is an important factor affecting the collapse process. The drag force, which is modeled
through the particle response time 7,, may be responsible for the occurrence of the high or low
pore-pressure zone as in the consolidation of soil (Das|, [2013). When consolidating a soil, a high fluid
pressure zone occurs inside the soil; the duration of the presence of the high pore pressure depends
on the intrinsic permeability (k,) (Das| [2013), and has an important influence on the consolidation.
Because the particle response time (7,) can be related to the intrinsic permeability for dense two-
phase flows (see Appendix B), we anticipate that computing 7, accurately is crucial for liquid-solid
two-phase flows.

Three models for particle response time are examined in this study, including a new model and
two existing models (the model of Richardson and Zaki (1954) and the model of [Engelund| (1953))).

2.3.1. A model based on the sediment sedimentation in still water

The first model uses the particle response time computed by the following expression (Pitman
and Lel |2005))

ps —ps (1—c)%g’
where w is the hindered velocity, or sedimentation velocity of many particles. The hindered velocity
is smaller than the terminal velocity of a single particle, wg, due to the influence of sediment
concentration. Richardson and Zaki (1954]) suggested

Tp (18)
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where n is given by

4.65, Regy < 0.2
4.4Re;0'33, 0.2< Res <1
4.4Re;%t, 1 < Re, < 500
24, 500 < Re,

(20)



with Res = wsd/v¢. The terminal velocity of a single particle is computed by
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where Cy is the drag coefficient for steady flows passing a small object (Engelund] [1953} [Chien and|
1999). For spheres, (2000) suggested
24 6
104,
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where Re, = [u/ — u®|d/v; (Eq. 3-255 in Ref. (2000)). Combing Egs. — yields
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The model based on Eq. with Eq. is referred to as "RZ model” in this study. Eq.
can be replaced by other formulas if the particle is not spherical. Eq. is validated only
for ¢ < 0.4 (Yin and Koch| 2007). When the concentration ¢ is so high that contact networks form
among particles, w becomes zero; when this happens, Eq. is not valid any more.

2.3.2. A model based on the pressure drop in steady flows through a homogenous porous media
The second model is based on the pressure drop in steady flows through a porous media. Ac-

cording the study of [Engelund| (1953)), 7, can be computed by

psd? 1
T, = ,
P prvsapc® +bgRe,

(24)

where ap and bg are the model parameters depending on the composition of the solid phase (see
Appendix B). The parameter ag varies from 780 to 5000 or more, and the parameter bg varies from
1.8 to 3.6 or more (Yin and Koch, 2007; Burcharth and Andersen, (1995} [Higuera et al., [2014]). The
parameter ag is associated with &, (see Appendix B). For d ~ 2 x 107 m, k, ~ 10710 ~ 1071 m?
2013), which gives ap ~ 1.6 x 103 ~ 1.6 x 10* for ¢ = 0.5. In this study, ag = 5000 and
bg = 3.6 are taken. The model based on Eq. is referred to as Engelund model in this study.

2.8.83. A new model
Eq. is validated only for ¢ < 0.4 (Yin and Koch| [2007). To extend Eq. to high
concentration regions, (2005) modified Eq. (19) to

— = (1 —¢)" max(1 — ¢/cpm, 0)]™, (25)
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where ¢,, is the maximum concentration at which w = 0. In this study, ¢,, = ¢, is adopted because
when ¢ > ¢, contact networks can form in the granular material. Combining Eq. , Eq. ,

and Egs. (20])-(22) gives
ps @ (1 — )" 3[max(1 — ¢/cp, 0)]m
Tp= —— .
prvr18+(4.5/(1+ /Rep) + 0.3)Re,

(26)

We stress that ¢ = ¢,, will lead to 7, = 0 and thus an infinite drag force. Physically, when the
volume concentration is greater than some critical value, say ¢, Eq. ceases to be valid and the



Engelund model should be used. To avoid unnaturally-large drag force between the two phases, we
propose the following model for particle response time

ps d2 (1=0)" " *[max(l—c/cy,0)]°" for c < ¢
T, = Pf V§ 18+4(4.5/(14++/Rep)+0.3)Re, " (27)

2
psd 1
psvs apc’+bgRep? for ¢ > Cr

where ¢, is the concentration at the intercept point of Eq. and Eq. (26). The transition from
Eq. to Eq. is continuous at the intercept point where ¢ = ¢,. The concentration at the
point joining the two models (¢,) is problem-dependent and can be found in principle by solving the
following equation

(1 —c)"?lmax(1l — ¢, /cpm, 0)] 1
18 + (4.5/(1 4 /Re,) + 0.3)Re,  apc?+bpRe,’

(28)

For given values of ag and bg, Eq. implicitly defines ¢, as a function of Re,. We remark that it
is not numerically efficient to solve Eq. at every grid point for each time step. In Appendix C,
we present a more computationally-efficient method to implement the new model in OpenFOAM.

2.3.4. Model comparison

The dimensionless particle response times, 7, = T,vps /d?ps, predicted by the aforementioned
three models are presented in Fig. [I| as a function of either ¢ or Re,. When using the RZ and new
models, n = 4.65 is adopted. The collapse of a submerged granular column involves high concen-
tration flows where Re,, is very small (because the relative velocity is small in high concentration
regions). Generally speaking, 7, computed using these three models for low Re; are not very sensi-
tive to Re, for a fixed ¢, but decrease with increasing with c for a fixed Re,. When ¢ — 0, the new
model reduces to the RZ model. For 0.064 < ¢ < 0.54, the RZ model gives the largest 7, but the
Engelund model gives the smallest one when ¢ > 0.064. When ¢ < 0.064, the particle response time
given by the Engelund model is much larger than those given by the other two models. For example,
at ¢ = 0.01, the Engelund model gives 7, = 1.16, but the other two models give 77 = 0.045. The
particle response time 7,7 computed by the new model drops dramatically from that by RZ model

P
when c¢ is close to 0.55.

2.4. Boundary conditions

In the simulation of the sediment phase, the no-slip boundary condition was imposed at the bed,
but a slip boundary condition was imposed on the two lateral walls. In the simulation of the fluid
phase, the wall-function method was imposed at the bed and on the two lateral walls. In view of
the small size and the deep submergence of the granular column, the small vertical displacement of
the fluid surface was ignored and a rigid lid approximation was adopted in the simulation.

2.5. Summary of model parameters

The RZ and Engelund models for particle response time have been implemented in the rheology-
based two-phase model developed by |Lee et al.|(2016), which provides guidelines for choosing some
of model parameters. The model parameters used in this study are summarized in Table 1, except
for the parameters related to the low-Reynolds k& — € model. We treat the parameter b as a tuning
parameter in this study; other parameters are treated as non-tuning parameters whose values are
derived from the values reported in the literature. For the non-tuning parameters: a = 0.11 is
suggested by [Lee et al.| (2016]) for the sediment transport in the sheet flow condition; I, = 0.1
is obtained numerically by [Trulsson et al. (2012)); |Cassar et al.| (2005) suggested 71 = 0.43 and
n2 = 0.82 for glass beads; |Boyer et al.| (2011)) suggested c. = 0.585; ¢, = 0.55 is the concentration
for the loose packing granular column in the experiment of Rondon et al.|(2011); Lee et al.| (2015a)
suggested K = 10® Pa and y = 1.5 for numerical stability consideration in modeling collapse of a
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Fig. 1: Variations of dimensionless particle response time 7,; with c for Rep = 0.1 [panel (a)] and with Rep, for ¢ = 0.5
[panel (b)].

dry granular column; The values of C.3 and o, are the same as those used by |Lee et al. (2016));
the values of the two parameters are important for problems for sheet flows but not for the present
problem. For the tuning parameter b, our numerical experiments found that the thickness of the
flow front depended on the value of b and that b = 2 could give better results.

Table 1: Key model parameters used in this study.

a b o 771 772 Co Cc crcp K X CeB O¢
0.11 2 0.1 043 0.82 055 0.585 0.64 10°Pa 1.5 1 1

3. Numerical schemes

The equations in Section II are solved by using OpenFOAM, an open-source computational fluid
dynamics (CFD) toolbox (Jasak) 2009). When using a two-phase model to simulate the collapse of
a submerged granular column, a challenge is to ensure the numerical stability. When the concen-
tration is high, the pressure of the solid phase [Egs. and ] is sensitive to small changes in
concentration: a small fluctuation in concentration may lead to numerical instability. The numerical
instability issue has been addressed by |Lee et al.| (2016)), who incorporated into the PIMPLE scheme
(OpenCFD| 2014) a perdition-correction scheme proposed by |Lee et al.| (2015a). The PIMPLE

10



scheme is a combination of the pressure implicit with splitting of operator scheme and the semi-
implicit method for pressure-linked equations scheme. In the numerical scheme of |Lee et al.[ (2015a)),
the discrete mass-balance equation for the sediment phase [Eq. ] becomes an advection-diffusion
equation instead of an advection equation. The diffusion behavior helps subdue the fluctuation in
concentration, and thus increases the numerical stability when the concentration is high.

4. Results and discussion

The two-phase model presented in the previous sections was used to simulate the collapse of a
deeply-submerged granular column, as shown in Fig. [2| Three cases were simulated and the detailed
conditions are listed in Table 2, which includes the properties of the fluid and sediment, the initial
height H;, and the initial width L;. The new model for particle response time was used to compute
Tp for all the results presented in this section. The results obtained by the other two models will be
discussed together with the sensitivity analysis in section [4.6)

Li
<—>| 15 cm
L .l
[ 70 cm |
Fig. 2: Numerical set-up. Not drawn to scale.
Table 2: Collapse properties used in computations.
Pf 5 ve Ps 5 d L; H; Ci
(kgm™") (cp) (kgm™”) (um) (cm) (cm)
Case 1 1 10 2500 225 6 4.8 0.553

Case 2 1010 12 2500 225 6 4.8  0.553
Case 3 1010 12 2500 225 6 4.2 0.580

Case 1 simulates the collapse of a dry granular column. Cases 2 and 3 simulate the collapse
of a granular column with an initially-loose packing and an initially-dense packing, respectively.
These two cases have similar conditions except for the initial volume fraction ¢;. Case 2 has an
initial volume fraction ¢; = 0.553, while Case 3 has an initial volume fraction ¢; = 0.580. All three
cases are used to verify the code and validate the present model: Case 1 is for the collapse of a
dry granular column where the drag force is not important; Cases 2 and 3 are for the collapse of
granular materials in a liquid where drag force is important. In particular, Case 1 is used to show
that the present model can automatically provide a near-zero drag force for dry granular flows and
thus reproduce the results given by the kinetic theory developed specifically for dry granular flows.
Furthermore, comparing the results of Case 1 with those of Cases 2 and 3 can illustrate the role of
drag force in the collapse of granular columns.

The convergence tests were performed using Case 2. A comparison of the flow-front location
obtained by using Az = 2 mm and Az = 1 mm showed that the difference was less than 0.1%.
Therefore, a grid size of Ax = 1 mm was used in all the simulations presented in this section. For
this grid size, the relative variation of sediment mass was less than 10~° during the entire collapse
process. In all numerical simulations, Courant-Friedrichs-Lewy (CFL) number did not exceed 0.1.
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In high concentration regions (¢ > 0.55), CFL number used in the simulations was smaller than
0.005 (Lee et al., 2016)). Our simulations typically took a few hours for a physical time of 10 second
using 8 threads on a workstation with two central processing units (Intel Xeon(R) CPU E5-2660
v2). If high performance computing (HPC) systems are available, the present model should be able
to simulate large-scale problems without the need to modify the codeﬂ

In the experiment of Rondon et al.| (2011}, the collapse of the granular column was caused by
suddenly lifting up the gate; however, the time series of the gate motion in the experiment were
not provided in Rondon et al| (2011). The fast motion of the gate may result in a vertical fluid
velocity on the interface between the granular material and the fluid. In the numerical simulations,
the collapse of the granular column is caused by instantaneously removing the force holding the
granular column in place. It is expected that this vertical velocity has effects only at the early stage
of the collapse process. We have performed a simulation by imposing an initial upward velocity of 1
m/s in the fluid near the column. A comparison between the results obtained with and without this
initial upward velocity has showed that the initial upward velocity has some influence at the initial
stage of the collapse process (¢ < 0.1s), but the influence becomes insignificant at the later stage
(t > 1.32 s). We remark that the intermittency found in the experiment of Rondon et al.| (2011
does not occur in our simulated collapse process, regardless the presence of the vertical fluid velocity
near the granular column.

4.1. Simulated collapse processes

Fig. [3|shows the simulated collapse process of the dry granular column. Good agreement can be
observed between the results of the present two-phase model and those of |Lee et al.| (2015a), which
was developed specifically for dry granular columns using an extension of granular kinetic theory.
After the granular column collapses, the dry granular material spreads through avalanching and
eventually stops. The collapse process is rapid and the final deposition profile is triangular-shaped.
Because the initial concentration has insignificant effect on the collapse process of dry granular
columns (Lee et al., [2015a)), only the results for the loose packing case are presented here.

Fig. [ shows the simulated collapse process for the granular column with an initially-loose packing
(Case 2) and Fig. for an initially- dense packing (Case 3). The experimental results (Rondon et al.,
2011) are also included in these two figures for comparison. Comparing the collapse processes of the
submerged columns (Figs. [4| and [5)) with that of the dray column (Fig. [3)) reveals that the collapse
process, deposition profile and the duration for the submerged granular columns significantly differ
from those for the dry granular column. Unlike the dry granular column, the collapse process
of a submerged granular column is strongly affected by its initial packing. The collapse process
of the loose-packing column (Case 2) is more rapid than that of the dense-packing column. The
deposition profile for the loose packing is longer and thinner than that for the dense packing; however,
the deposition profile for the dense packing is similar to that for the dry granular column. The
simulated collapse processes for both Cases 2 and 3 are in general agreement with those observed in
the experiment except for some minor discrepancies. The computed runout distance slightly exceeds
the measurement for the dense packing case. The experiment video (Rondon et all [2011)) showed
that the collapse of the dense-packing granular column was intermittent in the experiment (i.e.,
the granular material flowed and stopped alternatively), however, the computed collapse process is
continuous.

The simulation overestimates the runout distance for the dense packing case, possibly because
of the use of the wall function for the fluid phase. The wall-function method was proposed for clear
water, and no wall-function applicable for a sediment-fluid mixture is available in the literature.
Another possible reason is the particle response time used in the simulation. The hindered velocity
changes sharply near ¢ = ¢, (Camenen! 2005)), so does the particle response time, which makes the

1We are in the process of implementing the model presented here on the TACC’s Stampede2 system managed by
XSEDE(Towns et al., [2014).
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Fig. 3: Sequences of the collapsing process for Case 1. The lines represent contours of the computed concentrations,
the color maps show the magnitude of the computed velocity of the solid phase. Velocity vectors for the solid phase
are shown by arrows.

parameterization of particle response time near ¢ = ¢, a challenge. Strictly speaking, the particle
response time is also associated with the microscopic arrangements of particles (Yin and Koch, [2007)
and affected by the presence of a wall as well (Chien and Wan, [1999). In our model for particle
response time, the effects of both the presence of wall and the microscopic arrangements are not
considered. We have also noted that the computed settling velocity near the flow front is slightly
lower than that observed in the experiment video (Rondon et al.; [2011)).

Fig. [6]shows two examples of the computed velocity field of the sediment phase: one for the loose-
packing case at t = 0.66 s and the other for the dense-packing case at ¢t = 3 s. The loose-packing
granular material spreads much faster than the dense-packing granular material does. Unlike in
the loose-packing case where the whole body of the granular mass is moving, the region where the
dense-packing granular mass has noticeable motion is confined to the lower corner of the frontal
region.

We remark that the values of ¢; used in the experiments were 0.55 for the loose packing and
0.6 for the dense packing; the latter is smaller than the value of ¢; used in the simulation. Because
¢ = 0.585, which is the maximum packing fraction of an homogeneously sheared assembly of
frictional spheres (Boyer et al., |2011)), the granular material with the initially-dense packing in the
experiment will need to go through an internal adjustment under the shear action of the moving
gate until the volume concentration reaches a value slightly smaller than c.; before ¢ < ¢, is reached,
the granular material is not a frictional flow. Our choice of ¢; means that the internal adjustment
process is not simulated by the two-phase flow model.
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4.2. Vertical distribution of fluid pressure

To better show the deviation of the fluid pressure from the hydrostatic pressure, vertical distri-
butions of the fluid pressure at four locations are presented in Fig. [7] for ¢ = 1.32 s. As shown in
Fig. 4, at t = 1.32 s the flow front defined by ¢ = 0.5 reaches the location of 1= 13 cm (the flow
front defined by ¢ = 0.1 reaches the location of 1= 20 cm). At this time instant, the flow front
define by ¢ = 0.5 has not reached the location z1=15 cm, but the flow front defined by ¢ = 0.1
has passed this location. Referring to Fig. [7] the following conclusions can be drawn for the fluid
pressure at these four locations: (1) the fluid pressure at £1=15 cm is very close to hydrostatic; (2)
an over-pressure at the bed can be clearly observed at z1=>5 cm, 7.5 cm and 10.0 cm; and (3) a
sub-pressure at certain distance above the bed can be observed at 1=7.5 cm or 1 = 10 cm, but not
at £1=>5.0 cm, which is too far from the flow front. For the collapse of dry granular materials,
reported a sub-pressure at the bed where the flow front passed, which was followed by
an over-pressure at the bed. We believe that the large viscosity of the fluid used in the experiment
of Rondon et al.| (2011) had prevented the sub-pressure from penetrating down to the bed.

4.8. Contractancy and dilatancy

Shearing and volumetric strains are coupled during the deformation of a granular material. It is
well known in soil mechanics that shear deformations of sand often are accompanied by changes in
volume: loose sand has a tendency to contract to a smaller volume, but densely-packed sand cannot
deform without expanding . The former phenomenon is called contractancy and
the latter dilatancy. Accompanying with the change in volume of sand is a change in shear stress:
loose sand shows a gradual increase in shear stress, while densely-packed sand shows a decrease in
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shear stress. Both the loose and densely-packed granular materials have a tendency to ultimately
attain a critical-state shear stress.

We have chosen to use the temporal variations of the maximum concentrations in both the
initially-loose and initially-dense packing conditions to show the contractancy and dilatancy behav-
iors. We have tried to show contractancy and dilatancy behaviors using the temporal variation of the
total volume or mean concentration, but the the suspension of the granular material makes it difficult
to define a clear interface between the fluid and granular material; any interface defined based on a
specified concentration will show a loss of granular mass. A decrease/increase of the maximum con-
centration indicates a dilatancy/contractancy behavior. It can be seen from Fig. [8|that the granular
material with an initially-loose packing undergoes a contracting process (contractancy) whiles the
granular material with an initally-dense packing goes through a dilatant process (dilatancy). Our
results shows that [Rondon et al| (2011)’s conjecture about the dilatancy/contractancy behavior is
correct.

Because increasing/decreasing the volume concentration ¢ increases/decreases the pressure of
the sediment phase ps, the contractancy/dilatancy found in both the experiment and simulation
is related to the low/high pressure of the sediment phase ps in the loosely/densely packing col-
umn. Therefore, how to compute p; is important for simulating the collapse of submerged granular
columns. In this study, Egs. and are used to compute ps. Eq. reflects the elastic
effect and Eq. reflects the rheological characteristic related to D®. Eq. (|13) says that a lower ¢;
yields a lower pg.; if the force due to ps. is not large enough to support the weight of solid phase, the
lower ps. will induce contractancy. On the other hand, a higher ¢; will induce dilatancy. Eq.
implies that a lower/higher ¢; yields a lower/higher for a certain D*. However, the above intuitive
explanation based on Egs. and does not consider the complex behavior of a granular flow
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dense-packing case (b). The arrows show the velocity vectors for the solid phase with the color maps showing the
magnitudes of the computed velocity of the solid phase in the background.

near its static state due to the rearrangement of particles. For the dense-packing case, it can be
observed that the volume of the granular material slightly expands and ¢4, decreases from 0.58 to
0.565 within ¢ < 0.5 s; this is due mainly to the large elastic energy in the granular material. To
check the influence of the expansion on the collapse process, we have performed simulations using
¢; = 0.565 — 0.58 and found that the results are not sensitive to changes in ¢; within this range.

4.4. General buoyancy and drag force

General buoyancy and drag are two important forces influencing the collapse process. General
buoyancy is directly related to the the pressure of the fluid phase (i.e., pore pressure) and the drag
force is directly related to the relative motion between the two phases.

Referring to Fig. [ a high pore-pressure zone can be observed inside the granular flow with
an initially-loose packing, and the high pore-pressure dissipates with the spreading of the granular
material. However, a low pore-pressure zone can be observed inside the granular flow with an
initially-dense packing as shown in Fig. [5} and both the zone size and magnitude of the low pore
pressure decrease gradually with the spreading of the granular material.

The gradient in the pore-pressure field will produce a pressure force on the sediment phase, called
general buoyancy. The dynamic components of the general buoyancy, —Vp?, where p‘} =Dps—pPrgr2
with g = |g|, are shown in Fig. El for Cases 2 and 3 (the rest part of the general buoyancy is always
the constant prg). For the loose packing case, the general buoyancy points outward, which helps
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to destabilize the granular mass; for the dense packing, the general buoyancy points inward, which
helps to stabilize the granular mass.

When contractancy /dilatancy occurs, the amount of fluid inside the granular material decreases/
increases, resulting in a relative motion between the sediment and fluid phases near the surface of
the granular mass. Fig. [I0] shows the relative velocity between the two phases for both the loose
and dense packing cases. Although the relative velocities inside the granular material are very small,
the drag force can still be comparable to the dynamic component of the general buoyancy when the
particle response time 7, is small. The drag forces for Cases 2 and 3 are presented in Fig. For
the loose packing case, the drag force points nearly vertically upward, which helps to destabilize the
granular mass; for the dense packing case, however, the drag force points inward, which helps to
stabilize the granular mass.

It can be seen from Figs. [9 and that the general buoyancy and the drag force have similar
magnitudes and patterns except near the surface of the moving granular mass; both the general
buoyancy and drag force turn to destabilize the loosely-packed granular mass, but stabilize the
densely-packed granular mass.

4.5. Duration of the collapse process

The durations of the collapse process for Cases 2 and 3 are much longer than that for the dry
column (Case 1). Further comparing Cases 2 and 3 shows that the duration for Case 3 is one
order-of-magnitude longer than that for Case 2. For a deeply-submerged granular column, the drag
force and the general buoyancy [the third term on the right-hand-side of Eq. ] both influence
the collapse process: the drag force dissipates the kinetic energy in the granular martial, while the
general buoyancy reduces the gravitational effect. For the loose-packing case (Case 2), the high
pore-pressure zone developed inside the granular material leads to an outward general buoyancy,
and the fluid flowing out near the surface yields another outward drag force acting on the solid
phase; both forces tend to further destabilize the loosely-packed granular material, leading to a
rapid collapse process. For the dense-packing case (Case 3), however, the low-pore pressure zone
developed inside the granular material yields an inward general buoyancy, and the inward flow near
the surface also yield an inward drag force; both forces tend to stabilize the densely-packed granular
material, leading to a slow collapse process.

4.6. Sensitivity analysis

A sensitivity analysis has been performed to examine how sensitive the collapse process is to
the key model parameters, including the particle response times obtained using three models. The
ranges of these parameters used in the sensitivity analysis are summarized in Table 3 and Table 4.
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For the loose-packing case, the corresponding ranges of H and L at ¢ = 0.66 s are listed in Table
3. For the dense packing case, however, only the ranges of L at t = 9 s are listed in Table 4 because
the values of H for these cases are the same as those of H; except for the case where the Engelund
model is used to compute 7,. The ranges of the parameters tested in the sensitivity analysis are
based on the following considerations:

1. I, (Trulsson et al.,|2012} Pouliquen et al.l 2006), 1/0. (Lee et al.,|2015bj; Hsu et al.,|2003)), and
Cc (Lee et a1.|, M cover the values reported in literature.

2. The ranges of K, x, and ¢, are identical to those used in |Lee et al| (2015a) for simulating
the collapse of a dry granular column.

3. a varies from 0.01 to 1 in the literature (Trulsson et al., [2012; |Chiodi et al) [2014; Lee et al.,
, we take a = 0 — 0.5 for numerical stability considerations.

4. The range of b reported in the literature varies from 0.75 to 1 (Boyer et al,[2011}[Revil-Baudard|
land Chauchat|, 2013), but b = 1 — 3 was used in this sensitivity analysis because numerical
instability occurred when b < 1.

5. We chose the ranges of ¢, and 1; to cover the values reported in the literature (Cassar et al.

2005 [Simons and Albertson|, [1960; [Nielsen|, [1992} [Hanes and Inmanl, [1985}; [Sperry and Peirce

1995)), i.e., ¢, = 0.585 — 0.615 and 7; = 0.43 — 0.73 which cover both glass beads and sand

(Boyer et al, |2011} Bear, 1972).

6. Since 72 must be larger than or equal to 11, 72=0.43-0.82 were adopted in the analysis.

The three models (RZ, Engelund, and the new model) for particle response time, 7,, were also
compared in the sensitivity analysis.
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It can be seen from Table 3 that the parameters K and y in Eq. are the most important
parameters affecting the collapse of a loose-packing granular column. The other two parameters
b and c. in Eq. are also important. These four parameters (K, x, b, and c.) are needed to
compute the pressure of the solid phase, and thus the dilatancy or contractancy behavior relies on
these four parameters in addition to the initial packing specified by c¢;. Furthermore, these four
parameters indirectly influence the friction in the solid phase. The parameters 7;, 12, and I, in Eq.
(14) and 7, can also affect the collapse process, but to a lesser extent. It is a surprise to note that
both o, and C.3 have insignificant effects on the collapse process. We remark that o, is associated
with the turbulent dispersion of the sediment phase and C.3 the turbulence modulation due to the
presence of the sediment phase. Even though the turbulence modulation seems to have insignificant
influence on the collapse process of a loose-packing granular column studied here, for other types
of two-phase flow problems, such as sediment transport driven by turbulent flows, o, and C.3 are
important.

For the collapse of a dense-packing granular column, Table 4 shows that K, x, b, ¢, 1, and 7, are
equally important. However, the particle response time 7, becomes the most important parameter
for the dense-packing case. To show this, we compare the collapse processes simulated by using the
RZ (Fig. model, the Engelund (Fig. [A.2]) model, and the new model (Fig. [5). The collapse
process given by the RZ model is the most rapid one because the RZ model gives the largest 7, (or
the smallest drag force).Comparing the computed results obtained using the Engelund model and
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the new model, the new model shows a quicker deposition near flow front (x > 10 cm) when ¢ = 9
s; this is because the new model gives a smaller 7, when ¢ < 0.54. A good agreement between the
experimental results and the numerical results obtained by the new model can be observed in Fig.
which proves our hypothesis that modifying the RZ model for high concentration and using a
limiter for even higher concentration is important for correctly modeling the drag force in granular
flows with an initially-dense packing.

As mentioned in Section 4.1, a high/low pore-pressure zone occurs in the granular flow with
an initially dense/loose packing, and it strongly influences the collapse process. Fig. shows the
variations of the minimum value of p‘fc for the dense-packing case (pfnm) and the maximum value
for the loose-packing case (p2,,,). It can be seen that p? . for the dense-packing case is one order-
of-magnitude larger than p? . for the loose-packing case. The model for 7, has a significant effect
on p‘} for the dense-packing case, but has an insignificant effect for the loose-packing case. One
explanation is that the dilatancy in dense-packing case generates a relative velocity much larger
than that generated by the contractancy in the loose-packing case (see Fig. , which makes the
drag force in the dense-packing granular material more much sensitive to the model for 7,,.

5. Conclusions

Using a continuum two-phase flow approach, this study introduced a new model for particle
response time to simulate the collapse of a granular column deeply submerged in a fluid. For both
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initially loose and dense packing conditions, the two-phase flow model with the new model for
particle response time was able to simulate the collapse processes in general agreement with existing
laboratory observations for both loose and dense packing conditions.

The numerical results showed that contractancy and dilatancy occur, respectively, for loose
packing and dense packing during the collapse process, validating [Rondon et al.| (2011)’s conjecture
about how initial volume fraction affect collapsing processes.

The general buoyancy and drag force were found to have similar directions and their magnitudes.
The contractancy induced a high pore-pressure zone inside the loose-packing granular material, which
generated an outward force on the sediment near the surface and helped to destabilize the granular
mass. The dilatancy induced a low pore-pressure zone inside the dense-packing granular material,
which produced an inward force on the sediment near the surface and helped to stabilize the granular
mass.

A sensitivity analysis was performed by varying key model parameters involved in the computa-
tion of the sediment-phase pressure because the contractancy or dilatancy of the granular material
is related to the sediment-phase pressure. Large relative velocities between the sediment and fluid
phases were found near the surface of the moving granular mass for the dense-packing condition. It
was concluded that the collapse process of a densely-packed granular column was more sensitive to
particle response time than that of a loosely-packed granular column

Possible further research directions in two-phase modeling of submarine granular flows include:
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Table 3: Summary of sensitivity analysis on height H and width L for the loose packing column at ¢ = 0.66 s. The

base values correspond to H = 3.30 cm and L = 11.1 cm.

Varying Varying H L
parameter ranges (cm) (cm)
a 0— 0.5 3.4 —3.25 10.5 — 11.3
b 1—-3 2.83 =+ 3.5 14.7 - 9.4
Ce 0.585 — 0.615 3.30 — 2.90 11.1 — 14.7
I, 0—0.3 3.43 = 3.21 10.0 — 11.8
m 0.43 = 0.73 3.30 — 3.61 11.1 — 10.1
N2 0.43 — 0.82 3.18 =+ 3.30 122 - 11.1
1/0. 0—2 3.27 — 3.27) 11.3 — 11.3
Ce 1—1.6 3.30 — 3.27 11.1 — 11.3
K 105 — 10° 2.45 — 4.72 13.1 — 6.2
X 1—+35 4.72 — 2.45 6.0 —13.1
Crep 0.62 — 0.64 3.75 = 3.30 10.2 —+ 11.1
Tp RZ, Engelund, new 2.57,3.24,3.30 13.8,11.5,11.1
Ci 0.552 — 0.554 2.63 — 4.36 13.0 — 8.7
7.5
— RZ (2)
X S - Engelund
(em)y sb B e New model
t=3s
(b)
t=9s
(©
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Fig. 12: pZ, ., varying with time for the loose packing (a) and pfnm for the dense packing (b).

(i) plastic effect in the computation of the pressure of the solid phase; (ii) near-wall correction to the
sedimentation velocity; (iii) effect of sediment phase on the wall function for modeling fluid phase.
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Table 4: Summary of sensitivity analysis on L for the dense packing column at ¢ = 9 s. The base values correspond
to L = 13.5 cm.

Varying Varying L
parameter ranges (cm)

a 0—0.5 13.2 =+ 135
b 1—3 17.1 — 11.8
Ce 0.585 — 0.615 13.5 — 15.2

I, 0—0.3 13.1 — 13.7

m 0.43 — 0.73 13.5 — 10.6

M2 0.43 — 0.82 12.9 — 14.3

1/0. 0—2 13.3 — 13.7

Ces 1—1.6 13.5 — 13.7

K 105 — 10° 14,12.2,16.8
X 1—35 16.3,12.2,17.0

Crep 0.62 — 0.64 14.4 — 13.5

Tp RZ, Engelund, new  13.5,8.1,13.5
ci 0.565 — 0.58 14.1 — 135

Appendix A. The simulated collapse processes of granular columns by using particle
response models of [Richardson and Zaki (1954) and [Engelund| (1953)

Figs. shows the collapse processes of an initially-dense packing column simulated by using
the model of Richardson and Zaki| (1954)), referred to as RZ in the figure. shows the collapse
processes of an initially-dense packing column simulated by using the model of [Engelund| (1953)),
referred to as Engelund in the figure. The measured results of [Rondon et al.| (2011)) and the results
obtained by using the new model are also superposed in these two figures for comparison. As it can
be seen from these two figures, the agreement between the measurement and the numerical results
obtained by RZ and Engelund models is not satisfactory: the collapse process simulated by the RZ
model is too fast; granular suspension simulated by Engelund model is too strong ( see the two lines
indicating the concentrations of ¢ = 0.1 and ¢ = 0.5).
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Fig. A.1: The contours of the simulated concentrations of ¢ = 0.1 and 0.5 for the initially-dense packing column using
the RZ model. The concentration ¢ decreases outward. The symbols were experimental data of |[Rondon et al.| (2011])
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Fig. A.2: Same as Fig. but for the Engelund model.

The collapse processes of an initially-loose packing column simulated by using the RZ and En-
gelund models are presented in in Figs. [A-3] and [A74] respectively. The measured results of [Rondon
et al. (2011) and the results obtained by using the new model are also superposed in these two figures
for comparison. The agreement between the measurement and the numerical results obtained by
RZ model is reasonably well except that the RZ model slightly over-predict the height in the region
close to x = 0. The agreement between the measurement and the numerical results obtained by
Engelund model is less satisfactory: the model over predicts the runout distance significantly.
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Fig. A.3: The contours of the simulated concentrations of ¢ = 0.1 and 0.5 for the initially-loose packing column using
the RZ model. The concentration ¢ decreases outward. The symbols were experimental data of |[Rondon et al.| (2011])
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Fig. A.4: Same as Fig. but for the Engelund model.

Appendix B. A relationship between particle response time and permeability

For a one-dimensional problem of a steady flow through porous media, the terms containing the
stresses of fluid phase disappear, and Eq. reduces to
b f

gpf _ _CPsU1 (B.1)

o, (1-om,

where the coordinate x; points in the direction of the flow. For this problem, Forchheimer Bear
(1972) suggested

19)
52 = arps(1 = uf + brps(1 - oPuf? (B.2)
where ar and bp are two model parameters. |Engelund| (1953)) suggested
3
apc’vy
_ B.
ar (1 —c)2d?’ (B-3)
and .
c
bp= — L B.4
F g(l — C)Bd, ( )

where ap and bg are two model parameters. After comparing Egs. (B.1)) and (B.2)) and using Egs.

(B.3) and (B.4)), one can obtain
B psd? 1

= , B.5
p prvyf apc? + bERep ( )
According to Darcys law for seepage (Bear} [1972)), the pressure gradient is
_Opr _ ppyr(1— C)U{’ (B.6)
81'1 kp
where k,, is the permeability.
When the flow is very slow, Eqgs. (B.2)), (B.3)) and suggest that
d2
(B.7)

e kp(1 —¢)?’

which means that the particle response time can be related to the permeability.
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Appendix C. Implementation of the new model for 7, in OpenFOAM

For the problem studied here, we have used ag = 5000 and bg = 3.6 and the dependence
of ¢, on Re, is weak. The curve c,(Re,) is shown in Fig[C.] for 0.1 < Re, < 10 (the upper
limit of Re, is determined by assuming Re, = Rey; for the sand diameter used in our numerical
simulations, Res ~ 7). We remark that whenever there are two solutions for ¢,, the one with the
larger concentration should be taken. There are two solutions when Re, < 8.2, but only one solution
for Re, > 8.1. In any case, the value of ¢, should be the one given by the upper curve, which is not
very sensitive to Re, for the problem studied here. ~Referring to Fig when ¢ > ¢, the Engeland
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Fig. C.1: ¢, as a function of Re, for agp = 5000 and b = 3.6.

model should be used to calculate 7,; when 0.5 < ¢ < ¢,, the RE model should be used to calculate
Tp; when ¢ < 0.5 the RE model should be used. Therefore, in consideration of the computational
efficiency and in view of Fig. the model described by Eq. can be numerically implemented
in OpenFOAM by using following continuous piecewise function,

o & (=" max(1—c/em 01
Pf v 18+(4.5/(141/Rep)+0.3) Rey’

ps d> (176)71_3[max(lfc/cwuo)]cm psdz 1
max | 22 & forc>0.5
Pf Vf 184(4.5/(1+4/Rep)+0.3)Re, ' PFVf apc®+bgpRe, |7 =

for ¢ < 0.5
Tp =

(C.1)

which can avoid solving the equation for ¢, at every grid point for each time step, and thus is more
computationally efficient.
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