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1. Introduction

The α-Euler equations (along with its variants such as α-Navier Stokes, Camassa–Holm equations) were 

introduced and studied in a series of foundational papers by C. Foias, D. Holm, J. Marsden, T. Ratiu, E. Titi 

and others, see for example, [14], [23], [24] and references therein. Together with related models such as the 

Voigt-α, it has been studied intensively ever since by many authors from a wide variety of research themes 

looking at issues such as possible route to proving well posedness for the Euler equations (see [28,29,34,

37]), investigating the geometric structure of these equations along the lines introduced by V.I. Arnold for 

the Euler equations (see [33,41]), turbulence modeling (see, for instance, [7,10]), data assimilation (see, for 

example, [1] and references therein) and numerical simulations relating some of the above themes (see, for 

example, [26,27]), amongst other topics. In spite of this, surprisingly little is known about stability of steady 

state solutions to the α-Euler equations (see, however, [38]), even though stability theory of the classical 

2D Euler equations has been extensively studied, see, e.g., [11,15–19,21,42,43,45].

Our objectives in this paper are to record basic stability results such as the Rayleigh, Fjortoft and Arnold 

stability theorems for the α-Euler equations. The α-Euler equations are a regularization of the classical Euler 

equations. On a domain D ⊂ R
2, they are given as follows:
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ut +
(
v · ∇

)
u +

(
∇v

)�
u + ∇π = 0,

(1 − α2Δ)v = u, (1.1)

div u = div v = 0,

where v : D → R
2 is the so called filtered velocity and u : D → R

2 is the actual fluid velocity. Here α > 0 is 

a positive number related to the filter of the flow and 
(
∇v

)�
represents the transpose of the Jacobi matrix 

of partial derivatives ∂vi/∂xj . The pressure π : D → R is related to the actual fluid pressure p : D → R as

π = p − 1

2
|v|2 − α2

2
|∇v|2.

On domains D with a boundary ∂D, these equations are supplemented by the boundary conditions, see, for 

example [23] (formula 8.27, page 65),

v · n = 0, (n · ∇v) ‖ n, (1.2)

where n is the unit outer normal vector on ∂D. It is also possible to impose v = 0 as the boundary condition. 

We choose to not work with this as it precludes the possibility of working with steady states which are shear 

flows with non-zero velocity on the boundary. Formally, putting α = 0 gives us the Euler equations

ut +
(
u · ∇

)
u + ∇p = 0, div u = 0, (1.3)

with the boundary condition

u · n = 0, (1.4)

on ∂D.

We briefly sketch the main results of our paper. On a domain of the form R × [A1, A2] (the so called plane 

channel), where A1, A2 are real numbers, there exist a class of steady state solutions, known as plane parallel 

shear flows, to the Euler equations (1.3) of the form u0(x, y) = (U(y), 0) and constant pressure p(x, y) = p0, 

where U is a real valued smooth function and p0 is a constant. Rayleigh’s inflection point theorem for the 

Euler equation, see [39], gives a necessary condition for linearized instability. It states that a plane parallel 

shear flow which is linearly unstable must necessarily have a point of inflection, i.e., U ′′(ys) = 0 for some 

point ys ∈ [A1, A2]. Fjortoft’s theorem for the Euler equation, see [13], is a refinement of Rayleigh’s theorem 

which states that a linearly unstable shear flow steady state must satisfy U ′′(y)(U(y) −U(ys)) < 0 for at least 

one point y ∈ [A1, A2], where ys is a point such that U ′′(ys) = 0 (note that Rayleigh’s theorem guarantees 

this). Fjortoft’s theorem thus rules out the instability of certain monotic profiles with one inflection point 

that do not satisfy the inequality above, see [11, pp. 131–133] for a nice discussion of the Rayleigh and 

Fjortoft theorems for the incompressible Euler equations together with some examples.

In the case of the α-Euler equations, see Lemma 3.1 below, the analogous steady states corresponding 

to the plane parallel shear flows are of the form u0(x, y) = (U(y), 0), v0(x, y) = (V (y), 0) and π(x, y) =

p0 − 1
2V (y)2 + α2

2 (V ′(y))2. Here U(y) = V (y) − α2V ′′(y) and V ′(A1) = V ′(A2) = 0 in order to satisfy the 

boundary condition (1.2). The α-Euler analogue of Rayleigh’s theorem that we prove, see Proposition 3.5, is 

that a linearly unstable steady state of the form above must satisfy U ′′(ys) = 0. Since U(y) = V (y) −V ′′(y), 

this imposes the condition V ′′(y) −α2V ′′′′(y) = 0 on the regularized velocity V (y). Examples and discussion 

of this theorem are given in Section 3. The α-Euler analogue of Fjortoft’s theorem that we prove, see 

Proposition 3.7, is that a linearly unstable shear flow steady state must satisfy U ′′(y)(V (y) − V (ys)) < 0

for at least one point y ∈ [A1, A2], where ys is a point such that U ′′(ys) = 0. More discussion and further 

examples are given in Section 3.
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V.I. Arnold, see [2,3], proved a sufficient condition for nonlinear Lyapunov stability of a steady state of 

the Euler equations of the form ψ0 = F (ω0). Here ψ0 is the stream function associated with the velocity u0, 

i.e., u0 = (ψ0
y, −ψ0

x), ω0 = curl u0 is the vorticity and F is a sufficiently smooth real valued function. This 

technique relied on exploiting the Hamiltonian structure of the Euler equations together with convexity 

estimates on the second variation. Arnold’s First Stability Theorem guarantees, under suitable additional 

hypothesis, nonlinear stability of this steady state provided −F ′ is positive and bounded above and below. 

Arnold’s Second Stability Theorem covers the case when −F ′ is negative everywhere and bounded and 

moreover satisfies, an additional inequality related to the reciprocal of the minimal eigenvalue of the negative 

Laplacian −Δ. In the case of the α-Euler equations, we consider a steady state of the form φ0 = F (ω0), 

where φ0 is the stream function associated with the regularized velocity v0, i.e., v0 = (φ0
y, −φ0

x) and 

ω0 = curl(1 − α2Δ)v0. We first prove Arnold’s theorems on an arbitrary multiply connected domain. We 

prove, see Theorem 4.5, nonlinear stability if −F ′ is positive and bounded above and below. We obtain the 

α-Euler analogue the Second Stability Theorem, see Theorem 4.11, that proves stability as long as −F ′ is 

negative everywhere, bounded above and below and the lower bound is strictly greater than the reciprocal of 

the minimal eigenvalue corresponding to the operator −Δ(1 −α2Δ). We also prove versions of Arnold’s first 

and second stability theorems in domains such as the two torus and the periodic channel, see Sections 4.3

and 4.4. We consider examples illustrating various cases in Section 4.5. It is our hope that the analogues 

of classical stability results for α-Euler presented in this paper is of use in comparisons with numerical 

simulations.

The paper is organized as follows. In Section 2 we give preliminaries about the α-Euler equations and 

the problem setup. In Section 3 we give α-analogues of the classical Rayleigh and Fjortoft criteria for 

2D parallel shear flows in the channel. Arnold’s stability theorems are discussed in Section 4. First, we 

prove the α-version of the first and second instability theorems for the case of multi-connected domains. 

Our formulation of the second stability theorem directly involves the minimal eigenvalue of the respective 

α-version of the Laplacian, and is based on the use of the Rayleigh–Ritz formula. Next, we discuss stability 

theorems on the 2-torus and on periodic channels and then provide some examples.

2. Preliminaries and setup of the problem

Since div v = 0 in (1.1), there exists a stream function φ such that v = −∇⊥φ, where ∇⊥ = (−∂y, ∂x). 

We introduce the vorticity

ω = curl(1 − α2Δ)v. (2.1)

Applying curl to (1.1), one obtains the α-Euler equation in vorticity form,

ωt + v · ∇ω = 0. (2.2)

Using the fact that curl(−∇⊥)φ = −Δφ, we get ω = −(1 − α2Δ)Δφ = −Δψ, where we denote by ψ, 

the stream function associated with velocity u, i.e., u = −∇⊥ψ and φ and ψ are related via the formula 

ψ = (1 − α2Δ)φ. We can thus rewrite (2.2) in terms of the stream function variables as

Δψt − ∇⊥φ · ∇(Δψ) = Δψt − φxΔψy + φyΔψx = 0. (2.3)

We have the following version of the Kelvin circulation theorem for the α-Euler model. The proof is 

omitted as it is similar to the proof for the Euler case which can be found, for instance, in [8, pp. 21–22].

Lemma 2.1. Let C be a simple closed contour in the fluid at time t = 0. Let Ct be the contour carried along 

by the flow following the smoothed velocity v, i.e. Ct = χt(C), where χt is the flow map associated with the 

velocity v, where v satisfies (1.1). The circulation around Ct is defined to be
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ΓCt
=

∫

Ct

(1 − α2Δ)v · ds. (2.4)

Then ΓCt
is constant in time. That is,

d

dt
ΓCt

= 0.

Remark 2.2. One of the original motivations in adding the additional term (∇v)T u to the α-Euler equations 

(1.1) was to prove the Kelvin circulation theorem above (see [14], Section 2, page 507).

Corollary 2.3. Let D ⊂ R
2 be a multiply connected bounded domain, bounded by finitely many numbers of

smooth curves (∂D)i where i = 0, . . . , n. Then the circulation along each connected boundary curve remains 

constant in time, i.e., for every 0 ≤ i ≤ n, we have

d

dt

∫

(∂D)i

(1 − α2Δ)v · ds =
d

dt

∫

(∂D)i

u · ds = 0.

We shall have occasion to use the following integration by parts formula for vector valued functions

∫

D

v · Δvdx =

n∑

i=0

∫

(∂D)i

v · (n · ∇)vds −
∫

D

|∇v|2dx. (2.5)

Here v = (v1, v2), |∇v|2 = tr(∇v · (∇v)T ), where (·)T denotes the transpose, and tr denotes trace, i.e.

|∇v|2 =
∑2

i=1[(∂xvi)
2 + (∂yvi)

2]. Equation (2.5) follows from Green’s identity for scalar valued functions f

and g, see, e.g., [12, Theorem 3 (ii), page 712],

∫

D

fΔgdx =

n∑

i=0

∫

(∂D)i

f(n · ∇)gds −
∫

D

∇f · ∇gdx, (2.6)

applied to each component of v and summation of the resulting identities. By assumption, for any v that 

satisfies (1.2), n · ∇v is parallel to n and v · n = 0, on the boundary, we have, v · (n · ∇v) = 0, i.e., we have,

∫

D

v · Δvdx = −
∫

D

|∇v|2dx. (2.7)

If v1 and v2 are two vector fields that satisfy (1.2), then by integrating by parts twice using formula 

(2.5), observing that the boundary terms vanish via (1.2), and using the fact that tr(∇v1 · (∇v2)T ) =

tr(∇v2 · (∇v1)T ) one also sees that

∫

D

v1 · Δv2dx =

∫

D

Δv1 · v2dx. (2.8)

Consider a steady state solution ω0 = curl(1 − α2Δ)v0 = −Δψ0 of the α-Euler equation. Here

v0 = −∇⊥φ0, u0 = (1 − α2Δ)v0, ψ0 = (1 − α2Δ)φ0 and ω0 = −(1 − α2Δ)Δφ0.

In particular,

∇⊥φ0 · ∇ω0 =
(

− φ0
y∂x + φ0

x∂y

)
ω0 = 0, (2.9)
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and thus ∇φ0 and ∇(Δψ0) are parallel. The corresponding linearized equations for the α-Euler model about 

the steady state v0, u0 are as follows:

ut + v0 · ∇u + v · ∇u0 +
(
∇v0

)�
u +

(
∇v

)�
u0 + ∇π = 0, (2.10)

div u = div v = 0,

ωt + v0 · ∇ω + v · ∇ω0 = 0, (2.11)

Δψt − φ0
xΔψy + φ0

yΔψx − φxΔψ0
y + φyΔψ0

x = 0, (2.12)

where v = curl−1(1 −α2Δ)−1ω solves the system of equations curl(1 −α2Δ)v = ω, div v = 0 with appropriate 

boundary conditions.

3. Rayleigh and Fjortoft criteria for the α-Euler equations

In this section, we derive the classical Rayleigh and Fjortoft criteria for the α-Euler equations, see [11, 

Sec. 22] for an overview of these results for the Euler equations. Our basic setup is the two dimensional 

channel, infinitely long in the x direction and bounded in the y direction, with walls at y = A1 and y = A2, 

where −∞ < A1 < A2 < +∞, i.e., D = R × [A1, A2].

We work with 2D plane parallel shear flows in the channel. Note that for the two dimensional Euler 

equations on the domain D, any steady state velocity of the form u0(x, y) = (U(y), 0) and constant pressure 

p(x, y) = p0 will solve the Euler equations (1.3), where U : [A1, A2] → R is any real valued smooth function 

and p0 is a real constant. Note that the boundary condition u · n = 0 is automatically satisfied by a steady 

state of the type (U(y), 0).

We now obtain the analogous steady state for the α-Euler equations (1.1). Let V : [A1, A2] → R be a real 

valued smooth function such that V ′(A1) = V ′(A2) = 0. Define U(y) = V (y) − α2V ′′(y). Then (U(y), 0) as 

computed and p0 are steady state solutions of the Euler equations (1.3). It can be readily verified (see [30], 

Prop. 2, p. 60) that u0(x, y) = (U(y), 0), v0(x, y) = (V (y), 0) and

π(x, y) = p0 − 1

2
V (y)2 +

α2

2
(V ′(y))2 (3.1)

(note that π is a function of y alone) is a steady state solution to the α-Euler equations (1.1), where 

u0 = (1 − α2Δ)v0. Since n = (0, ±1) on the boundaries y = A1 and y = A2, (n · ∇)v0 = ∂y(V (y), 0) =

(V ′(y), 0). Since (n · ∇)v0 · t = (V ′(y), 0) · (1, 0) = 0 on the boundary y = A1 and y = A2, this reduces to 

V ′(A1) = V ′(A2) = 0. Another way to obtain a steady state is to start with an arbitrary profile U(y) and 

compute V (y) by solving the ODE:

V (y) − α2V ′′(y) = U(y), V ′(A1) = V ′(A2) = 0. (3.2)

Lemma 3.1. Let V (y) be any smooth function satisfying V ′(A1) = V ′(A2) = 0, and define U(y) = V (y) −
α2V ′′(y), π(x, y) = p0 − 1

2V (y)2 + α2

2 (V ′(y))2. Then u0(x, y) = (U(y), 0), v0(x, y) = (V (y), 0) and π(x, y) =

p0− 1
2V (y)2+ α2

2 (V ′(y))2 is a steady state solution to the α-Euler equations (1.1) on the domain R ×[A1, A2].

Remark 3.2. We stress that an arbitrary profile V (y) cannot be a steady state for the α-Euler equations. 

Only profiles that satisfy the boundary condition V ′(A1) = V ′(A2) = 0 can be steady states in contrast 

to the Euler case where an arbitrary profile U(y) with no extra boundary conditions is a steady state for 

Euler.

We let ψ0 and φ0 be the steady state stream functions, real valued, associated with the respec-

tive steady state velocities U and V respectively, i.e. we have, ∂yφ0(y) = V (y) and ∂yψ0(y) = U(y)
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and ψ0 = (1 − α2∂yy)φ0. Note that ψ0 and φ0 are functions of y alone. The boundary condition 

V ′(A1) = V ′(A2) = 0 implies that φ0
yy(A1) = φ0

yy(A2) = 0. We work with the α-Euler equations in 

stream function formulation (2.12). Linearizing (2.12) about the steady state ψ0, φ0 we obtain the lin-

earized equation for the perturbations φ̃ = φ̃(x, y, t) and ψ̃ = ψ̃(x, y, t) of the stream function (2.12) of the 

form

Δψ̃t − φ0
xΔψ̃y + φ0

yΔψ̃x − φ̃xΔψ0
y + φ̃yΔψ0

x = 0. (3.3)

Since we have the relation (1 − α2Δ)φ̃ = ψ̃ one can consider the equation above as an equation for φ̃

alone. We note that this equation is supplemented by the boundary conditions: no normal flow across the 

boundaries, so v · n = 0 on the boundary ∂D, which are the two walls at y = A1 and y = A2, and n is 

the unit normal vector on ∂D and (n · ∇)v is parallel to n. Since, v = −∇⊥φ̃, we see that the boundary 

conditions for φ̃ are ∇φ̃ · t = 0 on ∂D where t is the unit tangent vector on ∂D and (n · ∇)(−∇⊥φ̃) · t = 0

on ∂D.

Since φ0
x = ψ0

x = 0, equation (3.3) reduces to

Δψ̃t + φ0
yΔψ̃x − φ̃xΔψ0

y = 0, (3.4)

on D with ∇φ̃ · t = 0 and (n · ∇)(−∇⊥φ̃) · t = 0 on ∂D. Similar to the analysis for the Euler equations, see 

[11, Sec. 20–22, pp. 124–133], we look for solutions to (3.4) of the form

ψ̃(x, y, t) = ψ(y)eik(x−ct) and φ̃(x, y, t) = φ(y)eik(x−ct), (3.5)

where ψ : [A1, A2] → C and φ : [A1, A2] → C are complex valued functions of y, k ∈ R is the wave number, 

which is real in this case and c is the wave speed which is complex valued, c = cr + ici. If ci > 0, this 

corresponds to an exponentially growing (in time) solution to (3.4).

We will now derive an α-Euler version of the Rayleigh stability equation.

Lemma 3.3. Let u0(x, y) = (U(y), 0), v0(x, y) = (V (y), 0) and π(x, y) = p0 − 1
2V (y)2 + α2

2 (V ′(y))2 be a 

steady state solution to the α-Euler equations (1.1) on the domain R × [A1, A2]. Suppose the linearized 

stream function equation (3.4) about this steady state has a solution of the form (3.5) with ci > 0, and some 

k ∈ R. Then φ : [A1, A2] → C satisfies the following boundary value problem:

−α2φ′′′′ + (1 + 2α2k2)φ′′ − k2(1 + α2k2)φ − U ′′φ

V − c
= 0

φ(A1) = φ(A2) = 0

φ′′(A1) = φ′′(A2) = 0.

(3.6)

Proof. Since ψ̃ and φ̃ are related via (1 − α2Δ)φ̃ = ψ̃, we have the following relation between ψ and φ,

ψ(y) = (1 + α2k2)φ(y) − α2φ′′(y). (3.7)

Using (3.7), φ̃(x, y, t) = φ(y)eik(x−ct), ψ̃(x, y, t) = ψ(y)eik(x−ct), ∂yφ0(y) = V (y) and ∂yψ0(y) = U(y), we 

see that (3.4) yields

(ψ′′ − k2ψ)(V − c) + U ′′φ = 0. (3.8)

The boundary conditions for φ̃ are ∇φ̃·t = 0 on ∂D, where the boundary corresponds to y = A1 and y = A2. 

Since t = (1, 0) on ∂D, this means that ∂xφ̃ = 0 at y = A1 and y = A2. Since ∂xφ̃(x, y, t) = ikφ(y)eik(x−ct) =
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0, when y = A1 and y = A2, we have the first boundary condition in (3.6). The boundary condition 

corresponding to n ·∇(−∇⊥φ̃) ·t = 0 is computed as follows: we note that n ·∇ = (0, 1) · (∂x, ∂y) = ∂y. Thus 

n · ∇(−∇⊥φ̃) = ∂y(∂yφ̃, −∂xφ̃) = (φ̃yy, φ̃xy). Thus, n · ∇(−∇⊥φ̃) · t becomes (φ̃yy, φ̃xy) · (1, 0) = (φ̃yy, 0). 

Thus, we get that, n · ∇(−∇⊥φ̃) · t = 0 becomes φ̃yy(x, y, t) = 0 when y = A1 and y = A2. Since, 

φ̃yy(x, y, t) = φ′′(y)eik(x−ct), this corresponds to the second boundary condition in (3.6). Using (3.7) we 

note that (3.8) yields (3.6). �

The analogous equation for the Euler equation is the classical Rayleigh stability equation, known as the 

inviscid Orr–Sommerfeld equation [31, p. 122, Eq. 4.6].

Remark 3.4. Note that φ̃(x, y, t) = φ(y)eik(x−ct) = φ(y)eikxe−ikct = φ̂(x, y)e−ikct, where φ̂(x, y) = φ(y)eikx. 

The smoothness of φ̃ depends on the smoothness of φ. If we consider φ to be in the space

Y := {φ ∈ H4([A1, A2];C), φ(A1) = φ(A2) = 0, φ′′(A1) = φ′′(A2) = 0},

to solve (3.6), then we obtain a solution to (3.4) and we measure instability for (3.4) in the space

Ŷ := {φ̂(·, ·) : supx∈R||φ̂(x, ·)||H4([A1,A2];C) < ∞}.

We shall consider (3.4) as an (linear) evolution equation for φ̃ = φ̃(·, ·, t) in the space Ŷ , and obtain conditions 

for existence of a growing eigenmode solution, i.e. for spectral instability to the linearized equation (3.4)

for the perturbation stream function. All references to instability in this subsection is to be regarded in the 

sense described above. A solution of the form φ̃(x, y, t) = φ(y)eik(x−ct), with φ ∈ Y , with ci > 0 to equation 

(3.4) grows exponentially in time. This corresponds to spectral instability for (3.4) in space Ŷ with spectral 

parameter λ = −ikc.

We are ready to prove an analogue of the classical Rayleigh’s theorem for the α-Euler equations.

Proposition 3.5. Let u0(x, y) = (U(y), 0), v0(x, y) = (V (y), 0) and π(x, y) = p0 − 1
2V (y)2 + α2

2 (V ′(y))2 be 

a steady state solution to the α-Euler equations (1.1) on the domain R × [A1, A2]. If the linearized stream 

function equation (3.4) about this steady state has solutions of the form (3.5) with ci > 0, then U ′′(ys) = 0

for at least one point ys ∈ [A1, A2].

Proof. By assumption ci > 0, we have V − c 	= 0 because V is real valued and thus (3.6) is non-singular. 

We multiply the first equation of (3.6) by φ∗, the complex conjugate of φ, integrate by parts (using the 

boundary conditions, i.e. the second and third equations of (3.6)) to obtain,

− α2

A2∫

A1

|φ′′(y)|2dy −
A2∫

A1

(1 + 2α2k2)|φ′(y)|2dy −
A2∫

A1

k2(1 + α2k2)|φ(y)|2dy −
A2∫

A1

U ′′(y)

V (y) − c
|φ(y)|2dy = 0.

(3.9)

Indeed, the boundary terms vanish via the boundary conditions. Taking the imaginary part of (3.9) gives

ci

A2∫

A1

U ′′(y)

|V (y) − c|2 |φ(y)|2dy = 0 (3.10)

Since ci > 0, this forces U ′′(ys) = 0 for at least one point ys ∈ [A1, A2]. �
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We thus have that if U = V − α2V ′′ does not have an inflection point in [A1, A2] then (3.4) cannot have 

an exponentially growing eigensolution of the form φ(y)eik(x−ct).

Example 3.6. Let U(y) be a profile with no inflection point. Compute V (y) by solving the ODE: V (y) −
α2V ′′(y) = U(y) subject to the boundary conditions V ′(A1) = V ′(A2) = 0. The steady state thus computed, 

with the pressure given by equation (3.1), cannot be spectrally unstable by Proposition 3.5. This class of 

steady states include profiles U(y) that are symmetric about the center point with no inflection points, for 

example, U(y) = 1 − y2 on the interval [−1, 1] and it also includes linear steady states such as the Couette 

flow U(y) = y on [0, 1].

We now derive an analogue of the classical Fjortoft’s theorem for the α-Euler equations.

Proposition 3.7. Let u0(x, y) = (U(y), 0), v0(x, y) = (V (y), 0) and π(x, y) = p0 − 1
2V (y)2 + α2

2 (V ′(y))2

be a steady state solution to the α-Euler equations (1.1) on the domain R × [A1, A2]. If the linearized 

stream function equation (3.4) about this steady state has solutions of the form (3.5) with ci > 0, then 

U ′′(y)(V (y) − V (ys)) < 0 for at least one point y ∈ [A1, A2]. Here ys ∈ [A1, A2] is a point such that 

U ′′(ys) = 0 obtained in Proposition 3.5.

Proof. Let Vs = V (ys). Consider the real part of (3.9) and adding

(cr − Vs)

A2∫

A1

U ′′(y)

|V (y) − c|2 |φ(y)|2dy = 0, (3.11)

we obtain,

A2∫

A1

U ′′(y)(V (y) − Vs)

|V (y) − c|2 |φ(y)|2dy = −α2

A2∫

A1

|φ′′(y)|2dy

−
A2∫

A1

(1 + 2α2k2)|φ′(y)|2dy −
A2∫

A1

k2(1 + α2k2)|φ(y)|2dy < 0, (3.12)

since the integrands on the right hand side are non-negative. Thus U ′′(y)(V (y) − V (ys)) < 0 for at least 

one point y ∈ [A1, A2]. �

Remark 3.8. Note that in the proof of the above theorem since the integral in (3.11) is zero, the coefficient 

in front of the integral in (3.11) can be replaced by any number. The statement of Fjortoft criterion can 

be generalized to the following fact: for every real number z, a necessary condition for instability is the 

existence of at least one point y ∈ [A1, A2] such that

(V (y) − z)U ′′(y) < 0. (3.13)

In fact, it is readily seen that the Fjortoft criterion implies the Rayleigh criterion by choosing points z1 and 

z2 such that V (y) − z1 > 0 and V (y) − z2 < 0 for all y ∈ [A1, A2]. Then Fjortoft criterion says that there 

exists at least two points y1 and y2, such that U ′′(y1) < 0 and U ′′(y2) > 0 thereby ensuring that U ′′(y)

changes sign somewhere in the flow.
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Remark 3.9. We recall that Fjortoft criterion for the Euler equation says that a necessary condition for 

instability is that U ′′(y)(U(y) − U(ys)) < 0 for at least one point y ∈ [A1, A2]. For the Euler equations, 

Fjortoft criterion is sharper than the Rayleigh criterion. The Fjortoft criterion was used to study steady 

states U(y) with a monotone profile and one inflection point ys. If U ′′ and U − U(ys) have the same sign 

everywhere in the flow, then U(y) is a stable steady state even though it has an inflection point ys. The 

analogous result for α-Euler is as follows. Suppose we have a profile U(y) which is monotone and has one 

inflection point ys. We compute V (y) using equation (3.2). If U ′′(y) and V (y) − V (ys) have the same sign 

everywhere, then the steady state is stable for α-Euler.

Example 3.10. Let us consider V (y) = y − y3 on the interval [−1/
√

3, 1/
√

3]. Note that V is monotone with 

one inflection point at y = 0 and V ′(−1/
√

3) = V ′(1/
√

3) = 0. One can compute U(y) = V (y) − α2V ′′(y) =

y − y3 + 6α2y. One can see that U ′′(y) = −6y. U(y) thus has one inflection point at ys = 0. Note that 

V (0) = 0. Thus U ′′(y)(V (y) − V (ys)) = −6y(y − y3) = −6y2(1 − y2) < 0 since (1 − y2) is everywhere 

positive in the interval [−1/
√

3, 1/
√

3]. Proposition 3.7 says that this steady state, with pressure as in (3.1)

is possibly unstable for the α-Euler equations.

4. Arnold stability theorems for α-Euler equations

In the 1960’s, V.I. Arnold in [2] introduced a simple and beautiful idea to study nonlinear Lyapunov 

stability of ideal fluids. It relied on exploiting the underlying Hamiltonian structure that the fluid model 

possessed together with convexity estimates on the second variation. For an overview of the Arnold crite-

rion for the Euler equation, see, for example, [2], [31] (Section 3.2, pp. 104–111), [4] (Chapter 2, Section 4, 

pp. 88–94), [25] for a more mathematical perspective, [44], (Section 1), [5] (Section 3, page 7), [43] (Sec-

tion 4.5, pp. 114–122) for a more applied perspective. Expanded later into the so called energy-Casimir 

method, this has spawned a huge literature and has been applied widely to study the stability of various 

model fluid equations. For a non-exhaustive sample, see for example [9,20–23,32,35,45] as well as the liter-

ature cited therein. To the best of our knowledge, however, Arnold’s stability theorems were not recorded 

for the α-Euler model, and in this section we fill the gap.

4.1. Arnold’s theorems in a multi connected domain

Let D ⊂ R
2 be a bounded multi connected domain, with the boundary ∂D consisting of smooth curves 

(∂D)i where i = 0, . . . , n. Denote the outer boundary of D by (∂D)0 and (∂D)i, i = 1, . . . , n are the n

inner boundaries. Let v0 denote a steady state solution of (2.2), φ0 denote its stream function, so that 

v0 = −∇⊥φ0 and ω0 denote its vorticity, so that

ω0 = curl(1 − α2Δ)v0 = −Δ(1 − α2Δ)φ0.

Since ∇⊥φ0 · ∇ω0 = 0 by (2.2), we have that ∇φ0 is parallel to ∇ω0 and thus locally, φ0 is a function of 

ω0. We shall impose the following global condition.

Assumption 4.1. Assume that there exists a differentiable function F defined on the closed interval [
min (x,y)∈Dω0(x, y), max (x,y)∈Dω0(x, y)

]
, such that, φ0(x, y) = F (ω0(x, y)) for every (x, y) ∈ D.

In particular, we have that ∇φ0(x, y) = F ′(ω0(x, y))∇ω0(x, y) and thus v0 = −∇⊥φ0 = −F ′(ω0)∇⊥ω0.

Remark 4.2. We note that sometimes, in the literature, see, for example, [31], (page 106, Remark 1) the 

function −F ′ is written as the ratio of the vectors v
0

∇⊥ω0 .
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Notice that, F ′, a priori, can have singularities at the critical points of ω0. Since v·n = 0 on the boundary 

∂D, we have, on ∂D, that ∇⊥φ · n = 0, i.e., ∇φ · t = 0, where t is the unit tangent vector on the boundary. 

Thus ∇φ is orthogonal to the boundary, i.e., each connected piece of the boundary curve is a level set of φ

and thus φ|(∂D)i
is a constant on each connected boundary piece (∂D)i where 0 ≤ i ≤ n. Assumption 4.1

then implies that F (ω0) restricted to each connected piece (∂D)i, 0 ≤ i ≤ n, is a constant. We shall work 

on the following subspace of the Sobolev space

X :=

{
v ∈ H3(D;R2),∇ · v = 0 on D, v · n = 0, (n · ∇v) ‖ n, on (∂D)i, 0 ≤ i ≤ n

}
, (4.1)

so that u ∈ H1(D; R2), ω = curl u ∈ L2(D; R), φ ∈ H4(D; R) and ψ ∈ H2(D; R). The analysis proceeds by 

considering the following functional Hc : X → R

Hc(v) = H(v) + Q(v) +

n∑

i=0

ai

∫

(∂D)i

(1 − α2Δ)v · ds, (4.2)

and ai ∈ R for i = 0, . . . , n where H, Q : X → R on X are given by

H(v) =
1

2

∫

D

v(x) · (1 − α2Δ)v(x)dx, (4.3)

Q(v) =

∫

D

C(curl(1 − α2Δ)v(x))dx, (4.4)

and a smooth function C : R → R will be fixed later. We note that H(v) is the kinetic energy of the 

α-Euler fluid, C is known as the Casimir function, the last term in (4.2) corresponds to the weighted sum 

of circulations along the boundary.

Lemma 4.3. Let v = v(t, x) solve the α-Euler equations (1.1). Then

Hc(v(t, ·)) =
1

2

∫

D

v(t, x) · (1 − α2Δ)v(t, x)dx +

∫

D

C(curl(1 − α2Δ)v(t, x))dx

+

n∑

i=0

ai

∫

(∂D)i

(1 − α2Δ)v(s, t) · ds, (4.5)

is an invariant of motion, that is, d
dtHc(v(t, ·)) = 0.

Proof. We note that u = (1 −α2Δ)v and ω = curl u = curl(1 −α2Δ)v. We first show that d
dt H(v(t, ·)) = 0. 

We start with the α-Euler equations (1.1),

∂tu + v · ∇u + (∇v)�u = −∇π, (4.6)

and use the following identity ([23, Eq. 7.34])

(v · ∇)u + (∇v)�u = −v × (∇ × u) + ∇(u · v),

to rewrite (4.6) as

∂tu − v × (∇ × u) + ∇(u · v) = −∇π. (4.7)
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Taking the dot product of (4.7) with v, noting that −[v × (∇ × u)] · v = 0, and integrate over the domain 

D to get,

∫

D

ut(x) · v(x)dx = 0, (4.8)

where we used the facts that 
∫

D
∇(u · v) · vdx = 0 and 

∫
D

∇π · vdx = 0. Indeed, for any scalar valued 

function f , we have

(∇f) · v = ∇ · (fv) − f∇ · v = ∇ · (fv) (4.9)

(because v is divergence free, ∇ · v = 0) and by (1.2) and Divergence Theorem,

∫

D

∇ · (fv)dx =

n∑

i=0

∫

(∂D)i

fv · nds = 0. (4.10)

We rewrite H(v) as:

H(v) =
1

2

∫

D

u · vdx =
1

2

∫

D

(1 − α2Δ)v · vdx

=
1

2

∫

D

v · vdx +
α2

2

∫

D

|∇v|2dx (4.11)

where in the second equality, we performed integration by parts on the second term and use (2.7). Equation 

(1.2) implies that v · ((n · ∇)v) = 0. Using (1.2) it can also be shown that

vt · n = 0, vt · ((n · ∇)v) = 0, v · ((n · ∇)vt) = 0. (4.12)

Indeed, 0 = ∂t(v · n) = vt · n and using this and the second equation in (1.2), we see that vt · ((n · ∇)v) = 0. 

Now use the fact that ∂t(v · (n · ∇v)) = 0 and vt · ((n · ∇)v) = 0 to conclude the third equality in (4.12). 

Recall that |∇v|2 = tr(∇v · (∇v)T ). Also notice that

1

2
∂ttr(∇v · (∇v)T ) = tr(∇vt · (∇v)T )

and integration by parts using the boundary conditions (4.12) yields

1

2

∫

D

∂ttr(∇v · (∇v)T )dx =

∫

D

tr(∇vt · (∇v)T )dx = −
∫

D

Δvt · vdx. (4.13)

We thus have, by (4.8), (4.11) and (4.13),

d

dt
H(v(t, ·)) =

1

2

∫

D

(v(x, t) · v(x, t))tdx +
α2

2

∫

D

∂t|(∇v(x, t)|2dx

=

∫

D

vt(x, t) · v(x, t)dx +
α2

2

∫

D

∂ttr(∇v(x, t) · (∇v(x, t))T )dx



1642 Y. Latushkin, S. Vasudevan / J. Math. Anal. Appl. 472 (2019) 1631–1659

=

∫

D

vt(x, t) · v(x, t)dx − α2

∫

D

Δvt(x, t) · v(x, t)dx

=

∫

D

(
vt(x, t) − α2Δvt(x, t)

)
· v(x, t)dx =

∫

D

ut(x, t) · v(x, t)dx = 0.

In order to prove that d
dt

∫
D

C(ω(x, t))dx = 0, we use (a slight variant of) the following idea from [9, see 

Appendix, page 162]. Using (2.2) we have,

∂tC(ω(x, t)) = C ′(ω(x, t))∂tω(x, t) = −C ′(ω(x, t))v · ∇ω(x, t), (4.14)

and also,

−v · ∇(C(ω(x, t))) = −C ′(ω(x, t))v · ∇ω(x, t).

Therefore,

∂tC(ω(x, t)) = −v · ∇(C(ω(x, t))). (4.15)

Using (4.9), (4.10), (4.14) and (4.15), we infer

d

dt

∫

D

C(ω(x, t))dx =

∫

D

∂tC(ω(x, t))dx =

∫

D

−v · ∇C(ω(x, t))dx = 0.

The fact that d
dt

∫
(∂D)i

u · ds = 0, i = 0, . . . , n, is a consequence of Corollary 2.3. Combining these relations 

proves the lemma. �

Since v0 · ∇ω0 = 0 and v0 is tangent to the boundary, we have that ∇ω0 is orthogonal to the boundary, 

which implies that ω0 is constant on the boundary (∂D)i, i = 0, . . . , n, i.e., we shall denote by ω0
∣∣
(∂D)i

the 

value of ω0 on the boundary (∂D)i. This also implies that C ′(ω0(x, y)) is constant for all (x, y) ∈ (∂D)i

and we shall denote this by C ′(ω0)
∣∣
(∂D)i

. We return to (4.2). We will now specify C and aj , such that the 

first variation δHc(v0)δv := d
dε Hc(v0 + εδv)|ε=0 is zero.

Lemma 4.4. Let v0, ω0 be a steady state solution of (1.1), satisfying Assumption 4.1, where ω0 = curl(1 −
α2Δ)v0. Let C be a smooth function so that

C ′(ω0(x, y)) = −F (ω0(x, y)), (4.16)

for every (x, y) ∈ D. Let ai = F (ω0)
∣∣
(∂D)i

, i = 0, . . . , n. Then δHc(v0)δv = 0, i.e. v0 is a critical point of 

Hc.

Proof. Note first that Hc(v) can be expressed, using u = (1 − α2Δ)v, as

Hc(v) =
1

2

∫

D

v · udx +

∫

D

C(ω)dx +

n∑

i=0

ai

∫

(∂D)i

u · ds. (4.17)
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The first variation of Hc at v0 is given by the following expression,

δHc(v0)δv =
d

dε
Hc(v0 + εδv)

∣∣
ε=0

=
1

2

∫

D

v0 · δudx +
1

2

∫

D

u0 · δvdx +

∫

D

C ′(ω0)δωdx +
n∑

i=0

ai

∫

(∂D)i

δu · ds, (4.18)

where δu = (1 − α2Δ)δv and δω = curl δu. We will be using the following identity (see [31, Eq. 2.14, page 

108]),

C ′(ω0)δω = curl(C ′(ω0)δu) − C ′′(ω0)∇⊥ω0 · δu, (4.19)

which follows from the identity curl(fv) = ∇⊥f · v + f curl v. Noting that, by Stokes’ theorem,

∫

D

curl(C ′(ω0)δu)dx =
n∑

i=0

∫

(∂D)i

C ′(ω0)δu · ds, (4.20)

we see that, using (4.19) and (4.20)

∫

D

C ′(ω0)δωdx = −
∫

D

C ′′(ω0)∇⊥ω0 · δudx +
n∑

i=0

∫

(∂D)i

C ′(ω0)δu · ds. (4.21)

We integrate by parts and use (2.8). Thus,

∫

D

u0 · δvdx =

∫

D

(v0 − α2Δv0) · δvdx =

∫

D

v0 · δudx. (4.22)

Using (4.22) and (4.21), we see that (4.18) is given by,

δHc(v0)δv =

∫

D

v0 · δudx −
∫

D

C ′′(ω0)∇⊥(ω0)δudx

+

n∑

i=0

∫

(∂D)i

C ′(ω0)δu · ds +

n∑

i=0

ai

∫

(∂D)i

δu · ds. (4.23)

Since v0 · ∇ω0 = 0, and v0 is tangent to the boundary, this means that ∇ω0 is orthogonal to the boundary 

and thus ω0 is a constant on the boundary. This then implies that,

δHc(v0)δv =

∫

D

v0 · δudx −
∫

D

C ′′(ω0)∇⊥(ω0)δudx

+

n∑

i=0

C ′(ω0)|(∂D)i

∫

(∂D)i

δu · ds +

n∑

i=0

ai

∫

(∂D)i

δu · ds, (4.24)

from which we see that δHc(v0)δv = 0 provided,

v0(x, y) = C ′′(ω0(x, y))∇⊥ω0(x, y), (4.25)

ai = −C ′(ω0), i = 0, . . . , n. (4.26)
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Since, by (4.16), C is chosen such that C ′(ω0(x, y)) = −F (ω0(x, y)) for every (x, y) ∈ D, then,

v0 = −∇⊥φ0 = −F ′(ω0)∇⊥ω0 = C ′′(ω0)∇⊥ω0,

i.e., (4.25) holds. Since we have chosen ai = ψ0|(∂D)i
for all 0 ≤ i ≤ n, (note that ψ0 is a constant on the 

boundary curves) which then implies that ai = −C ′(ω0)|(∂D)i
, then the first variation δHc(v0)δv = 0. �

We denote ‖∇v‖2
2 :=

∫
D

|∇v(x)|2dx, where |∇v|2 = tr(∇v · (∇v)T ). We are now ready to prove Arnold’s 

first stability theorem for α-Euler.

Theorem 4.5. Let v0 be a steady state solution of the α-Euler equations (1.1) on the multi connected domain 

D, satisfying Assumption 4.1. Suppose that

0 < inf
(x,y)∈D

−F ′(ω0(x, y)) ≤ sup
(x,y)∈D

−F ′(ω0(x, y)) < +∞. (4.27)

Then there exists a constant K > 0, such that if v(·, t) = v0 + δv(·, t), t ∈ I solves the α-Euler equations 

(1.1) on D then one has the following estimate for all times t ∈ I,

||v(·, t) − v0||22 + α2||∇(v(·, t) − v0)||22 + ||ω(·, t) − ω0||22
≤ K(||v(·, 0) − v0||22 + α2||∇(v(·, 0) − v0)||22 + ||ω(·, 0) − ω0||22), (4.28)

where ω0 = curl(1 − α2Δ)v0 and ω(·, t) = curl(1 − α2Δ)v(·, t).

Proof. Let K1 := inf(x,y)∈D(−F ′(ω0(x, y))) and K2 := sup(x,y)∈D(−F ′(ω0(x, y))). Let Hc be defined as in 

(4.2), and choose C and ai as in Lemma 4.4. Since the range of ω0 is a connected set, (4.27) is equivalent 

to,

0 < K1 ≤ −F ′(ξ) ≤ K2 < +∞, (4.29)

for ξ ∈ [ min
(x,y)∈D

ω0(x, y), max
(x,y)∈D

ω0(x, y)]. Using (4.27), we may extend C from the range of ω0 to R such 

that,

K1 ≤ C ′′(z) ≤ K2, (4.30)

holds for every z ∈ R. Indeed, we first extend F linearly outside

[ min
(x,y)∈D

ω0(x, y), max
(x,y)∈D

ω0(x, y)]

to all of R. We then choose C such that C ′(ξ) = −F (ξ) for all ξ ∈ R. By Lemma 4.3, Hc is an invariant of 

motion and by Lemma 4.4, v0 is a critical point of Hc, i.e., δHc(v0)δv = 0. Equation (4.2) gives

Hc(v) − Hc(v0) =
1

2

∫

D

u(x) · v(x)dx − 1

2

∫

D

u0(x) · v0(x)dx

+

∫

D

(C(ω(x)) − C(ω0(x)))dx +
n∑

i=0

ai

∫

(∂D)i

(u(s) − u0(s)) · ds

=
1

2

∫

D

(u(x) − u0(x)) · (v(x) − v0(x))dx
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+
1

2

∫

D

(
v0(x) · (u(x) − u0(x)) + u0(x) · (v(x) − v0(x))

)
dx

+

∫

D

C ′(ω0(x))(ω(x) − ω0(x))dx +
1

2

∫

D

C ′′(ξ)(ω(x) − ω0(x))2dx

+

n∑

i=0

ai

∫

(∂D)i

(u(s) − u0(s)) · ds,

where we have Taylor expanded C(ω(x)) − C(ω0(x)) and ξ depends on ω0(x) and ω(x). By virtue of the 

fact that the first variation is zero at v0, using (4.23), with δv = v − v0 and δu = u − u0 we have that,

1

2

∫

D

(
v0(x) · (u(x) − u0(x)) + u0(x) · (v(x) − v0(x))

)
dx

+

∫

D

C ′(ω0(x))(ω(x) − ω0(x))dx +
n∑

i=0

ai

∫

(∂D)i

(u(s) − u0(s)) · ds = 0,

whence,

Hc(v) − Hc(v0) =
1

2

∫

D

(u(x) − u0(x)) · (v(x) − v0(x))dx (4.31)

+
1

2

∫

D

C ′′(ξ)(ω(x) − ω0(x))2dx.

Using the fact that u − u0 = (1 − α2Δ)(v − v0) and integrating the second term by parts, we see, using 

(2.7), that 
∫

D
Δ(v(x) − v0(x)) · (v(x) − v0(x))dx = − 

∫
D

|∇(v(x) − v0(x))|2dx. Thus,

Hc(v) − Hc(v0) =
1

2

∫

D

(v(x) − v0(x)) · (v(x) − v0(x))dx (4.32)

+
1

2

∫

D

α2|∇(v(x) − v0(x))|2dx +
1

2

∫

D

C ′′(ξ)(ω(x) − ω0(x))2dx.

Thus, using (4.30)

1

2

∫

D

|v(x) − v0(x)|2dx +
α2

2

∫

D

|∇(v(x) − v0(x))|2dx

+
K1

2

∫

D

(ω(x) − ω0(x))2dx ≤ Hc(v) − Hc(v0) ≤ 1

2

∫

D

|v(x) − v0(x)|2dx

+
α2

2

∫

D

|∇(v(x) − v0(x))|2dx +
K2

2

∫

D

(ω(x) − ω0(x))2dx.

We now let β1 = min(1
2 , K1

2 ) and β2 = max(1
2 , K2

2 ) and see that,

β1(‖v − v0‖2
2 + α2‖∇(v − v0)‖2

2 + ‖ω − ω0‖2
2) ≤ Hc(v) − Hc(v0)

≤ β2(‖v − v0‖2
2 + α2‖∇(v − v0)‖2

2 + ‖ω − ω0‖2
2). (4.33)
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We now use Lemma 4.3, (the fact that the Hamiltonian is a temporal invariant of the motion) to get, for 

any time t ∈ I,

(‖v(t) − v0‖2
2 + α2‖∇(v(t) − v0)‖2

2 + ‖ω(t) − ω0‖2
2)

≤ β−1
1 (Hc(v(t)) − Hc(v0)) = β−1

1 (Hc(v(0)) − Hc(v0))

≤ β2β−1
1 (‖v(0) − v0‖2

2 + α2‖∇(v(0) − v0)‖2
2 + ‖ω(0) − ω0‖2

2).

From this, (4.28) follows by putting K = β2β−1
1 . �

We will now address Arnold’s second theorem for α-Euler. We compute the second variation of Hc, where 

δu = (1 − α2Δ)δv and δω = curl(1 − α2Δ)δv,

δ2Hc(v0)(δv, δv) :=
d2

dε2
H(v0 + εδv)

∣∣
ε=0

=
1

2

∫

D

δv · δudx +
1

2

∫

D

δu · δvdx +

∫

D

C ′′(ω0)δωδωdx

=

∫

D

(δv) · δvdx + α2

∫

D

|∇δv|2dx +

∫

D

C ′′(ω0)δωδωdx, (4.34)

where, we integrate by parts using (2.7).

Remark 4.6. We note that the second variation defines the following quadratic form K(v0) on the space X

defined in (4.1).

K(v0)(v, v) := δ2Hc(v0)(v, v) =

∫

D

v · vdx (4.35)

+ α2

∫

D

|∇v|2dx +

∫

D

C ′′(ω0)(curl(1 − α2Δ)v)2dx.

Under assumption (4.27), the second variation defined by (4.35) is bounded and positive definite on the 

space X. Note that if there exists a v 	= 0 ∈ X such that curl(1 −α2Δ)v = 0, then the value of the quadratic 

form reduces to 
∫

D
v · vdx + α2

∫
D

∇v · ∇vdx and this cannot be negative definite. In the proof of Arnold’s 

second theorem given below, we will require the quadratic form defined by (4.35) to be negative definite. 

We would like to restrict the perturbations δv to a subspace of X such that the operator curl(1 − α2Δ) is 

one to one and thus the quadratic form (4.35) can be negative definite under appropriate assumptions on 

C ′′. We thus restrict the perturbation stream function to the following subspace,

Yα =

{
φ : H4(D;R) : φ|(∂D)0

= 0;

∫

(∂D)i

−∇⊥(1 − α2Δ)φ · ds = 0, 1 ≤ i ≤ n;

(n · ∇)(∇⊥φ) ‖ n on ∂D; φ|(∂D)i
is constant, 1 ≤ i ≤ n

}
. (4.36)

We note that we do not specify the exact values of the constant that φ takes along the inner boundary 

curves. Also, choose for the velocity perturbations the subspace of X given by
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Xα :=

{
v ∈ H3(D;R2), div v = 0 in D,

∫

(∂D)i

(1 − α2Δ)v · ds = 0, 1 ≤ i ≤ n,

v · n = 0 on ∂D, (n · ∇)v ‖ n on ∂D

}
.

Lemma 4.7. The operator −∇⊥ : Yα → Xα is bijective. That is, given v ∈ Xα, there exists a unique φ ∈ Yα

such that v = −∇⊥φ.

The proof of this Lemma is omitted as it follows from standard arguments in vector calculus, see for 

example [36, pp. 166–168]. The proof does not use the conditions on the circulations in the definitions of 

both spaces Xα and Yα. We will need those in the proof of Lemma 4.8.

Lemma 4.8. The operator −Δ(1 − α2Δ) : Yα → L2 is one to one. That is, if −Δ(1 − α2Δ)φ = 0, for some 

φ ∈ Yα, then, φ = 0.

Proof. Note that φ satisfies,

− Δ(1 − α2Δ)φ = 0, (4.37)

φ(x, y)|(∂D)0
= 0, (4.38)

φ|(∂D)i
(x, y) = ci, for 1 ≤ i ≤ n, (4.39)

∫

(∂D)i

−∇⊥(1 − α2Δ)φ(s) · ds = 0 for 1 ≤ i ≤ n, (4.40)

(n · ∇)∇⊥φ · t = 0. (4.41)

Multiply (4.37) by φ and integrate over the domain to get

0 =

∫

D

φ(−Δ(1 − α2Δ)φ)dx = −
n∑

i=0

∫

(∂D)i

φn · (1 − α2Δ)∇φds

+

∫

D

∇φ · (1 − α2Δ)∇φdx

=

n∑

i=0

φ|(∂D)i

∫

(∂D)i

(1 − α2Δ)∇⊥φ · ds +

∫

D

∇φ · (1 − α2Δ)∇φdx

=

∫

D

∇φ · (1 − α2Δ)∇φdx, (4.42)

where we have used Green’s formula and (4.38), (4.39) and (4.40) and the fact that n · ∇φ = −t · ∇⊥φ. But,

∫

D

∇φ · (1 − α2Δ)∇φdx =

∫

D

∇φ · ∇φdx − α2

∫

D

∇φ · Δ∇φdx.

By (2.7), we have that

∫

D

∇φ · Δ∇φdx =

∫

D

−∇⊥φ · Δ(−∇⊥φ)dx =

∫

D

v · Δvdx = −
∫

D

|∇v|2dx,
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where v ∈ Xα is the unique solution to v = −∇⊥φ, via Lemma 4.7. Thus,

∫

D

∇φ · (1 − α2Δ)∇φdx =

∫

D

∇φ · ∇φdx + α2

∫

D

|∇v|2dx

=

∫

D

v · vdx + α2

∫

D

|∇v|2dx = 0,

from which we conclude that v = 0. It follows by Lemma 4.7 that −∇⊥φ = 0 on D and hence ∇φ = 0. 

Then φ is a constant, and is equal to 0 by (4.38). �

Lemma 4.9. The operator curl(1 − α2Δ) : Xα → L2 is one to one. That is, if curl(1 − α2Δ)v = 0, for some 

v ∈ Xα, then v = 0.

Proof. Let v ∈ Xα be such that curl(1 − α2Δ)v = 0. By Lemma 4.7, we have that there exists a φ ∈ Yα

such that v = −∇⊥φ. Then curl(1 − α2Δ)v = curl(1 − α2Δ)(−∇⊥φ) = −Δ(1 − α2Δ)φ = 0. By Lemma 4.8, 

we have that φ = 0. Thus v = −∇⊥φ = 0. �

Remark 4.10. We comment on the Rayleigh–Ritz formula frequently used in hydrodynamics, see, e.g. ([43, 

Lemma 4.16, page 111]). Let A be a positive operator with compact resolvent acting in a Hilbert space H. 

The minimal eigenvalue λmin(A) can be computed by the following Rayleigh–Ritz formula:

λmin(A) = min
0�=φ∈dom A

||Aφ||2
〈Aφ, φ〉 , (4.43)

where || ·|| and 〈·, ·〉 are the norm and the scalar product in H. Indeed, as the following argument shows, (4.43)

is a consequence of the standard (Hilbert–Schmidt–Courant–Fischer) minimax principle: Let B = A−1. By 

assumptions, B is a compact positive operator whose maximal eigenvalue is given by the formula (see, e.g. 

[40, Sec. XIII.1, page 76 onwards])

λmax(B) = max
ψ �=0

〈Bψ, ψ〉
||ψ||2 . (4.44)

Letting ψ = Aφ and using the spectral mapping theorem sp(A) = (sp(B))−1,

λmin(A) = (λmax(B))−1 =

(
max

0�=φ∈dom A

〈φ, Aφ〉
||Aφ||2

)−1

= min
0�=φ∈domA

||Aφ||2
〈Aφ, φ〉 ,

yielding (4.43). We apply formula (4.43) for the following situation. Let A = −Δ(1 − α2Δ) with the domain 

dom A = Yα ⊂ L2(D), see (4.36) for the definition of Yα. We note that Yα ⊂ L2(D) is compactly embedded 

in L2(D) by the standard Sobolev embedding. Due to the choice of the boundary conditions,

〈Aφ, φ〉L2 = 〈φ, −Δ(1 − α2Δ)φ〉L2 = ||v||22 + α2||∇v||22 (4.45)

for all φ ∈ Yα and v = −∇⊥φ ∈ Xα. In particular, the operator A is positive. On the other hand, the 

formula,

curl(1 − α2Δ)v = −Δ(1 − α2Δ)φ (4.46)
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yields

||Aφ||22 = || − Δ(1 − α2Δ)φ||22 = || curl(1 − α2Δ)v||22. (4.47)

Combining (4.43), (4.45), (4.47), we obtain the following analogue of the Rayleigh–Ritz formula for the 

α-Euler equation:

λmin,α = min
0�=v∈Xα

|| curl(1 − α2Δ)v||22
||v||22 + α2||∇v||22

, (4.48)

where λmin,α is the minimum eigenvalue of the operator A = −Δ(1 −α2Δ) with the domain dom A = Yα ⊂
L2(D).

By equation (4.48), for every v ∈ Xα we have,

λmin,α

( ∫

D

v · vdx + α2

∫

D

∇v · ∇vdx

)
≤

∫

D

(curl(1 − α2Δ)v)2dx. (4.49)

We shall now prove Arnold’s second stability theorem for α-Euler.

Theorem 4.11. Let v0 be a steady state solution of the α-Euler equations (1.1) on the multi connected domain 

D, satisfying Assumption 4.1. Let λmin,α > 0 be the minimum eigenvalue of the operator −Δ(1 − α2Δ) :

L2(D) → L2(D) with the domain dom(−Δ(1 − α2Δ)) = Yα. Suppose

0 <
1

λmin,α
< inf

(x,y)∈D
F ′(ω0(x, y)) ≤ sup

(x,y)∈D

F ′(ω0(x, y)) < +∞. (4.50)

There exists a constant K > 0, such that if v(·, t) = v0 + δv(·, t), t ∈ I solves the α-Euler equations (1.1)

on D, with δv ∈ Xα, then one has the following estimate for all times t ∈ I,

||v(·, t) − v0||22 + α2||∇(v(·, t) − v0)||22 + ||ω(·, t) − ω0||22
≤ K(||v(·, 0) − v0||22 + α2||∇(v(·, 0) − v0)||22 + ||ω(·, 0) − ω0||22), (4.51)

where ω0 = curl(1 − α2Δ)v0 and ω(·, t) = curl(1 − α2Δ)v(·, t).

Proof. Let K1 := inf(x,y)∈D F ′(ω0(x, y)) and K2 := sup(x,y)∈D F ′(ω0(x, y)). From the fact that 

C ′′(ω0(x, y)) = −F ′(ω0(x, y)) for every (x, y) ∈ D, we see that

0 < K1 ≤ −C ′′(ω0(x, y)) ≤ K2 < +∞,

for every (x, y) ∈ D. We first extend C to all of R such that

K1 ≤ −C ′′(ξ) ≤ K2, (4.52)

holds for every ξ ∈ R. Proceeding similarly to the proof of Arnold’s first theorem, we obtain that, cf. (4.32),

Hc(v) − Hc(v0) =
1

2

∫

D

(v − v0) · (v − v0)dx (4.53)

+
1

2

∫

D

α2|∇(v − v0)|2dx +
1

2

∫

D

C ′′(ξ)(ω − ω0)2dx.
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Since (4.52) holds, we have that,

− 1

2

∫

D

|v − v0|2dx − α2

2

∫

D

|∇(v − v0)|2dx +
K1

2

∫

D

(ω − ω0)2dx

≤ Hc(v0) − Hc(v) ≤ −1

2

∫

D

|v − v0|2dx − α2

2

∫

D

|∇(v − v0)|2dx

+
K2

2

∫

D

(ω − ω0)2dx. (4.54)

By (4.49), we have that,

∫

D

(v − v0) · (v − v0)dx + α2

∫

D

|∇(v − v0)|2dx ≤ 1

λmin,α

∫

D

(ω − ω0))2dx. (4.55)

This then means that the left hand side of (4.54) can be estimated from below by

0 <
(K1 − 1/λmin,α)

2

∫

D

((ω − ω0)2dx ≤ −1

2

∫

D

|v − v0|2dx

− α2

2

∫

D

|∇(v − v0)|2dx +
K1

2

∫

D

(ω − ω0)2dx ≤ Hc(v0) − Hc(v).

Thus, obviously, splitting the LHS, we obtain

1

4
(K1 − 1/λmin,α)

∫

D

((ω − ω0)2dx)

+
1

4
(K1 − 1/λmin,α)

∫

D

((ω − ω0)2dx ≤ Hc(v0) − Hc(v).

Using (4.49) again, we see that

λmin,α(K1 − 1/λmin,α)

4

( ∫

D

|v − v0|2dx + α2

∫

D

|∇(v − v0)|2dx

)

+
1

4
(K1 − 1/λmin,α)

∫

D

((ω − ω0)dx) ≤ Hc(v0) − Hc(v). (4.56)

On the other hand the right hand side of (4.54) can be estimated as follows:

Hc(v0) − Hc(v) ≤ −1

2

∫

D

|v − v0|2dx − α2

2

∫

D

|∇(v − v0)|2dx

+ K2

∫

D

(ω − ω0)dx ≤ 1

2

∫

D

|v − v0|2dx

+
α2

2

∫

D

|∇(v − v0)|2dx + K2

∫

D

(ω − ω0)dx. (4.57)
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Now let β1 = min{λmin,α(K1−1/λmin,α)
4 , 14 (K1 − 1/λmin,α)} and β2 = max{ 1

2 , K2} and we obtain, cf. (4.33),

β1(‖v − v0‖2
2 + α2‖∇(v − v0)‖2

2 + ‖ω − ω0‖2
2) ≤ Hc(v0) − Hc(v)

≤ β2(‖v − v0‖2
2 + α2‖∇(v − v0)‖2

2 + ‖ω − ω0‖2
2).

We can thus finish the proof as in Arnold’s first theorem. �

4.2. Arnold’s theorems in a bounded, simply connected domain

Let D ⊂ R
2 be a bounded, simply connected region with a smooth boundary ∂D. The functional (4.2)

is now given by,

Hc(v) =
1

2

∫

D

v · (1 − α2Δ)vdx +

∫

D

C(curl(1 − α2Δ)v)dx + a

∫

∂D

(1 − α2Δ)v · ds. (4.58)

Lemma 4.3 holds and we impose Assumption 4.1. Lemma 4.4 also holds, where we now set a = F (ω0)|∂D. 

The expression for the second variation given in (4.34) remains unchanged. Theorem 4.5 also holds in this 

case. We now expand upon Remark 4.6.

Remark 4.12. Our Lemmas 4.7, 4.8 and 4.9 in Remark 4.6 will work where the subspace for the stream 

function perturbations is now Yα := {φ ∈ H4(D; R) ∩ H1
0 (D; R); (n · ∇)(∇φ) · n = 0 on ∂D} and the 

subspace for the velocity perturbations is

Xα :=

{
v ∈ H3(D;R2), div v = 0 in D, v · n = 0 and (n · ∇)v ‖ n on ∂D

}
.

The proofs are similar and are omitted. Arnold’s second theorem then follows as stated.

4.3. Arnold’s second theorem on the two torus

By Remark 4.13 below, we do not expect that Arnold’s first theorem holds on the two torus.

Remark 4.13. Condition (4.27) in Arnold’s first Theorem 4.5 is never satisfied in a domain without a 

boundary, see [31, Section 3.2, page 112]. To demonstrate this, let us assume (4.27). Then, since F is 

monotone, there exists its inverse function denoted by G, i.e., G = F −1, and since (4.27) holds, one has the 

relationship

1

c2
≤ −G′(ξ) ≤ 1

c1
, (4.59)

for all ξ in the range of F (ω0(·, ·)), i.e., for all ξ in the range of φ0(·, ·). In particular, G′ is negative everywhere. 

Assume without loss of generality that ∂xφ0 	= 0 (if it is, then in the argument below replace ∂xφ0 by ∂yφ0, 

we exclude the trivial case φ0 = constant everywhere in D). We have that −Δ(1 − α2Δ)φ0 = ω0 = G(φ0). 

From this we see that, ∂x(−Δ(1 − α2Δ)φ0) = G′(φ0)∂xφ0. Multiplying this by ∂xφ0 and integrating this 

over the domain D, we get,

−
∫

D

∂xφ0∂xΔ(1 − α2Δ)φ0dx =

∫

D

G′(φ0)(∂xφ0)2dx. (4.60)
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Integrating the left hand side by parts, we get,

−
∫

D

∂xφ0∂xΔ(1 − α2Δ)φ0dx = −
∫

D

∂xφ0Δ(1 − α2Δ)∂xφ0dx

=

∫

D

∇(∂xφ0) · ∇((1 − α2Δ)∂xφ0)dx −
∫

∂D

(∂xφ0)n · ∇(∂x(1 − α2Δ)φ0)ds.

But
∫

D

∇(∂xφ0) · ∇((1 − α2Δ)∂xφ0)dx =

∫

D

(∇∂xφ0)2dx−

α2

∫

D

∇(∂xφ0) · ∇(Δ∂xφ0)dx =

∫

D

(∇∂xφ0)2dx

+ α2

∫

D

|∇(∇∂xφ0)|2dx −
∫

∂D

∇(∂xφ0)n · ∇(∇∂xφ0)ds.

Thus, rewriting the left side of (4.60) one obtains

∫

D

(∇∂xφ0)2dx + α2

∫

D

|∇(∇∂xφ0)|2dx −
∫

∂D

∇(∂xφ0)n · ∇(∇∂xφ0)ds

−
∫

∂D

(∂xφ0)n · ∇(∂x(1 − α2Δ)φ0)ds =

∫

D

G′(φ0)(∂xφ0)2dx.

Note that the first two terms on the left hand side are positive and the term in the right hand side is negative 

by (4.59) which leads to a contradiction in the absence of the boundary terms in the left hand side.

We consider Arnold’s second theorem on the two torus T2. The Hamiltonian Hc is now given by,

Hc(v) =
1

2

∫

D

v · (1 − α2)vdx +

∫

D

C(curl(1 − α2Δ)v)dx. (4.61)

Lemma 4.3 remains true in this setting. We also impose Assumption 4.1. Lemma 4.4 is modified as follows.

Lemma 4.14. Let v0, ω0 be a steady state solution of (1.1), satisfying Assumption 4.1, where ω0 = curl(1 −
α2Δ)v0. Let C be a smooth function so that

C ′(ω0(x, y)) = −F (ω0(x, y)), (4.62)

for every (x, y) ∈ D. Then δHc(v0)δv = 0, i.e. v0 is a critical point of Hc.

The expression for the second variation remains the same as (4.34). The statement of Arnold’s first 

theorem remains the same as in Theorem 4.5. Remark 4.6 is modified as follows.

Remark 4.15. Our space for the perturbation stream function is now given by

Yα := {φ ∈ H4(T2);

∫

T2

φdx = 0}, (4.63)
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and for the velocities is given by Xα := {v ∈ H3(T2; R2); 
∫
T2 vdx = 0; div v = 0}. Lemmas 4.7, 4.8 and 4.9

in Remark 4.6 are true in this setting with minor modifications in the proof. Arnold’s second theorem then 

follows as stated in Theorem 4.11.

4.4. Arnold’s theorems on the periodic channel

Now, we would like to formulate Arnold’s theorems on the periodic channel D = T × [−1, 1], so that the 

boundary conditions are periodic in the x direction with boundary conditions v · n and (n · ∇)v parallel 

to n at the “walls” y = 1 and y = −1. We will prove that since the domain is translationally invariant 

in the x direction, the x momentum is conserved, i.e., we will prove that, if v(t, ·) = (v1(t, ·), v2(t, ·)), 
u(t, ·) = (u1(t, ·), u2(t, ·)) solve the α-Euler equation (1.1), then

Mx =

1∫

−1

∫

T

u1(t, x, y)dxdy =

1∫

−1

∫

T

u1(0, x, y)dxdy (4.64)

is an invariant of the motion. Here u = (1 − α2Δ)v.

Lemma 4.16. Suppose v(t, ·) = (v1(t, ·), v2(t, ·)), u(t, ·) = (u1(t, ·), u2(t, ·)) solve the α-Euler equation (1.1), 

on the domain T × [−1, 1]. Then

d

dt
Mx =

d

dt

1∫

−1

∫

T

u1(t, x, y)dxdy = 0. (4.65)

Proof. We first note that the boundary conditions v · n|y=±1 = 0 imply that

v2(x, −1) = v2(x, 1) = 0. (4.66)

Also, the boundary condition n · ∇v parallel to n implies that n · ∇v · t = 0. On the boundaries y = −1

and y = 1, n = (0, ±1) and thus n · ∇ = ∂y.

Thus n · ∇v = ∂yv = (φyy, −φyx). Thus (φyy, −φyx) · (1, 0) = 0 implies that φyy = 0 on the boundary, 

i.e.,

φyy(x, −1) = φyy(x, 1) = 0. (4.67)

The α-Euler equations (1.1) can be rewritten as, see [23, Eq. 8.33, page 67],

∂tu − v × (∇ × u) + ∇(v · u − 1

2
|v|2 − α2

2
|∇v|2 + p) = 0. (4.68)

Denote f = v · u − 1
2 |v|2 − α2

2 |∇v|2 + p. Also note that ∇ × u = (∂xu2 − ∂yu1)k, where k is the unit vector 

pointing out of the plane of flow. Thus v × (∇ × u) = (v2∂xu2 − v2∂yu1)i − (v1∂xu2 − v1∂yu1)j. We thus 

have that, using (4.68) and the computations above,

d

dt
Mx =

d

dt

1∫

−1

∫

T

u1(t, x, y)dxdy =

1∫

−1

∫

T

∂tu1(t, x, y)dxdy

=

1∫

−1

∫

T

(
v2∂xu2 − v2∂yu1 − ∂xf

)
dxdy.
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We analyze this term by term. Notice first that 
∫
T

−∂xfdx = 0. Rewriting v2∂xv2 = ∂x(1
2v2)2 we get ∫

T
v2∂xv2dx =

∫
T

∂x(1
2v2)2dx = 0. Also,

1∫

−1

∫

T

v2∂xΔv2dxdy =

∫

T

1∫

−1

v2Δ(∂xv2)dydx

= −
∫

T

1∫

−1

∇v2 · ∇(∂xv2)dydx = −
1∫

−1

∫

T

∂x(
1

2
(∇v2)2)dxdy = 0,

where we integrate by parts in y and boundary terms disappear by using boundary condition (4.66) and 

then switch order of integration and use the fact that

∇v2 · ∇(∂xv2) = (
1

2
(∇v2)2).

Thus, 
∫ 1

−1

∫
T

v2∂xu2dxdy = 0. We now look at the second term,

1∫

−1

∫

T

v2∂yu1dxdy =

∫

T

1∫

−1

v2∂yu1dydx

= −
∫

T

1∫

−1

∂yv2u1dydx =

∫

T

1∫

−1

∂xv1u1dydx,

where we integrate by parts and the boundary terms vanish using boundary condition (4.66) and since 

div v = 0, we have that ∂xv1 = −∂yv2. Notice that

∂xv1u1 = ∂xv1v1 − α2∂xv1Δv1.

Since ∂xv1v1 = ∂x(1
2v2

1), we have that

1∫

−1

∫

T

∂xv1Δv1dxdy = −
1∫

−1

∫

T

∇∂xv1 · ∇v1dxdy

= −
1∫

−1

∫

T

∂x(
1

2
(∇v1)2)dxdy = 0. �

Since u1 = ψy, using (4.64), we see that,

1

2π
Mx =

1

2π

1∫

−1

∫

T

u1(t, x, y)dxdy =
1

2π

∫

T

1∫

−1

u1(t, x, y)dydx

=
1

2π

∫

T

1∫

−1

ψy(t, x, y)dydx =
1

2π

∫

T

ψ(t, x, −1)dx − 1

2π

∫

T

ψ(t, x, 1)dx.
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Since ψ = φ − α2Δφ, and by the boundary condition (4.67), φyy(x, ±1) = 0, we have that

ψ(x, ±1) = φ(x, ±1) − ∂xxφxx(x, ±1).

Also note that,

∫

T

φxx(x, ±1)dx =

∫

T

∂xφx(x, ±1)dx = 0

to conclude that

1

2π
Mx =

1

2π

∫

T

ψ(t, x, −1)dx − 1

2π

∫

T

ψ(t, x, 1)dx

=
1

2π

∫

T

φ(t, x, −1)dx − 1

2π

∫

T

φ(t, x, 1)dx. (4.69)

By Lemma 4.16, Mx/2π is t-independent. Since φ(x, −1) and φ(x, 1) are constants, one can simply take the 

difference to be Mx/2π. Thus in solving the Poisson equation for the stream function we can set φ(x, −1) = 0

and φ(x, 1) = Mx/2π. Thus the following Poisson problem is solved to recover the stream function from the 

vorticity

−Δ(1 − α2Δ)φ = ω, in D, φ(x, −1) = 0, φ(x, 1) = −Mx/2π. (4.70)

Since this must hold for both the steady state φ0 and the perturbed flow φ0 + δφ, we see that, the Poisson 

equation satisfied by the perturbation stream function δφ satisfies Dirichlet boundary conditions,

−Δ(1 − α2Δ)δφ = ω, in D, δφ(x, −1) = 0, δφ(x, 1) = 0. (4.71)

The subspace for the perturbation stream function is now as follows:

Yα =

{
φ : H4((T × [−1, 1]);R) :φ(x, 1) = 0, φ(x, −1) = 0, φyy(x, 1) = 0, φyy(x, −1) = 0

}
.

One then defines the subspace for the perturbations of velocity as

Xα :=

{
v : H3((T × [−1, 1]);R2); div v = 0, v · n = 0 and n · ∇v ‖ n on y = ±1;

1∫

−1

∫

T

(1 − α2Δ)v1(x, y)dxdy = 0

}
,

where v = (v1, v2). Lemma 4.7 follows as stated. One can also easily check that if φ(x, 1) = φ(x, −1) = 0, 

then 
∫
T

∫ 1

−1
u1(x, y)dydx = 0. Indeed, using (4.69),

∫

T

1∫

−1

u1(x, y)dydx =

∫

T

1∫

−1

ψy(x, y)dydx =

∫

T

(ψ(x, 1) − ψ(x, −1))dx

=

∫

T

(φ(x, 1) − φ(x, −1))dx =

∫

T

(0 − 0)dx = 0.

The proof of Lemma 4.8 is modified as follows.
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Proof. Note that φ satisfies,

− Δ(1 − α2Δ)φ = 0, (4.72)

φ(x, −1) = φ(x, 1) = 0, (4.73)

φyy(x, −1) = φyy(x, 1) = 0. (4.74)

Multiply (4.72) by φ and integrate over the domain to get

0 =

∫

T

−1∫

−1

φ(−Δ(1 − α2Δ)φ)dydx =

∫

T

−1∫

−1

∇φ · (∇(1 − α2Δ)φ)dydx,

where boundary terms vanish by (4.73). Since (2.7) also holds true in this case, we have that

∫

D

∇φ · Δ∇φdx =

∫

D

−∇⊥φ · Δ(−∇⊥φ)dx =

∫

D

v · Δvdx = −
∫

D

|∇v|2dx,

where v ∈ Xα is the unique solution to v = −∇⊥φ, via Lemma 4.7. Thus, we see that,

∫

D

∇φ · (1 − α2Δ)∇φdx =

∫

D

∇φ · ∇φdx + α2

∫

D

|∇v|2dx

=

∫

D

v · vdx + α2

∫

D

|∇v|2dx = 0,

from which we conclude that v = 0. It follows by Lemma 4.7 that −∇⊥φ = 0 on D and hence ∇φ = 0. 

Then φ is a constant, and is equal to 0 by (4.73). �

Lemma 4.9 follows as stated and Arnold’s second theorem also follows as stated.

Remark 4.17. The stability results considered above implicitly assume that a solution exists for all times t. 

If not, then one has the stability estimate for all times for which the solution exists. This is sometimes 

referred to in the literature as conditional stability (see, for example, [25, page 7]).

4.5. Examples

Example 4.18. Plane parallel shear flows and inflection points.

(1) Suppose we have a plane parallel shear flow on T × [−L1, L2] induced by the profile v0 = (V (y), 0), 

with V ′(−L1) = V ′(L2) = 0, u0 = (U(y), 0) where U = V − α2V ′′. We assume that U(y) has no inflection 

point on [−L1, L2], i.e., U ′′(y) 	= 0 for every y ∈ [−L1, L2]. We compute −F ′(ω0(x, y)) = V (y)/U ′′(y). 

Therefore, as long as U ′′(y) 	= 0, we can always move to a reference frame where V has the same sign as 

U ′′, i.e., find a constant c such that V (y) + c has the same sign as U ′′. Thus, one can see that −F ′ satisfies 

(4.29) and one has stability of this steady state by Arnold’s first stability Theorem 4.5. We thereby have 

a sufficient condition for stability for a shear flow V , where U does not have any inflection point. Rayleigh 

criterion for α-Euler, see Proposition 3.5 and Example 3.6, guarantees linear stability for flows such that U

has no inflection point. Arnold’s stability Theorem 4.5 guarantees nonlinear Lyapunov stability in the norm 

in (4.51) thus generalizing appropriately the Rayleigh criterion.

(2) Consider now plane parallel shear flows V such that U = V − α2V ′′ has inflection points but V

and U ′′ have the same sign everywhere. We can also prove stability of a steady state v0 = (V (y), 0), with 
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V ′(−L1) = V ′(L2) = 0, u0 = (U(y), 0) where U = V − α2V ′′ such that U ′′ changes sign, but V (y)/U ′′(y)

has the same sign. Then, the ratio −F ′(ω0(x, y)) = V (y)/U ′′(y) is positive everywhere and one obtains 

stability of this steady state by Arnold’s first stability Theorem 4.5. Note that this generalizes the Fjortoft 

criterion, see Proposition 3.7 and Example 3.9, which guaranteed linear stability of these steady states.

Example 4.19. Effect of regularization. This example illustrates the effect of regularization on the Arnold 

criterion. We present an example such that the Arnold stability Theorem 4.5 can be applied to conclude 

stability of the steady states for α-Euler for every α > 0 but the corresponding Arnold Theorem for Euler 

cannot be applied to conclude stability of the steady state for Euler equation obtained, formally, by putting 

α = 0 in the steady states for the α-Euler. Suppose we have a plane parallel shear flow on T × [−L1, L2]

induced by a profile v0 = (V (y), 0), with V ′(−L1) = V ′(L2) = 0, u0 = (U(y), 0) where U = V −α2V ′′. Let φ0

be the stream function of velocity v0, i.e., V (y) = (φ0)′(y). The boundary condition V ′(−L1) = V ′(L2) = 0

implies that (φ0)′′(L1) = (φ0)′′(L2) = 0. Also, assume that φ0 = (1 + α2)ω0. Thus, F ′ = (1 + α2). Notice 

that ω0 = curl(1 − α2Δ)v0 = −U ′(y) Thus

ω0 = −∂y((1 − α2∂yy)V (y)) = −∂y((1 − α2∂yy)∂yφ0) = α2(φ0)′′′′ − (φ0)′′.

Since ω0 = 1
1+α2 φ0, we see that φ0 must satisfy the following differential equation,

α2(φ0)′′′′ − (φ0)′′ − 1

1 + α2
φ0 = 0, (φ0)′′(L1) = (φ0)′′(L2) = 0. (4.75)

Choose the difference L2 − L1 in such a way that −Δ has minimum eigenvalue 1 on the appropriate space 

Yα. Thus −Δ(1 −α2Δ) will have minimum eigenvalue 1 +α2. Since we have the inequality 1
λmin,α

= 1
1+α2 <

F ′ = 1 +α2 for all α > 0, by Arnold’s second stability Theorem 4.11, one has stability of this steady state for 

all values of α > 0. Notice that if we put α = 0 and consider this as a steady state for the Euler equations, 

φ0 = ψ0 = and φ0 = (1 + α2)ω0 becomes ψ0 = ω0. Thus F ′ = 1 and since the minimum eigenvalue of −Δ

in the appropriate subspace is 1, the inequality 1/λmin < F ′ cannot be checked and stability of this steady 

state cannot be concluded by Arnold’s second stability theorem for the Euler equations. In fact, stability 

holds in a restricted sense if perturbations are restricted to certain subspace, see [31, p. 111] for more details.

Example 4.20. Sinusoidal flows. One class of steady states for which the regularization seems to have no 

effect in terms of the Arnold criterion are the oscillating sinusoidal flows, i.e., steady states of the form 

φ0(y) = sin y and φ0(y) = sin my where m > 1 is an integer. The Arnold stability theorems cannot be used 

to conclude stability of these steady states for both Euler and α-Euler. Consider the domain to be the two 

torus T2. For example, if φ0(y) = sin y, then v0(y) = (cos y, 0), u0(y) = (1 −α2∂yy)v0(y) = ((1 +α2) cos y, 0), 

ω0(y) = −∂y(1 + α2) cos y = (1 + α2) sin y. From this we can see that F ′ = 1/(1 + α2) and in order to check 

for stability we need 1/λmin,α < 1/(1 +α2) which does not hold because λmin,α of the operator −Δ(1 +α2Δ)

with domain Yα as in Equation (4.63) is equal to 1 + α2. One thus cannot conclude stability via Arnold’s 

second Theorem 4.11 We note here the regularization does not have any effect whatsoever because for the 

Euler equation if ψ0(y) = sin y, u0 = (cos y, 0), ω0(y) = sin y. Thus F ′ = 1 and λmin of the negative 

Laplacian −Δ acting on the appropriate subspace is also 1 and thus one cannot check that 1/F ′ < λmin

which is required for stability. Thus the regularization doesn’t seem to affect the ability of Arnold criterion 

to predict the stability of the steady state sin y. Similarly, if φ0(y) = sin my, then v0(y) = (m cos my, 0). 

Then, u0(y) = (1 − α2∂yy)v0(y) = (m(1 + α2m2) cos my, 0), ω0(y) = −∂ym(1 + α2m2) cos my = m2(1 +

m2α2) sin my. From this we can see that F ′ = 1/m2(1 +m2α2). One can check that the minimum eigenvalue 

of −Δ(1 − α2Δ) on the subspace Yα described in Section 4.3 is given by 1 + α2. Thus, in order to check 

for stability we need 1/λmin,α = 1/(1 + α2) < F ′ = 1/(m2(1 + m2α2)). This inequality cannot be checked 

for m > 1 and thus one cannot conclude stability by Arnold’s second stability Theorem 4.11. We note 
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here the regularization does not have any effect whatsoever because for in the case of the Euler equation 

if ψ0(y) = sin my, u0 = (m cos my, 0), ω0(y) = m2 sin my. Thus F ′ = 1/m2 and λmin of the negative 

Laplacian −Δ acting on the appropriate subspace is also 1. Thus we need to check if 1 < 1/m2 which 

cannot be true if m > 1, and thus, similar to the α-Euler criterion, even for the Euler case, stability cannot 

be concluded via the Arnold’s second stability theorem. Thus the regularization doesn’t seem to affect the 

ability of Arnold criterion to predict the stability of the steady state sin my. This leads us to conjecture that 

these steady states are unstable even for the regularized α-Euler equations. For more regarding stability of 

sinusoidal flows for the Euler equations, see [6].
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