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1. Introduction

The a-Euler equations (along with its variants such as a-Navier Stokes, Camassa—Holm equations) were
introduced and studied in a series of foundational papers by C. Foias, D. Holm, J. Marsden, T. Ratiu, E. Titi
and others, see for example, [14], [23], [24] and references therein. Together with related models such as the
Voigt-a, it has been studied intensively ever since by many authors from a wide variety of research themes
looking at issues such as possible route to proving well posedness for the Euler equations (see [28,29,34,
37]), investigating the geometric structure of these equations along the lines introduced by V.I. Arnold for
the Euler equations (see [33,41]), turbulence modeling (see, for instance, [7,10]), data assimilation (see, for
example, [1] and references therein) and numerical simulations relating some of the above themes (see, for
example, [26,27]), amongst other topics. In spite of this, surprisingly little is known about stability of steady
state solutions to the a-Euler equations (see, however, [38]), even though stability theory of the classical
2D Euler equations has been extensively studied, see, e.g., [11,15-19,21,42,/43 45].

Our objectives in this paper are to record basic stability results such as the Rayleigh, Fjortoft and Arnold
stability theorems for the a-Euler equations. The a-Euler equations are a regularization of the classical Euler
equations. On a domain D C R?, they are given as follows:
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w+ (v-V)u+ (Vv)Tu+ V=0,
(1—a?A)v =u, (1.1)

divua =divv =0,

where v : D — R? is the so called filtered velocity and u : D — R? is the actual fluid velocity. Here o > 0 is
a positive number related to the filter of the flow and (VV)T represents the transpose of the Jacobi matrix
of partial derivatives dv;/0x;. The pressure 7 : D — R is related to the actual fluid pressure p: D — R as

1 a?
T=p— §|V|2 - 7|Vv|2.

On domains D with a boundary 0D, these equations are supplemented by the boundary conditions, see, for
example [23] (formula 8.27, page 65),

v.n=0, (n-Vv)|mn, (1.2)

where n is the unit outer normal vector on dD. It is also possible to impose v = 0 as the boundary condition.
We choose to not work with this as it precludes the possibility of working with steady states which are shear
flows with non-zero velocity on the boundary. Formally, putting o = 0 gives us the Euler equations

w+ (u-V)u+Vp=0, divu=0, (1.3)
with the boundary condition
u-n=0, (1.4)

on 0D.

We briefly sketch the main results of our paper. On a domain of the form R x [A;, As] (the so called plane
channel), where A;, A; are real numbers, there exist a class of steady state solutions, known as plane parallel
shear flows, to the Euler equations (1.3) of the form u®(z,y) = (U(y),0) and constant pressure p(z,y) = pY,
where U is a real valued smooth function and p° is a constant. Rayleigh’s inflection point theorem for the
Euler equation, see [39], gives a necessary condition for linearized instability. It states that a plane parallel
shear flow which is linearly unstable must necessarily have a point of inflection, i.e., U”(ys) = 0 for some
point ys € [A1, As]. Fjortoft’s theorem for the Euler equation, see [13], is a refinement of Rayleigh’s theorem
which states that a linearly unstable shear flow steady state must satisfy U” (y)(U(y)—U (ys)) < 0 for at least
one point y € [A1, As], where y, is a point such that U”(ys) = 0 (note that Rayleigh’s theorem guarantees
this). Fjortoft’s theorem thus rules out the instability of certain monotic profiles with one inflection point
that do not satisfy the inequality above, see [11, pp. 131-133] for a nice discussion of the Rayleigh and
Fjortoft theorems for the incompressible Euler equations together with some examples.

In the case of the a-Euler equations, see Lemma 3.1 below, the analogous steady states corresponding
to the plane parallel shear flows are of the form u’(z,y) = (U(y),0), v(z,y) = (V(y),0) and 7(x,y) =
po—3V(y)?+ %(V’(y))Q. Here U(y) = V(y) — a®V"(y) and V'(A;) = V'(A3) = 0 in order to satisfy the
boundary condition (1.2). The a-Euler analogue of Rayleigh’s theorem that we prove, see Proposition 3.5, is
that a linearly unstable steady state of the form above must satisfy U”(y,) = 0. Since U(y) = V(y) = V" (y),
this imposes the condition V" (y) —a?V""(y) = 0 on the regularized velocity V (y). Examples and discussion
of this theorem are given in Section 3. The a-Euler analogue of Fjortoft’s theorem that we prove, see
Proposition 3.7, is that a linearly unstable shear flow steady state must satisfy U”(y)(V(y) — V(ys)) < 0
for at least one point y € [Ay, As], where y; is a point such that U”(ys) = 0. More discussion and further
examples are given in Section 3.
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V.I. Arnold, see [2,3], proved a sufficient condition for nonlinear Lyapunov stability of a steady state of
the Euler equations of the form ¢ = F(w"). Here ° is the stream function associated with the velocity u®,
ie., u’ = ( 27 -9, w? = curlu® is the vorticity and F is a sufficiently smooth real valued function. This
technique relied on exploiting the Hamiltonian structure of the Euler equations together with convexity
estimates on the second variation. Arnold’s First Stability Theorem guarantees, under suitable additional
hypothesis, nonlinear stability of this steady state provided —F’ is positive and bounded above and below.
Arnold’s Second Stability Theorem covers the case when —F’ is negative everywhere and bounded and
moreover satisfies, an additional inequality related to the reciprocal of the minimal eigenvalue of the negative
Laplacian —A. In the case of the a-Euler equations, we consider a steady state of the form ¢° = F(w?),
where ¢° is the stream function associated with the regularized velocity v°, ie., v0 = (¢),—¢)) and
W = curl(1 — a?A)v®. We first prove Arnold’s theorems on an arbitrary multiply connected domain. We
prove, see Theorem 4.5, nonlinear stability if —F” is positive and bounded above and below. We obtain the
a-Euler analogue the Second Stability Theorem, see Theorem 4.11, that proves stability as long as —F” is
negative everywhere, bounded above and below and the lower bound is strictly greater than the reciprocal of
the minimal eigenvalue corresponding to the operator —A(1—a?A). We also prove versions of Arnold’s first
and second stability theorems in domains such as the two torus and the periodic channel, see Sections 4.3
and 4.4. We consider examples illustrating various cases in Section 4.5. It is our hope that the analogues
of classical stability results for a-Euler presented in this paper is of use in comparisons with numerical
simulations.

The paper is organized as follows. In Section 2 we give preliminaries about the a-Euler equations and
the problem setup. In Section 3 we give a-analogues of the classical Rayleigh and Fjortoft criteria for
2D parallel shear flows in the channel. Arnold’s stability theorems are discussed in Section 4. First, we
prove the a-version of the first and second instability theorems for the case of multi-connected domains.
Our formulation of the second stability theorem directly involves the minimal eigenvalue of the respective
a-version of the Laplacian, and is based on the use of the Rayleigh—Ritz formula. Next, we discuss stability
theorems on the 2-torus and on periodic channels and then provide some examples.

2. Preliminaries and setup of the problem

Since divv = 0 in (1.1), there exists a stream function ¢ such that v = —V+1¢, where V+ = (-9,,0,).
We introduce the vorticity

w = curl(l — a?A)v. (2.1)
Applying curl to (1.1), one obtains the a-Euler equation in vorticity form,
wi+v-Vw=0. (2.2)

Using the fact that curl(—V+1)¢p = —Ag¢, we get w = —(1 — a®?A)A¢p = —Av, where we denote by 1,
the stream function associated with velocity u, i.e., u = —V14 and ¢ and 9 are related via the formula
1 = (1 — a?A)p. We can thus rewrite (2.2) in terms of the stream function variables as

Ay — V6 - V(AY) = Ay — ¢ Ay, + ¢y Ah,, = 0. (2.3)

We have the following version of the Kelvin circulation theorem for the a-FEuler model. The proof is
omitted as it is similar to the proof for the Euler case which can be found, for instance, in [8, pp. 21-22].

Lemma 2.1. Let C be a simple closed contour in the fluid at time t = 0. Let Cy be the contour carried along
by the flow following the smoothed velocity v, i.e. Cy = x(C), where x; is the flow map associated with the
velocity v, where v satisfies (1.1). The circulation around Cy is defined to be
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Tc, = /(1 — a?A)v - ds. (2.4)
Ce
Then I'c, is constant in time. That is,
d
—T'¢, =0.
dt

Remark 2.2. One of the original motivations in adding the additional term (Vv)Tu to the a-Euler equations
(1.1) was to prove the Kelvin circulation theorem above (see [14], Section 2, page 507).

Corollary 2.3. Let D C R? be a multiply connected bounded domain, bounded by finitely many numbers of
smooth curves (0D); where i =0,...,n. Then the circulation along each connected boundary curve remains
constant in time, i.e., for every 0 < i < n, we have

d d
g /( a”A)v - ds g / u-ds=0
(0D); (8D);

We shall have occasion to use the following integration by parts formula for vector valued functions

/v Avdx—z / (n-V) Vds—/|VV\ dx. (2.5)

D 0aD);

Here v = (v1,v2), |Vv|? = tr(Vv - (Vv)T), where (-)7 denotes the transpose, and tr denotes trace, i.e.

|Vv|? = Z?Zl[(ﬁrvi)z + (9yv;)?]. Equation (2.5) follows from Green’s identity for scalar valued functions f

and g, see, e.g., [12, Theorem 3 (ii), page 712],

/ngdx = Z / f(n-V)gds — /Vf-ngx, (2.6)

(8D)1 D

applied to each component of v and summation of the resulting identities. By assumption, for any v that
satisfies (1.2), n- Vv is parallel to n and v-n = 0, on the boundary, we have, v-(n-Vv) = 0, i.e., we have,

/v - Avdx = — / |Vv|2dx. (2.7)
D

D

If vi and vo are two vector fields that satisfy (1.2), then by integrating by parts twice using formula
(2.5), observing that the boundary terms vanish via (1.2), and using the fact that tr(Vvy - (Vvg)T) =
tr(Vva - (Vvi)T) one also sees that

/V1 - Avodx = /Av1 - VodX. (2.8)

D D

Consider a steady state solution w® = curl(1 — a?A)v® = —Ay of the a-Euler equation. Here
= -V, ' =(1-a?A)V, 90 =(1-0a®A)¢’ and W’ = —(1 — a*A)A°,
In particular,

VEg? - VO = (= ¢90, + ¢20,)w’ =0, (2.9)
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and thus V¢° and V(Aw?) are parallel. The corresponding linearized equations for the a-Euler model about

the steady state v0, u® are as follows:
w4+ v - Va4 v-va + (VVO)Tu + (VV)TUO + V=0, (2.10)
diva =divv =0,
wi+ v - Vw+v-Vu =0, (2.11)
Atpy — P Ay + ¢y Athy — G AP + ¢, AYY =0, (2.12)

where v = curl™* (1—a?A)~ 1w solves the system of equations curl(1—a?A)v = w, div v = 0 with appropriate
boundary conditions.

3. Rayleigh and Fjortoft criteria for the a-Euler equations

In this section, we derive the classical Rayleigh and Fjortoft criteria for the a-Euler equations, see [11,
Sec. 22] for an overview of these results for the Euler equations. Our basic setup is the two dimensional
channel, infinitely long in the x direction and bounded in the y direction, with walls at y = A; and y = As,
where —o0 < A; < Ay < 400, i.e., D =R x [A1, A2].

We work with 2D plane parallel shear flows in the channel. Note that for the two dimensional Euler
equations on the domain D, any steady state velocity of the form u®(x,y) = (U(y),0) and constant pressure
p(x,y) = p° will solve the Euler equations (1.3), where U : [A;, A3] — R is any real valued smooth function
and p° is a real constant. Note that the boundary condition u-n = 0 is automatically satisfied by a steady
state of the type (U(y),0).

We now obtain the analogous steady state for the a-Euler equations (1.1). Let V' : [41, A3] — R be a real
valued smooth function such that V’(A;) = V'(Az) = 0. Define U(y) = V(y) — a?V"(y). Then (U(y),0) as
computed and p° are steady state solutions of the Euler equations (1.3). It can be readily verified (see [30],
Prop. 2, p. 60) that u’(z,y) = (U(y),0), v°(z,y) = (V(y),0) and

w(wy) = po— 3V + 5 (VW) (31)

(note that 7 is a function of y alone) is a steady state solution to the a-Euler equations (1.1), where
u’ = (1 — a?A)v®. Since n = (0,£1) on the boundaries y = 4; and y = Az, (n- V)v? = 9,(V(y),0) =
(V'(y),0). Since (n- V)v® -t = (V'(y),0) - (1,0) = 0 on the boundary y = A; and y = A,, this reduces to
V(A1) = V'(A2) = 0. Another way to obtain a steady state is to start with an arbitrary profile U(y) and
compute V(y) by solving the ODE:

V(y) —a®V"(y) =Uly), V'(41)=V'(A2)=0. (3-2)

Lemma 3.1. Let V(y) be any smooth function satisfying V'(A1) = V'(A2) = 0, and define U(y) = V(y) —
2

@?V"(y), m(z,y) = po— V(W) + %5 (V'(y)*. Thenu’(z,y) = (U(y),0), v'(z,y) = (V(y),0) and n(z,y) =

po— 2V (y)?+%(V'(y))? is a steady state solution to the a-Euler equations (1.1) on the domain R x [Ay, As)].

Remark 3.2. We stress that an arbitrary profile V' (y) cannot be a steady state for the a-Euler equations.
Only profiles that satisfy the boundary condition V/(A4;) = V/(A42) = 0 can be steady states in contrast
to the Euler case where an arbitrary profile U(y) with no extra boundary conditions is a steady state for
Euler.

We let ¥° and ¢° be the steady state stream functions, real valued, associated with the respec-
tive steady state velocities U and V respectively, i.e. we have, 9,¢°(y) = V(y) and 9,¢°(y) = U(y)
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and ¢ = (1 — a?d,,)¢". Note that ¢° and ¢° are functions of y alone. The boundary condition
V(A1) = V'(Az) = 0 implies that ¢, (A1) = ¢),(A2) = 0. We work with the a-Euler equations in
stream function formulation (2.12). L1nearlzlng (2. 12) about the steady state ¢°, ¢ we obtain the lin-
earized equation for the perturbations ¢ (b(x y,t) and w w(a: y,t) of the stream function (2.12) of the
form

Ay — P20, + ¢OAD, — G AP + 6, AY0 = 0. (3.3)

Since we have the relation (1 — onA)% = J one can consider the equation above as an equation for 5
alone. We note that this equation is supplemented by the boundary conditions: no normal flow across the
boundaries, so v-n = 0 on the boundary 0D, which are the two walls at y = A; and y = As, and n is
the unit normal vector on 9D and (n - V)v is parallel to n. Since, v = fVJ-gg, we see that the boundary
conditions for ¢ are V¢ -t = 0 on D where t is the unit tangent vector on D and (n- V)(=V<i¢) -t =0
on 0D.

Since ¢2 = 1% = 0, equation (3.3) reduces to

Aty + ¢ A, — 6. A0 =0, (3.4)

on D with v&?. t=0and (n- V)(—VH;) -t =0 on JD. Similar to the analysis for the Euler equations, see
[11, Sec. 20-22, pp. 124-133], we look for solutions to (3.4) of the form

P(z,y,t) = P(y)e™ ™= and ¢(z,y,t) = p(y)e =, (3.5)

where 9 : [A;1, Ag] = C and ¢ : [A;, Ag] — C are complex valued functions of y, k € R is the wave number,
which is real in this case and c is the wave speed which is complex valued, ¢ = ¢, + ic;. If ¢; > 0, this
corresponds to an exponentially growing (in time) solution to (3.4).

We will now derive an a-Euler version of the Rayleigh stability equation.

Lemma 3.3. Let u’(z,y) = (U(y),0), v’(z,y) = (V(y),0) and 7(z,y) = po — 3
steady state solution to the a-Euler equations (1.1) on the domain R X [Ay, A Suppose the linearized
3.

V(y)? + S (V'()? be a
]
5) with ¢; > 0, and some

stream function equation (3.4) about this steady state has a solution of the form (
ke R. Then ¢ : [A1, As] — C satisfies the following boundary value problem:

7a2¢//// + (1 +2OL2]€2)¢// o k?(l +042k2)¢7 ‘/UZQSC =0
$(A1) = ¢(42) =0

¢" (A1) = ¢"(Az) = 0.

(3.6)

Proof. Since LZ and 5 are related via (1 — aQA)$ = {j;, we have the following relation between v and ¢,
U(y) = (1+a?k*)o(y) — a’¢" (y). (3.7)

Using (3.7), d(w,y,1) = ¢(y)e™ ==, 4(x,y.t) = h(y)e* ==, 9,¢°(y) = V(y) and 9,0°(y) = U(y), we
see that (3.4) yields

" —E*)(V —c) +U"¢ = 0. (3.8)

The boundary conditions for 5 are v$ -t = 0 on 0D, where the boundary corresponds to y = A; and y = As,.
Since t = (1,0) on dD, this means that d,¢ = 0 at y = A; and y = Aj. Since d,¢(z, y, t) = ikp(y)eFE—ct) =



Y. Latushkin, S. Vasudevan / J. Math. Anal. Appl. 472 (2019) 1631-1659 1637

0, when y = A; and y = As, we have the first boundary condition in (3.6). The boundary condition
corresponding to n-V(N—VLglt = 0 is computed as follows: we note that n-V = (0,1)- (9, dy) = 0,. Thus
n-V(-Vte) = 9y(0yo, —0:9) = (Gyy> bay)- Thus, n- V(=V*¢) - t becomes (Dyy, Pay) - (1,0) = (¢yy,0).
Thus, we get that, n - V(=V1¢) -t = 0 becomes ¢,y(z,y,t) = 0 when y = A; and y = Aj,. Since,
ggyy(x,y,t) = ¢ (y)e*@=¢) this corresponds to the second boundary condition in (3.6). Using (3.7) we

note that (3.8) yields (3.6). O

The analogous equation for the Euler equation is the classical Rayleigh stability equation, known as the
inviscid Orr—Sommerfeld equation [31, p. 122, Eq. 4.6].

Remark 3.4. Note that ¢(z,y, t) = ¢(y)e@=et) = p(y)ethTeiket = p(z, y)e~*et where ¢(z,y) = d(y)e'r=.
The smoothness of ¢ depends on the smoothness of ¢. If we consider ¢ to be in the space

Y= {¢ € H*([A1, A3]; C), ¢(A1) = ¢(A2) = 0,¢" (A1) = ¢ (A2) = 0},

to solve (3.6), then we obtain a solution to (3.4) and we measure instability for (3.4) in the space

~

Y = {¢(-,") : sup,erl|o(, )| ma([a,,45)0) < 00}

We shall consider (3.4) as an (linear) evolution equation for ¢ = (-, -, ¢) in the space ¥, and obtain conditions
for existence of a growing eigenmode solution, i.e. for spectral instability to the linearized equation (3.4)
for the perturbation stream function. All references to instability in this subsection is to be regarded in the
sense described above. A solution of the form g(x, y,t) = d(y)e* @t with ¢ € Y, with ¢; > 0 to equation
(3.4) grows exponentially in time. This corresponds to spectral instability for (3.4) in space Y with spectral
parameter A = —ikc.

We are ready to prove an analogue of the classical Rayleigh’s theorem for the a-Euler equations.

Proposition 3.5. Let u’(x,y) = (U(y),0), v'(z,y) = (V(y),0) and 7(x,y) = po — %V(y)2 + %Q(V'(y))z be
a steady state solution to the a-Euler equations (1.1) on the domain R X [Ay, As]. If the linearized stream
function equation (3.4) about this steady state has solutions of the form (3.5) with ¢; > 0, then U"(ys) =0
for at least one point ys € [A1, As).

Proof. By assumption ¢; > 0, we have V' — ¢ # 0 because V is real valued and thus (3.6) is non-singular.
We multiply the first equation of (3.6) by ¢*, the complex conjugate of ¢, integrate by parts (using the
boundary conditions, i.e. the second and third equations of (3.6)) to obtain,

As As Ay As
U//
—a? [16wPdy— [ 220y [ 10+ )00 Py - [ 5oty =
Ay Ay Ay Ay

(3.9)

Indeed, the boundary terms vanish via the boundary conditions. Taking the imaginary part of (3.9) gives
T v
Y 2
¢ | ————=lo(y)|"dy =0 3.10
A/V<y>—c|2' W (310
1

Since ¢; > 0, this forces U”(y;s) = 0 for at least one point ys € [A1, A2]. O
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We thus have that if U =V — a2?V" does not have an inflection point in [A1, As] then (3.4) cannot have
an exponentially growing eigensolution of the form gb(y)eik(w—et).

Example 3.6. Let U(y) be a profile with no inflection point. Compute V(y) by solving the ODE: V(y) —
a?V"(y) = U(y) subject to the boundary conditions V'(A;) = V’(A4z) = 0. The steady state thus computed,
with the pressure given by equation (3.1), cannot be spectrally unstable by Proposition 3.5. This class of
steady states include profiles U(y) that are symmetric about the center point with no inflection points, for
example, U(y) = 1 — y? on the interval [—1, 1] and it also includes linear steady states such as the Couette
flow U(y) =y on [0,1].

We now derive an analogue of the classical Fjortoft’s theorem for the a-Fuler equations.

Proposition 3.7. Let u’(z,y) = (U(y),0), v'(z,y) = (V(y),0) and 7(z,y) = po — 1V (y)® + %Q(V’(y))Q
be a steady state solution to the a-Euler equations (1.1) on the domain R X [Ay, As]. If the linearized
stream function equation (3.4) about this steady state has solutions of the form (3.5) with ¢; > 0, then
U'(y)(V(y) — V(ys)) < 0 for at least one point y € [A1, As]. Here ys € [A1, As] is a point such that
U"(ys) = 0 obtained in Proposition 3.5.

Proof. Let V; = V(y;). Consider the real part of (3.9) and adding

Az
- Uy o, _
we obtain,
A2U/,( )(V( ) V) As
Yy Yy)— Vs 2 ——a2 1 9
A/ V(y) —cf? [o(y)|*dy = Zlqﬁ (y)|"dy
As As
- [ zalg )ty - [0+ Qo) Pdy <0, (3.2)
Aq Ay

since the integrands on the right hand side are non-negative. Thus U"(y)(V(y) — V(ys)) < 0 for at least
one point y € [A1,4s]. O

Remark 3.8. Note that in the proof of the above theorem since the integral in (3.11) is zero, the coeflicient
in front of the integral in (3.11) can be replaced by any number. The statement of Fjortoft criterion can
be generalized to the following fact: for every real number z, a necessary condition for instability is the
existence of at least one point y € [A1, As] such that

(V(y) —2)U"(y) <O0. (3.13)

In fact, it is readily seen that the Fjortoft criterion implies the Rayleigh criterion by choosing points z; and
z9 such that V(y) — z; > 0 and V(y) — 22 < 0 for all y € [A1, As]. Then Fjortoft criterion says that there
exists at least two points y; and ys, such that U”(y1) < 0 and U”(y2) > 0 thereby ensuring that U”(y)
changes sign somewhere in the flow.
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Remark 3.9. We recall that Fjortoft criterion for the Euler equation says that a necessary condition for
instability is that U"”(y)(U(y) — U(ys)) < 0 for at least one point y € [A1, As]. For the Euler equations,
Fjortoft criterion is sharper than the Rayleigh criterion. The Fjortoft criterion was used to study steady
states U(y) with a monotone profile and one inflection point ys. If U” and U — U(ys) have the same sign
everywhere in the flow, then U(y) is a stable steady state even though it has an inflection point ys. The
analogous result for a-Euler is as follows. Suppose we have a profile U(y) which is monotone and has one
inflection point ys. We compute V (y) using equation (3.2). If U”(y) and V(y) — V(y,) have the same sign
everywhere, then the steady state is stable for a-Euler.

Example 3.10. Let us consider V(y) = y — y* on the interval [~1/v/3,1/4/3]. Note that V is monotone with
one inflection point at y = 0 and V’/(—1/v/3) = V'(1/v/3) = 0. One can compute U(y) = V(y) —a?V" (y) =
y — y> + 6a%y. One can see that U”(y) = —6y. U(y) thus has one inflection point at ys = 0. Note that
V(0) = 0. Thus U"(y)(V(y) — V(ys)) = —6y(y — y3) = —6y*(1 — y?) < 0 since (1 — y?) is everywhere
positive in the interval [—1/v/3,1/+/3]. Proposition 3.7 says that this steady state, with pressure as in (3.1)
is possibly unstable for the a-Euler equations.

4. Arnold stability theorems for a-Euler equations

In the 1960’s, V.I. Arnold in [2] introduced a simple and beautiful idea to study nonlinear Lyapunov
stability of ideal fluids. It relied on exploiting the underlying Hamiltonian structure that the fluid model
possessed together with convexity estimates on the second variation. For an overview of the Arnold crite-
rion for the Euler equation, see, for example, [2], [31] (Section 3.2, pp. 104-111), [4] (Chapter 2, Section 4,
pp. 88-94), [25] for a more mathematical perspective, [44], (Section 1), [5] (Section 3, page 7), [43] (Sec-
tion 4.5, pp. 114-122) for a more applied perspective. Expanded later into the so called energy-Casimir
method, this has spawned a huge literature and has been applied widely to study the stability of various
model fluid equations. For a non-exhaustive sample, see for example [9,20-23,32,35,45] as well as the liter-
ature cited therein. To the best of our knowledge, however, Arnold’s stability theorems were not recorded
for the a-Euler model, and in this section we fill the gap.

4.1. Arnold’s theorems in a multi connected domain

Let D C R? be a bounded multi connected domain, with the boundary 9D consisting of smooth curves
(0D); where ¢ = 0,...,n. Denote the outer boundary of D by (0D)g and (9D);,i = 1,...,n are the n
inner boundaries. Let v’ denote a steady state solution of (2.2), ¢° denote its stream function, so that
v0 = —V1¢? and w” denote its vorticity, so that

W = curl(1 — oAV’ = —A(1 — a?A)¢°.

Since V+¢? - Vw® = 0 by (2.2), we have that V@° is parallel to Vw® and thus locally, ¢° is a function of
w?. We shall impose the following global condition.

Assumption 4.1. Assume that there exists a differentiable function F' defined on the closed interval
[min (Ly)eﬁwo(x,y), max (x,y)eﬁwo(x,y)}, such that, ¢°(z,y) = F(w®(x,y)) for every (z,y) € D.

In particular, we have that V¢®(x,y) = F'(w°(z,y))Vw(z,y) and thus v0 = —V+¢? = —F/(w?)V+LwO.

Remark 4.2. We note that sometimes, in the literature, see, for example, [31], (page 106, Remark 1) the

function —F” is written as the ratio of the vectors TIgo
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Notice that, F’, a priori, can have singularities at the critical points of w°. Since v-n = 0 on the boundary
0D, we have, on 0D, that V¢ -n =0, i.e., V¢ -t = 0, where t is the unit tangent vector on the boundary.
Thus V¢ is orthogonal to the boundary, i.e., each connected piece of the boundary curve is a level set of ¢
and thus ¢|pp), is a constant on each connected boundary piece (0D); where 0 < i < n. Assumption 4.1
then implies that F(w®) restricted to each connected piece (9D);, 0 < i < n, is a constant. We shall work
on the following subspace of the Sobolev space

X = {V € H¥}(D;R?),V-v=00on D, v-n=0,(n-Vv) | n,on (0D);,0<i< n}, (4.1)

so that u € HY(D;R?), w = curlu € L?(D;R), ¢ € H*(D;R) and ¢ € H%(D;R). The analysis proceeds by
considering the following functional H,. : X — R

n

He(v) = H(v)+Q(v)+ Y a; / (1 —a2A)v - ds, (4.2)
=0 (D)
and a; € R for: =0,...,n where H,Q : X — R on X are given by
H(v) = %/v(x) (1 - a?A)v(x)dx, (4.3)
D
Q)= /C(curl(l — a?A)v(x))dx, (4.4)
D

and a smooth function C' : R — R will be fixed later. We note that H(v) is the kinetic energy of the
a-Euler fluid, C' is known as the Casimir function, the last term in (4.2) corresponds to the weighted sum
of circulations along the boundary.

Lemma 4.3. Let v = v(t,x) solve the a-Euler equations (1.1). Then

H.(v(t,-)) _L /V(t,x) (1= a?A)v(t,x)dx + /C(curl(l —a?A)v(t,x))dx
D

2
D
+ Z a; / (1—a?A)v(s,t) - ds, (4.5)
=0 oDy

is an invariant of motion, that is, %Hc(v(t, ) =0.

Proof. We note that u = (1—a?A)v and w = curlu = curl(1 — a?A)v. We first show that £ H(v(t,-)) = 0.
We start with the a-Euler equations (1.1),

du+v-Vu+ (Vv) u=-Vr, (4.6)
and use the following identity ([23, Eq. 7.34])
(v V)u+ (V¥) Tu= —v x (V x u) + V(u-v),
to rewrite (4.6) as

du—vx (Vxu)+Vu-v)=-Vr. (4.7)
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Taking the dot product of (4.7) with v, noting that —[v x (V x u)] - v =0, and integrate over the domain
D to get,

/ut(x) -v(x)dx =0, (4.8)

where we used the facts that fD V(u-v)-vdx = 0 and fD Vr - vdx = 0. Indeed, for any scalar valued
function f, we have

(V) -v=V-(fv) = fV-v=V-(fv) (4.9)
(because v is divergence free, V- v = 0) and by (1.2) and Divergence Theorem,

n

/V-(fv)dx:z / fv-nds = 0. (4.10)

D =05D),

We rewrite H(v) as
u-

/(1 — o?A)v - vdx

[
/v vdx+—/|Vv| dx (4.11)
D

N |
l\')l»—l

N~

where in the second equality, we performed integration by parts on the second term and use (2.7). Equation
(1.2) implies that v - ((n- V)v) = 0. Using (1.2) it can also be shown that

vi-n=0, vi-(n-V)v)=0, v-((n-V)v)=0. (4.12)
Indeed, 0 = 9¢(v-n) = v¢-n and using this and the second equation in (1.2), we see that v;-((n-V)v) = 0.

Now use the fact that 9;(v- (n-Vv)) =0 and v; - ((n- V)v) = 0 to conclude the third equality in (4.12).
Recall that |Vv|? = tr(Vv - (Vv)T). Also notice that

%8ttr(Vv~ (VV)T) = tr(Vv, - (VV)T)

and integration by parts using the boundary conditions (4.12) yields
1
3 /6ttr(Vv- (Vv))dx = /tr(Vvt (Vv)Ddx = — / Av, - vdx. (4.13)
D D D

We thus have, by (4.8), (4.11) and (4.13),

S () = 5 o0 Vo ix+ S [ ATV 0P
D

D

/vt(x,t) -v(x,t)dx + % /8ttr(Vv(x,t) (Vv(x, t)T)dx
D

D
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— /Vt(x, t) - v(x, t)dx—QQ/Avt(x,t) -v(x,t)dx

D D
= / (ve(x,t) — ®Avy(x,1)) - v(x, t)dx = /ut(x, t)-v(x,t)dx = 0.
D D

4
dt JD

Appendix, page 162]. Using (2.2) we have,

In order to prove that C(w(x,t))dx = 0, we use (a slight variant of) the following idea from [9, see

0,0 (w(x,t)) = C'(w(x,1))0w(x,t) = —C'(w(x,t))v - Vw(x,t), (4.14)
and also,
—v - V(C(w(x,t))) = —C"(w(x,t))v - Vw(x,t).
Therefore,
OC(w(x,t)) = —v - V(C(w(x,1))). (4.15)

Using (4.9), (4.10), (4.14) and (4.15), we infer

% / Clw(x, t))dz = / 0,C(w(x, 1))dz = / v VO(w(x, 1))z = 0.

D D

The fact that % f(aD)i u-ds=0,7i=0,...,n, is a consequence of Corollary 2.3. Combining these relations
proves the lemma. 0O

Since v - Vw® = 0 and v? is tangent to the boundary, we have that Vw? is orthogonal to the boundary,
which implies that w® is constant on the boundary (9D);, i = 0,...,n, i.e., we shall denote by w0|(aD)i the
value of w® on the boundary (9D);. This also implies that C’(w°(z,v)) is constant for all (x,y) € (0D);
and we shall denote this by C’(wo)’(aD)i. We return to (4.2). We will now specify C and a;, such that the

first variation §H.(v?)dv := %Hc(v0 + €dV)|e=o is zero.

Lemma 4.4. Let v¥, w® be a steady state solution of (1.1), satisfying Assumption /.1, where w® = curl(1l —
a?A)WY. Let C be a smooth function so that
C'(W(z,y)) = —F(w°(x,y)), (4.16)

for every (x,y) € D. Let a; = F(WO)’(aD)»’ i=0,...,n. Then §H.(v°)ov =0, i.e. V¥ is a critical point of

Proof. Note first that H.(v) can be expressed, using u = (1 — a?A)v, as

H.(v)= %/v-udx+/0(w)dx+zn:ai / u - ds. (4.17)
i=0

D D =0 (aD),
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The first variation of H, at v° is given by the following expression,

SH.(vV0)ov = diHc(vO + ebv)|
B

1 0 1 0
:§/v .5udx—|—§/u ~5vdx+/ 5wdx—|—Zal / du - ds, (4.18)

D D D =0 (D),

e=0

where du = (1 — a?A)év and dw = curl fu. We will be using the following identity (see [31, Eq. 2.14, page
108]),

C'(W°)ow = curl(C'(w?)ou) — C" (W) V4w - du, (4.19)

which follows from the identity curl(fv) = V*f - v + f curl v. Noting that, by Stokes’ theorem,

n

/curl(C”(wO)éu)dx = Z / C'(w¥)éu - ds, (4.20)

D =0(5D),

we see that, using (4.19) and (4.20)

/ ' (w*)dwdx = — / C" (W) VHw? - 5udx+z / %)u - ds. (4.21)

=0D);
We integrate by parts and use (2.8). Thus,
/u0 Sovdx = /(vO —a?AvY) - fvdx = /VO -dudx. (4.22)
D D D

Using (4.22) and (4.21), we see that (4.18) is given by,

SH.(v?)ov = /VO - dudx — /C"(wO)VL(wO)éudx

D

+Z / C'(w®)éu - dS+Zaz / ou - ds. (4.23)

aD)I " (0D);

Since v - Vw? = 0, and v? is tangent to the boundary, this means that Vw0 is orthogonal to the boundary
and thus w? is a constant on the boundary. This then implies that,

SH.(V0)ov = /VO - dudx — /C”(wo)VL(wO)(Sudx

D D

JrZC"(wO)\(aD)i / 6u~ds+2a¢ / ou - ds, (4.24)
=0

(9D); =0 (apy,
from which we see that §H.(v%)dv = 0 provided,

vO(z,y) = C"(°(2,9) Ve’ (2, y), (4.25)
a;=—-C'"(W), i=0,...,n. (4.26)
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Since, by (4.16), C is chosen such that C'(w%(z,y)) = —F(w°(z,y)) for every (z,y) € D, then,
VO _ _vL¢O _ _F/(WO)vJ_wO _ C”(WO)VLUJO,

i.e., (4.25) holds. Since we have chosen a; = ¢0|(8D)i for all 0 < i < n, (note that ¥° is a constant on the
boundary curves) which then implies that a; = —C”(w")|(9p),, then the first variation §H,(v?)dv =0. O

We denote | V|3 := [}, |[Vv(x)|?dx, where |[Vv|* = tr(Vv-(Vv)T). We are now ready to prove Arnold’s
first stability theorem for a-Euler.

Theorem 4.5. Let v° be a steady state solution of the a-Euler equations (1.1) on the multi connected domain
D, satisfying Assumption J.1. Suppose that

0< inf —F'(W2,9) < sup —F'(w(x,y)) < +oc. (4.27)
(z,y)€D (z,y)eD

Then there exists a constant K > 0, such that if v(-,t) = v0 + dv(-,t), t € I solves the a-Euler equations
(1.1) on D then one has the following estimate for all timest € I,

V(1) = VOl + @[V (v () = VOIS + [lw (-, 1) —w°[[3
< K(|Iv(-0) = VO[5 + a®[[V(v(-,0) = VO[5 + [lw(- 0) — w|13), (4.28)

where W® = curl(1 — a?A)v° and w(-,t) = curl(l — a?A)v(-,1).

Proof. Let K := inf, ,)ep(—F'(w’(z,y))) and K := sup(%y)eD(fF’(wO(:c,y))). Let H. be defined as in
(4.2), and choose C and a; as in Lemma 4.4. Since the range of w® is a connected set, (4.27) is equivalent
to,

0< K; <—F'(¢) < Ky < 400, (4.29)

for ¢ € [ min_ w%(x,y), max w’(x,y)]. Using (4.27), we may extend C from the range of w° to R such
. (z,y)€D (z,y)€D
that,

Ky <0"(2) < K, (4.30)
holds for every z € R. Indeed, we first extend F' linearly outside

[ min_w%(z,y), max w’(z,y)]

(x,y)eD (z,y)€D
to all of R. We then choose C' such that C’'(¢) = —F(¢) for all £ € R. By Lemma 4.3, H, is an invariant of
motion and by Lemma 4.4, v° is a critical point of H., i.e., 6 H.(v")dv = 0. Equation (4.2) gives

H.(v) - H,(v°) = 1/u(x) -v(x)dx — %/uo(x) VO (x)dx

D D

n

+ /(C(w(x)) — O(w¥(x)))dx + Zai / (u(s) —u’(s)) - ds

=0 (ap),

[(ax) = u60) - (v(x) = v"(x)x

D

N | = )
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iy [ (569 (ax)  u) + w0 - (vx) ()

+ [P0 - mNax+ ;5 [ @) wix) - w')dx

D

+> 0 [ (i) - ue)-ds,

=0 (ap),

where we have Taylor expanded C(w(x)) — C(w®(x)) and & depends on w®(x) and w(x). By virtue of the
fact that the first variation is zero at v¥, using (4.23), with v = v — v¥ and du = u — u’ we have that,

3 [ (60 (60 = w0 60) + 000 (vi) — ¥

+ /C"(wo(x))(w(x) — W (x))dx + Zai / (u(s) —u’(s)) - ds = 0,

D =0 (D),

whence,

(u(x) —u’(x)) - (v(x) — v¥(x))dx (4.31)

Using the fact that u — u® = (1 — a2A)(v — v°) and integrating the second term by parts, we see, using
(2.7), that [ A(v(x) — v(x)) - (v(x) — vO(x))dx = — [, |[V(v(x) — v°(x))[*dx. Thus,

HL(v) ~ H(v) = 3 / (v(x) = v (x)) - (v{x) — v'(x))dx (4.32)
D

We now let 51 = min(3, %) and S, = max(3, %) and see that,

Billlv = v2lI3 + o?IV(v = V)3 + [lw — w°|3) < He(v) — He(v°)
< Ba(llv = VO3 + ? V(v = VO[3 + [lw — w"[13). (4.33)
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We now use Lemma 4.3, (the fact that the Hamiltonian is a temporal invariant of the motion) to get, for
any time t € I,

(Iv(&) = vOII3 + a*[[V (v(t) = vO)II5 + lw() — «”[3)
< By H(He(v(1) = He(vY)) = By (He(v(0)) = He(v"))
< Bafiy ([Iv(0) = vOI3 + a2V (v(0) = vO)|I3 + [|w(0) — w°[13).

From this, (4.28) follows by putting K = .8, '. O

We will now address Arnold’s second theorem for a-Euler. We compute the second variation of H,., where
du=(1-a?A)év and dw = curl(l — a®A)dv,

2

d
2 0 — 0
O H(vO)(9v,0v) = -5 H(V) +edv)|

%/5V~5udx—|— %/5u-5vdx+/0"(w0)5w5wdx
D D D

/(6v) dvdx + o? / |Vov|?dx —|—/C’”(w0)5w6wdx, (4.34)
D D D

where, we integrate by parts using (2.7).

Remark 4.6. We note that the second variation defines the following quadratic form K (v") on the space X
defined in (4.1).

K ) (v,v) = 2H.(VO)(v,v) = /v - vdx (4.35)

+oz2/|Vv|2dx+ /C”(wo)(curl(l — a?A)v)2dx.
D D

Under assumption (4.27), the second variation defined by (4.35) is bounded and positive definite on the
space X . Note that if there exists a v # 0 € X such that curl(1—a?A)v = 0, then the value of the quadratic
form reduces to [ pV-vdx+ a? [ p Vv Vvdx and this cannot be negative definite. In the proof of Arnold’s
second theorem given below, we will require the quadratic form defined by (4.35) to be negative definite.
We would like to restrict the perturbations §v to a subspace of X such that the operator curl(l — a?A) is
one to one and thus the quadratic form (4.35) can be negative definite under appropriate assumptions on
C". We thus restrict the perturbation stream function to the following subspace,

Y, = {¢ : HY(D;R) : ¢|(op), = 0; / ~Vi1 - a?A)p-ds =0,1<i<m
(0D);

(m-V)(V*¢) | non 9D;¢|sp), is constant, 1 < i < n} (4.36)

We note that we do not specify the exact values of the constant that ¢ takes along the inner boundary
curves. Also, choose for the velocity perturbations the subspace of X given by
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Xq = {v € H3(D;R?),divv =0in D, / (1—-a?A)v-ds=0,1<i<n,
(6D);
v-n=0o0n0D,(n-V)v| nonBD}.

Lemma 4.7. The operator —V =+ : Y, — X, is bijective. That is, given v € X, there exists a unique ¢ € Yy
such that v = —V+¢.

The proof of this Lemma is omitted as it follows from standard arguments in vector calculus, see for
example [36, pp. 166-168]. The proof does not use the conditions on the circulations in the definitions of
both spaces X, and Y,. We will need those in the proof of Lemma 4.8.

Lemma 4.8. The operator —A(1 — a?A) : Y, — Lo is one to one. That is, if —A(1 — a?A)¢ = 0, for some
¢ €Y,, then, » = 0.

Proof. Note that ¢ satisfies,

—A(l - a?A)p =0, (4.37)

¢($, y)|(8D)0 =0, (438)

¢|(6D)L(x7y) = G4, for 1 S ) S n, (439)
—VE(1 —a®A)¢(s) -ds=0for 1 <i<n, (4.40)

(0D);

(n-V)V4ig-t=0. (4.41)

Multiply (4.37) by ¢ and integrate over the domain to get

n

0= /¢(—A(1 —a?A)p)dx == [ on-(1-a?2)Veds
D
+ /qu- (1 —a?A)Vedx
D

= ¢lon), / (1—a?A)V*¢-ds + /w- (1 — a?A)Vedx
=0 D

(0D);

= /V¢~ (1 - a®A)Vedx, (4.42)

D
where we have used Green’s formula and (4.38), (4.39) and (4.40) and the fact that n-V¢ = —t-V+¢. But,
/V¢>~ (1—a?A)Vedx = /w - Vdx — a2/V¢ - AVdx.
D D D
By (2.7), we have that

ZV¢~AV¢dx: /—V%-A(—v%)dXZ /V-Avdx = —[[|Vv|2dx,

D D
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where v € X, is the unique solution to v = —V=+¢, via Lemma 4.7. Thus,

/w- (1—a?A)Vedx = /v¢-v¢dx+a2/\w|2dx
D D D

:/v~valx~t—oz2/|VV|2dx:O7
D D

from which we conclude that v = 0. It follows by Lemma 4.7 that —V+¢ = 0 on D and hence V¢ = 0.
Then ¢ is a constant, and is equal to 0 by (4.38). O

Lemma 4.9. The operator curl(l — a?A) : X, — Lo is one to one. That is, if curl(1 — a?A)v = 0, for some
v € X,, then v=0.

Proof. Let v € X,, be such that curl(1 — a?A)v = 0. By Lemma 4.7, we have that there exists a ¢ € Y,
such that v = —V+¢. Then curl(1 — a?A)v = curl(1 — a?A)(~V+p) = —A(1 —a?A)¢ = 0. By Lemma 4.8,
we have that ¢ = 0. Thus v=-V+¢=0. O

Remark 4.10. We comment on the Rayleigh-Ritz formula frequently used in hydrodynamics, see, e.g. ([43,
Lemma 4.16, page 111]). Let A be a positive operator with compact resolvent acting in a Hilbert space H.
The minimal eigenvalue A, (A) can be computed by the following Rayleigh-Ritz formula:

. |Ag]?
Amin A) = s .
A) o;é¢éndlcr)1m A (A9, d) (4.43)

where ||-|| and (-, -) are the norm and the scalar product in H. Indeed, as the following argument shows, (4.43)
is a consequence of the standard (Hilbert—Schmidt—Courant—Fischer) minimax principle: Let B = A~!. By

assumptions, B is a compact positive operator whose maximal eigenvalue is given by the formula (see, e.g.
[40, Sec. XIII.1, page 76 onwards])

(B, )

Amaz(B) = max ———+.
(B) = max e

(4.44)

Letting ¢ = A¢ and using the spectral mapping theorem sp(A) = (sp(B))~!,

—1 9
Aomin(A) = Amas(B)) 1 = <¢,A¢>> I | ]
e ) <0¢¢I€raa‘;{m/4 || Ad2 ozoedoma (Ad, )

)

yielding (4.43). We apply formula (4.43) for the following situation. Let A = —A(1 —a?A) with the domain
dom A =Y, C L?(D), see (4.36) for the definition of Y,,. We note that Y,, C L?(D) is compactly embedded
in L?(D) by the standard Sobolev embedding. Due to the choice of the boundary conditions,

(49, 0)12 = (9, —A(L = a®A)g) 12 = [IV][3 + ?|| V3 (4.45)

for all ¢ € Y, and v = —V+¢ € X,. In particular, the operator A is positive. On the other hand, the
formula,

curl(1 — o?A)v = —A(1 — a?A)¢p (4.46)
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yields
140115 = || = A(L = a®A)g||3 = [| curl(1 — a®A)v][3. (4.47)

Combining (4.43), (4.45), (4.47), we obtain the following analogue of the Rayleigh-Ritz formula for the
a-Euler equation:

|| curl(1 — a2A)v||3

Amin a — 5 4.48
@ = o Bk VIR + 0293 (1.48)
where Ayyin,q is the minimum eigenvalue of the operator A = —A(1— a?A) with the domain dom A =Y, C
L?(D).
By equation (4.48), for every v € X, we have,
Amin,a < / v - vdx + o? / Vv - Vvdx> < /(curl(l — o?A)v)%dx. (4.49)
D D D

We shall now prove Arnold’s second stability theorem for a-Euler.

Theorem 4.11. Let v° be a steady state solution of the a-Euler equations (1.1) on the multi connected domain
D, satisfying Assumption J.1. Let Amin.o > 0 be the minimum eigenvalue of the operator —A(1 — a2A) :
L?(D) — L3(D) with the domain dom(—A(1 — a?A)) = Y,. Suppose

0<

< inf F'(Wx,9) < sup F'(W(z,y)) < +oo. (4.50)
)\m,in,(x (z,y)eD (z,y)€D

There exists a constant K > 0, such that if v(-,t) = v0 + 6v(-,t), t € I solves the a-Euler equations (1.1)
on D, with v € Xy, then one has the following estimate for all timest € I,

V(- 8) = VO[5 + a?|[V(v (1) = VO[5 + [lw (1) — w13
< K(IIv(0) = VO[5 + a?[[V(v(-,0) = VO[5 + [lw(-, 0) — wl[3), (4.51)

where W® = curl(1 — a?A)v° and w(-,t) = curl(l — a?A)v(-,1).

Proof. Let K, := inf,yep F'(W(2z,y)) and K := sup(, ,ep F'(w’(z,y)). From the fact that
C" (WO (z,y)) = —F'(W°(x,y)) for every (z,y) € D, we see that

0< K <-C"w(z,y)) < Ky < +0o0,
for every (z,y) € D. We first extend C' to all of R such that
K <-C"(¢) < Ko, (4.52)

holds for every £ € R. Proceeding similarly to the proof of Arnold’s first theorem, we obtain that, cf. (4.32),

H.(v) - H,(") == /(v —vO) - (v —v%)ax (4.53)

+ %/a2|V(v —v9)2dx + % / C"(€)(w — w”)?dx.
D D
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Since (4.52) holds, we have that,

—1/|v— vO|2dx — —/\Vv—v )|?dx + 71/
D
1
< H.(V%) — H.(v) < —§/|v—v0|2dx— / N 2dx
K
+72/(w—w0)2dx.

By (4.49), we have that,

Jov =3 (v = v a? [ 90— v <

D D

min,o

This then means that the left hand side of (4.54) can be estimated from below by

- min,x 1
0<%/ (w—w )dx<——/|v—v0|2dx

D
——/\Vv—v \dx+—/ w—w)?dx < H.(V?) — H.(v).

Thus, obviously, splitting the LHS, we obtain

E(Kl =1/ A min.a) /((w — w0)2dx)

D

+ E(Kl — 1/ Amin.a) /((w —w%)2%dx < H.(V°) — H.(v).
D

Using (4.49) again, we see that

)\mm,a(Kl ; l/Amin,a) </ |v - V0|2dx +a? / |V(V - V0)|2dx)

D D

(K1 — 1/ Amina) [ (w—w®)dx) < H.(v) — Ho(v).

»-lklP—‘

O—

On the other hand the right hand side of (4.54) can be estimated as follows:
0 —1 02 a’ 0y/2
HC(V)—HC(V)§7 |v—v|dx—? V(v —v?)|“dx
D
+ K> /(w wWwdx < = /|v—v0|2dx

+—/|v |dx+K2/( —w’)dx.

D

JCRER

(4.54)

(4.55)

(4.56)

(4.57)
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Now let 81 = min{ )"""”’“(Klll/)‘m""a), 1(K1 —1/Amin,)} and B2 = max{3, K>} and we obtain, cf. (4.33),

Billlv = v2II5 + o?IV(v = VI3 + llw = w°l3) < He(v°) = He(v)

< Ba(llv = 0I5 + @?[ V(v = vO) 13 + [|lw — °[I3).
We can thus finish the proof as in Arnold’s first theorem. O
4.2. Arnold’s theorems in a bounded, simply connected domain

Let D C R? be a bounded, simply connected region with a smooth boundary dD. The functional (4.2)
is now given by,

2

1
H(v)== [ v-(1-a?A)vdx+ [ C(curl(l — a®?A)v)dx +a [ (1 —a?A)v-ds. (4.58)
D/ D/ /

oD

Lemma 4.3 holds and we impose Assumption 4.1. Lemma 4.4 also holds, where we now set a = F(w°)|ap.
The expression for the second variation given in (4.34) remains unchanged. Theorem 4.5 also holds in this
case. We now expand upon Remark 4.6.

Remark 4.12. Our Lemmas 4.7, 4.8 and 4.9 in Remark 4.6 will work where the subspace for the stream
function perturbations is now Y, = {¢ € H*(D;R) N H(D;R);(n - V)(V#) -n = 0 on D} and the
subspace for the velocity perturbations is

Xq = {v € H3(D;R?),divv=0in D,v-n=0and (n-V)v | non 8D}.
The proofs are similar and are omitted. Arnold’s second theorem then follows as stated.

4.3. Arnold’s second theorem on the two torus

By Remark 4.13 below, we do not expect that Arnold’s first theorem holds on the two torus.

Remark 4.13. Condition (4.27) in Arnold’s first Theorem 4.5 is never satisfied in a domain without a
boundary, see [31, Section 3.2, page 112]. To demonstrate this, let us assume (4.27). Then, since F is
monotone, there exists its inverse function denoted by G, i.e., G = F~!, and since (4.27) holds, one has the
relationship
1 < -G < i, (4.59)
C2 C1
for all £ in the range of F(w(-,)), i.e., for all £ in the range of ¢°(-, -). In particular, G’ is negative everywhere.
Assume without loss of generality that 9,¢° # 0 (if it is, then in the argument below replace 9,¢° by 9,¢°,
we exclude the trivial case ¢ = constant everywhere in D). We have that —A(1 — a?A)¢? = w°® = G(¢°).
From this we see that, 9,(—A(1 — a?A)¢°) = G'(¢°)0,¢°. Multiplying this by 9,4 and integrating this
over the domain D, we get,

_ / 0,6°0, A(1 — a2A)p dx — / G (6") (9.0°)2dx. (4.60)
D D
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Integrating the left hand side by parts, we get,

— /amoazAu —a?A)¢ldx = —/0@%(1 — a?A)0, ¢ dx
D D

- / V(0,6%) - V(1 - a2A)0,6°)dx — / (060 - V(Da(1 — a2 A)¢0)ds.

D oD

But

/V(@wqbo) V(1 = a?A)0,¢%)dx = /(vamo)?dx

a2/V (0:0°) - Aamqao)dx—/(vamo)?dx

D D

+a /|v (V,¢°)Pdx — /v (0:0°)n - V(V9,¢°)ds
Thus, rewriting the left side of (4.60) one obtains

/(V8r¢0)2dx+a2/|V(V8z¢O)|2dx— /V(@ngo)n-V(Vamqbo)ds
D oD

D
- [@00n- V001 - 28)6%)ds = [ 6'(6°) 0.
aD D
Note that the first two terms on the left hand side are positive and the term in the right hand side is negative

by (4.59) which leads to a contradiction in the absence of the boundary terms in the left hand side.

We consider Arnold’s second theorem on the two torus T?. The Hamiltonian H, is now given by,

H.(v) = %/V (1 —a?)vdx + /C(curl(l — a?A)v)dx. (4.61)
D

Lemma 4.3 remains true in this setting. We also impose Assumption 4.1. Lemma 4.4 is modified as follows.

Lemma 4.14. Let v°, w° be a steady state solution of (1.1), satisfying Assumption /.1, where w® = curl(1 —
a?A)WV0. Let C be a smooth function so that
C'(W°(z,y)) = —F(°(z,y)), (4.62)

for every (xz,y) € D. Then §H.(v®)6v =0, d.e. v° is a critical point of H..

The expression for the second variation remains the same as (4.34). The statement of Arnold’s first
theorem remains the same as in Theorem 4.5. Remark 4.6 is modified as follows.

Remark 4.15. Our space for the perturbation stream function is now given by

Y, := {¢ € H*(T?); / pdx = 0}, (4.63)
T2
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and for the velocities is given by X, := {v € H*(T* R?); [, vdx = 0;divv = 0}. Lemmas 4.7, 4.8 and 4.9
in Remark 4.6 are true in this setting with minor modifications in the proof. Arnold’s second theorem then
follows as stated in Theorem 4.11.

4.4. Arnold’s theorems on the periodic channel

Now, we would like to formulate Arnold’s theorems on the periodic channel D = T x [—1, 1], so that the
boundary conditions are periodic in the x direction with boundary conditions v - n and (n - V)v parallel
to n at the “walls” y = 1 and y = —1. We will prove that since the domain is translationally invariant
in the x direction, the £ momentum is conserved, i.e., we will prove that, if v(¢,-) = (v1(¢,-),va2(¢, ")),
u(t, ) = (u1(t,-),ua(t,-)) solve the a-Euler equation (1.1), then

1 1
M, = //ul(t,x,y)dmdy = //ul(O,x,y)dxdy (4.64)
1T ST

is an invariant of the motion. Here u = (1 — a2A)v.

Lemma 4.16. Suppose v(t,-) = (v1(t,-),v2(t,+)), u(t,:) = (ui(t,),ua(t,-)) solve the a-Euler equation (1.1),
on the domain T x [—1,1]. Then

1

—M, = %//ul(t,x,y)dxdy =0. (4.65)
1T

Proof. We first note that the boundary conditions v - n|y—+; = 0 imply that
vo(x, —1) = ve(x,1) = 0. (4.66)

Also, the boundary condition n - Vv parallel to n implies that n - Vv -t = 0. On the boundaries y = —1
and y =1, n = (0,+£1) and thus n- V = 0,.
Thus n - Vv = 0, v = (¢yy, —dyz). Thus (dyy, —Pyz) - (1,0) = 0 implies that ¢,, = 0 on the boundary,

i.e.,

Pyy(@, —1) = dyy(x,1) = 0. (4.67)

The a-Euler equations (1.1) can be rewritten as, see [23, Eq. 8.33, page 67],
1 5 a? 9
8tu—v><(V><u)+V(v'u—§|V\ —7|Vv| +p)=0. (4.68)

Denote f =v-u—3|v|> — 22 |Vv|? 4 p. Also note that V x u = (9,us — dyuq )k, where k is the unit vector
pointing out of the plane of flow. Thus v X (V x u) = (v20zus — v20yu1)i — (v10zus — v10yu1)j. We thus
have that, using (4.68) and the computations above,

1

1
d
- I:E//mtxydxdy—//atmtl"y)dxdy
1

-1 T

1
= // ("L)Qa_nEUQ — ’Ugayul — &cf)d:rdy
—-1T
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We analyze this term by term. Notice first that fT —0fdx = 0. Rewriting vod,v9 = 8,0(%1}2)2 we get
Jp v20,v2dx = [ 8m(%v2)2dx = 0. Also,

1 1
//vgaxAUdedy://UgA(@xvg)dydz

1T T 1
1 1 .
—//va - V(0pv2)dydx = —//8w(§(Vv2)2)dxdy =0,
T 1 ST

where we integrate by parts in y and boundary terms disappear by using boundary condition (4.66) and
then switch order of integration and use the fact that

1
V'UQ . V(@mvg) = (§(Vv2)2).
Thus, f_ll Jp v20zusdxdy = 0. We now look at the second term,

1 1
//vzayuldxdy://vgﬁyuldydm

-1T T -1

1 1
—//ayvguldydx://c%vluldydx,

T -1 T -1

where we integrate by parts and the boundary terms vanish using boundary condition (4.66) and since
divv = 0, we have that 9,v1 = —0,v2. Notice that

Oyv1uy = Opv1v1 — 20y, Avy.

Since ,v1v1 = 9, (5v?), we have that

1 1
//axlevld:cdy = —//V@xvl - Vurdzdy

1T -1 T

—j/@w(%(vm)?)dxdyzo. o

-1 T

Since uy = 1, using (4.64), we see that,

1 1

1 1 1
— M, = — ult:ﬂydxdy—— uq (t, z,y)dydx
27 27 2m

-1 T —1

1
-1 Uy, (t, x, y)dyde = L Y(t,x,—1)dx — x Y(t,z,1)dx
- o y\U, T, Y Y - o ) o s Ly
T —1 T T
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Since 1) = ¢ — a?A¢, and by the boundary condition (4.67), ¢y, (z,£1) = 0, we have that
Y(x,£1) = ¢(x, £1) — OpyPue(x, £1).
Also note that,

/@m(x,il)dx = /ag;(bw(x,il)dac =0
T T

to conclude that

%Mz:;ﬂ_/d)( dx——/wtxl

:%/ x——/c{)twl (4.69)

By Lemma 4.16, M, /27 is t-independent. Since ¢(z, —1) and ¢(x, 1) are constants, one can simply take the
difference to be M, /27. Thus in solving the Poisson equation for the stream function we can set ¢(z, —1) =0
and ¢(z,1) = M, /27. Thus the following Poisson problem is solved to recover the stream function from the
vorticity

~A(l-a?A)p=w, in D, ¢(x,—1)=0,¢(z,1) = —M,/27. (4.70)

Since this must hold for both the steady state ¢° and the perturbed flow ¢° 4+ §¢, we see that, the Poisson
equation satisfied by the perturbation stream function §¢ satisfies Dirichlet boundary conditions,

~A(l = a?A)op =w, in D, §¢(x,—1) =0,0p(zx,1) = 0. (4.71)
The subspace for the perturbation stream function is now as follows:
Y, = {¢ s HY((T x [<1,1]);R) :p(z, 1) = 0, p(x, —1) = 0, ¢y (x,1) =0, dyy (2, —1) = O}.
One then defines the subspace for the perturbations of velocity as

Xa :—{v CH3((T x [-1,1]);R?);divv=0,v-n=0and n- Vv | non y = +1;

/1 / (1 - a?A)vi (2, y)dady = o},

where v = (v, v3). Lemma 4.7 follows as stated. One can also easily check that if ¢(z,1) = ¢(z,—1) = 0,
then [ f_ll u1(z, y)dydxr = 0. Indeed, using (4.69),

\

1
/1u1 x,y)dydx = T/_/lwy x,y)dydx = Tr/(1/)(1“,1) —(x,—1))dx
~T/ o(z, —1))dx:T/(0—0)dx=0.

The proof of Lemma 4.8 is modified as follows.
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Proof. Note that ¢ satisfies,

—A(l-a?A)p =0, (4.72)
¢({L‘, _1) = (]5(1‘, ]-) =0, (473)
¢yy($7 _1) = ¢yy(xv 1) =0. (4.74)

Multiply (4.72) by ¢ and integrate over the domain to get

0= / /1¢(A<1 — a2 A)p)dydz = / /IW» (V(1 = 02A)$)dydz,

T -1 T -1

where boundary terms vanish by (4.73). Since (2.7) also holds true in this case, we have that

/V¢~Av¢dx: /—VL¢-A(—VL¢)dx: /V~Avdx: —D/|VV|2dx,

D D D

where v € X, is the unique solution to v = —V+¢, via Lemma 4.7. Thus, we see that,

/qu- (1 —a?A)Vedx = /V¢-v¢dx+a2/\vv|2dx
D D

D
:/v~vdx+a2/|VV|2dx:0,
D D

from which we conclude that v = 0. It follows by Lemma 4.7 that —V+¢ = 0 on D and hence V¢ = 0.
Then ¢ is a constant, and is equal to 0 by (4.73). O

Lemma 4.9 follows as stated and Arnold’s second theorem also follows as stated.

Remark 4.17. The stability results considered above implicitly assume that a solution exists for all times ¢.
If not, then one has the stability estimate for all times for which the solution exists. This is sometimes
referred to in the literature as conditional stability (see, for example, [25, page 7).

4.5. Examples

Example 4.18. Plane parallel shear flows and inflection points.

(1) Suppose we have a plane parallel shear flow on T x [—Lj, L] induced by the profile v = (V (y),0),
with V/(=Ly) = V(L) = 0, u’ = (U(y),0) where U = V — a2V". We assume that U(y) has no inflection
point on [—Li, Lo], ie., U"(y) # 0 for every y € [~Ly, La]. We compute —F'(w%(z,y)) = V(y)/U"(y).
Therefore, as long as U”(y) # 0, we can always move to a reference frame where V has the same sign as
U”, i.e., find a constant ¢ such that V(y) + ¢ has the same sign as U”. Thus, one can see that —F’ satisfies
(4.29) and one has stability of this steady state by Arnold’s first stability Theorem 4.5. We thereby have
a sufficient condition for stability for a shear flow V', where U does not have any inflection point. Rayleigh
criterion for a-Euler, see Proposition 3.5 and Example 3.6, guarantees linear stability for flows such that U
has no inflection point. Arnold’s stability Theorem 4.5 guarantees nonlinear Lyapunov stability in the norm
in (4.51) thus generalizing appropriately the Rayleigh criterion.

(2) Consider now plane parallel shear flows V such that U = V — o?V” has inflection points but V'
and U” have the same sign everywhere. We can also prove stability of a steady state v¥ = (V(y),0), with
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V/(=Ly) = V'(Lg) = 0, u’ = (U(y),0) where U = V — o?V" such that U” changes sign, but V(y)/U" (y)
has the same sign. Then, the ratio —F'(w®(x,y)) = V(y)/U"(y) is positive everywhere and one obtains
stability of this steady state by Arnold’s first stability Theorem 4.5. Note that this generalizes the Fjortoft
criterion, see Proposition 3.7 and Example 3.9, which guaranteed linear stability of these steady states.

Example 4.19. Effect of regularization. This example illustrates the effect of regularization on the Arnold
criterion. We present an example such that the Arnold stability Theorem 4.5 can be applied to conclude
stability of the steady states for a-Euler for every a > 0 but the corresponding Arnold Theorem for Euler
cannot be applied to conclude stability of the steady state for Euler equation obtained, formally, by putting
«a = 0 in the steady states for the a-Euler. Suppose we have a plane parallel shear flow on T x [—Lq, Lo]
induced by a profile v0 = (V (y),0), with V/(—=Ly) = V'(L3) = 0,u’ = (U(y),0) where U = V—a?V". Let ¢°
be the stream function of velocity v°, i.e., V(y) = (¢°)'(y). The boundary condition V/(—L;) = V'(L3) = 0
implies that (¢°)”(L1) = (¢°)”(L2) = 0. Also, assume that ¢° = (1 + o?)w®. Thus, F’ = (1 + a?). Notice
that w® = curl(1 — a?A)v® = —U’(y) Thus

W’ = =0y ((1 = a0y, )V (y)) = =0y (1 — a?0,,)8,8°) = o (¢")"" — (¢")".

Since w® = ﬁqﬁo, we see that ¢° must satisfy the following differential equation,
1
QP — ()~ =0, ()(L) = () (L) =0, (1.75)

Choose the difference Ly — L in such a way that —A has minimum eigenvalue 1 on the appropriate space
Y,. Thus —A(1—a?A) will have minimum eigenvalue 1+ a?. Since we have the inequality o\ L = 1_5_1042 <

F' = 14a? for all a > 0, by Arnold’s second stability Theorem 4.11, one has stability of this steady state for
all values of a@ > 0. Notice that if we put a = 0 and consider this as a steady state for the Euler equations,

#° = ¥ = and ¢° = (1 + a?)w® becomes 1) = w®. Thus F’ = 1 and since the minimum eigenvalue of —A
in the appropriate subspace is 1, the inequality 1/\,;n, < F’ cannot be checked and stability of this steady
state cannot be concluded by Arnold’s second stability theorem for the Euler equations. In fact, stability
holds in a restricted sense if perturbations are restricted to certain subspace, see [31, p. 111] for more details.

Example 4.20. Sinusoidal flows. One class of steady states for which the regularization seems to have no
effect in terms of the Arnold criterion are the oscillating sinusoidal flows, i.e., steady states of the form
#°(y) = siny and ¢°(y) = sinmy where m > 1 is an integer. The Arnold stability theorems cannot be used
to conclude stability of these steady states for both Euler and a-Euler. Consider the domain to be the two
torus T2. For example, if ¢°(y) = siny, then v%(y) = (cosy,0), u®(y) = (1—a?d,,)v°(y) = ((1+a?) cosy, 0),
W(y) = =0, (1 +a?) cosy = (1+a?)siny. From this we can see that F” = 1/(1+ «?) and in order to check
for stability we need 1/Apin,o < 1/(1+a?) which does not hold because A o of the operator —A(14a?A)
with domain Y,, as in Equation (4.63) is equal to 1 4+ a2. One thus cannot conclude stability via Arnold’s
second Theorem 4.11 We note here the regularization does not have any effect whatsoever because for the
Euler equation if 1%(y) = siny, u’ = (cosy,0), w’(y) = siny. Thus F' = 1 and A, of the negative
Laplacian —A acting on the appropriate subspace is also 1 and thus one cannot check that 1/F" < A\pip
which is required for stability. Thus the regularization doesn’t seem to affect the ability of Arnold criterion
to predict the stability of the steady state siny. Similarly, if ¢°(y) = sinmy, then v°(y) = (mcosmy,0).
Then, u’(y) = (1 — a?d,,)v°(y) = (m(1 + a®*m?) cosmy,0), w’(y) = —9,m(1 + a*m?) cosmy = m?(1 +
m?2a?) sinmy. From this we can see that F’ = 1/m?(1+m?a?). One can check that the minimum eigenvalue
of —A(1 — a?A) on the subspace Y, described in Section 4.3 is given by 1 + o?. Thus, in order to check
for stability we need 1/A\min.a = 1/(1 4+ a?) < F' = 1/(m?*(1 + m?a?)). This inequality cannot be checked
for m > 1 and thus one cannot conclude stability by Arnold’s second stability Theorem 4.11. We note
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here the regularization does not have any effect whatsoever because for in the case of the Euler equation

2

if Y°(y) = sinmy, u® = (mcosmy,0), W’(y) = m?sinmy. Thus F' = 1/m? and A, of the negative

Laplacian —A acting on the appropriate subspace is also 1. Thus we need to check if 1 < 1/m? which
cannot be true if m > 1, and thus, similar to the a-Euler criterion, even for the Euler case, stability cannot
be concluded via the Arnold’s second stability theorem. Thus the regularization doesn’t seem to affect the
ability of Arnold criterion to predict the stability of the steady state sin my. This leads us to conjecture that
these steady states are unstable even for the regularized a-Euler equations. For more regarding stability of
sinusoidal flows for the Euler equations, see [6].
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