2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

IoT Edge Device Based Key Frame Extraction for
Face in Video Recognition

Xuan Qi, Chen Liu and Stephanie Schuckers
Department of Electrical and Computer Engineering
Clarkson University
8 Clarkson Avenue, Potsdam, NY 13699, US
{qix,cliu,sschucke} @clarkson.edu

Abstract—Following the development of computing and com-
munication technologies, the idea of Internet of Things (IoT) has
been realized not only at research level but also at application
level. Among various IoT-related application fields, biometrics
applications, especially face recognition, are widely applied in
video-based surveillance, access control, law enforcement and
many other scenarios. In this paper, we introduce a Face in
Video Recognition (FivR) framework which performs real-time
key-frame extraction on IoT edge devices, then conduct face
recognition using the extracted key-frames on the Cloud back-
end. With our key-frame extraction engine, we are able to reduce
the data volume hence dramatically relief the processing pressure
of the cloud back-end. Our experimental results show with IoT
edge device acceleration, it is possible to implement face in video
recognition application without introducing the middle-ware or
cloud-let layer, while still achieving real-time processing speed.

Keywords-Internet of Things, Edge Device, Face in Video
Recognition, Key Frame Extraction

I. INTRODUCTION

Among various Internet of Things (IoT) application sce-
narios, video surveillance and video analytics to recognize
identities and reveal human related attributes such as gender
and age, etc., are of commonly adopted applications. For
biometric features, face is often regarded as one of the most
prominent identifiers in law enforcement, access control and
authorization. Hence, face in video recognition (FiVR) has
become a research area under spot light and plays a key role
in video surveillance and analytics related IoT applications.

In practical application scenario, embedded platforms such
as surveillance cameras and unmanned aerial vehicles (UAVs)
are used as IoT edge devices for taking video streams and
forward them to high-performance backend such as the Cloud.
But this approach poses a great deal of processing pressure
onto the backend (the Cloud) and demands high network
bandwidth, especially when there are lots of sensors in use
and lots of people to identify. Moreover, as shown on the
left side of Fig.1, the cloud backend is under pressure in
performing both low-level processing such as face detection,
face tracking and face recognition, as well as high-level
processing such as pattern extraction and human behavior
analysis. Nowadays, with the improvement on the computation
power of mobile devices, embedded platforms with integrated
computing engines such as mobile graphics processing unit
(GPU) actually provide us with the capability of moving FiVR

978-1-5386-5815-4/18/$31.00 ©2018 IEEE

DOI 10.1109/CCGRID.2018.00087

641

i-IoT (intelligent Internet of Things)

ToT (Internet of Things)

Fig. 1: Moving FR capability to IoT edge devices

to IoT edge devices. On the right side of Fig.1, by moving face
detection and recognition services to IoT edge devices, we can
leverage cloud backend with more computing capability for
high-level analysis, such as route tracking, pattern extraction,
and behavioral analysis. This is essential in moving the IoT
to the next stage, i.e., intelligent IoT.

In this paper, we explore the possibility of running key-
frame extraction (KFE) engine for face in video recognition
on IoT edge platform. By applying GPU acceleration on
our framework as well as optimization of the Convolutional
Neural Network (CNN) model, we are able to reach real-
time processing performance for Full HD video sequence
without introducing any middle-ware components.The rest of
the paper is organized as follows: in Section II, we review
the main-stream approaches for distributing application across
IoT center cloud and edge devices. In Section III, we describe
the framework of our key-frame extraction engine. In Section
1V, we evaluate the performance of our KFE engine on IoT
edge device. Finally, we conclude our work in Section V.

II. RELATED WORKS

Hossian et al. proposed a cloud-assisted face and speech
recognition framework [4] which used client device as image,
video and voice collector and forward them to cloud server for
further processing. In their experiment analysis, seconds-level
processing time is acceptable for image based applications,
but still not suitable for video surveillance based applications,
which require real-time processing speed and low latency
response. Beside, Tang et al. also suggested that offloading all

IEEE
computer
psouety

processing workloads to cloud back-end could lead to seconds-
level latency, which does not meet real-time requirement,
either [11].

In order to accelerate the processing speed and reducing the
latency, other researchers introduced middle-ware to perform
some pre-processing works. Tolga et al. [9] proposed MObile
Cloud Hybrid Architecture (MOCHA) to build a mobile-
cloudlet-cloud framework, which uses GPU-equipped cloudlet
to transform raw face images into feature maps and then trans-
fers them to cloud backend for final face recognition. With this
cloudlet-based framework, they reduced the overall processing
latency. Powers et al. [0] also applied cloudlet as middle
level to perform the pre-processing for face recognition. Their
experimental results showed that the overall processing frame
rate can be accelerated by 128X at most. But, there are also
some limitations associated with this type of cloudlet-based
approaches: with the increase of face database, the acceleration
ratio drops very quickly. When the database size increases to
20K, the ratio even drops below 1X. Hence, these results
show that the cloudlet itself can also become the processing
bottleneck for the whole face recognition framework.

There are some researches on performing face recognition
(FR) on IoT edge devices. Cheng et al. [2] performed FR on
mobile phone with integrated GPU. In their experiment, it took
as much as 6s to perform feature extraction and recognition
for one single detected face image, which is far from real-
time speed for video processing. The speed will become even
slower if we add another computing intensive procedure, face
detection, to the processing pipeline. Mandal et al. proposed
an FR solution on ARM-based wearable Google Glass [5],
which is more similar to surveillance camera systems mostly
equipped with only ARM CPUs. But in their experiment,
the video resolution is only 640 x 360, which is too small
to be representative. The computation overhead will increase
dramatically when the video resolution increases to higher
level such as 1080p. Hence, from all work mentioned above,
we can see that performing FR is still “expensive” for IoT
edge devices, and an efficient co-operating framework between
cloud backend and IoT devices is needed.

The cloudlet-based works [9], [6] show the importance of
reducing data volume to be transferred to cloud back-end for
FR application. With the rapidly increasing processing power
of IoT edge platforms, especially GPU integrated ones, the
mobile device based works [2], [5] also hint the possibility
of moving certain parts of the processing workloads to the
edge of IoT, without introducing any middle-wares which may
cause processing bottlenecks. In this work, we try to combine
the advantages of both approaches.

III. KFE AND FR ON IOT EDGE DEVICES

In our effort to meet the target of reducing data volume, we
propose to pick video frames with best quality faces which
are good for face recognition. Our solution is the key-frame
extraction (KFE) engine.

642

Key-Frame Extraction (KFE) Engine

CNN based |

o Face i
‘ - Face Quality ‘ ‘ Exiracted
Video L Detection & _,‘ Defected | Assessment —> Key-Frame
Frames ‘ Tracking | Faces | (FQA) (‘
- Module Module |)

GPU Accelerafed

Fig. 2: Structure of our KFE engine [§]

A. KFE Framework

In Fig. 2 [8], we show the structure of our KFE engine. The
KFE engine lies between the face detection/tracking module
and the face recognition back-end. For every frame of the
input video stream, we perform face detection first and track
different people or identity. Next, for all detected faces, we
forward them through the Face Quality Assessment (FQA)
CNN network and get a face quality value. The meaning of
the quality value here is the predicted recognition score if the
face image were sent to the FR back-end. According to the
quality value, the KFE engine extracts the frames with the best
quality face for each identity, called key-frames, and forwards
them to the FR back-end. Please note in the implementation of
KFE engine, we use GPU to accelerate the face detection, face
tracking and the CNN network of FQA module. We believe
applying our KFE engine can bring following benefits:

« Reducing Data Volume: instead of transferring all face
images or video frames to cloud back-end, our KFE
engine only outputs frames with high quality faces which
have higher probability to be recognized by FR back-end.
Saving Computing Power: since the FR engine in cloud
back-end only needs to process key-frames, the comput-
ing overhead can be dramatically reduced.

Improving FR Accuracy: since the KFE engine picks
frames with high quality faces, in other words, it rejects
low quality faces which may cause wrong FR result.
Hence, our KFE engine has the potential to improve FR
accuracy, comparing with performing FR on every frame.

Our focus in this work is KFE engine. Hence, for face
detection, we utilize the cascade based face detection module
from OpenCV. For the face feature description file, we use
the LBP descriptor with the consideration of execution speed,
which is much faster than HAAR descriptor. For our CNN
based KFE engine, we use CAFFE framework to implement
the CNN model in our baseline version.

B. CNN based FQA in Key Frame Extraction

The CNN architecture of our FQA module is shown in Table
I. Overall, our CNN has four stages of convolution operation.
One unique feature of our design is that between the first and
the second convolution stages, we implemented an inception
module. The idea behind it is that we want to extract both
fine grain and coarse grain features of a face image. Besides,
all convolution layers are followed by pooling operations with
3 x 3 window and 2 X 2 stride. The last sigmoid function
is used to remap numeric prediction value within the range

TABLE I: CNN architecture in our FQA module

Layer/Module | Kernel size | Num of Kernel
Image Input 64*64 1
Convl 3%3 12
. 4 paths: 1*1, 3%3, 5*5
Inception .
and max pooling
Conv2 3%3 96
Conv3 3%3 128
Fcl - 128
Fc2 - 64
Sigmoid - 1

between 0.0 and 1.0. For more detailed design of our KFE
engine, please refer to our related works [7], [8].

C. Optimization strategies on IoT edge devices

Since the CNN architecture is already defined, our focus
here is computing-related optimizations. In order to reduce the
computation overhead caused by our CNN model to better fit
the IoT edge devices, we followed two optimization strategies:
reducing the precision of the floating point and employing
TensorRT framework. In case the IoT edge devices cannot
reach real-time performance to meet the needs of identity
extraction, object detection and behavior analysis under video
based surveillance application scenario, further optimizations
might be needed.

1) Half-precision float-point computing: One approach is to
use reduced precision, for example, 16-bit half-length floating
point, instead of using 32-bit single precision floating point to
store the weights and parameters of CNN model. The hardware
support for this feature is that the Maxwell and latest Pascal
architectures of Nvidia’s GPU support executing two 16-bit
floating point based operation at the same time in one 32-
bit floating point unit by following a SIMD fashion. People
already showed very good outcome in using reduced precision
float. For low-level computing performance, in Ho’s work
[3], they discovered that using half-precision can achieve at
least 1.5X, in some cases even 3X speedup over using 32-
bit single precision floating point in their benchmarks. For
deep learning related workloads, in Sze’s survey [10], they
showed using reduced precision floating point could lead to a
huge speedup over using 32-bit precision, while at the same
time the DNN model’s overall accuracy loss brought by using
reduced precision floating point is quite small. Hence, using
half-precision float-point is highly promising in optimizing our
KFE engine.

2) TensorRT framework: TensorRT is a framework pro-
vided by Nvidia for optimizing the inference of deep learning
models like DNN. With TensorRT, researchers and developers
can use reduced precision data type: 8-bit integer (INTS)
or half-precision floating point (FP16) to replace the single-
precision floating point in representing the weights and pa-
rameters of deep learning models. As a result, the overall
overhead of running the models will be dramatically reduced.
On the other aspect, with the support of reduced precision
data on hardware level, we can meet real-time demand easier
in applications with time constraints such as video based

643

surveillance. Hence, for the optimized version of KFE engine,
we replaced the Caffe framework for running the CNN based
FQA model in our original design, which was oriented towards
high performance computing (HPC) platform, with TensorRT
framework, which is a perfect fit for IoT edge devices.

IV. EXPERIMENTS
A. Experimental Settings

In this work, we use the Jetson TX2 mobile GPU board from
Nvidia as our experimental platform. The Jetson TX2 platform
has 6 ARM cores in total and one integrated GPU which has
256 CUDA cores. Besides, the core computing element on the
TX2 board is of only credit card size, which ideally fits [oT
platforms like surveillance cameras, UAVs and ground robots.

B. Video Benchmarks

To verify the performance of our key-frame extraction en-
gine, we evaluate the baseline implementation first and intro-
duce optimizations after that. For the evaluation, previous anal-
ysis [1] already shown that using reduced precision on DNN
inferencing does not affect identification accuracy and only
causes very limited precision trade-offs. Hence, we mainly pay
close attention to processing speed and data volume reduction
under real application scenarios, especially when there is real-
time processing demand, even video surveillance with HD
(1920 x 1080 or 1280 x 720) resolutions. Hence, we also took
two Full HD videos (1920 x 1080) for the testing of our KFE
engine’s processing speed and data volume reduction. The first
video was taken in a corridor with 4 different identities, and
the second video was taken in the hallway with 22 different
identities of a crowd scenario.

C. Baseline implementation

Here we ported our KFE engine, which was designed
towards HPC platform, directly on the Jetson TX2 platform
with no optimization. Fig.3 shows the sample output results
of our KFE engine. In Fig.3a, the detected person with ID 67
appeared from Frame 1528, and Frame 1538 is extracted as the
key-frame which contains the best face image for that person.
In Fig. 3b, the detected person with ID 69, the Frame 1557
is extracted as key-frame. All the information is displayed as
the “water-mark™ at the bottom of the extracted key-frame.

To evaluate the processing speed of our KFE engine on
mobile platform, we test our videos in 3 different resolutions:
1920 % 1080, 1280 x 720, and 640 x 480. The results are shown
in Table II. We can see that for baseline implementation, it fails
to reach the real-time speed (30fps) except one 640 x 480 case.
Hence, further optimization is needed to reach real-time level
processing and response.

D. Processing speed of optimized implementation

Next, we show the results after TensorRT and reduced
precision optimization in Table III. We can see that after
optimization, our KFE engine successfully reaches real-time
processing speed (30fps) in all resolutions on Jetson platform.
Especially for 1080p videos, we can see that we get more than

(a) Result for Person ID 67

(b) Result for Person ID 69

Fig. 3: Sample Result

TABLE II: Processing Speed of Baseline implementation
Under Different Resolution

Video Resolution Processing
Category Speed (Fps)
1920 1080 14.29
Corridor 1280720 13.88
640x480 22.73
1920 1080 18.05
Hallway 1280x720 18.96
640x 480 31.87

TABLE III: Processing Speed of optimized implementation
Under Different Resolution

Video Resolution Processing
Category Speed (Fps)
1920 1080 34.07
Corridor | 1280720 33.4
640 %480 34.02
1920 1080 34.42
Hallway 1280720 35.87
640 %480 40.43

100% performance gain after using optimized FQA CNN with
half-precision float point weights.

The reasons for getting this satisfying speedup are: first,
the TensorRT framework is highly optimized towards our plat-
form’s hardware architecture. Hence, the overhead of running
deep learning support framework itself is reduced. Second, the
accumulative computing overhead brought by FQA engine is
reduced since we use 16-bit precision instead of 32-bit. Hence,
the overhead of running CNN based FQA model in our KFE
engine is saved.

E. Data volume reduction

To quantify the benefit of reducing data volume brought by
our KFE engine, we show the data reduction ratio in Table
IV. From the table we can also see the benefit brought by our
framework: more than 95% of data volume is reduced, which
means now only less than 5% of video streams is transferred
to cloud back-end for face recognition, meeting our goal.

V. CONCLUSIONS

With the increasing computation capability of IoT edge
devices, it is possible to offload certain operations close to

644

TABLE 1V: Data Reduction Ratio

Video Total Extracted Data Ret_iuction
Frames | Key-Frames Ratio
Corridor | 300 15 95.00%
Hallway | 1560 53 96.60%

data, while focus the Cloud backend more on high-level
processing and analysis. In this paper, we introduce a Face
in Video Recognition (FivR) framework which performs real-
time key-frame extraction on IoT edge devices. We employed
optimization approaches which can utilize hardware architec-
ture features of IoT edge devices such as vectorization for CPU
and half-precision floating point for GPU. With our proposed
approach, we are able to reduce the data volume by 95%,
hence dramatically relief the processing pressure of the cloud
back-end. On the other hand, with our optimization strategies,
we also achieve real-time performance even for HD videos
without introducing any middle layers between the cloud and
edge devices.

ACKNOWLEDGEMENT

This material is based upon work supported by the Cen-
ter for Identification Technology Research and the National
Science Foundation (NSF) under Grants No.1068055 and
1650503. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF.

REFERENCES

8-bit inference with tensorrt.
2017/presentation/s7310-8-bit-inference- with-tensorrt.pdf.
2017-12-12. 3

K.-T. Cheng and Y.-C. Wang. Using mobile gpu for general-purpose
computing—a case study of face recognition on smartphones. In VLSI
Design, Automation and Test (VLSI-DAT), 2011 International Sympo-
sium on, pages 1-4. IEEE, 2011. 2

N.-M. Ho and W.-F. Wong. Exploiting half precision arithmetic in nvidia
gpus. In High Performance Extreme Computing Conference (HPEC),
2017 IEEE, pages 1-7. IEEE, 2017. 3

M. S. Hossain and G. Muhammad. Cloud-assisted speech and face
recognition framework for health monitoring. Mobile Networks and
Applications, 20(3):391-399, 2015. 1

B. Mandal, S.-C. Chia, L. Li, V. Chandrasekhar, C. Tan, and J.-H. Lim.
A wearable face recognition system on google glass for assisting social
interactions. In Asian Conference on Computer Vision, pages 419-433.
Springer, 2014. 2

N. Powers, A. Alling, K. Osolinsky, T. Soyata, M. Zhu, H. Wang, H. Ba,
W. Heinzelman, J. Shi, and M. Kwon. The cloudlet accelerator: Bringing
mobile-cloud face recognition into real-time. In Globecom Workshops
(GC Wkshps), 2015 IEEE, pages 1-7. IEEE, 2015. 2

X. Qi and C. Liu. Gpu-accelerated key frame analysis for face detection
in video. In Cloud Computing Technology and Science (CloudCom),
2015 IEEE 7th International Conference on, pages 600-605. IEEE,
2015. 3

X. Qi, C. Liu, and S. Schuckers. Boosting face in video recognition
via cnn based key frame extraction. In The I1th IAPR International
Conference on Biometrics (ICB), 2018 IEEE. 1IEEE, 2018. 2, 3

T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman.
Cloud-vision: Real-time face recognition using a mobile-cloudlet-cloud
acceleration architecture. In Computers and Communications (ISCC),
2012 IEEE Symposium on, pages 000059-000066. IEEE, 2012. 2

V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer. Efficient processing of deep
neural networks: A tutorial and survey. arXiv preprint arXiv:1703.09039,
2017. 3

J. Tang, D. Sun, S. Liu, and J.-L. Gaudiot. Enabling deep learning on
iot devices. Computer, 50(10):92-96, 2017. 2

1

—

http://on-demand.gputechconf.com/gtc/
Accessed:

[2]

[3]

[4]

[5

—

[6]

[7

—

[8]

[9

[t

[10]

[11]

