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Abstract. The present paper provides a two-level framework based on spectral methods and
homotopy continuation for solving second-order nonlinear boundary value problems exhibiting mul-
tiple solutions. Our proposed method consists of two steps: (i) solving the nonlinear problems using
low-order polynomials or a small number of collocation points, and (ii) solving the corresponding
linearized problems by high-order polynomials or a large number of collocation points. The resulting
two-level spectral method enjoys the following merits: (i) it guarantees multiple solutions, (ii) the
computational cost is relatively small, and (iii) it is of proven high-order accuracy. These claims are
supported by the detailed error estimates for semilinear equations and extensive numerical experi-
ments of both semilinear and fully nonlinear equations.
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1. Introduction. In recent years, there has been a growing interest in the study
of nonlinear differential equations with multiple solutions since they provide a pow-
erful tool to quantitatively describe the important features of real-world phenom-
ena, such as conservation, diffusion, equilibrium, motion, pattern, reaction, and so
on. Applications can be found in many areas of science and engineering including
astrophysics, combustion theory, differential geometry, economics, general relativ-
ity, mathematical biology, meteorology, optimal transport, and shape optimization
[35, 31, 8, 18, 44, 43, 16]. Unfortunately, only very few nonlinear differential equa-
tions have known exact solutions, but many more, which are important in scientific
and engineering applications, are not solvable in an explicit form. Hence, it is neces-
sary to develop efficient and accurate numerical algorithms for nonlinear differential
equations with multiple solutions.

In this work, we consider the second-order elliptic equations with nonlinearity
of polynomial type, in which all nonlinearities, with respect to the solution and its
derivatives, appear in a polynomial form, i.e.,

(1.1) F (u, ux, uy, uxx, uxy, uyy) + f(x, y) = 0, (x, y) \in \Omega ,

where \Omega \in \BbbR 2 is an open bounded domain, f(x, y) \in C\infty (\Omega ), and the function
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TWO-LEVEL SPECTRAL METHODS B1181

F (Xi; 1 \leq i \leq 6) : \BbbR 6 \rightarrow \BbbR 1 is a polynomial with respect to each variable Xi.
A specific semilinear example is \Delta u + g(u) = 0, where g(u) is a polynomial of

u, i.e., g(u) =
\sum K

k=0 ck(x, y)u
k, ck \in C\infty (\Omega ), k = 0, 1, . . . ,K. Besides, the dif-

ferential equation (1.1) could be imposed with various types of boundary condi-
tions including Dirichlet, Neumann, Robin, or periodical. For the discussion on
existence, regularity, and multiplicity of the solutions to the above problems, see
[28, 7, 33, 34, 6, 25, 36, 24, 9] and the references therein.

Recent years have witnessed substantial progress in the development of numerical
methods for seeking multiple solutions of semilinear elliptic equations. One is the
variational-type method based on optimization algorithms, including the mountain
pass algorithm [13], high linking algorithm [14], mini-max algorithm [27, 49], etc.;
another is the classical numerical approach---to discretize the differential equations
with proper numerical methods and then to solve the resulting nonlinear system of
equations. We will adopt the latter approach in this paper.

In general, it is hard to solve the resulting nonlinear systems after numerical dis-
cretization of the original nonlinear differential equations, due to the multiplicity of
the solutions. A typical approach to find nontrivial distinct solutions is to start a
Newton-type iteration with many different initial guesses, with the hope of finding
the solutions that lie in different basins of attraction. Unfortunately, the drawback of
Newton iteration is that it is very sensitive to initial guess and becomes very expen-
sive for calculating the inverse of the Jacobian matrix at each iteration step. Several
methods have been developed to overcome these difficulties. Popular strategies are
the search-extension method [11, 10, 46, 12] and the eigenfunction expansion method
[50]. The basic idea is that they use the eigenfunctions of Laplacian operator as the
starting points in the iterations. Another useful tool is the deflation technique [15],
which enables the Newton iteration to converge to several different solutions even when
starting from the same initial guess. In addition, a bootstrapping approach based on
the finite difference method and homotopy continuation was proposed for computing
multiple solutions [20, 21]. Most recently, Boyd proposed a degree-increasing spec-
tral homotopy based on Chebyshev and Fourier spectral methods, and showed the
numerical results for several one-dimensional problems [4, 5].

The basic idea of the two-grid method based on finite element methods is to
get a rough approximation on the coarse space and use it as an initial guess on the
fine grid, which has been used for solving nonsymmetric linear and semilinear elliptic
and parabolic problems [47, 30, 48, 1, 23]. Here we employ two polynomial spaces in
spectral methods---coarse space XNc

and fine space XNf
with Nc \ll Nf---to solve the

elliptic equations with polynomial nonlinearity shown in (1.1), which has the following
two steps:

1. First, the original nonlinear problem is discretized by spectral Galerkin ap-
proximation with Legendre polynomials of low degree, or by the Chebyshev
collocation method with a small number of collocation points. Besides, the
polynomial systems after spectral discretization are solved by homotopy con-
tinuation to obtain the numerical solutions with multiplicity.

2. Second, we solve the corresponding linearized problems using higher order
Legendre polynomial approximation or a larger number of collocation points,
in which the solutions obtained in the first step are chosen as starting points.

Spectral methods [37, 38, 39] are employed here to discretize the differential equa-
tions due to their optimal convergence rates, which are restricted only by the regularity
of the solutions. Since the nonlinear equations considered here are algebraic, the re-
sulting system is of polynomial type. In recent years, remarkable progress has been
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B1182 YINGWEI WANG, WENRUI HAO, AND GUANG LIN

made in the development and implementation of efficient algorithms to numerically
solve and manipulate the solutions of systems of polynomials, which is called numerical
algebraic geometry (NAG). We employ the homotopy continuation method proposed
in [42, 22, 45, 3] to solve the polynomial systems arising from spectral Galerkin or
collocation discretizations of the nonlinear differential equations. The significant ad-
vantage of our proposed methods is that the multiple solutions can be obtained with
high accuracy but relatively low computational cost.

The remainder of this paper is organized as follows. The detailed algorithms of
our proposed two-level framework based on spectral methods are presented in section
2. In section 3, we offer a brief introduction to the numerical algebraic geometry
and homotopy continuation method for polynomial systems. The spectral-type error
estimates for the one-dimensional semilinear problem are provided in section 4. In
section 5, we present several numerical experiments to demonstrate the accuracy,
efficiency, and robustness of our proposed methods. Finally, section 6 summarizes
and concludes the presented work.

2. A two-level framework of spectral methods. We begin by considering
the following one-dimensional nonlinear elliptic problems with homogeneous Dirichlet
boundary conditions:

(2.1)

\Biggl\{ 
F \mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}(u) := (uxx)

q + \lambda up + f(x) = 0, x \in I = ( - 1, 1),

u( - 1) = 0, u(1) = 0,

where p, q are nonnegative integers, \lambda \in \BbbR is a known parameter, and f is a sufficiently
smooth function.

The Newton iteration of the problem (2.1) can be written as
(2.2)\left\{   q

\Bigl( 
u[n]
\Bigr) q - 1

Vxx + \lambda p
\Bigl( 
u[n]
\Bigr) p - 1

V + F \mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}
\Bigl( 
u[n]
\Bigr) 
= 0, V ( - 1) = V (1) = 0,

u[n+1] = u[n] + V, n \geq 0.

The general description of the two-level framework based on spectral methods for
the problem (2.1) is shown in Algorithm 1, while the detailed techniques are shown
in sections 2.1 and 2.2. It should be pointed out that although the nonlinear terms
considered here are (uxx)

q and \lambda up, actually our algorithm also works for any term
with polynomial nonlinearity of the form (1.1).

2.1. Legendre--Galerkin method. Let \scrP N be the set of all polynomials of
degree at most N , and define the approximation space as

(2.3) XN := \{ p \in \scrP N : p(\pm 1) = 0\} .

Let us denote the inner product (u, v) =
\int 1

 - 1
u(x)v(x)dx. Then the weak formulation

for the nonlinear problem (2.1) as well as its linearized problem (2.2) are as follows:
\bullet The Legendre--Galerkin formulation for the problem (2.1) is to find uN \in XN

such that \forall vN \in XN ,

(2.4) ((\partial xxuN )q, vN ) + \lambda (upN , vN ) + (f, vN ) = 0.

\bullet In each iteration with given u[n] in the problem (2.2), the Legendre--Galerkin
formulation is to find VN \in XN such that \forall vN \in XN ,
(2.5)\Bigl( 
q
\Bigl( 
\partial xxu

[n]
N

\Bigr) q - 1

\partial xxVN , vN

\Bigr) 
+\lambda p

\Bigl( \Bigl( 
u
[n]
N

\Bigr) p - 1

VN , vN

\Bigr) 
+
\Bigl( 
F \mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}(u

[n]
N ), vN

\Bigr) 
=0,

where F \mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}(\cdot ) is defined in (2.1).
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TWO-LEVEL SPECTRAL METHODS B1183

Define the Legendre basis functions \{ \phi k(x)\} N - 2
k=0 as [37]

(2.6) \phi k(x) = Lk(x) - Lk+2(x),

where Lk(x) is the Legendre polynomial of degree k. It is easy to check that \phi k(\pm 1) =
0 \forall k \in \BbbN . Then we have

(2.7) XN = span\{ \phi k(x)\} N - 2
k=0 .

Next we consider the matrix forms of (2.4) and (2.5) after Legendre--Galerkin dis-
cretization.

First, expanding the solution u(x) as the linear combination of basis functions in
the coarse level yields

(2.8) uNc(x) =

Nc - 2\sum 
k=0

\^uk\phi k(x),

where \{ \^uk\} Nc - 2
k=0 are the unknown coefficients.

In order to treat the nonlinear terms in (2.4), we need to define the L2-projection
\~\Pi N,p from continuous function space to polynomial space \scrP N , i.e.,

(2.9) \~\Pi N,p ([v(x)]
p) :=

N\sum 
k=0

\~v
(p)
k Lk(x) \forall v \in C(I).

After the projections \~\Pi Nc,p and \~\Pi Nc,q, the functions uNc
(x) and \partial xxuNc

(x) become,
respectively,

(2.10) \~\Pi Nc,p ([uNc(x)]
p) =

Nc\sum 
k=0

\~u
(p)
k Lk(x), \~\Pi Nc,q ([\partial xxuNc(x)]

q) =

Nc\sum 
k=0

\~u
(q)
k Lk(x).

Let us rewrite uNc
(x) defined in (2.8) and its second derivative \partial xxuNc

(x) as

uNc
(x) =

Nc - 2\sum 
k=0

\^uk\phi k(x) =

Nc\sum 
k=0

\~ukLk(x) =

Nc\sum 
k=0

uklk(x),(2.11)

\partial xxuNc
(x) =

Nc\sum 
k=0

\~u\prime \prime kLk(x),(2.12)

where \{ lk(x)\} Nc

k=0 are the Lagrange basis sets corresponding to Legendre--Gauss--

Lobatto nodes \scrI leg
N = \{ xlegk \} Nc

k=0, i.e.,

(2.13) lk(x) =
\prod 

0\leq n\leq Nc,n\not =k

x - xlegn

xlegk  - xlegn

, k = 0, 1, . . . , Nc.

It follows that uk = uNc
(xlegk ) for each k = 0, 1, . . . , Nc. Besides, let us denote the

column vectors

\^u = [\^u0, . . . , \^uNc - 2]
T , \~u = [\~u0, . . . , \~uNc ]

T ,

u = [u0, . . . , uNc
]T , \=u = [\=u0, . . . , \=uNc - 2]

T ,

\~u\prime \prime = [\~u\prime \prime 0 , . . . , \~u
\prime \prime 
Nc

]T , \~u(p) = [\~u
(p)
0 , . . . , \~u

(p)
Nc

]T , \~u(q) = [\~u
(q)
0 , . . . , \~u

(q)
Nc

]T ,
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B1184 YINGWEI WANG, WENRUI HAO, AND GUANG LIN

where \{ \^uk\} Nc - 2
k=0 , \{ \~uk\} Nc

k=0, \{ uk\} 
Nc

k=0 are defined by (2.11), \{ \~u\prime \prime k\} 
Nc

k=0 are defined by

(2.12), \{ \~u(p)k \} Nc

k=0, \{ \~u
(q)
k \} Nc

k=0 are defined by (2.10) and \{ \=uk\} Nc - 2
k=0 are defined by \=uk =

(uNc
(x), \phi k(x)). Then the transforms between these vectors are given as follows:

\~u = \bfitB 1u, \=u = \bfitB T
3 \bfitB 2\^u, \~u = \bfitB 3\^u, u = \bfitB 4\~u,

\~u\prime \prime = \bfitB 5\~u, \~up = \bfitB 1[\bfitB 4\bfitB 3\^u]
p
. , \~uq = \bfitB 1[\bfitB 4\bfitB 5\bfitB 3\^u]

q
. ,

where the matrices \{ \bfitB i\} 5i=1 are shown in Appendix A, and [\cdot ]p. means taking the power
p on each entry of the corresponding vector. Now it is clear that the matrix form of
the weak formulation (2.4) is a polynomial system with respect to the unknowns \^u,
which reads

(2.14) \bfitF \mathrm{g}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{r}\mathrm{k}\mathrm{i}\mathrm{n}(\^u) := \bfitB T
3 \bfitB 2\bfitB 1[\bfitB 4\bfitB 5\bfitB 3\^u]

q
. + \lambda \bfitB T

3 \bfitB 2\bfitB 1[\bfitB 4\bfitB 3\^u]
p
. +

\=f = 0,

where the vector \=f = [ \=f0, . . . , \=fNc - 2]
T is defined by \=fk = (f, \phi k), k = 0, 1, . . . , Nc  - 2.

We employ the homotopy method to find the multiple solutions of the polynomial
system (2.14). The detailed discussion will be shown in section 3.

Suppose the number of solutions obtained from the nonlinear equation (2.14) is

np. Now we have \^u(i) = [\^u
(i)
0 , . . . , \^u

(i)
Nc - 2]

T for i = 1, 2, . . . , np, where each \^u(i) is the

coefficient of the ith solution u
(i)
Nc

(x) of the problem (2.4), i.e.,

(2.15) u
(i)
Nc

(x) =

Nc - 2\sum 
k=0

\^u
(i)
k \phi k(x).

In the fine level, the starting points for the iteration (2.2) are chosen as

(2.16) u
[0],(i)
Nf

(x) =

Nf - 2\sum 
k=0

\^u
[0],(i)
k \phi k(x), i = 1, 2, . . . , np,

where the coefficients \{ \^u[0],(i)k \} Nf - 2
k=0 are chosen as

(2.17) \^u
[0],[i]
k =

\Biggl\{ 
\^u
(i)
k , 0 \leq k \leq Nc  - 2,

0, Nc  - 1 \leq k \leq Nf  - 2,

where \{ \^u(i)k \} Nc - 2
k=0 are shown in (2.15).

Given \^u
[0]
i = [\^u

[0],(i)
0 , . . . , \^u

[0],(i)
Nf - 2]

T , the matrix form of the weak formulation (2.5)
can be written as

\bfitB T
3 \bfitB 2\bfitB 1

\Bigl( 
qdiag([\bfitB 4\bfitB 5\bfitB 3\^u

[n]
i ]q - 1

. )\bfitB 4\bfitB 5(2.18)

+ \lambda pdiag([\bfitB 4\bfitB 3\^u
[n]
i ]p - 1

. )\bfitB 4

\Bigr) 
\bfitB 3\bfitV i = \bfitF \mathrm{g}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{r}\mathrm{k}\mathrm{i}\mathrm{n}(\^u

[n]
i ),

where \bfitF \mathrm{g}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{r}\mathrm{k}\mathrm{i}\mathrm{n}(\cdot ) is defined by (2.14) and \^u
[n+1]
i = \^u

[n]
i + \bfitV i for i = 1, 2, . . . , np and

n \geq 0.
Note that the size of the matrices in (2.14) is O(Nc), while the one in (2.18) is

O(Nf ). Usually, Nf is much larger than Nc, which implies that we use more degrees
of freedom in solving the linear problem than in solving the nonlinear problem to
reduce the discretization errors.
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TWO-LEVEL SPECTRAL METHODS B1185

2.2. Spectral collocation methods. Let us denote the Chebyshev--Gauss--
Lobatto points as

(2.19) \scrI cheb
N =

\biggl\{ 
xchebj = cos

\biggl( 
\pi j

N

\biggr) 
, j = 0, . . . , N

\biggr\} 
\subset [ - 1, 1].

Evaluating the functions u(x) and f(x) at the points \scrI cheb
N defined above yields the

following two column vectors:

u = (u(xchebj ))Nj=0, f = (f(xchebj ))Nj=0.(2.20)

The Chebyshev collocation discretization of the problem (2.1) leads to the poly-
nomial system

(2.21) \bfitF \mathrm{c}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}(u) :=
\Bigl[ 
\bfitD (2)u

\Bigr] q
.
+ \lambda [u]p. + f = 0,

where the matrix \bfitD (2) is the second-order differential matrix shown in Appendix B.
Solving (2.21) for N = Nc by the homotopy method shown in section 3 gives us

np solutions, which are denoted as

(2.22) u
(i)
Nc

= [u(i)(xcheb0 ), . . . , u(i)(xchebNc
)]T , i = 1, 2, . . . , np.

The matrix form of the Chebyshev collocation method for linearized problem (2.2)
is
(2.23)\left\{     qdiag

\biggl( \Bigl[ 
\bfitD (2)u

[n]
i

\Bigr] q - 1

.

\biggr) 
\bfitD (2)\bfitV i + \lambda p

\Bigl( 
u
[n]
i

\Bigr) p - 1

\bfitV i + \bfitF \mathrm{c}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}
\Bigl( 
u
[n]
i

\Bigr) 
= 0,

u
[n+1]
i = u

[n]
i + \bfitV i, n \geq 0,

where u
[n]
i = [u

[n]
i (xcheb0 ), . . . , u

[n]
i (xchebNf

)]T , i = 1, 2, . . . , np, and \bfitF \mathrm{c}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}(\cdot ) is de-

fined by (2.21).

The starting point in the iteration (2.23) in the fine level, denoted as u
[0]
i,Nf

=

[u
[0]
i (xcheb0 ), . . . , u

[n]
i (xchebNf

)]T , can be chosen as the linear interpolation of the solution

in the coarse level u
(i)
Nc

for i = 1, 2, . . . , np.
In addition, for the problem defined on [0, 2\pi ) with periodical boundary condi-

tions, we should choose the Fourier collocation points

(2.24) \scrI fourier
N =

\biggl\{ 
xfourierj = j

2\pi 

N
j = 0, . . . , N  - 1

\biggr\} 
\subset [0, 2\pi ).

The above procedure based on the Chebyshev collocation method could be easily
applied to the Fourier case.

Remark 1. Several additional remarks about the implementation of Algorithm 1
are listed as follows.

\bullet For simplicity, we consider the one-dimensional problem with Dirichlet bound-
ary conditions here. In section 5, we will show the numerical results for the
problems with Dirichlet, Neumann, periodical, and mixed boundary condi-
tions in both one- and two-dimensional spaces.
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Algorithm 1 A two-level spectral algorithm for semilinear problem (2.1).

Input:
1. Nc: degree of freedom in the coarse level;
2. Nf : degree of freedom in the fine level;
3. \tau and nmax: tolerance and maximum number of Newton iterations in the

fine level.
Stage I: Solving the nonlinear problem (2.1) in the coarse level. Let np
denote the number of numerical solutions obtained in the coarse level. More pre-

cisely, we need to solve \{ u(i)Nc
(x)\} np

i=1 in terms of Legendre expansion coefficients
from (2.14) or in terms of function values at collocation points from (2.21) using
the homotopy continuation method.
Stage II: Solving the linearized problem (2.2) in the fine level. More pre-
cisely, we do the following iterations:
For i = 1, 2, . . . , np,

Setting u
[0],(i)
Nf

(x) = u
(i)
Nc

(x),
While n < nmax and \tau n,i > \tau ,

1. Given u[n],(i), solving Vi from (2.18) in the Legendre--Galerkin method or
(2.23) in the collocation method.

2. \tau n,i = \| Vi\| L2 .

3. u
[n+1],(i)
Nf

= u
[n],(i)
Nf

+ Vi.
EndWhile
EndFor

Output: The set of solutions
\Bigl\{ 
u
[n],(i)
Nf

\Bigr\} np

i=1
.

\bullet We show the detailed algorithm of Legendre, Galerkin, and Chebyshev col-
location methods, which can be easily generalized to the Jacobi--Galerkin
methods and Jacobi-collocation method [39]. Besides, the error estimates
shown in section 4 is based on the Galerkin or collocation formulation.

\bullet The above two-level algorithm is based on either Galerkin or collocation for-
mulation. Actually, one can easily derive the hybrid version within this flexi-
ble framework. For instance, one can choose the Galerkin method in Stage I
and switch to the collocation method in Stage II in Algorithm 1.

\bullet In the fine level (Stage II), in order to obtain stable solutions, one should
choose a series of grids and repeat the iterations successively until the solu-
tions converge. For example, in the coarse level we choose Nc = 8; then in
the fine level we can choose Nf1 = 16, Nf2 = 32, Nf3 = 64, and the solutions
from the grid Nfk would be used as the initial guess for the iteration in the
grid Nfk+1

for k = 1, 2, 3. The divergent solutions would be removed.
\bullet It is well known that dense matrices are frequently encountered in spectral
methods, while low-order methods, such as finite elements and finite differ-
ences, usually lead to sparse or banded matrices. However, in Stage I, the
computational cost for finding multiple solutions of polynomial systems is al-
ways O(dN ), where d = max(p, q), no matter whether matrices are dense or
sparse (see section 3). In Stage II, we can use the fast structured direct solver
with nearly linear cost to solve the dense linear systems [40, 41]. In short, we
proposed a framework of high-order methods, while the computational costs
are almost the same as those for other low-order methods.
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TWO-LEVEL SPECTRAL METHODS B1187

\bullet It is well known that, in comparison with Galerkin formulations, the col-
location methods are very flexible in dealing with variable coefficients and
nonlinear problems. However, differentiation matrices are ill-conditioned;
more precisely, the condition number of kth derivative matrix \bfitD (k) grows
like O(N2k). We are trying to design a fast structured spectral collocation
method based on the idea shown in [40, 41] to circumvent these difficulties.

\bullet We restricted our attention to one-dimensional problems in the above algo-
rithm. Actually, the framework presented here can be extended to multi-
dimensions in a straightforward way. The numerical results in both one and
two dimensions will be shown in section 5.

3. Homotopy continuation method for solving discretized polynomial
systems. In this section, we briefly show the homotopy continuation method to
compute the multiple solutions of the discretized polynomial systems (2.14) and (2.21).
Homotopy is one of the main numerical approaches to compute the isolated roots of
polynomial systems [42, 45, 21]. We consider a general polynomial system

(3.1) \bfitF (u) = 0,

where the function \bfitF (u) = [f1(u), . . . , fN (u)] : \BbbC N \rightarrow \BbbC N and each fi is a polynomial
with respect to the variables u = [u1, . . . , uN ]T . By denoting the degree of fk as
deg(fk) = dk, we then construct the homotopy function

(3.2) \bfitH (u, t) = (1 - t)\bfitF (u) + \gamma tG(u),

where \bfitG (u) = [g1(u), . . . , gN (u)]T : \BbbC N \rightarrow \BbbC N is a polynomial system with known
solutions, t \in [0, 1] is a homotopy parameter, and \gamma is a random complex number. In
addition, each gi has the same degree as fi for i = 1, . . . , N . When t = 1, we have
known solutions to \bfitG (u) = 0 or, equivalently, \bfitH (u, 1) = 0.

We can choose a specific system for \bfitG (u), namely, gk = udk

k  - 1 with solutions

(3.3) uk = e2\pi i/(dk) , i = 0, 1, . . . , dk  - 1 .

The known solutions to \bfitG (u) = 0 are called start points, and the system \bfitH (u, 1) = 0
is called the start system. Furthermore, such a start system is called the total degree
start system, since deg(gk) = deg(fk) = dk for each k and the number of solutions
\bfitH (u, 1) = 0 is equal to

\prod n
k=1 dk. Finally, choosing a total degree start system and

a random complex number \gamma guarantees finding all the solutions, which is called the
\gamma -trick [2].

There are several public software packages available for solving polynomial sys-
tems using homotopy continuation methods. In the numerical experiments, we use
Bertini, developed by Bates et al. [3]. Suppose d = max(dk); then the total cost
for solving the polynomial system (3.1) is O(dN ). In practice, the solvers for finding
all roots of the polynomial system are limited to small size N , typically N \leq 20,
due to both operation flops and memory storage. Besides, in our proposed two-level
Algorithm 1, the cost of Stage I is O(dNc), where d is the degree of the polynomial in
the differential equation, while the cost of Stage II is at most O(N3

f ).

4. Error estimates for one-dimensional semilinear problems. In this
section, we carry out the error estimates of our proposed two-level spectral Galerkin
method for the following one-dimensional semilinear problem with Dirichlet boundary

D
ow

nl
oa

de
d 

03
/0

9/
19

 to
 1

29
.7

4.
25

0.
20

6.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B1188 YINGWEI WANG, WENRUI HAO, AND GUANG LIN

conditions:

(4.1)

\Biggl\{ 
\scrF (u) :=  - uxx + \lambda up + f(x) = 0, x \in I = ( - 1, 1),

u( - 1) = 0, u(1) = 0,

where p is a nonnegative integer, \lambda \in \BbbR \setminus \{ 0\} is a nonzero parameter, and f(x) is a
known sufficiently smooth function.

Recall the Jacobi weight

(4.2) \omega \alpha ,\beta (x) := (1 - x)\alpha (1 + x)\beta , \alpha , \beta >  - 1, x \in I.

We consider the following Jacobi weighed spaces and related norms:

L2
\omega \alpha ,\beta (I) := \{ u : \| u\| \omega \alpha ,\beta <\infty \} with norm \| u\| \omega \alpha ,\beta = (u, u)

1/2

\omega \alpha ,\beta ;(4.3)

H1
\omega \alpha ,\beta (I) :=

\bigl\{ 
u : \| u\| 1,\omega \alpha ,\beta <\infty 

\bigr\} 
with norm and seminorm(4.4)

\| u\| 21,\omega \alpha ,\beta = | u| 21,\omega \alpha ,\beta + \| u\| 2\omega \alpha ,\beta , | u| 1,\omega \alpha ,\beta = \| u\prime \| \omega \alpha ,\beta ;

H1
0,\omega \alpha ,\beta (I) :=

\bigl\{ 
u \in H1

\omega \alpha ,\beta : u(\pm 1) = 0
\bigr\} 
.(4.5)

Then the Jacobi weighted weak formulation for the problem (4.1) is to find u \in 
H1

0,\omega \alpha ,\beta (I) such that

(4.6) A(u, \psi ) := a\alpha ,\beta (u, \psi ) + \lambda (up, \psi )\omega \alpha ,\beta + (f, \psi )\omega \alpha ,\beta = 0 \forall \psi \in H1
0,\omega \alpha ,\beta (I),

where the Jacobi weighted inner product (\cdot , \cdot )\omega \alpha ,\beta is defined by

(4.7) (u, v)\omega \alpha ,\beta :=

\int 1

 - 1

u(x)v(x)\omega \alpha ,\beta (x)dx \forall u, v,\in L2
\omega \alpha ,\beta (I),

and the bilinear form a\alpha ,\beta (u, v) is defined by

(4.8) a\alpha ,\beta (u, v) =

\int 1

 - 1

[\partial xu]
\bigl[ 
\partial x(\omega 

\alpha ,\beta v)
\bigr] 
dx \forall u, v,\in H1

0,\omega \alpha ,\beta (I).

Hereafter, Du\scrF [w] denotes the linearized operator of \scrF at w, namely, the Fr\'echet
derivative with respect to u of \scrF computed at the point w, i.e.,

(4.9) Du\scrF [w]v :=  - vxx + \lambda pwp - 1v \forall v.

The Jacobi weighted bilinear form A\prime (w; v, \psi ) introduced by Du\scrF [w] is

(4.10) A\prime (w; v, \psi ) := a\alpha ,\beta (v, \psi ) + \lambda p(wp - 1v, \psi )\omega \alpha ,\beta \forall v, \psi \in H1
0,\omega \alpha ,\beta (I).

The boundedness of A\prime (w; v, \psi ) is shown in Lemma 4.8.
The Newton iteration of the problem (4.6) is, for each n, to find v \in H1

0,\omega \alpha ,\beta (I)
such that

(4.11)

\left\{   A
\prime 
\Bigl( 
u[n]; v, \psi 

\Bigr) 
+A

\Bigl( 
u[n], \psi 

\Bigr) 
= 0 \forall \psi \in H1

0,\omega \alpha ,\beta (I),

u[n+1] = u[n] + v, n \geq 0.

The detailed error estimates in the coarse level for the nonlinear problem (4.6) are
shown in section 4.1, while the convergence results in the fine level for the linearized
problem (4.11) are shown in section 4.2.
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4.1. Jacobi weighted error estimates for semilinear problems. To this
end, we assume that  - 1 < \alpha , \beta < 1, and p is a fixed integer. First, we consider some
useful embedding results.

Lemma 4.1. Some embedding results about the Jacobi weighted spaces are as fol-
lows:

(1) The embedding H1
0,\omega \alpha ,\beta (I) \subset L2

\omega \alpha ,\beta (I) is compact.

(2) H1
\omega \alpha ,\beta (I) \subset L\infty (I).

Proof. For part (1), since the embeddingH1
0 (I) \subset L2(I) is compact, it is sufficient

to prove the following:
(a) u \in L2

\omega \alpha ,\beta (I) \rightarrow u(\omega \alpha ,\beta )1/2 \in L2(I) is an isomorphism.

(b) u \in H1
0,\omega \alpha ,\beta (I) \rightarrow u(\omega \alpha ,\beta )1/2 \in H1

0 (I) is a continuous mapping.

Property (a) holds trivially. For u \in H1
0,\omega \alpha ,\beta (I), we have

(4.12) \partial x

\Bigl( 
u(\omega \alpha ,\beta )1/2

\Bigr) 
= ux(\omega 

\alpha ,\beta )1/2 +
 - (\alpha + \beta )x+ (\beta  - \alpha )

2
u\omega \alpha /2 - 1,\beta /2 - 1.

Obviously, ux(\omega 
\alpha ,\beta )1/2 \in L2(I). Besides, by Lemma 3.7 in [19], for any v \in H1

0,\omega \alpha ,\beta (I)
and  - 1 < \alpha , \beta < 1,

(4.13) \| v\| \omega \alpha  - 2,\beta  - 2 \lesssim \| v\| 1,\omega \alpha ,\beta .

It implies that u\omega \alpha /2 - 1,\beta /2 - 1 \in L2(I). Thus, property (b) holds.
Part (2) is followed by Lemma 3.5 in [19].

For  - 1 < \alpha , \beta < 1, one can verify the Poincar\'e-type inequality as well as the
continuity and coercivity of the bilinear form a\alpha ,\beta (\cdot , \cdot ) defined by (4.8) in the space
H1

0,\omega \alpha ,\beta (I).

Lemma 4.2 (Lemma 3.5 and Lemma B.7 in [39]). If  - 1 < \alpha , \beta < 1, then
\forall u, v \in H1

0,\omega \alpha ,\beta (I), there exist three positive constants C1, C2, C3, independent of u

and v, such that \forall u, v \in H1
0,\omega \alpha ,\beta (I),

| a\alpha ,\beta (u, v)| \leq C1| u| 1,\omega \alpha ,\beta | v| 1,\omega \alpha ,\beta ,(4.14)

a\alpha ,\beta (v, v) \geq C2| v| 21,\omega \alpha ,\beta ,(4.15)

\| u\| \omega \alpha ,\beta \leq C3| u| 1,\omega \alpha ,\beta .(4.16)

Define the orthogonal projection \Pi 1,0
N,\alpha ,\beta : H1

0,\omega \alpha ,\beta (I) \rightarrow XN by

(4.17) a\alpha ,\beta 
\Bigl( 
u - \Pi 1,0

N,\alpha ,\beta u, v
\Bigr) 
= 0 \forall v \in XN .

Recall the error estimate for orthogonal projection \Pi 1,0
N,\alpha ,\beta defined in (4.17) (cf. The-

orem 3.39 in [39]): for 1 \leq m \leq N and \mu = 0, 1,

(4.18) \| u - \Pi 1,0
N,\alpha ,\beta u\| \mu ,\omega \alpha ,\beta \lesssim N\mu  - m\| \partial mx u\| \omega \alpha +m - 1,\beta +m - 1

for any u \in H1
0,\omega \alpha ,\beta (I) \cap Bm

\omega \alpha ,\beta (I).
In addition, in order to deal with the nonlinear term up, where p \in \BbbN , we introduce

the following differential operators:

D0,p
x u := up,(4.19)
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D1,p
x u :=

\partial 

\partial x
(up) = pup - 1\partial xu,(4.20)

D2,p
x u :=

\partial 2

\partial x2
(up) = p(p - 1)up - 2(\partial xu)

2 + pup - 1\partial xxu,(4.21)

. . .

Dk,p
x u :=

\partial k

\partial xk
(up), k = 0, 1, 2, . . . .(4.22)

Note that in the above definitions, the powers of u should be nonnegative, i.e., uq \equiv 0
for q < 0. We consider two more spaces,

Bm
\omega \alpha ,\beta (I) :=

\bigl\{ 
u : \partial kxu \in L2

\omega \alpha +k,\beta +k , 0 \leq k \leq m
\bigr\} 
, m \in \BbbN , with norm and seminorm

(4.23)

\| u\| Bm

\omega \alpha ,\beta 
=

\Biggl( 
m\sum 

k=0

\| \partial kxu\| 2\omega \alpha +k,\beta +k

\Biggr) 1/2

, | u| Bm

\omega \alpha ,\beta 
= \| \partial mx u\| \omega \alpha +k,\beta +k ;

Bm,p
\omega \alpha ,\beta (I) :=

\bigl\{ 
u : Dk,p

x u \in L2
\omega \alpha +k,\beta +k , 0 \leq k \leq m

\bigr\} 
, m \in \BbbN , with norm and seminorm

(4.24)

\| u\| Bm,p

\omega \alpha ,\beta 
=

\Biggl( 
m\sum 

k=0

\| Dk,p
x u\| 2\omega \alpha +k,\beta +k

\Biggr) 1/2

, | u| Bm,p

\omega \alpha ,\beta 
= \| Dm,p

x u\| \omega \alpha +k,\beta +k .

It follows that u \in Bm,p
\omega \alpha ,\beta (I) implies up \in Bm

\omega \alpha ,\beta (I). Then for the projection \Pi 1,0
N,\alpha ,\beta 

defined in (4.17), we have

(4.25) \| up  - \Pi 1,0
N,\alpha ,\beta u

p\| \mu ,\omega \alpha ,\beta \lesssim N\mu  - m\| Dm,p
x u\| \omega \alpha +m - 1,\beta +m - 1

for any u \in H1
0,\omega \alpha ,\beta (I) \cap Bm,p

\omega \alpha ,\beta (I).

For the convenience of notation, let us denote \omega = \omega \alpha ,\beta , V = H1
0,\omega \alpha ,\beta (I),W = V \prime ,

\Pi N = \Pi 1,0
N,\alpha ,\beta defined by (4.17) and VN = XN defined in (2.3).

Let us define the linear operator \scrT :W \rightarrow V by

(4.26) a\alpha ,\beta (\scrT g, \psi ) = \langle g, \psi \rangle \forall \psi \in V,

where \langle \cdot , \cdot \rangle denotes the duality pairing. It follows from (4.14) and (4.15) that \scrT is a
bounded operator. Moreover, we have the following lemma.

Lemma 4.3. For any s \geq 0, \scrT is a linear, bounded, continuous operator from
Hs

\omega (I) into H
1
0,\omega (I) \cap Hs+2

\omega (I). For any s \in [ - 1, 0), \scrT is continuous from (H - s
0,\omega (I))

\prime 

into H1
0,\omega (I) \cap Hs+2

\omega (I).

Proof. The linearity is obvious by definition. Let us check the continuity. If s is
a positive integer, then integrating by parts in (4.26) gives

(4.27) ( - \scrT g)xx = g, x \in I,

which implies that

(4.28) \| \scrT g\| s+2,\omega \lesssim \| g\| s,\omega .

For noninteger s>0 and  - 1\leq s<0, the same result follows by space interpolation.
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The following result is a direct consequence of Lemmas 4.1 and 4.3.

Lemma 4.4. \scrT is a compact operator from W to V .

For fixed integer p, the mapping \scrG : \BbbR \times V \rightarrow L2
\omega (I) is defined by

(4.29) \scrG (\lambda , u; p) = \lambda up + f.

It is easy to see that the mapping \scrG (\lambda , u; p) defined above has the following properties:
(1) \scrG is a C\infty mapping.
(2) For any k \in \BbbN , Dk\scrG is bounded on any bounded subset of the space \BbbR \times 

H1
0,\omega (I).

(3) Since W contains topologically L2
\omega , we have

(4.30) \| \scrG (\lambda , u; p)\| W \lesssim \| \scrG (\lambda , u; p)\| \omega .

Throughout this section, we make the following assumption on the exact solution
u\lambda to the problem (4.6):

(H-I) For fixed p, there exists a branch \{ (\lambda , u), \lambda \in \Lambda \} such that u\lambda \in \~V m :=
H1

0,\omega (I) \cap Bm
\omega (I) \cap Bm,p

\omega (I), where m \geq 0.
By the above assumption and property (2) in Lemma 4.1, we have

(4.31) \| \scrG (\lambda , u; p)\| W \lesssim \lambda \| u\| p\infty + \| f\| \omega .

Consider the operator \~\scrF : \BbbR \times V \rightarrow V, defined by

(4.32) \~\scrF (\lambda , u; p) := u+ \scrT \scrG (\lambda , u; p),

and its Fr\'echet derivative Du
\~\scrF defined by

(4.33) Du
\~\scrF [\lambda ,w]v = (Id+ \scrT Du\scrG [\lambda ,w])v,

where Id denotes the identity operator. It is easy to check that the problem (4.6) can
be written equivalently as follows: find u \in V such that

(4.34) \~\scrF (\lambda , u; p) = 0.

Now we make the following additional assumption on the exact solution u\lambda :
(H-II) There exists a branch \{ (\lambda , u), \lambda \in \Lambda \} such that the problem (4.32)

admits at least one isolated nonzero weak solution u\lambda such that

(4.35) \forall \lambda \in \Lambda , \forall v \in V, \| (Du
\~\scrF [\lambda , u\lambda ]v)\| V \geq C0\| v\| V ,

where C0 is independent of v.
The discrete weak formulation related to (4.6) is to find uN \in XN such that

(4.36) A(uN , \psi N ) := a\alpha ,\beta (uN , \psi N ) + \lambda (upN , \psi N )\omega + (f, \psi N )\omega = 0 \forall \psi N \in XN ,

where XN is defined in (2.3).
We define \scrT N :W \rightarrow VN by

(4.37) \scrT N = \Pi 1,0
N,\alpha ,\beta \circ \scrT .

Thanks to the definition of \scrT and \Pi 1,0
N,\alpha ,\beta , for any g \in W , it follows that

(4.38) a\alpha ,\beta (\scrT Ng, \psi ) = \langle g, \psi \rangle \forall \psi \in VN .
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Now we are ready to define \~\scrF N : \Lambda \times VN \rightarrow VN and its Fr\'echet derivative Du
\~\scrF N by

\~\scrF N (\lambda , v; p) :=v + \scrT N\scrG (\lambda , v; p),(4.39)

Du
\~\scrF N [\lambda , v; p] :=Id+ \scrT NDu\scrG [\lambda , v; p].(4.40)

Then the discrete formulation of the problem (4.34) is to find uN \in VN such that

(4.41) \~\scrF N (\lambda , uN ; p) = 0,

which is equivalent to (4.36).
For the reader's convenience, let us recall the following results.

Lemma 4.5 (Lemma 2.2 in [29]). Assume the following are true.
(H-1.1) Assume that \scrG m+1,m \in \BbbN , is a Cm+1 mapping from \Lambda \times V into V \prime ,

and Dm+1\scrG is bounded on any bounded subset of \Lambda \times V .
(H-1.2) Assume that \Pi N : V \rightarrow VN is a continuous operator satisfying

(4.42) lim
N\rightarrow \infty 

\| v  - \Pi Nv\| = 0 \forall v \in V.

(H-1.3) Assume that \scrT \in L (V \prime , V ) and \scrT N \in L (V \prime , VN ) satisfy

(4.43) lim
N\rightarrow \infty 

\| \scrT  - \scrT N\| L (V \prime ,V ) = 0.

Then there exist a neighborhood \theta of the origin in V and, for large enough N , a
unique Cm+1 mapping \lambda \in \Lambda \rightarrow uN,\lambda \in VN such that

(4.44) \forall \lambda \in \Lambda , \~\scrF N (\lambda , uN (\lambda )) = 0, uN,\lambda  - u\lambda \in \theta ,

where \~\scrF N is shown in (4.39). Furthermore, there exists a positive constant K inde-
pendent of \lambda and N such that

(4.45) \| uN,\lambda  - u\lambda \| 1,\omega \leq K (\| u\lambda  - \Pi Nu\lambda \| 1,\omega + \| (\scrT  - \scrT N )\scrG (\lambda , u\lambda )\| 1,\omega ) .

Lemma 4.6 (Lemma 2.3 in [29]). Assume (H-1.1)--(H-1.3) in Lemma 4.5 hold.
Additionally, we assume the following:

(H-2.1) The mapping v \in V \rightarrow Du\scrG [\lambda , v] \in L (L2
\omega (I), V

\prime ) is continuous.
(H-2.2) \scrT \in L (V \prime , L2

\omega (I)) and \scrT N \in L (V \prime , L2
\omega (I)) satisfy

(4.46) lim
N\rightarrow \infty 

\| \scrT  - \scrT N\| L (V \prime ,L2
\omega (I)) = 0.

(H-2.3) If v \in L2
\omega (I) satisfies

(4.47) v + \scrT Du\scrG [\lambda , u\lambda ]v = 0,

then v \in V .
Then for N large enough, we have

(4.48) \| uN,\lambda  - u\lambda \| \omega \lesssim \| \~\scrF N (\lambda , u\lambda )\| \omega \forall \lambda \in \Lambda .

Now we can present our main result on the Jacobi weighted approximation (4.36)
to the semilinear problem (4.6).
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Theorem 4.7. Assume that the hypotheses (H-I) and (H-II) hold. There exist a
neighborhood \theta of the origin in V and, for N \geq N0 large enough, a unique \lambda \in \Lambda \rightarrow 
uN,\lambda (x) \in XN such that for any \lambda \in \Lambda , uN,\lambda (x) solves (4.41).

Furthermore, assuming that the mapping \lambda \in \Lambda \rightarrow u\lambda (x) \in \~V m is continuous for
a suitable m, then for any \lambda \in \Lambda , the following estimate holds:

(4.49) \| uN,\lambda  - u\lambda \| \mu ,\omega \alpha ,\beta \lesssim N\mu  - m (\| \partial mx u\lambda \| \omega \alpha +m - 1,\beta +m - 1 + \| Dm,p
x u\lambda \| \omega \alpha +m - 1,\beta +m - 1) ,

where \mu = 0, 1.

Proof. Assumption (H-1.1) is true by the definition of \scrG (\lambda , u), and (H-1.2) holds
according to the estimate (4.18). Besides, \forall g \in W , we have

(4.50) (\scrT  - \scrT N )g = (Id - \Pi N )\scrT g.

By (4.50), (4.18), and Lemma 4.3, for any g \in W , we have

(4.51) \| (\scrT  - \scrT N )g\| 1,\omega = \| (Id - \Pi N )\scrT g\| 1,\omega \lesssim N - 1\| \partial xx(\scrT g)\| \omega \lesssim N - 1\| g\| \omega ,

which implies (H-2.3). Applying Lemma 4.5 gives the first part of this theorem.
Furthermore, assume u\lambda and u\lambda ,N solve (4.34) and (4.41), respectively. Then by

(4.25) we have

(4.52) \| (\scrT  - \scrT N )\scrG (\lambda , u\lambda )\| 1,\omega = \| up\lambda  - \Pi Nu
p
\lambda \| 1,\omega \lesssim N - m\| Dm,p

x u\lambda \| \omega \alpha +m - 1,\beta +m - 1 .

Plugging (4.52) into (4.45) and combining the projection error estimate (4.18), we
obtain the desired estimate (4.49) for the case with \mu = 1.

To obtain the L2
\omega estimate, we need to check (H-2.1)--(H-2.3). First, by definition

and property (2) of Lemma 4.1, we have

(4.53) \| Du\scrG [\lambda , v]w\| \omega = \| \lambda pvp - 1w\| \omega \lesssim \| v\| p - 1
\infty \| w\| \omega ,

which implies (H-2.1). Second, (H-2.2) holds followed by Lemma 4.3 and estimate
(4.25). Third, (H-2.3) is a consequence of (H-2.1) and Lemma 4.3. Now we proved
that the estimate (4.48) holds.

Finally, by the definition of \~\scrF N , we have

\| \~\scrF N (\lambda , u\lambda )\| \omega \lesssim \| u\lambda  - \Pi Nu\lambda \| \omega + \| (\scrT  - \scrT N )\scrG (\lambda , u\lambda )\| \omega 
= \| u\lambda  - \Pi Nu\lambda \| \omega + \| up\lambda  - \Pi Nu

p
\lambda \| \omega .

By (4.18) , (4.25), and (4.48), we can conclude (4.49) for the case with \mu = 0.

4.2. Error estimates for the linearized problem by the Newton method.
Let us fix \lambda , p, and N in the problem (4.41) and choose the initial guess u[0] \in XN .
Then the Newton iterations for solving the nonlinear problems (4.34) and (4.41) are,
respectively,

\bullet to find u[n+1] \in V such that

(4.54) Du
\~\scrF [\lambda , u[n]]

\Bigl( 
u[n+1]  - u[n]

\Bigr) 
+ \~\scrF (\lambda , u[n]) = 0, n \geq 0,

where \~\scrF and Du
\~\scrF are defined by (4.32) and (4.33), respectively;

\bullet to find u
[n+1]
N \in XN such that

(4.55) Du
\~\scrF N [\lambda , u

[n]
N ]
\Bigl( 
u
[n+1]
N  - u

[n]
N

\Bigr) 
+ \~\scrF N (\lambda , u

[n]
N ) = 0, n \geq 0,

where \~\scrF N and Du
\~\scrF N are defined by (4.39) and (4.40), respectively.
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Note that the formulation (4.54) is equivalent to (4.11), and (4.55) is the discretized
version.

By Lemma 4.2, one can verify the ellipticity of the operator Du
\~\scrF [\lambda , u\lambda ] (equiva-

lently, A\prime (u\lambda ; v, \psi )) and the boundedness of the operator \scrT Duu\scrG [\lambda , u\lambda ].
Lemma 4.8. Assume that the hypotheses (H-I) and (H-II) hold. There exist two

positive constants \~C1, \~C2, independent of u and v, such that \forall u, v \in H1
0,\omega (I),

| A\prime (u\lambda ;u, v)| \leq \~C1| u| 1,\omega | v| 1,\omega ,(4.56)

| A\prime (u\lambda ; v, v)| \geq \~C2| v| 21,\omega .(4.57)

Moreover, the operator \scrT Duu\scrG [\lambda , u\lambda ] is uniformly bounded, i.e.,

(4.58) \| \scrT Duu[\lambda , u\lambda ]\| L (V,V ) \leq \delta .

Proof. Equations (4.14) and (4.53) imply (4.56), and (4.35) indicates (4.57). Be-
sides, since Duu\scrG [\lambda , u\lambda ] = \lambda p(p  - 1)up - 2, we can get (4.58) thanks to assumptions
(H-I) and (H-II).

By standard argument for Newton iteration [48, 23], one can show the following
convergence results.

Theorem 4.9. Assume u\lambda ,N solves (4.41) and u
[0]
N is the initial guess in the New-

ton iteration (4.55). Choose \rho \in (0, 1). We make two more assumptions.
(H-III) N is fixed and large enough such that

(4.59) \| uN,\lambda  - \Pi Nu\lambda \| 1,\omega < \rho .

(H-IV) The initial guess u
[0]
N satisfies

(4.60) \| u[0]N  - uN,\lambda \| 1,\omega < \rho .

Then u
[n]
N converges quadratically to uN,\lambda in the Newton iteration (4.54) as n \rightarrow \infty ;

i.e., \exists n0 such that \forall n > n0,

(4.61) \| u[n]N  - uN,\lambda \| 1,\omega \lesssim \rho 2
n

.

5. Numerical experiments. In this section, we present several numerical ex-
periments to illustrate the efficiency and accuracy of the proposed two-level spectral
methods for one-dimensional semilinear problems with Dirichlet boundary conditions
(Examples 1 and 3) and mixed boundary conditions (Example 2), the fully nonlinear
problems in one dimension (Example 4), and the two-dimensional semilinear system
with Dirichlet boundary conditions (Example 5) and periodical boundary conditions
(Example 6).

Example 1. Consider the semilinear problem (4.1) in which f(x) is chosen as

(5.1) f(x) =
9\pi 2

4
cos

\biggl( 
3\pi 

2
x

\biggr) 
 - \lambda 

\biggl[ 
cos

\biggl( 
3\pi 

2
x

\biggr) \biggr] p
.

It is easy to verify that one of the exact solutions is u(x) = cos
\bigl( 
3\pi 
2 x
\bigr) 
.

Let us consider the case with p = 2, \lambda = 1. In our two-level spectral methods, we
choose Nc = 6 in the coarse level and Nf = 36 in the fine level. The tolerance in the
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(i) Stage one (N = 6) (ii) Stage two (N = 36)

Fig. 5.1. Example 1: numerical solutions from the Legendre--Galerkin method.

linearized iteration is chosen as \tau = 1e  - 15. The numerical solutions obtained from
the Legendre--Galerkin method and the Chebyshev collocation method are shown in
Figure 5.1 and Figure 5.2, respectively. In addition, the numerical results obtained
from the shooting method are shown in part (i) of Figure 5.3, in order to verify the
correctness of the numerical solutions obtained by our method. The discussion on the
accuracy and efficiency is listed below.

1. In order to the show the spectral accuracy of our methods, we can compute
the errors in the L2-norm for the semilinear problem (4.1) with exact solution
u(x) = cos

\bigl( 
3\pi 
2 x
\bigr) 
. We observe from part (ii) of Figure 5.3 that the errors

decay exponentially likeO(e - rN ), for both Legendre--Galerkin and Chebyshev
collocation methods, which verifies the error estimates in section 4.

2. In order to show the efficiency of our methods, we compare the results of
the one-level method (only using the homotopy continuation method) and
the proposed two-level methods. In Table 5.1, we can observe that the errors
decay exponentially, but the computational costs grow exponentially in the
coarse level. The numerical results in the fine level (after solving the problem
in the coarse level with Nc = 6) are shown in Table 5.2, in which n\mathrm{i}\mathrm{t} means
the number of Newton iterations in the fine level. We can observe that the
errors decay exponentially, while the computational costs in the fine level are
much less than the computational costs in the coarse level.

Example 2. Consider the semilinear equation with mixed boundary conditions [20]

(5.2)

\Biggl\{ 
uxx = \lambda (1 + up), x \in (0, 1),

u\prime (0) = 0, u(1) = 0,

where \lambda \in \BbbR +, p \in \BbbN . After the linear map from x \in [0, 1] to \~x \in [ - 1, 1], we employ

the Legendre--Galerkin method to solve this problem. Due to the mixed boundary
conditions in (5.2), instead of using the basis functions (2.6), we need to design a new
basis set \{ \psi k(x)\} N - 2

k=0 in which [39]

(5.3) \psi k(x) = Lk(x) - 
2k + 3

(k + 2)2
Lk(x) - 

(k + 1)2

(k + 2)2
Lk+2(x),

which satisfies \psi \prime 
k( - 1) = \psi k(1) = 0 \forall k.
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(i) Stage one (N = 6) (ii) Stage two (N = 36)

Fig. 5.2. Example 1: numerical solutions from the Chebyshev collocation method.
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of shooting method of spectral methods

Fig. 5.3. Example 1: spectral accuracy.

The explicit form of the exact solutions for the problem (5.2) is not available.
But it is known that for p = 4 there exists a critical value of \lambda , say \lambda \ast \approx 1.30107,
such that (1) if 0 < \lambda < \lambda \ast , there are two solutions; (2) if \lambda = \lambda \ast , the two solutions
merge; and (3) if \lambda > \lambda \ast , there are no solutions.

First, let us consider the case with p = 4 and \lambda = 1.2, in which there are two
solutions. We compare the numerical results between the one-level and two-level
methods in Table 5.3. In the one-level method, we solve the nonlinear system of
size N with the homotopy continuation method. In the two-level method, we choose
Nc = 3 in the coarse level and various Nf in the fine level. The tolerance of the
iteration in Stage II is chosen as \tau = 1e - 14. Besides, the last two columns in Table
5.3 show the L2-norm of the differences between the numerical results obtained from
the one-level and two-level methods. We observe that the two-level method is much
faster than the one-level method, while the numerical solutions obtained from these
two methods are almost the same.

In addition, the numerical solutions of the two-level method for the cases with
p = 4 and \lambda = 1.2, 1.30107 are shown in Figures 5.4 and 5.5, respectively, which
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Table 5.1
One-level spectral methods: Example 1 (p = 2, \lambda = 1).

Nc
Legendre--Galerkin Chebyshev collocation

L2 errors Time (s) L2 errors Time (s)
5 2.1218e-01 6.16e-01 4.2475e-01 7.21e-01
6 2.8077e-02 1.39e+00 1.1857e-01 1.50e+00
7 6.1128e-03 3.96e+00 2.3677e-02 2.52e+00
8 2.3606e-03 1.04e+01 4.6959e-03 2.96e+00
9 1.5291e-04 3.43e+01 8.2189e-04 7.02e+00
10 1.1356e-04 9.99e+01 1.1204e-04 1.61e+01
11 3.4722e-06 3.47e+02 3.3799e-05 3.73e+01
12 3.7841e-06 8.35e+02 3.0905e-06 8.46e+01

Table 5.2
Two-level spectral methods: Example 1 (p = 2, \lambda = 1 and Nc = 6).

Nf
Legendre--Galerkin Chebyshev collocation

nit Time (s) L2 errors nit Time (s) L2 errors
12 5 1.06e-02 3.7841e-06 5 9.54e-04 3.0905e-06
18 4 4.66e-03 2.6682e-11 7 6.17e-04 1.2624e-11
24 5 2.67e-03 2.2178e-15 12 1.04e-03 1.2551e-14
30 4 4.84e-03 1.0328e-15 23 2.16e-03 5.7133e-15
36 4 3.41e-03 9.4913e-16 29 3.89e-03 4.0461e-15

Table 5.3
Numerical results of Example 2 (p = 4, \lambda = 1.2).

One-level method Two-level method (Nc = 3) Errors between them
N Time (s) Nf nit Time (s) u1(x) u2(x)
3 3.83e-01
4 1.55e+00 4 5 5.33e-01 1.5701e-16 0.0000e+00
5 7.69e+00 5 5 5.42e-01 0.0000e+00 7.8505e-17
6 5.29e+01 6 5 3.50e-01 1.5701e-16 7.8505e-17
7 3.82e+02 7 5 4.17e-01 1.5701e-16 0.0000e+00

verifies the conclusion about the number of solutions of this problem.

Example 3. Consider the problem with sign-changing even nonlinearity [11]

(5.4)

\Biggl\{ 
uxx + u2(u2  - p) = 0, x \in (0, \pi ),

u(0) = u(\pi ) = 0,

where p \geq 0 is a real parameter.

We use the Legendre--Galerkin method with coarse level Nc = 8 and a series of
fine levels Nf = 16, 32, 64, 128 to solve the problems with p = 2, 4, 6, 8. The number
of solutions we obtained in coarse and fine levels, the maximum number of Newton
iterations in the fine level, and the maximum residual of the final numerical solutions
are shown in Table 5.4. The nonzero numerical solutions are shown in Figures 5.6--5.9.

Example 4. Consider the fully nonlinear problem [17]

(5.5)

\left\{    - u2xx + 1 = 0, x \in (0, 1),

u(0) = 0, u(1) =
1

2
,
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(i) Nonlinear problem (Nc = 3) (ii) Linearized problem (Nf = 64)

Fig. 5.4. Numerical solutions of Example 2 (p = 4, \lambda = 1.2).
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(i) Nonlinear problem (Nc = 4) (ii) Linearized problem (Nf = 64)

Fig. 5.5. Numerical solutions of Example 2 (p = 4, \lambda = 1.30107).

Table 5.4
Numerical results of Example 3.

p
No. of solutions On the fine level

Nc = 8 Nf = 128 nit Residuals
2 4 4 2 1.4627e-14
4 8 4 3 3.2857e-14
6 32 6 12 2.5624e-13
8 54 6 40 1.1273e-13
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Fig. 5.6. Numerical solutions of Example 3: p = 2.
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Fig. 5.7. Numerical solutions of Example 3: p = 4.
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Fig. 5.8. Numerical solutions of Example 3: p = 6.

with two exact solutions

(5.6) u+(x) =
x2

2
, u - (x) =  - x

2

2
+ x.

We use the Legendre--Galerkin method shown in section 2.1 to solve this problem,
in which we choose Nc = 8 to solve the nonlinear problem and Nf = 16 to solve the
linearized problem. We obtain 64 numerical solutions on the coarse level (see part
(i) of Figure 5.10). After the iteration on the fine level, there are only two stable
numerical solutions which perfectly match the exact ones, as shown in part (ii) of
Figure 5.10.

Example 5. Consider the two-dimensional steady Allen--Cahn equation on the unit
square with Dirichlet boundary conditions [15]

(5.7)

\left\{     
 - \varepsilon 2\Delta u+ u3  - u = 0, (x, y) \in \Omega = (0, 1)2,

u(0, y) = u(1, y) = 1, y \in (0, 1),

u(x, 0) = u(x, 1) =  - 1, x \in (0, 1).D
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Fig. 5.9. Numerical solutions of Example 3: p = 8.
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Fig. 5.10. Numerical and exact solutions of Example 4.

The Allen--Cahn equation is used to describe the motion of antiphase boundaries
in crystalline solids, in which u represents the concentration of one of the two metallic
components of the alloy. In the above equation, u = +1 corresponds to one material
and u =  - 1 to the other.

There are no exact solutions available for this problem. We use the Legendre--
Galerkin method to solve this problem with \varepsilon = 0.04.We choose Nc = 16 in the coarse
level and a series of Nf = 32, 64, 128 in the fine level. We find two stable solutions,
which are shown in Figure 5.11.

Example 6. Consider the following coupled system arising from chemical sciences
and biology:

(5.8)

\Biggl\{ 
\varepsilon u\Delta u - uv2 + F (1 - u) = 0,

\varepsilon v\Delta v + uv2  - (F + k)v = 0
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Fig. 5.11. Numerical solutions of Example 5.

on the domain [0, 2.5]2 with periodical boundary conditions, where \varepsilon u, \varepsilon v, u, v are
unknowns and F, k are parameters.

This reaction-diffusion system can be used to model the chemical reaction with
two components [32] and irregular patterns [35]. We choose the parameters \varepsilon u =
2 \times 10 - 5, \varepsilon v = 10 - 5, F = 0.1, k = 0.02. We use the Fourier collocation method with
Nc = 3 in the coarse level and Nf = 6, 12, 24 in the fine level to solve this problem.
Actually, we obtained more than 2000 different patterns, some of which are shown in
Figures 5.12--5.14.
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Fig. 5.12. Numerical solutions of Example 6.
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Fig. 5.13. Numerical solutions of Example 6.

x

y

u

 

 

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

x

y
v

 

 

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Fig. 5.14. Numerical solutions of Example 6.

6. Concluding remarks. We have developed a two-level framework of spectral
methods for solving a class of semilinear and fully nonlinear elliptic problems with
multiple solutions. The key to the success of the proposed method is the combination
of the spectral discretization of differential equations, which enjoys high-order accu-
racy, and the homotopy continuation method for solving nonlinear systems, which
guarantees the multiple solutions. We gain efficiency from the coarse level as well as
accuracy from the fine level. The detailed algorithm shows that our method is very
easy to implement and ready for parallel computing. We also derived the optimal
error estimates for the Jacobi--Galerkin method and Newton iterations for semilinear
problems. The error estimates for the fully nonlinear case will be addressed in a future
work. Numerical experiments illustrate that our proposed methods, which enjoy high
accuracy and efficiency in both semilinear and fully nonlinear problems, are obviously
good alternatives to other numerical methods available in the literature for elliptic
problems with polynomial nonlinearity.

To further reduce the computational cost, one can make use of the symmetric
property [26, 51]. The results presented in this paper indicate that the gain in nu-
merical efficiency in the two-level spectral methods should allow the consideration of
more complicated problems in nontrivial stationary elliptic-type solutions of dynam-
ical models.
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Appendix A. Matrices in the Legendre--Galerkin method. \bfitB 1 and \bfitB 4

are the forward and backward Legendre transforms, respectively.
Let \bfitB 2 = (b2n,k)

N
n,k=0,\bfitB 3 = (b3n,k)0\leq n\leq N,0\leq k\leq N - 2,\bfitB 5 = (b5n,k)

N
n,k=0, and \bfitM =

(mn,k)
N - 2
n,k=0,\bfitS = (sn,k)

N - 2
n,k=0. Then their entries are defined by

b2n,k =

\left\{   
1

n+ 1/2
, n = k,

0 otherwise,

b3n,k =

\left\{     
1, n = k and 0 \leq k, n \leq N  - 2,

 - 1, n = k + 2 and 0 \leq k \leq N  - 2, 0 \leq n \leq N,

0 otherwise,

b5n,k =

\Biggl\{ 
(n+ 1/2)(k(k + 1) - n(n+ 1)), (n+ k) even and n \leq k  - 2,

0 otherwise,

mn,k = mk,n =

\left\{           
2

2n+ 1
+

2

2n+ 5
, n = k,

 - 2

2n+ 3
, n = k + 2,

0 otherwise,

sn,k = sk,n =

\Biggl\{ 
4n+ 6, n = k,

0 otherwise.

Appendix B. Matrices in the Chebyshev collocation method. The

second-order differentiation matrices \bfitD (2) =
\Bigl( 
d
(2)
k,j

\Bigr) N
k,j=0

are defined by

(B.1) d
(2)
jl =

\left\{                         

( - 1)j+l

\~cl

x2
j+xjxl - 2

(1 - x2
j )(xj - xl)2

, 1 \leq j \leq N  - 1, 0 \leq l \leq N, j \not = l,

 - (N2 - 1)(1 - x2
j )+3

3(1 - x2
j )

2 , 1 \leq j = l \leq N  - 1,

2( - 1)l

3\~cl

(2N2+1)(1 - xl) - 6
(1 - xl)2

, j = 0, 1 \leq l \leq N,

2( - 1)l+N

3\~cl

(2N2+1)(1 - xl) - 6
(1+xl)2

, j = N, 0 \leq l \leq N  - 1,

N4 - 1
15 , j = l = 0, j = l = N,

where the \{ xk\} Nk=0 in (B.1) are the Chebyshev--Gauss--Lobatto points defined in
(2.19).
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