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Telomeres, the non-coding ends of linear chromosomes, are thought to be an

important mechanism of individual variability in performance. Research

suggests that longer telomeres are indicative of better health and increased fit-

ness; however, many of these data are correlational and whether these effects

are causal are poorly understood. Experimental tests are emerging in medical

and laboratory-based studies, but these types of experiments are rare in natural

populations, which precludes conclusions at an evolutionary level. At the

crossroads between telomere length and fitness is telomerase, an enzyme

that can lengthen telomeres. Experimental modulation of telomerase activity

is a powerful tool to manipulate telomere length, and to look at the covariation

of telomerase, telomeres and individual life-history traits. Here, we review

studies that manipulate telomerase activity in laboratory conditions and

emphasize the associated physiological and fitness consequences. We then

discuss how telomerase’s impact on ageing may go beyond telomere mainten-

ance. Based on this overview, we then propose several research avenues for

future studies to explore how individual variability in health, reproduction

and survival may have coevolved with different patterns of telomerase activity

and expression. Such knowledge is of prime importance to fully understand

the role that telomere dynamics play in the evolution of animal ageing.

This article is part of the theme issue ‘Understanding diversity in

telomere dynamics’.
1. Introduction
Whether telomere length is correlated to proxies of individual performance

(from organismal health to individual survivorship) is presently a hot topic in

evolutionary biology. The question is well discussed in the literature with studies

reporting both the presence and the absence of a correlation [1,2]. However, a key

step for future studies will be to establish whether the relationships, if any, are

causal between telomere length and fitness. An early revelation about telomeres

was that telomere loss due to the end-replication problem can be balanced by the

addition of telomere sequences onto chromosomes by the enzyme telomerase [3].

Most of our current knowledge about telomerase comes from genetically modi-

fied laboratory models studied in a medical context [4,5]. Although telomerase

has been reported as one modulator of cellular senescence and potentially of

healthy ageing (i.e. sustained capacity to adapt to environmental challenges

with age), how telomerase affects organismal ageing is still not completely under-

stood. For instance, some cell and physiological changes observed when

telomerase gene expression is experimentally modified are not associated with

telomere lengthening [6]. Importantly, in wild species almost nothing is presently

known about the link between telomerase and fitness-related traits and few
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studies have tried to assess how experimentally manipulated

telomerase activity may modulate individual performance

and health (see electronic supplementary material, S1). Telo-

merase has a long ancestral history and was discovered

in protozoans [7,8]. The universal presence of telomerase or

telomerase-like activity (i.e. reverse transcriptase) among

eukaryotes, and the recent rise of studies experimentally mod-

ulating telomerase activity in laboratory models have triggered

a large interest across biomedical and evolutionary research

fields. This opens interesting avenues of research to address

very specific questions of key importance in our understanding

of evolution and variability in individual ageing: (i) Do genetic

and environmentally derived differences in telomerase activity

exist among individuals? (ii) Is variation in telomerase activity

related to fitness? and (iii) Does telomerase affect other cellular

processes beyond telomere maintenance? Hereafter, we pre-

sent current knowledge about how telomerase activity can be

assessed (electronic supplementary material, S2), about the

nature of experiments used to modulate telomerase (electronic

supplementary material, S3) and about how telomerase may

enhance certain physiological pathways. Our specific aim

here is to inspire future experimental designs that manipulate

telomerase and address its role in trade-offs where body main-

tenance and ageing are balanced with investment in costly

life-history traits.
2. Telomerase and its role in anti-ageing
through telomere maintenance

Telomerase is a ribonucleoprotein composed of an RNA

template domain (TERC) and a reverse transcriptase cataly-

tic protein (TERT). Telomerase is principally active in very

early life and is maintained over adulthood mostly in germ-

line, in stem and in some immune cells in humans [9],

but this is not a general pattern across species [9,10]. The

best-characterized constraint of maintaining high levels of

telomerase activity is the risk of cell immortalization and

cancer incidence (to date, there do not appear to be energetic

costs to increasing telomerase activity, e.g. [11]). Thus, its

crucial role in ageing and cancer, and the potential interven-

tion of both (reviewed in [12]), drives general interest in

telomerase-related questions. Because of its essential role in

tissue renewal capacity, telomerase activity may be a promis-

ing therapeutic target for prolonging lifespan [13]. In

particular, experimental telomerase activation may restore

ever-shortening telomeres and allow a reduction to the pool

of senescent and dysfunctional cells [14]. Seminal studies

showing the beneficial impact of experimentally increased

telomerase activity within normal human cells occurred 20

years ago [15]. The proof of a beneficial health impact of

telomerase engineering at the whole organism level was first

shown in genetically modified mouse strains [16], extending

lifespan by up to 40%. Most of these rejuvenating properties

of telomerase were obtained in transgenic mice that constitu-

tively expressed telomerase subunits via virus-mediated

induction [17,18]. Despite the need to balance these telomer-

ase-based interventions with pro-tumorigenic pathways [12],

telomerase research has aroused substantial medical interest,

notably through the utilization of therapeutic molecules (elec-

tronic supplementary material, S3) that trigger telomerase

activity either for disease treatment or as a preventive medical

strategy to prolong a healthy lifespan.
(a) Does activating telomerase specifically impact
immune function?

The immune system serves as a particularly attractive candidate

for exploring the consequences of telomerase activation, for sev-

eral reasons. Lymphoid immune cells are a highly proliferative

tissue that can be easily and non-destructively sampled in

blood. Furthermore, immune protection is intricately linked to

fitness and immunosenesence is an important mechanism of

ageing (e.g. [19]). Accordingly, short telomeres in leucocytes

or defects in telomerase activity are associated with immune

dysfunction (reviewed in [20]). Although a recent study failed

to confirm the reliability of white cell telomere length as an indi-

cator of the age-related decline of immune activity [19], other

studies have shown that the immune system benefits from up-

regulated telomerase activity. For instance, in vivo maturation of

naive T cells into memory T cells is accompanied by telomere

loss, but in the same cells short telomeres trigger senescence

in vitro [21]. This suggests that a fine-tuned control of telomere

loss is important to preserve an optimal functioning of lym-

phoid-based immunity, and the fact that telomerase activation

rescues T-cell telomere length, prolongs their proliferation

capacity and reduces the number of circulating senescent T

cells is of central interest [22,23]. Therefore, the degree of telo-

merase activity in T cells may be one key regulating factor

maintaining their responsiveness via high replicative potential,

besides the reduction of auto-immune damage and tumour

development [20]. The observation that T-cell telomere length

is highly variable in humans is even more interesting in an evol-

utionary context [24]. Whether such natural variation exists in

other species and may be based, at least partly, on the level of

telomerase activity is a promising hypothesis to explore in

wild animals (see below).

(b) The old-age-specific impact of telomerase
activation: a key point for evolutionary biologists?

An interesting observation is that experimental triggering of

telomerase activity in adult and old mice delays ageing with-

out increasing cancer risks [25]. For evolutionary biologists, a

late-life beneficial effect of telomerase is particularly interesting

in relation to senescence. Senescence is defined as the reduction

of reproductive success and survival rates with age. Several

studies have highlighted an inverted U-shaped curve in fitness

proxies with age, such as foraging efficiency in animals living

under natural conditions (e.g. [26]). However, the mechanis-

tic explanations of such a decrease in performances do not

always match with a deterioration of physiological proxies

(e.g. immunity, hormones, oxidative stress; [26]). Therefore,

our understanding of the origin of individual differences in fit-

ness depends, in part, on the onset of senescence at different

ages within a population. As mice that benefit from an exper-

imental rise in telomerase activity display higher metabolic

responses (e.g. to glucose challenge), improved physical per-

formance and even higher cognitive ability [27], we may find

that natural among-individuals variability in telomerase

expression is one important determinant of individual fitness.

This may also be the case if telomerase is triggered during or

after a stressful event [28], enabling the organism to restore

homeostasis, or during a key period of the species’ natural

cycle like moult [29]. Future studies using long-term records

should relate longitudinal variation in telomerase expression

or activity profiles to individual variance in lifetime



rstb.royalsocietypublis

3
reproduction success and health status. For instance, telomer-

ase reactivation in mice eliminated degenerative phenotypes

in organs such as testes [30], suggesting that fertility could be

maintained in old individuals thanks to preserved telomerase

activity in old age. A similar observation could be made for

cognitive-dependent impacts on fitness, because restoration

of telomerase activity induced neurogenesis and preserved

cognitive abilities in mice [17,30].
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3. Beyond the telomere-maintenance role of
telomerase

Telomerase may influence organismal performance through

effects on telomeres, via other pathways or both. Beyond

its ability to lengthen telomeres, telomerase has also been

shown to have several other effects. For example, it is generally

recognized that elevated telomerase activity is associated with

cell growth promotion and cell protective effects [31]. However,

telomerase expression has also been found to occur without

concurrent notable enzymatic activity. For instance, tissue local-

izations of the protein and RNA components of telomerase

(i.e. telomerase gene expression) do not always match detect-

able levels of telomerase activity [32], and telomerase activity

is often low in adult somatic stem cells although TERC and

TERT subunits are expressed [33]. Therefore, it is questionable

whether the main mechanism that confers the exceptional

proliferative capacities of stem cells is more related to the

expression of those telomerase components than to the

maintenance of telomere length itself. In other words, these

results seem to suggest that TERT or TERC impacts cell func-

tions despite the fact that telomerase activity is undetectable.

This question applies also to our understanding of the influence

of telomerase on individual fitness, opening unexplored av-

enues of research to distinguish between telomere-related and

non-telomere-related effects of telomerase.

(a) Non-telomere-related cell renewal control by TERT
The origin of the telomerase–fitness relationship was tested

experimentally using transgenic mice models either lacking

telomerase expression (e.g. Tert2/2 strains) or presenting an

overexpression of telomerase in given cell types [4]. Tissue fit-

ness may be promoted by two main mechanisms: (i) a rapid

mobilization of the stem cell pool to replace damaged cells

and (ii) a higher protection of mature somatic cells. In a pre-

vious study where telomere length in epidermic and hair

follicle cells stayed apparently unchanged over the experiment,

overexpression of TERT promoted stem cell mobilization [34].

Therefore, cell proliferation from stem to mature somatic tissue

compartments appears to be, at least partly, under the control

of TERT [35,36]. More precisely, TERT seems to interfere with

the expression of proteins involved in the control of cell-cycle

division or of cell differentiation mechanisms [31,37]. More

direct evidence comes from experimental transfections of

TERT cDNA within somatic cells. Human TERT-transfected

lens epithelial cells presented a delayed apoptotic response to

an experimental oxidative stress challenge, characterized by

an attenuated activation of the pro-apoptotic caspase-3 activity

[38]. These results suggested that hTERT cDNA displays some

functions beyond telomere synthesis, inducing delayed cell

senescence, possibly attributed to a downregulation of apopto-

tic gene expression [31] even in telomerase-negative cells [39].
Other key and well-conserved ageing pathways are suggested

to be under the influence of TERT or TERC expression. The

insulin-like growth factor pathway, for instance, was upregu-

lated in cells overexpressing TERT [40]. Conversely, the

suppression of hTERT expression in human fibroblast disrupts

DNA damage response, suggesting that hTERT is implicated in

the regulation of the DNA repair machinery and/or of the

chromatin structure [41]. A DNA protection role of telomerase

was also found in the zebrafish [42] and in yeast, where telo-

merase appeared necessary to avoid DNA replication stress

[43]. In addition, the progeny of stem cells overexpressing

TERT presented a higher resistance to oxidative stress, another

crucial component-controlling senescence [44]. An additional

age-related modification of interest which also seems sensible

to the presence of TERT is the progressive decline in the

degree of methylation of the genome [45]. By stabilizing the

DNA methyltransferase, TERT could counteract the age-related

DNA methylation pattern [46]. Importantly, all these data hint

at the exciting possibility that TERT and TERC may be involved

in a large panel of ageing pathways that are not directly related

to telomere erosion. The next step will be to establish whether

those telomerase components directly modulate cellular pro-

cesses known to drive organism performance, such as

mitochondrial functioning.

(b) Telomerase as a direct modulator of energy balance
processes?

This idea has been partly tested by looking at intra-cell distri-

bution of TERT in cells exposed to oxidative stress [47]. In

those cells, TERT was excluded from the nucleus but loca-

lized within the mitochondria, a phenomenon concurrent

with the existence of improved mitochondrial functioning

markers (mtDNA protection, increased mitochondrial poten-

tial and lower free radical production or oxidative damage).

Accordingly, the hTERT sequence contains a mitochondrial

N-terminal localization peptide signalling the protein to the

mitochondria [48]. Two mechanisms have been suggested

so far to explain the interaction between TERT and the mito-

chondria. First, TERT binds to mitochondrial DNA,

protecting it from DNA-specific damaging elements [49].

Interestingly, 13 mitochondrial proteins are encoded by the

mtDNA, including complex I of the electron transport chain

(ETC) and the ATP synthase, suggesting that gene protection

by TERT is a key property to evaluate in the near future.

Second, TERT mitochondrial localization increases ETC

activity which is crucial for the cellular ATP production,

and specifically protects protein complex I [49]. Complex I

is the major site where the deleterious and pro-ageing reac-

tive oxygen species are produced. More generally,

mitochondria stand at the crossroads between metabolism

and ageing [50], and mitochondrial dysfunction is a sup-

posed pre-requisite for the onset of the ageing process [51].

Therefore, TERT could have a role in mitochondrial

protection when the cell is exposed to disruption of the oxi-

dative balance, providing an interesting mechanistic

research avenue that may lead us to explain individual varia-

bility in metabolic efficiency and ageing rate. Fitness

differences among individuals may be easy to characterize

when environmental circumstances are stressful. Individuals

of high intrinsic quality (e.g. in terms of tissue renewal rate)

should perform better under such conditions. In this context,

non-canonical expression of telomerase should be plastic and
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modified by stress factors if implicated in mechanisms

enabling the individuals to maintain their level of perform-

ance. Rapid mobilization of telomerase subunits (TERT)

towards mitochondria in response to stress may contribute

to such individual differences.
 cietypublishing.org
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(c) Does activating telomerase improve metabolism
while ageing?

The utilization of TA-65, extracted from roots of Astragalus
membranaceus, has been shown to trigger telomerase activity

both in vitro and in vivo ([25,52], but see [53]). Health proxies

listed to be improved by TA-65 encompass glucose tolerance,

skin maintenance, osteoporosis (in mice) or glucose and lipid

metabolism (in humans) ([22,25], reviewed in [54]). Still, the

underlying mechanisms linking telomerase activity and inter-

mediate metabolism remain unknown. For instance, physical

performance and energy metabolism are also dependent on

mitochondrial and cardiac functioning. Physical performance

has been linked with telomere dysfunction via PGC-1 signal-

ling inducing impaired mitochondrial biogenesis [51]. While

we lack information on how experimental telomerase acti-

vation may change mitochondrial functioning, we know

that telomerase can migrate into the mitochondria, and pro-

tect mitochondrial DNA and function [47,49]. Interestingly,

telomerase knockout mice suffered from a reduction of car-

diac myocyte proliferation and had increased rates of heart

failure [55]. Furthermore, the impact of enhanced telomerase

activity on heart functioning was experimentally tested in

humans using a 5-year dietary supplementation of TA-65,

resulting in a reduction in systolic and diastolic blood press-

ures [22]. In the same context, resveratrol administration

enhances the expression of hTERT in endothelial cells, poten-

tially preserving angiogenesis for tissue regeneration [12,56].

A similar beneficial impact has been observed on neuromus-

cular coordination of skeletal muscles [27]. Although it is too

early to extrapolate any conclusions about how this may

influence the individual fitness of free-living animals, these

data do suggest that telomerase may be involved in a broad

array of pathways affecting energy metabolism and physical

performance.

In summary, accumulating evidence suggests that TERT

and TERC may slow the ageing process through mechanisms

other than telomerase activation per se [31,57] (but see [58]

for an alternative view). Protein and RNA components of tel-

omerase are implicated in the DNA damage repair response;

in the control of stem cell proliferation; in the regulation of

close to 300 genes involved in cell-cycle regulation, growth,

signalling, differentiation, metabolism and apoptosis; and in

epigenetic regulation of chromatin structure [59]. Although

the fitness consequences of telomerase and its TERT/TERC

components at the cellular level are not always uncoupled

from the regulation of telomere length by telomerase, the exist-

ence of TERT within the mitochondria should attract our

interest. And, looking more closely into how non-canonical

expression of telomerase explains individual variability in

fitness proxies in the wild is a next essential step to investigate.

While there are multiple potential targets, the main connec-

tions (including shortened telomeres, well-conserved

apoptotic pathways and mitochondrial dysfunction) constitute

a promising integrated axis to begin an exploration of the

telomerase–fitness relationship in multiple organisms [60].
4. Perspectives: how to explore the link between
telomerase and fitness

Our understanding of the evolution of telomerase expression

patterns and how they covary with telomere length and

organismal fitness remains poor, particularly outside model

systems. Experimental triggering of telomerase activity could

be conducted on wild animal models. Despite limitations

of genome-wide association studies, quantitative genetic

approaches may be of interest to examine the links between

telomere length, telomerase expression and fitness in free-

living individuals. Such an approach, among other things,

will require either a better phenotypic description of high/

low telomerase activity levels, or characterization of the

output of rare mutations in the telomerase gene within wild

individuals of known pedigree [61]. Furthermore, given the

variety of molecules with the potential to trigger telomerase

(electronic supplementary material, S2), particularly in old

age using statins [62] or AGS-499 [63], we may also be able to

dig deeper into the cellular and physiological pathways that

translate telomerase effects at the level of individual fitness.

(a) Experimental manipulations
Experimentally manipulating telomerase expression (see

electronic supplementary material, S3, for schematic of path-

ways) makes it possible to test the functional relationships

among telomerase, telomere length and fitness. One promising

avenue for future studies in a wide array of organisms is the

use of TA-65. In mice, TA-65 exposure increased telomerase

expression and average telomere length, and several aspects

of general health, but importantly did not increase the

incidence of malignancy [25]. There were, however, no signifi-

cant effects of the treatment on longevity under these

controlled laboratory conditions. Nevertheless, the sample

sizes were relatively small (n ¼ 11–15 per group) and

additional studies are clearly needed. This approach was also

successfully used in a recent captive study of zebra finches

(Taeniopygia guttata), small songbirds. As in the mice, adult

birds that received TA-65 had longer telomeres and were able

to re-grow feathers more quickly, suggesting that they had

enhanced tissue regeneration relative to controls [29]. In both

of these studies, TA-65 was administered orally, and this

manipulation may be well suited for field studies, particula-

rly in species that are amenable to supplemental feeding. It

may also be possible to modify TA-65 delivery so that it can

be administered through slow release capsules, implants or

skin patches as is often done for hormonal manipulations

in physiological ecology, but this would require careful

validation. Importantly, the long-term effects of TA-65 treat-

ment on other health measures, longevity, cancer risk and

fitness remain unknown and future studies in diverse organ-

isms are urgently needed. Another important consideration

for future TA-65 research will be the timing of exposure.

Previous studies have focused exclusively on adult organisms,

yet telomere attrition tends to be greatest during early life [64].

Thus, variation in telomerase expression during pre- and

post-natal development could have a particularly large

impact on telomere attrition and fitness. We have recently

piloted the use of TA-65 in house sparrow chicks (Passer
domesticus) still in the nest and found that chicks that received

TA-65 during the growth period experienced less telomere

attrition than controls (BJ Heidinger 2017, unpublished data).
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Ongoing studies are examining the long-term phenotypic

consequences of this treatment.
stb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20160440
(b) Natural variation
Medical studies have previously looked for mutations in TERT

and TERC genes and their association with different diseases.

In addition to short telomeres, patients suffering from TERT/

TERC-derived bone marrow failure are also characterized

by low telomerase activity attributed to haploinsufficiency

(reviewed in [6]). More interestingly, some of these mutations

are responsible for a reduction in telomerase activity without

inducing any pathological state [65]. This implies that individ-

ual variability in telomerase activity exists within human

populations. Depending on how much telomerase expression

is affected by these mutations, the phenotypic consequences

may range from none (neutral mutations) to pathology (dele-

terious mutations), with potentially intermediate positive or

negative effects (e.g. via proliferative stem cell capacities to

anti-ageing shielding of the soma) that may contribute to the

natural variance in individual fitness. An interesting study in

yeast showed artificially deleted TERC RNA sequences pro-

duced mutants retaining the telomere maintenance capacity

of telomerase, but with reduced fitness (population growth

rate) when competing with wild-type yeasts [66].

Several recent genome-wide association studies in

humans have established links between allelic variation in

aspects of the telomerase complex, telomere length and longev-

ity [67–70]. The use of these techniques is currently restricted

to model organisms, but quantitative genetics is a promis-

ing approach that is increasingly used in physiological

ecology studies [71] and will likely yield greater insight into

the relationship between telomerase expression and fitness in

diverse organisms (see [72] for a useful guide). In designing

quantitative genetic studies, researchers will need to carefully

consider several issues including how (electronic supplemen-

tary material, S1), when and in which tissue(s) to measure

telomerase expression.

Telomerase expression is expected to be downregulated in

most somatic tissues after embryogenesis, while remaining

active into adulthood in highly proliferative tissues such as

lymphocytes and germ cells [73]. However, this general pattern

can vary among species [73,74]. For example, it was recently

reported in a longitudinal study of the edible dormouse (Glis
glis) that telomeres lengthen in old age, perhaps because telom-

erase expression is upregulated [75]. An important caveat is

that it is possible that low telomerase expression can be

missed if it is below the detectability of the assay (see electronic

supplementary material, S1). As most tissues are expected to

express telomerase during pre-natal development, variation

at this time might have a particularly large impact on telomere

length and fitness. Another interesting, but little explored

possibility is that, given that telomerase remains active in

germ cells into adulthood, it could have direct effects on the tel-

omere length that offspring inherit, with fitness consequences

for the next generation ([76]; for further discussion of this

topic, see [77]).

For telomerase expression to respond to selection some of

that variation will need to be heritable and we currently

know very little about the relative contributions of genetic

and environmental effects to telomerase expression patterns.

Recent evidence in adult mice suggests that telomerase

expression is upregulated in response to stress exposure [51],
but whether this is sufficient to buffer telomere erosion or

affect fitness is currently unknown. There is also both in vitro
[78] and in vivo [79] evidence that sex steroids influence TERT

expression. In humans, induced telomerase expression is

highly heritable (0.814), suggesting that genetic effects account

for much of the variation in this trait [80]. An important

consideration though is that given that induced telomerase

expression is a plastic trait, it might be more appropriate to

treat it as a reaction norm than to simply measure the response

to the environmental stimulus [81]. As the change in telomerase

expression may vary with environmental conditions (i.e. stress,

immune challenge) and life-history stages (i.e. moult, hiber-

nation), it may be more appropriate to examine changes in

the slope of telomerase expression across contexts rather than

simply measure maximum telomerase expression. A similar

approach could be used in free-living populations with

known pedigrees or using experimental breeding designs [72].
(c) Comparative analyses
Comparative analyses are another approach that makes it poss-

ible to ask questions about telomerase expression, telomere

length and longevity in a broad evolutionary context. Com-

parative analyses have been used in both mammals [73,82]

and birds [10] and have yielded some interesting patterns.

For example, Seluanov et al. [82] and Gomes et al. [73] used

phylogenetically controlled analyses in mammals to examine

the relationship between telomerase activity, body mass and

lifespan. In long-lived organisms, telomerase activity is

expected to be downregulated in somatic cells after embryogen-

esis as an anti-cancer protection mechanism [12]. However,

across species, lifespan tends to be positively correlated with

body size [83]. Interestingly, both Seluanov et al. and Gomes

et al. found that telomerase activity coevolved with body

mass rather than lifespan in mammals. Gomes et al. further

found that telomere length, but not telomerase activity, has

coevolved with lifespan. These results have interesting evol-

utionary implications because they suggest that selection

to increase body size would have stronger indirect effects on

telomerase expression than on telomere length, whereas

selection to increase lifespan would have stronger indirect

effects on telomere length than on telomerase expression. More-

over, depending on the genetic correlation between telomerase

expression and telomere length, the independent evolution of

these two traits could be facilitated or quantitatively con-

strained [84] (see [85] for further discussion on these ideas).

By stark contrast, in a much more restricted analysis of four

bird species, Haussmann et al. [10] found that long-lived species

had higher telomerase expression throughout life and slower

rates of telomere attrition than short-lived species [86]. Cancer

is little studied in wild birds, but is thought to be relatively

rare, particularly in long-lived seabirds [87]. Thus, although

these results are based on a limited number of avian species,

they provide tantalizing evidence that these two classes of ver-

tebrates may resolve trade-offs between investment in telomere

maintenance and malignancy risk in very different ways, and

future comparative studies involving a greater array of ver-

tebrates with diverse life-history strategies are critically

needed. One particular focus should be on ectotherms (elec-

tronic supplementary material, S1), which are known to

present very particular telomere length dynamics over life

[88], and in which telomerase activity differences among

individuals have recently been highlighted [89].
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Future comparative studies should also include additional

life-history and physiology traits expected to be related to telo-

merase expression, telomere length and longevity. In addition

to body mass, Gomes et al. [73] also included oxidative stress

resistance as these traits have been shown to covary with life-

span. Sex is another trait that should be incorporated into

future comparative analyses as both size and lifespan can

vary with sex, and sex has also been shown to influence both

telomere length [90] and telomerase expression [91].
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5. Conclusion
Taken together, we argue that studying telomerase is of prime

interest from an evolutionary biology perspective for the fol-

lowing reasons. First, previous molecular and biomedical

studies highlight that variation in telomerase activity can be

found at all levels of organization. In addition, telomere

length and longevity are related to genetic variation in the
telomerase complex and suggest that telomerase expression

is heritable. Finally, an increasing number of studies show

that telomerase modulates organism functioning in a way

that benefits survival and longevity, and increased expression

levels are correlated with improved health status of individ-

uals. Whether prolonging healthy lifespan is associated with

increased fitness is presently an assumption that needs evalu-

ation in natural populations, but that telomerase expression

is related to fitness is a credible hypothesis. In summary, all

of the ingredients for a key role of telomerase in the evolution

of life-history traits exist. Now, studies going forward need to

begin to mix those ingredients in non-model, field organisms,

and across life stages and multiple tissue types to determine the

role that telomerase plays in organismal fitness.
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