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Abstract. We study spectral instability of steady states to the linearized 2D Euler equations on the torus written in vor-
ticity form via certain Birman—Schwinger type operators K (u) and their associated 2-modified perturbation determinants
D(A, ). Our main result characterizes the existence of an unstable eigenvalue to the linearized vorticity operator Lyor in
terms of zeros of the 2-modified Fredholm determinant D(\,0) = det2(I — K»(0)) associated with the Hilbert Schmidt
operator K (p) for p = 0. As a consequence, we are also able to provide an alternative proof to an instability theorem first
proved by Zhiwu Lin which relates existence of an unstable eigenvalue for Lyor to the number of negative eigenvalues of a
limiting elliptic dispersion operator Ag.
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1. Introduction

The problem of finding unstable eigenvalues for the differential operator obtained by linearizing the two
dimensional Euler equations of ideal fluid dynamics about a steady state is classical [5,6,8,10,13,25]. Be-
sides the already mentioned general sources, we cite [1,2,4,7,9,11,12,18,20] and emphasize that our list
is drastically incomplete. The main objective of the current note is to involve perturbation determinants
into the study of spectral problems for the linearized Euler equations. The original inspiration for this pa-
per comes from the work by Zhiwu Lin [17,18,20]. We believe that we streamlined and somewhat clarified
his approach. Another important predecessor of this paper is [4] where a direct integral decomposition of
the linearized Euler operator was obtained.

We realize that in the current paper we obtain a rather theoretical result as we do not have a striking
new example of instability proved via perturbation determinants (see, however, Sect. 5 for an example).
Our main achievement is a characterization of isolated eigenvalues of the linearized operator as zeros of
certain analytic function of the spectral parameter, the two-modified Fredholm determinant, which in turn
leads to a new proof of a theorem by Zhiwu Lin [20]. We do not know if the perturbation determinants
were previously used for the linearized Euler operators, and we supply herein this seemingly missing tool.

We consider the two dimensional Euler equations in vorticity form

wit+tu-Vw=0

on the two torus T?, where w = curlu. Let u’ - Vw® = 0 be a steady state solution where w® = —A"
and W = g(¢°) for a sufficiently smooth function g : R — R. Here, ¢/° is the stream function associated
with the steady state w® and u, that is, u® = ( 2, —9). Linearizing about this steady state, we obtain
the equation

wi + 1’ Vw +curl tw - vVl = 0.
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We define the linearized vorticity operator Lo by
Lyoyw = —u’ - Vw — curl w - VO

In this paper, we study the discrete spectrum of the operator L,,. Our main tools are Birman—Schwinger
type operators, K (u) [discussed in more detail in Sect. 4 and defined in Eq. (4.4)], and Lin’s operators,
Ax. The Lin’s dispersion operators were introduced and studied by Zhiwu Lin in [17,18,20] and defined
by the formulae

Ay=-A—g@2,y) + g W@, y)AA - L)L, A>0,
Ag=—A— g @Wx,9) + g @ x,y))Po, A=0,

where 9° is the stream function for the steady state, g is the real function relating the vorticity and
the stream function via w® = g(¥/?), LY is the operator of differentiation along streamlines given by the
formula LOf = —u" - V£, and P, is the orthogonal projection onto the kernel of L°.

A remarkable property of the dispersion operators discovered by Z. Lin is that A > 0 is an eigenvalue
of the operator Lo, if and only if 0 is an eigenvalue of Ay; cf. Proposition 3.4. With this fact in mind,
we introduce a family of Birman—Schwinger operators, K (u), which belong to the ideal By of Hibert-
Schmidt operators and satisfy the identity Ax — pu = (I — Kx(p))(—A — p)), and define the 2-modified
Fredholm determinants D(\, u) = deto(f — K (1)), see formulas (4.4) and (4.6) below. As a result, in
this paper, we describe the unstable eigenvalues of Ly, as zeros of the analytic function D(+,0) for p = 0,
see Theorem 4.2, which is the main new result of this paper. In addition, we give a new version of the
proof of an important theorem by Z. Lin saying that if Ay has no kernel and an odd number of negative
eigenvalues, then the operator L, has at least one positive eigenvalue, see Theorem 3.7 below. The proof
is based on the fact that Ay — Ag converges to zero strongly in L?(T?) and, as a result, that K () — Ko ()
converges to zero in By as A — 01. Due to the convergence of the respective perturbation determinants,
it follows that the number of negative eigenvalues of Ag and Ay for small A > 0 (which is equal to the
number of zeros of D(0,-) and D(\,-), respectively) coincide, see Proposition 4.3 below. Since Ay has
no negative eigenvalues for large A > 0, and has an even number of nonreal eigenvalues, this shows that
when A changes from small to large positive values, an eigenvalue of Ay must cross through zero, thus
proving the existence of a positive eigenvalue of Ly;.

2. Problem Setup and Preliminaries

Consider the two dimensional inviscid Euler equations
ut—l—(u-V)u—i—Vgo:07 divu =0, (2.1)

on the torus T? = R? /2772, Since divu = 0, there is a stream function ¢ such that equation u = —V=+1)
holds, where —V= is the vector (—0,,0,) so that —V1¢ = (¥, —1,). We introduce the vorticity w =
curlu so that w = —Aq.

Applying curl in (2.1), one obtains the Euler equation in vorticity form,

wi+u-Vw=0. (2.2)

The Euler equation for the stream function v is
Ay = V- V(AY) = Athy — e Aty + 1, A¢p, = 0. (2.3)
Let us consider a smooth steady state solution w® = curlu’ = —Ay° of (2.2). In particular, V+¢° -

Vuw? = ( — 1/)2(996 + wgay)wo =0, and thus V¢° and V(Aw?) are parallel. Assume furthermore

Hypothesis 2.1. There exists a smooth function g : R — R, such that the equation

W(z,y) = A (z,y) = g(° (1)) (24)
holds for all (z,y) € T?.
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Hypothesis 2.1 in turn, implies that

V5 = o () V. (2.5)

We linearize the Euler equations (2.1)—(2.3) about the steady state:
w+u’ - Vut+u-Vu’ +Vp=0, divu=0, (2.6)
w1 Vw+curl tw- Vo = 0, (2.7

Aty — YAy + )My — e AYY + by AYY = 0.

Here, u = curl ! w denotes the unique solution of the system curlu = w, divu = 0 with w having zero
space average f,ﬂ,g wdzdy = 0.

We introduce the respective linear operators Lyel, Lyor, Lstr corresponding to (2.6)—(2.8), on the
following Sobolev spaces. We fix an m € Z, and denote by H!™ the Sobolev space of (scalar W3 (T?))
functions or distributions with zero space average:

H! = {w(;z;y) = Z wiee™ @) ‘wo =0, Z (1 + |k[2)™ wi|? < oo}, (2.9)
kez? kez2

and by H?" the Sobolev space of (solenoidal vector valued) functions with zero divergence and zero space
average:

H) = {v(:v,y) = Z viee® @) |y = 0,divv = 0, Z (1 + k)™ |vie||* < oo}. (2.10)
kez2 k72
Setting
Lyqu=—u’-Vu—u-Vu’ - Vp, (2.11)
Lyow = —u’ - Vw — curl ' w - VO, (2.12)
Lowth = —A7 (= 0 Ay + vy Ay — by Ay + ¢y AY)
=A(—u" V(AY) + V- V(AYY)), (2.13)

=AY (—u’ - (AY) — curl ™ (Ay) - V(-AYY)),

we observe that the following diagrams commute:

Hm+2 _Letr | Hm+1

lvi Mrﬁ Hp? e g

gt Lo Al T(A)‘l (2.14)
[ewt cum] Hr e, gmet,

L
m vor m—1
H(l Ha

Remark 2.2. We need a few further assumptions about the steady state. We follow the notation in [4].
Denote by 13, the union of the images of periodic orbits of the flow generated by u® and by Dy = {(z,y) :
V4A9O(z,y) = 0} the set of fixed points of the flow. We further assume that the periodic orbits together
with the fixed points “fill up” the torus, i.e., more precisely, we have the following hypothesis.

Hypothesis 2.3. In addition to Hypothesis 2.1 we assume that ']IQ\(ﬁ U Dg) has measure zero in T?.

For any p in the image of ¢° which is not a critical value, the level sets {(x,y) : ¥'°(z,y) = p} consist
of a finite number of disjoint closed curves which we denote by I'1(p),T'2(p), ...,y (p). Define the set
J to be the disjoint union of the values assumed by the steady state ¥° on each periodic orbit, i.e., as in
[4], we set

J = 1190 (2, y)

Ti(p)- (2.15)
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This set assumes the values of the stream function on periodic orbits, counted with multiplicity. It is
a disjoint union of open intervals. For example, if we consider the steady state u’ = (cosy,0) on T2,
then J = (—1,1) I (—1,1). One can thus define the period function T': J — (0,00) by letting T'(p) be
the time period of the orbit corresponding to p € J. Henceforth, we denote by I'(p) the periodic orbit
corresponding to p € J.

3. Lin’s Dispersion Operators and their Properties

In this section we define and study elliptic dispersion operators, Ay, parametrized by the spectral param-
eter A > 0 for the linearized Euler operator Ly, defined in (2.12). The operators Ay have the remarkable
property that A > 0 is an isolated eigenvalue of the linearized Euler operator Ly, if and only if 0 is in the
spectrum of Ay. The operators Ay are often called dispersion operators; they were introduced by Zhiwu
Lin in [17,18,20] and studied in subsequent work, see, e.g. [14,24]. We call them Lin’s operators.
Setting m = 1 in the diagrams (2.14), we will discuss the spectrum of the operator Ly, in L2. Thus,
we will view the operator Lyo, in (2.12) as an unbounded first order differential operator on Li with
the domain H!, the Sobolev space of functions with zero space average. If w is an eigenfunction of Lyoy
corresponding to the eigenvalue A with Re(\) > 0, then w € H}! and Lyo,w = Aw show that the linearized
Euler equation (2.7) has the solution e*w whose L?(T?)-norm grows exponentially. Respectively, the

enstrophy, that is, H?(T?)-norm of the corresponding stream function eMap, such that w = —Aq, grows
exponentially.
Let us denote by ' the flow on T? generated by the vector field V¢ = —uP. In other words,
oH(x,y) = (X(t;2,y),Y (t;2,y)) where X and Y solve the Cauchy problem
X;=—v)(X,Y), Y, =¢Q(X)Y), X(0)==z Y(0)=y. (3.1)

The strongly continuous evolution group {T%}icgr on L?(T?) of unitary operators defined by T¢ = ¢o !
is generated by the first order differential operator LY defined by

Lo =V 4" Vo = (—¢0: +¢20,)¢, (3.2)
with the domain dom L° = H}. We have the following properties of L°.

Proposition 3.1.
(i) (L°)" =-1%
(i) o(L?) S iR;
(iii) o(L%) =iR  provided ¢ has arbitrary long orbits;
(iv) A= L) Ly < [Re(N)| ™, Re(A) # 0;
(V) IO = L) B(Ls) = [Re(N)| ™, Re(A) # 0;
provided @' has arbitrary long orbits; (3.7)
(vi) LY and (A — L)~ are normal operators;
(vii) L° and the operator of multiplication by g’ (v°(x,y)) commute.
Proof. Property (3.3) follows by integrating by parts and implies (3.4). Property (3.5) is proved, for
example, in [22, Theorem 5] or [3]. Properties (3.6) and (3.7) are proved by passing to the self adjoint

operator iL°. Property (3.8) is obvious. Property (3.9), see (2.4), follows from the fact that 1,°(¢!(z,v))
is t-independent due to Va° - V440 = 0. ]

We will now show that A € C\ iR is an eigenvalue of the operator Ly, acting in Lo(T?) if and only if
0 is an eigenvalue of a certain elliptic operator, Ay in Ly(T?), having a sufficiently smooth eigenfunction.
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Definition 3.2. We define A, with the domain dom(A,) = dom A = H? for nonimaginary \ as follows:
Ay = =B+ g (0@, ) L'\ — LO)~ (3.10)
= A~ g (W) + 9 W (@.9)AA = L)), Re(A) #0. (3.11)
We remark that the operator A, is not self-adjoint; it is a perturbation of a self-adjoint operator

(either — A, see (3.10), or —A — ¢'(¢Y), see (3.11)) by a normal, see (3.8), (3.9), relatively compact
bounded operator (either ¢’ (¢°)LO(\ — LO) =1 or Ag’(¢°)(A — L)~ 1).

Remark 3.3. For A > 0, since A) commutes with complex conjugation, the nonreal eigenvalues of Ay are
complex conjugate. Thus, the number of the nonreal eigenvalues of Ay must be even for each value of
A > 0.

The following calculation shows how the eigenfunctions of L., are related to the elements of the
kernel of Ay. Using u = curl ' w = —V14) and (2.5), let us re-write (2.12) as follows:

Lyoyw = VI - Vw + V+p - Vo = V0 . Vw — V4 - Vo (3.12)
=V Vw — g (0°(2,9)) V" - Vo (3.13)
= L% — g (2, ) L. (3.14)
Thus,
Lyorw = w if and only if (A — L%)w = —¢'(4°(x,y)) L%, X € C, (3.15)
where w and 1 are related via w = —A1). Using (3.4) and (3.9), we see that
Lyorw = w if and only if w = —¢' (4" (z,4))L°(A — L) 14, Re(\) # 0. (3.16)
Using w = —Aq, the second equation in (3.16) can be re-written as
A = =AY+ g/ (0 (2,y) LA = L) Ty = 0. (3.17)

We thus have the following fact first proved by a slightly different argument in [20, Lemma 3.2].

Proposition 3.4. A non imaginary A belongs to o,(Lvor) if and only if 0 belongs to o,(Ax). Specifically,
if w € dom(Lyoy) = HX(T?) is an eigenfunction of the operator Loy and Re(\) # 0 then ¢ = —A~lw €
H? C dom(Ay) satisfies Axyp = 0. Conversely, if 1 € dom(Ay) satisfies Axyp = 0 with Re()\) # 0 then
w=—Av¢ € dom(Lyo) = HL(T?) is an eigenfunction of Lyor.

Proof. By (3.15)—(3.17), if w is an eigenfunction of Ly., then 9 = —A~lw is an eigenfunction of Aj.
Conversely, assuming 1) € ker(Ay), we have that 1 € H! = dom A satisfies the elliptic equation —Ay —
g' (V°)y = ¢, where we temporarily define ¢ = —(\ — L)~ \g/ ()¢ € H}. Due to elliptic regularity the
solution 1 of the equation is in fact in H1*? = H2, see also [19]. Then w = —Av¢ € H! = dom(Lye,).

a’

Running (3.15)—(3.17) backwards, we have that w is an eigenfunction of Lyo,. O

We now discuss what happens to the operators Ay when |Re(\)| is large, and when A — 0. We begin
with large |Re(\)|. Since

1% 22 = V440 - Vol < IVEO) Lo [V llz2 < el Ve 22, (3.18)

we infer that there is a constant ¢ such that for all ¢» € H} and Re(\) # 0 one has:
(g @)L= L, v)
< Mg @)zl = L) s 9l L2 IL% | 2 (3.19)

< cllg @z [ReN) T Il 22 [V ][z (by (3.6) and (3.18))
< collg (W) || [Re(N)| | VY||2:  (by the Poincare inequality).

Thus, for all ¢» € H2 and sufficiently large |Re(\)|, the Poincare inequality yields
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Re(Axy, ) 2 > |[VYlz2 = collg’ (@)oo | Re(N) V]| 72
> e1[9]|7e, (3.20)

and thus Ay has no eigenvalues with negative and zero real parts provided |Re(\)| is large enough, cf.
[20, Lemma 3.4]. In particular, there exists Ao > 0 such that

if A > A then A, has no negative eigenvalues. (3.21)

We will now discuss what happens to the operator Ay when A\ — 0. First, let us consider the
operator A(A — L) ™! from (3.11). To motivate the limiting behavior of this operator as A — 07, let us
impose, for a second, an additional assumption that zero is an isolated eigenvalue of L° (this is indeed
a strong assumption that holds provided all orbits of ¢! are periodic uniformly with bounded periods).
Then the usual expansion of the resolvent operator, see [16, Sect. I11.6.5], around zero, (A — L?)~! =
Pod™' + Do + DA + - -+, yields that Py = limy_.o A(A — L°)~! is the Riesz spectral projection for L°
onto ker LY. A remarkable fact proved in [20, Lemma 3.5] (in a different form and using a different
method) is that this limiting relation holds without any additional assumptions but in the sense of strong
convergence. In particular, going back to the general case, we have the following fact first proved by Z.
Lin in [20, Lemma 3.5].

Lemma 3.5. Assume Hypothesis 2.3 and let Py denote the orthogonal projection in L2 onto the subspace
ker LY = {¢ € H} : V*4°. V¢ = 0}. Then for any ¢ € L? one has \(A\—L°)"*¢ — Py in L? as X\ — 07.

Proof. We recall Remark 2.2 about the assumptions regarding the steady state. Hypothesis 2.3 implies
that it is enough to check the lemma on Dy U D. On Dy, the operator LO|L2(DO) is the zero operator,
and the orthogonal projection Fy|r2(p,) is the identity operator and the statement of the lemma holds
trivially. It is thus enough to check the lemma on D. Following [20] and using co-area formula, see [4,
Formula 16], the LQ(ZA)) norm of any function ¢ € L?(D) restricted to the set D can be represented as

2 7 |¢|2d>d— ( |¢|2d)d 3.22
||¢|L2(D)/—oo(/(w0)_l(p) Vo] p/J /r(p) Vo] ) (3.22)

Here, ds is the induced measure on each streamline T'(p), and dp is the Lebesgue measure on the index
set J defined in (2.15). By assumption, each T'(p) is diffeomorphic to the unit circle T with period T'(p).
As time ¢ varies from 0 to T'(p), a point ¢’(z,y) on I'(p) traces one full orbit around I'(p). One can see
that dt = ds/|V1°| because dp'/dt = —V19%(p!). Thus, one can rewrite (3.22) as

Io0scey = | ([ . 6,0t ). (3.23)

where the restriction of ¢ to I'(p) is denoted by ¢, which is in the space L2_,.(0,7(p)), i.e., the space of L?

per
functions on (0,T'(p)) with periodic boundary conditions. In the language of direct integral decomposition

of operators, see for example [21, Sect. XIII.16], we can represent the space LQ(E) as

27 — © s
12(D) /j 12,,.(0,T(p))dp. (3.24)

We will use the direct integral decomposition of LY from [4]. Fix a point (z,y) € T'(p). We first note that
L f(2,y) = —%i—of (¢! (2, y)), where ¢*(z,y) is the flow generated by the velocity field u® and f is

smooth. Thus, if ¢, € L2,,.(0,T(p)) with the Fourier series representation ¢,(t) = >, 5 qu(k)eQ”ikt/T(p),

per

where t € [0,T(p)), then

d d — ~ )
L°(p)o,(t) = e 3" G ()e2mikt/ T
kEZ
— Z Map(k)e%rikt/T(p)’ (3.25)

= T
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and where L°(p) represents the restriction of LY to L?(T'(p)). Using (3.25) one can obtain a representation
for the resolvent operator as

()‘ LO (Z¢ QTI'Zkt/T(P> = Z \ +127rzk ¢p( ) 2mikt/T ()

kez kez T(p)
_ T(p) = 1\ 2mikt/T(p)
kzez (o) + 2min e R)e ' (3:26)

We thus have, for each Fourier coefficient ap(k),

(3.27)

N(p)  ~ . [o,0) ifk=0,
Jim A= L0(0)) 7', (k) = S S 2wk ﬂ(k)—{o i k£ 0.

Let us denote by Py(p) the orthogonal projection in L?(T'(p)) onto the kernel of L(p). We note here that
in the language of direct integral decomposition of spaces and operators, see [21, Sect. XIII.16], we can
write, as proved in [4], that

® ®
Po= [ Plpdp, i = [ (o). (3.28)
J J
From (3.25), we see that L°(p)¢, = 0 if and only if (Ep(k) = 0 for every k # 0. Thus we have that
Po(p)pp = 6,(0). (3.29)
We now claim that if ¢ € L2( ) and ¢, € L*(I'(p)) then for each p one has
. 0/ \y—1 2 _
(i [(AA =L ()" = Po(p)) ol 12(r(p)) = O- (3.30)

Indeed, using Parseval’s theorem and formulae (3.29) and (3.26), we have,

N2T2(p)

0/ \y—1 2 _
IO = 22D = leDéolacon = Y soray gz oo (331)
keZ\{0}
For every k # 0, since A>T2(p) < \2T2(p) + 472k?, we have that,
A2T2(p ~ ~
e BB < 18,00, (332
and
X212 (p ~ ~
> e b 0P < B, (3.39)

kezZ\{0} k€

Since (3.32) holds, one can apply Lebesgue dominated convergence theorem on the space £2(Z) to conclude
that,

212
lim AT (p)

272 21.2 7P
A—0+ keZ\ {0} 2] (p) + 42k

AT (p) ~
= > lim |9, (k)|? = 0. (3.34)
272 21.2 7P
wezvoy 0t A2T2(p) + Am2k

Hence (3.30) holds, as claimed. We are now ready to prove the main assertion in the lemma that A(A —
L% ~1¢ — Py in L?(D) as A — 0. We need to show that

: _ 701 _ _
Jim (A = L) = Ry) 0. (3.35)



Y. Latushkin, S. Vasudevan JMFM

Using formula (3.23) this reduces to showing that

ﬁgﬂLMMA—ﬁ@DI—FMMMNEW@WP—O (3.36)
Using (3.31) and (3.33) we have that, applying Parseval’s theorem twice,
IAA = L(p)) ™ = Po(p))ollT2 0oy < I6pl172(0(0))- (3.37)

One can thus apply the Lebesgue dominated convergence theorem to the left hand side of (3.36) and use
(3.30) to conclude that,

i, /J A = L2(p)) ™" = Po(p)) byl 220y P

B . 0/ -1 2 _
= [ OO = L2600 = Rolo)6, o = 0.

finishing the proof of the lemma. O
We now extend the definition of Ay in Definition 3.2 as follows.
Definition 3.6. Introduce the operator Ag in L? with dom(Ag) = dom(A) = H2 by the formula
Ao = -0 =g (W@, y)) + g (¥°(z,9)) Po. (3.38)

By Lemma 3.5 we infer that Ax¢ — Ag¢ in L? as A — 07 for each ¢ € dom(Ay).
To conclude this section we formulate the following important theorem proven by Zhiwu Lin in [20]
and provide an outline of its proof.

Theorem 3.7. Assume Hypothesis 2.3 and consider Lin’s dispersion operator Ay defined in Definition
8.6. Assume that Ag has an odd number of negative eigenvalues and no kernel. Then Lyo, has a positive
isolated eigenvalue.

This result gives a new instability criterion for the steady state ¢°, cf. [18,20]. The proof given in [20]
rests on an abstract theorem based on the use of the infinite determinants of the operators e~4*. In the
next section we will offer an alternative proof of Theorem 3.7 based on the use of Birman—Schwinger type
operators. In addition, these operators, associated with Ay and — A, provide us with an analytic function
of the spectral parameter whose zeros are exactly the eigenvalues of the operator Ay. Computing this
function at the value p = 0 for the spectral parameter for Ay, we will obtain a function of the spectral
parameter for Ly, whose zeros are exactly the isolated eigenvalues of Ly, .

Remark 3.8. The strategy for the proof of Theorem 3.7 is as follows. Assuming that Ay has an odd
number of negative eigenvalues, we show, see Proposition 4.3, that A, has the same number of negative
eigenvalues provided A > 0 are small enough. This is the only assertion to be proved to establish the
result in Theorem 3.7 as the rest is easy. Indeed, as A > 0 changes from small to large positive values, one
of the eigenvalues of A should cross through zero since Ay has no negative eigenvalues for large A > 0
by (3.21) and the eigenvalues of Ay may leave the real line only in pairs by Remark 3.3. So, for some
A > 0 we have 0 € 0,(A\) and thus A € o,(Lyor) by Proposition 3.4, completing the proof of Theorem
3.7.

4. Birman—Schwinger Type Operator Associated with Lin’s Operator

In this section we introduce and study the family of Birman—Schwinger type operators Ky(u), pu €
C\o(—A), Re(N) # 0, associated with Lin’s dispersion operators Ay, introduced in Sect. 3 and the
negative Laplace operator — A. As we will see, K)(u) € Ba, the set of Hilbert-Schmidt operators in L2.
We will also define the respective two-modified Fredholm determinants,

DA, p) = deta(Iz — Kx(pn)), Re(X) # 0, € C\o(—A), (4.1)
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see, e.g. [15,23]. For each A, this will allow us to characterize the eigenvalues of Ay as zeros of the
holomorphic function D(),-) of the spectral parameter u. Using the relation between the spectra of the
linearized Euler operator Ly, and Ay described in Proposition 3.4, we will characterize the nonimaginary
eigenvalues of Ly as zeros of the function D(-,0) holomorphic in A for Re(A) # 0. These two results,
given in Proposition 4.1 and Theorem 4.2 constitute the main results in this paper.

In addition, we will introduce a family of Birman—Schwinger type operators Ko(u), p € C\o(—A)
associated with Lin’s operator Ay, defined in Definition 3.6, and — A, and extend the definition of D(0, )
to A = 0 by the same formula (4.1). This will allow us to characterize the eigenvalues of Ag as zeros of
the holomorphic function D(0, -) of the spectral parameter p. It turns out that Ky(u) — Ko(p) in By as
A — 0% uniformly in p on compact subsets of C\o(—A), see Lemma 4.6 below. Using these facts, we will
show that the number of negative eigenvalues of Ay is equal to the number of negative eigenvalues of Ay
provided A\ > 0 is small enough, cf. Proposition 4.3. As we have already explained in Remark 3.8, this
implies the conclusion of Lin’s Theorem 3.7, thus providing a new proof of this important assertion.

Our first task is to define the Birman—Schwinger operators K (u). We recall (3.11) for Aj,

Ay =—A— g (@) + ¢ (W)AN = L)1, Re(A) # 0. (42)
Notice that if 4 € C\o(—A), then
A= p= (A=) =g @) + g @A\ - L)
= ( (6 (W) =g WA = L)) (A — #)_1> (—A—p)
= (I = Kx(w)(=A — p), (4.3)

where we introduce the operators K (u) by the formula
Ex(u) = (¢ (") — g/ (WA = L)) (=A = ), Re(X) # 0,1 € C\o(—A). (4.4)

Replacing A(A — L%) 71 in (4.4) by (A — L% + L%)(A — L) ~!, we see that an alternate expression for (4.4)
is given by the formula

Ea(1) = g/ () L° A = L% (=A — u) ", Re(A) # 0,1 € C\o(~A). (4.5)

We notice that Ky (u) € Ba, the class of Hilbert-Schmidt operators. Indeed, the operators ¢’(¢°) and
Lo\ — LY%)~! are bounded, and the operator (—A — ;)~1 is in By as it is similar via the Fourier transform
to the diagonal operator diag{(|k|?> — 1) ~'}kez2\{0}, and the series Zkez2\{0}(|k|2 — 11)~2 converges.

Since Ky(u) € Ba(L?), the following 2-modified determinant exists:

DA ) = deta(Izz — Kx(w) = [ ((1 = ™)e="), (4.6)

n=1

where %/\ ") denote the eigenvalues of the operator K(u), and we remark that %/(\") — 0 asn — oco. We

refer to [23, Chapter 9] or [15, Sec. IV.2] or [26, Sec. 1.7] for properties of the two-modified determinants.
We note that for each fixed A € C\o(—A) the function Ky : C\o(—A) — By of the parameter u is
holomorphic with the derivative

dKy
—2 =K ~A—p)t 4.7
S AICNIR (47)
and for each fixed u € C\o(—A) the function K(y(u) : C\iR — By is a holomorphic function of the
parameter A\. We also note that 0 ¢ o(—A) because the Laplace operator is being considered on the space
L? of functions with zero average, and is therefore similar via Fourier transform to the diagonal operator
diag{||k||* }kez2\ {0}- Thus the operators

Ex(0) = (9'(¥°) = g (W")AN = LO) ) (=A)7", Re(N) #0, (4.8)

are well defined. We have the following version of the Birman—Schwinger principle.
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Proposition 4.1. Assume Hypothesis 2.1 and recall formulas (4.2), (4.4) and (4.6). The following asser-
tions are equivalent for each A € C\iR and p € C\o(—A):

(i) pea(A)\o(=4), (4.9)
(i) 1 €a(Ka(w), (4.10)
(iii) DA, p) := deta(Irz — Kx(p)) = 0. (4.11)

Proof. The equivalence of (i) and (ii) is a direct consequence of the formula
Ax—p = — Kx(n)(—=A = p) for p € C\o(-4),

see formula (4.3). The equivalence of (ii) and (iii) is just a general fact from the theory of two-modified
determinants, see, e.g. [23, Theorem 9.2(e)]. O

We are ready to formulate the main result of this section, Theorem 4.2, which gives a characterization
of the unstable eigenvalue of Ly, in terms of the zeros of the function D(A,0) := dety 12(1 — K»(0)) and
thus gives us a new way of detecting unstable eigenvalues of the operator Lyo,. In particular, it reduces
the study of instability of the linearized vorticity operator L, to the study of the 2-modified determinant
dety 12 (1 — Kx(0)) associated with the operator K(0) from (4.8).

Theorem 4.2. The following assertions are equivalent:

(i) A € o(Lyor)\iR, (4.12)
(ii)) 1€ o(Kx(0)), (4.13)
(iii) D(A,0) :=dety r2(f — K»(0)) =0. (4.14)
Proof. We will offer two proofs of the main conclusion of the theorem. We note that the equivalence of (ii)

i
and (iii) is just a general fact from the theory of two-modified determinants, see again [23, Theorem 9.2(e)].
Our first proof shows that (i) is equivalent to (iii) while the second proof shows that (i) is equivalent to
(ii).

First proof (i) <= (iii). By Proposition 3.4 we have that A € o(Lyor) if and only if 0 € o(A4)).
We now apply the equivalence of assertions (i) and (iii) of Proposition 4.1 for x4 = 0 and conclude that
assertions (i) and (iii) of the current theorem are equivalent.

Second proof (i) <= (ii). We return to representation (3.14) of the operator Ly, and discuss a
Birman-Schwinger operator associated with the unperturbed operator L° and the perturbed operator
Ly, Recalling that w and ¢ are related via w = — A, equation (3.14) yields

Lyaw = LO(I + ¢'(¥°(x,y)) A" w, (4.15)
thus implying, for any A € C \ o(L°), that
A— Lvor =A- LO - g/('ll)o(xv y))LOAil
= (I —g@W°(z,y)L°A T (A= L)) (A= L°) (4.16)
= (I - Kx\(0))(A = L),
where we temporarily denote Ky(0) = ¢/ (¢°(z,y)) LA~ (A — LY=L, We write A = ¢/(/(x,y))LOA~
and B = (A — L%)~! and note that K, (0) = AB while, using (4.5) for u = 0, we also have K)(0) = BA
since the operators ¢’ (¢¥°(z,y))L° and (A—L°)~! commute. By standard results, we have that the operator
I—K,(0) is invertible if and only if the operator I — K (0) is invertible and o (K (0))\{0} = o(Kx(0))\{0}.
Since A— Lyor = (I —Kx(0))(A\—L°), for A € C\o(L°) and o (L") C iR, we know that A € o(Lyo;)\iR if
and only if 1 € o(K(0)). This shows that assertions (i) and (ii) of the current theorem are equivalent. [

We will conclude this section by completing the new proof of Lin’s Theorem 3.7 outlined in Remark
3.8. As indicated in this remark, the only missing part of the proof is the following assertion.



2D Euler Eigenvalues via Birman—Schwinger and Lin’s Operators

Proposition 4.3. Assume that the operator Ag has an odd number of negative eigenvalues and no kernel.
Then Ay has the same number of negative eigenvalues provided A > 0 is small enough.

In order to prove this proposition (and thus finish the proof of Lin’s Theorem 3.7) we will need to
involve Birman—Schwinger type operators Ko(u) € Bs associated with the operator Ag and — A, and the
respective determinant D(0, u) = dets p2(f — Ko(u)). Recalling formula (3.38),

Ao = =D = g' W%z, y)) + g (¥ (x,y)) P, (4.17)
similarly to (4.3) we arrive at the formula
Ao — p= (I = Ko(p))(—=A = p), (4.18)
where we introduce the operator Ky(u) as follows:
Ko(p) = (¢ (%) =g (@) Ro)(=A =) ™", peC\o(-A). (4.19)

We notice that the only difference with (4.4) is that the operator A(A— L°)~! is replaced by Py. As before,
it is easy to see that Ky : C\o(—A) — By is a holomorphic function and dKq/du = Ko(p)(—A — )~ L.
Similarly to Proposition 4.1 one shows the following fact.

Proposition 4.4. Assume Hypothesis 2.3 and recall formulas (4.17) and (4.19). The following assertions
are equivalent for p € C\o(—A):

(i) neo(do)\o(-4A), (4.20)
(ii) 1€ a(Ko(p), (4.21)
(iii) D(0, 1) := dety, 12 (I — Ko(p)) = 0. (4.22)

Remark 4.5. Because K)(-) : C\o(—=A) — By and Ky(-) : C\o(—A) — By are holomorphic, by the
general theory of two modified Fredholm determinants we conclude that the functions D(0, ) and D(A, -)
are holomorphic functions of y € C\o(—A). This is seen by applying Assertion IV.1.8 in [15] and Lemma
9.1 in [23].

Recall that A(A\ — L%)~! — Py strongly in L2 as A — 07 by Lemma 3.5. Re-writing K)(u) and
Ko(u) as Kx(p) = ThS(p) and Ko(p) = ToS(p), where Ty = ¢'(¢°) — ¢/ (¥*)A(X — L°)~! for A > 0 and
To =g (W) =g (¥°) Py, and S(p) = (—A—p)~t € By, we conclude that Ty — Tp strongly in L2 as A — 0.
The following fact is a standard result in the theory of Hilbert-Schmidt operators, cf. [15, Theorem 6.3].

Lemma 4.6. For the operators Kx(u) from (4.4) and Ko(u) from (4.19) we have Ky(u) — Ko(p) in Bs
as A — OF wuniformly for p from any compact set in C\o(—A).

Proof. For each fixed p assertions Ty — Ty strongly as A — 07 and S(p) € Bs yield T\S(p) — ToS(p) in
Bs by e.g., Theorem 6.3 in [15]. The proof given in [15] is by writing S(u) = K + L where K is of finite
rank and L € By with a small By norm, and then using that Thu; — Tou; as A — 07 for a finite basis
{u;} of the range of K. This proof can be easily adapted for S = S(u) depending on u by taking first
a finite e-dense net {p} in the compact set so that ||S(u) — S(uk)||B, are sufficiently small, and next
applying the proof of [15, Theorem II1.6.3] for each py. O

By [15, Theorem IV.2.1] the map K — dete(I — K) is continuous on By. By Lemma 4.6 we then
conclude that D(A, ) — D(0,pu) as A — 0" uniformly for 4 on compact subsets of C\o(—A); here
D(0, p) is defined in (iii) of Proposition 4.4. In what follows, we will apply the argument principle to the
family of holomorphic functions D(A,-), A > 0, in parameter u. The following general formula for the
logarithmic derivative can be found in [26, sec 1.7], see there formula (18),

S10gDO) = = T (1 = K ) Ka ) T ). (1.23)
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We recall that Ky (p) and de;u(M) are in Bz and their product is in By, see e.g. [26, Prop 1.6.3]. This
formula holds for A > 0 and pu € C\o(—A). Since Tr is a continuous functional on By, it follows from

Lemma 4.6 that p J
—log D(A, pt) — —logD(0, 1) as A — 0 (4.24)
du du

on compact subsets of C\o(—A). We recall that by the argument principle, the number of zeros of
a holomorphic function enclosed by the contour is computed via the integral over the contour of its
logarithmic derivative.

Lemma 4.7. Let R be a bounded closed rectangle in the p-plane whose boundary belongs to the resolvent
set of the operator Ay. There exists Ag > 0 such that for all X € (0, ) the number of eigenvalues of Ao
in R is equal to the number of eigenvalues of Ay in R.

Proof. By Proposition 4.1 (iii) and Proposition 4.4 (iii) for all A > 0 the eigenvalues of Ay are exactly
the zeros of the function D(A, ). If g is small enough and A € (0, Ag) then D(\, p) # 0 for p € OR, the
boundary of R, because D(0, u) # 0 for p € IR as IR does not intersect o(Ap). Thus the logarithmic
derivative of D(A, p) is well defined for ;1 € OR. Using (4.24), we can make the logarithmic derivative of
D(\, ) arbitrarily close to that of D(0, 1) for u € R by further reducing Ag. By the argument principle
the number of zeros of D(0, 1) in R is equal to the number of zeros of D(\, 1) in R provided A € (0, \g)
and Ag is small enough. O

We are ready to prove Proposition 4.3.

Proof. Since 0 is not an eigenvalue of Ay by assumption, there is a small ¢ > 0 such that the rectangle
Ro := [—¢€,€] X [—¢,¢€] does not contain eigenvalues of Ay. Reducing e further, if needed, find a long thin
rectangle R = [—a, €] X [—¢, €], a > 0 that contains all the negative eigenvalues of Ay and does not contain
any other points in o(A4p). By Lemma 4.7, if Ay > 0 is small enough and A € (0, \g) then Ay has no
spectrum in Ry and the number of eigenvalues of Ay in R is equal to the number of eigenvalues of Ay in
R. Since the number of negative eigenvalues of Ay is odd by assumption, we conclude that Ay has the
same odd number of negative eigenvalues provided A € (0, \g) and g > 0 is small enough. This finishes
the proof of Proposition 4.3 and completes the proof of Lin’s Theorem 3.7. O

5. An Application of Lin’s Instability Theorem

In this section, we study an example of a steady state for which the operator Ay is invertible and has an
odd number of negative eigenvalues, and is thus unstable by Lin’s Theorem 3.7. A similar example was
used by Lin, see [18, Example 2.7], to study instability of steady states on the channel, and we adapted
this to the case of the torus.

Example 5.1. We work with steady states of the form, u® = (cos my, 0), where m > 2 is an integer. Observe
that 1°(z,y) = sinmy/m and w®(z,y) = msinmy, from which we obtain that w%(z,y) = g(v'°(z,y)) =
m2yY9(z,y), i.e ¢ = m?. Let us fix a positive integer & > 0 to be determined later. Let j be an integer
in [1, |m/2]], where |m/2] denotes the greatest integer less than or equal to m/2. Denote by X} ; the
subspace of L2(T?;C) consisting of functions of the form ¢(y)e’*® where ¢(y) € Y := span {sin(ny)},
where n = j +mp, p € Z. In other words, we have that X ; =Y ® Ej,, where we have denoted the one
dimensional subspace by Ej, := span {e’**}. Noting that cos(my)sin(ny) € Y by the trigonometric
formula cos(my) sin(ny) = 3 (sin(n+m)y-+sin(n—m)y), it is easy to verify that the space Xy ; is invariant
under the operators LY, Loy, Ax, which shall henceforth be restricted to the subspace X ;.

We now compute the kernel of the operator L°. Let ¢ (z,y) € dom L° N Xy ;, i.e., 1 is of the form
U(z,y) = ¢(y)e’™™, where ¢(y) € Y N dom L°. Then

LO%(,y) = —u° - Vip(a, ) = — cos mydyb(a, y) = — cos my(ik)$(y)e™.
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Note that — cosmy(ik)¢(y)e?*® = 0 if and only if ¢(y) = 0. In particular, we see that the kernel of
the operator LY acting on Xy ; is simply {0}. Thus the orthogonal projection P, onto the kernel of L°
restricted to the subspace X j, is the zero operator, i.e Py|x, ; = 0.

We now compute the operator Ay, see (3.38),

Agp(z,y) = [-A — g (W°(2,y)) + ¢ (W (2, y)) Polib(x,y)
= [=¢" () + K dy) — m*6(y))e™
= e[ Ap ,b(y)]

(since Py = 0), where Ay, acts on the space Y, and is given by

Ao yo(y) = —¢"(y) + K o(y) — m*(y).

We can write the operator Ag as Agy ® I where Ag, acts on the space Y times the identity operator
acting on e?*®. The spectrum of Ay acting on the space X k,; thus corresponds to the spectrum of the
operator Ay, on the space Y, that is, 0(Ao; Xy, ;) = 0(Aoy;Y). If we can prove that Ay acting on the
space X ; has an odd number of negative eigenvalues and no kernel, Lo, has an unstable eigenvalue by
Theorem 3.7. Since 0(Ag; Xi,;) = 0(Ap,y;Y), this amounts to showing that Ao, acting on the space ¥’
has an odd number of negative eigenvalues and no kernel.

We now choose k such that the operator Ay, acting on Y has exactly one negative eigenvalue and
no zero eigenvalue. Since —(sin(ny))” = n?sin(ny), we have that the eigenvalues contributed by the
second derivative operator acting on Y are {n? : n = j + mp,p € Z} (note that {sin(ny)} is a basis
for Y). Our choice is such that the two smallest eigenvalues in magnitude, contributed by the second
derivative operator are when n = j (i.e., when p = 0) and n = j — m (when p = —1). Since Ag,
is the second derivative operator added to a multiplication operator, the spectrum of Ag, is given by
{n?+k?2-—m?:n=j+mp,pecZ}

If we choose k such that m? — j2 > k2 > m? — (j — m)? holds, then the operator Ap,y acting on Y has
exactly one negative eigenvalue (counting multiplicity) and no zero eigenvalue. For a concrete example,
choose m =4, j =1 and k = 3. Another example is given by the choices, m =7, j = 2 and k = 6. This
gives exactly one negative eigenvalue and no zero eigenvalue for Ay, hence for Ay, and therefore proves
the existence of a positive eigenvalue of Lyo;.
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