
IoT Edge Device Based Key Frame Extraction for

Face in Video Recognition

Xuan Qi, Chen Liu and Stephanie Schuckers

Department of Electrical and Computer Engineering

Clarkson University

8 Clarkson Avenue, Potsdam, NY 13699, US

{qix,cliu,sschucke}@clarkson.edu

Abstract—Following the development of computing and com-
munication technologies, the idea of Internet of Things (IoT) has
been realized not only at research level but also at application
level. Among various IoT-related application fields, biometrics
applications, especially face recognition, are widely applied in
video-based surveillance, access control, law enforcement and
many other scenarios. In this paper, we introduce a Face in
Video Recognition (FivR) framework which performs real-time
key-frame extraction on IoT edge devices, then conduct face
recognition using the extracted key-frames on the Cloud back-
end. With our key-frame extraction engine, we are able to reduce
the data volume hence dramatically relief the processing pressure
of the cloud back-end. Our experimental results show with IoT
edge device acceleration, it is possible to implement face in video
recognition application without introducing the middle-ware or
cloud-let layer, while still achieving real-time processing speed.

Keywords-Internet of Things, Edge Device, Face in Video
Recognition, Key Frame Extraction

I. INTRODUCTION

Among various Internet of Things (IoT) application sce-

narios, video surveillance and video analytics to recognize

identities and reveal human related attributes such as gender

and age, etc., are of commonly adopted applications. For

biometric features, face is often regarded as one of the most

prominent identifiers in law enforcement, access control and

authorization. Hence, face in video recognition (FiVR) has

become a research area under spot light and plays a key role

in video surveillance and analytics related IoT applications.

In practical application scenario, embedded platforms such

as surveillance cameras and unmanned aerial vehicles (UAVs)

are used as IoT edge devices for taking video streams and

forward them to high-performance backend such as the Cloud.

But this approach poses a great deal of processing pressure

onto the backend (the Cloud) and demands high network

bandwidth, especially when there are lots of sensors in use

and lots of people to identify. Moreover, as shown on the

left side of Fig.1, the cloud backend is under pressure in

performing both low-level processing such as face detection,

face tracking and face recognition, as well as high-level

processing such as pattern extraction and human behavior

analysis. Nowadays, with the improvement on the computation

power of mobile devices, embedded platforms with integrated

computing engines such as mobile graphics processing unit

(GPU) actually provide us with the capability of moving FiVR

Fig. 1: Moving FR capability to IoT edge devices

to IoT edge devices. On the right side of Fig.1, by moving face

detection and recognition services to IoT edge devices, we can

leverage cloud backend with more computing capability for

high-level analysis, such as route tracking, pattern extraction,

and behavioral analysis. This is essential in moving the IoT

to the next stage, i.e., intelligent IoT.

In this paper, we explore the possibility of running key-

frame extraction (KFE) engine for face in video recognition

on IoT edge platform. By applying GPU acceleration on

our framework as well as optimization of the Convolutional

Neural Network (CNN) model, we are able to reach real-

time processing performance for Full HD video sequence

without introducing any middle-ware components.The rest of

the paper is organized as follows: in Section II, we review

the main-stream approaches for distributing application across

IoT center cloud and edge devices. In Section III, we describe

the framework of our key-frame extraction engine. In Section

IV, we evaluate the performance of our KFE engine on IoT

edge device. Finally, we conclude our work in Section V.

II. RELATED WORKS

Hossian et al. proposed a cloud-assisted face and speech

recognition framework [4] which used client device as image,

video and voice collector and forward them to cloud server for

further processing. In their experiment analysis, seconds-level

processing time is acceptable for image based applications,

but still not suitable for video surveillance based applications,

which require real-time processing speed and low latency

response. Beside, Tang et al. also suggested that offloading all

641

2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-5386-5815-4/18/$31.00 ©2018 IEEE
DOI 10.1109/CCGRID.2018.00087

processing workloads to cloud back-end could lead to seconds-

level latency, which does not meet real-time requirement,

either [11].

In order to accelerate the processing speed and reducing the

latency, other researchers introduced middle-ware to perform

some pre-processing works. Tolga et al. [9] proposed MObile

Cloud Hybrid Architecture (MOCHA) to build a mobile-

cloudlet-cloud framework, which uses GPU-equipped cloudlet

to transform raw face images into feature maps and then trans-

fers them to cloud backend for final face recognition. With this

cloudlet-based framework, they reduced the overall processing

latency. Powers et al. [6] also applied cloudlet as middle

level to perform the pre-processing for face recognition. Their

experimental results showed that the overall processing frame

rate can be accelerated by 128X at most. But, there are also

some limitations associated with this type of cloudlet-based

approaches: with the increase of face database, the acceleration

ratio drops very quickly. When the database size increases to

20K, the ratio even drops below 1X . Hence, these results

show that the cloudlet itself can also become the processing

bottleneck for the whole face recognition framework.

There are some researches on performing face recognition

(FR) on IoT edge devices. Cheng et al. [2] performed FR on

mobile phone with integrated GPU. In their experiment, it took

as much as 6s to perform feature extraction and recognition

for one single detected face image, which is far from real-

time speed for video processing. The speed will become even

slower if we add another computing intensive procedure, face

detection, to the processing pipeline. Mandal et al. proposed

an FR solution on ARM-based wearable Google Glass [5],

which is more similar to surveillance camera systems mostly

equipped with only ARM CPUs. But in their experiment,

the video resolution is only 640 × 360, which is too small

to be representative. The computation overhead will increase

dramatically when the video resolution increases to higher

level such as 1080p. Hence, from all work mentioned above,

we can see that performing FR is still “expensive” for IoT

edge devices, and an efficient co-operating framework between

cloud backend and IoT devices is needed.

The cloudlet-based works [9], [6] show the importance of

reducing data volume to be transferred to cloud back-end for

FR application. With the rapidly increasing processing power

of IoT edge platforms, especially GPU integrated ones, the

mobile device based works [2], [5] also hint the possibility

of moving certain parts of the processing workloads to the

edge of IoT, without introducing any middle-wares which may

cause processing bottlenecks. In this work, we try to combine

the advantages of both approaches.

III. KFE AND FR ON IOT EDGE DEVICES

In our effort to meet the target of reducing data volume, we

propose to pick video frames with best quality faces which

are good for face recognition. Our solution is the key-frame

extraction (KFE) engine.

Fig. 2: Structure of our KFE engine [8]

A. KFE Framework

In Fig. 2 [8], we show the structure of our KFE engine. The

KFE engine lies between the face detection/tracking module

and the face recognition back-end. For every frame of the

input video stream, we perform face detection first and track

different people or identity. Next, for all detected faces, we

forward them through the Face Quality Assessment (FQA)

CNN network and get a face quality value. The meaning of

the quality value here is the predicted recognition score if the

face image were sent to the FR back-end. According to the

quality value, the KFE engine extracts the frames with the best

quality face for each identity, called key-frames, and forwards

them to the FR back-end. Please note in the implementation of

KFE engine, we use GPU to accelerate the face detection, face

tracking and the CNN network of FQA module. We believe

applying our KFE engine can bring following benefits:

• Reducing Data Volume: instead of transferring all face

images or video frames to cloud back-end, our KFE

engine only outputs frames with high quality faces which

have higher probability to be recognized by FR back-end.

• Saving Computing Power: since the FR engine in cloud

back-end only needs to process key-frames, the comput-

ing overhead can be dramatically reduced.

• Improving FR Accuracy: since the KFE engine picks

frames with high quality faces, in other words, it rejects

low quality faces which may cause wrong FR result.

Hence, our KFE engine has the potential to improve FR

accuracy, comparing with performing FR on every frame.

Our focus in this work is KFE engine. Hence, for face

detection, we utilize the cascade based face detection module

from OpenCV. For the face feature description file, we use

the LBP descriptor with the consideration of execution speed,

which is much faster than HAAR descriptor. For our CNN

based KFE engine, we use CAFFE framework to implement

the CNN model in our baseline version.

B. CNN based FQA in Key Frame Extraction

The CNN architecture of our FQA module is shown in Table

I. Overall, our CNN has four stages of convolution operation.

One unique feature of our design is that between the first and

the second convolution stages, we implemented an inception

module. The idea behind it is that we want to extract both

fine grain and coarse grain features of a face image. Besides,

all convolution layers are followed by pooling operations with

3 × 3 window and 2 × 2 stride. The last sigmoid function

is used to remap numeric prediction value within the range

642

TABLE I: CNN architecture in our FQA module

Layer/Module Kernel size Num of Kernel

Image Input 64*64 1

Conv1 3*3 12

Inception
4 paths: 1*1, 3*3, 5*5

and max pooling

Conv2 3*3 96

Conv3 3*3 128

Fc1 - 128

Fc2 - 64

Sigmoid - 1

between 0.0 and 1.0. For more detailed design of our KFE

engine, please refer to our related works [7], [8].

C. Optimization strategies on IoT edge devices

Since the CNN architecture is already defined, our focus

here is computing-related optimizations. In order to reduce the

computation overhead caused by our CNN model to better fit

the IoT edge devices, we followed two optimization strategies:

reducing the precision of the floating point and employing

TensorRT framework. In case the IoT edge devices cannot

reach real-time performance to meet the needs of identity

extraction, object detection and behavior analysis under video

based surveillance application scenario, further optimizations

might be needed.

1) Half-precision float-point computing: One approach is to

use reduced precision, for example, 16-bit half-length floating

point, instead of using 32-bit single precision floating point to

store the weights and parameters of CNN model. The hardware

support for this feature is that the Maxwell and latest Pascal

architectures of Nvidia’s GPU support executing two 16-bit

floating point based operation at the same time in one 32-

bit floating point unit by following a SIMD fashion. People

already showed very good outcome in using reduced precision

float. For low-level computing performance, in Ho’s work

[3], they discovered that using half-precision can achieve at

least 1.5X , in some cases even 3X speedup over using 32-

bit single precision floating point in their benchmarks. For

deep learning related workloads, in Sze’s survey [10], they

showed using reduced precision floating point could lead to a

huge speedup over using 32-bit precision, while at the same

time the DNN model’s overall accuracy loss brought by using

reduced precision floating point is quite small. Hence, using

half-precision float-point is highly promising in optimizing our

KFE engine.

2) TensorRT framework: TensorRT is a framework pro-

vided by Nvidia for optimizing the inference of deep learning

models like DNN. With TensorRT, researchers and developers

can use reduced precision data type: 8-bit integer (INT8)

or half-precision floating point (FP16) to replace the single-

precision floating point in representing the weights and pa-

rameters of deep learning models. As a result, the overall

overhead of running the models will be dramatically reduced.

On the other aspect, with the support of reduced precision

data on hardware level, we can meet real-time demand easier

in applications with time constraints such as video based

surveillance. Hence, for the optimized version of KFE engine,

we replaced the Caffe framework for running the CNN based

FQA model in our original design, which was oriented towards

high performance computing (HPC) platform, with TensorRT

framework, which is a perfect fit for IoT edge devices.

IV. EXPERIMENTS

A. Experimental Settings

In this work, we use the Jetson TX2 mobile GPU board from

Nvidia as our experimental platform. The Jetson TX2 platform

has 6 ARM cores in total and one integrated GPU which has

256 CUDA cores. Besides, the core computing element on the

TX2 board is of only credit card size, which ideally fits IoT

platforms like surveillance cameras, UAVs and ground robots.

B. Video Benchmarks

To verify the performance of our key-frame extraction en-

gine, we evaluate the baseline implementation first and intro-

duce optimizations after that. For the evaluation, previous anal-

ysis [1] already shown that using reduced precision on DNN

inferencing does not affect identification accuracy and only

causes very limited precision trade-offs. Hence, we mainly pay

close attention to processing speed and data volume reduction

under real application scenarios, especially when there is real-

time processing demand, even video surveillance with HD

(1920×1080 or 1280×720) resolutions. Hence, we also took

two Full HD videos (1920× 1080) for the testing of our KFE

engine’s processing speed and data volume reduction. The first

video was taken in a corridor with 4 different identities, and

the second video was taken in the hallway with 22 different

identities of a crowd scenario.

C. Baseline implementation

Here we ported our KFE engine, which was designed

towards HPC platform, directly on the Jetson TX2 platform

with no optimization. Fig.3 shows the sample output results

of our KFE engine. In Fig.3a, the detected person with ID 67

appeared from Frame 1528, and Frame 1538 is extracted as the

key-frame which contains the best face image for that person.

In Fig. 3b, the detected person with ID 69, the Frame 1557

is extracted as key-frame. All the information is displayed as

the “water-mark” at the bottom of the extracted key-frame.

To evaluate the processing speed of our KFE engine on

mobile platform, we test our videos in 3 different resolutions:

1920×1080, 1280×720, and 640×480. The results are shown

in Table II. We can see that for baseline implementation, it fails

to reach the real-time speed (30fps) except one 640×480 case.

Hence, further optimization is needed to reach real-time level

processing and response.

D. Processing speed of optimized implementation

Next, we show the results after TensorRT and reduced

precision optimization in Table III. We can see that after

optimization, our KFE engine successfully reaches real-time

processing speed (30fps) in all resolutions on Jetson platform.

Especially for 1080p videos, we can see that we get more than

643

(a) Result for Person ID 67 (b) Result for Person ID 69

Fig. 3: Sample Result

TABLE II: Processing Speed of Baseline implementation

Under Different Resolution

Video
Resolution
Category

Processing
Speed (Fps)

Corridor
1920×1080 14.29
1280×720 13.88
640×480 22.73

Hallway
1920×1080 18.05
1280×720 18.96
640×480 31.87

TABLE III: Processing Speed of optimized implementation

Under Different Resolution

Video
Resolution
Category

Processing
Speed (Fps)

Corridor
1920×1080 34.07
1280×720 33.4
640×480 34.02

Hallway
1920×1080 34.42
1280×720 35.87
640×480 40.43

100% performance gain after using optimized FQA CNN with

half-precision float point weights.

The reasons for getting this satisfying speedup are: first,

the TensorRT framework is highly optimized towards our plat-

form’s hardware architecture. Hence, the overhead of running

deep learning support framework itself is reduced. Second, the

accumulative computing overhead brought by FQA engine is

reduced since we use 16-bit precision instead of 32-bit. Hence,

the overhead of running CNN based FQA model in our KFE

engine is saved.

E. Data volume reduction

To quantify the benefit of reducing data volume brought by

our KFE engine, we show the data reduction ratio in Table

IV. From the table we can also see the benefit brought by our

framework: more than 95% of data volume is reduced, which

means now only less than 5% of video streams is transferred

to cloud back-end for face recognition, meeting our goal.

V. CONCLUSIONS

With the increasing computation capability of IoT edge

devices, it is possible to offload certain operations close to

TABLE IV: Data Reduction Ratio

Video
Total

Frames
Extracted

Key-Frames
Data Reduction

Ratio

Corridor 300 15 95.00%

Hallway 1560 53 96.60%

data, while focus the Cloud backend more on high-level

processing and analysis. In this paper, we introduce a Face

in Video Recognition (FivR) framework which performs real-

time key-frame extraction on IoT edge devices. We employed

optimization approaches which can utilize hardware architec-

ture features of IoT edge devices such as vectorization for CPU

and half-precision floating point for GPU. With our proposed

approach, we are able to reduce the data volume by 95%,

hence dramatically relief the processing pressure of the cloud

back-end. On the other hand, with our optimization strategies,

we also achieve real-time performance even for HD videos

without introducing any middle layers between the cloud and

edge devices.

ACKNOWLEDGEMENT

This material is based upon work supported by the Cen-

ter for Identification Technology Research and the National

Science Foundation (NSF) under Grants No.1068055 and

1650503. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the authors

and do not necessarily reflect the views of the NSF.

REFERENCES

[1] 8-bit inference with tensorrt. http://on-demand.gputechconf.com/gtc/
2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf. Accessed:
2017-12-12. 3

[2] K.-T. Cheng and Y.-C. Wang. Using mobile gpu for general-purpose
computing–a case study of face recognition on smartphones. In VLSI

Design, Automation and Test (VLSI-DAT), 2011 International Sympo-

sium on, pages 1–4. IEEE, 2011. 2
[3] N.-M. Ho and W.-F. Wong. Exploiting half precision arithmetic in nvidia

gpus. In High Performance Extreme Computing Conference (HPEC),

2017 IEEE, pages 1–7. IEEE, 2017. 3
[4] M. S. Hossain and G. Muhammad. Cloud-assisted speech and face

recognition framework for health monitoring. Mobile Networks and

Applications, 20(3):391–399, 2015. 1
[5] B. Mandal, S.-C. Chia, L. Li, V. Chandrasekhar, C. Tan, and J.-H. Lim.

A wearable face recognition system on google glass for assisting social
interactions. In Asian Conference on Computer Vision, pages 419–433.
Springer, 2014. 2

[6] N. Powers, A. Alling, K. Osolinsky, T. Soyata, M. Zhu, H. Wang, H. Ba,
W. Heinzelman, J. Shi, and M. Kwon. The cloudlet accelerator: Bringing
mobile-cloud face recognition into real-time. In Globecom Workshops

(GC Wkshps), 2015 IEEE, pages 1–7. IEEE, 2015. 2
[7] X. Qi and C. Liu. Gpu-accelerated key frame analysis for face detection

in video. In Cloud Computing Technology and Science (CloudCom),

2015 IEEE 7th International Conference on, pages 600–605. IEEE,
2015. 3

[8] X. Qi, C. Liu, and S. Schuckers. Boosting face in video recognition
via cnn based key frame extraction. In The 11th IAPR International

Conference on Biometrics (ICB), 2018 IEEE. IEEE, 2018. 2, 3
[9] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and W. Heinzelman.

Cloud-vision: Real-time face recognition using a mobile-cloudlet-cloud
acceleration architecture. In Computers and Communications (ISCC),

2012 IEEE Symposium on, pages 000059–000066. IEEE, 2012. 2
[10] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer. Efficient processing of deep

neural networks: A tutorial and survey. arXiv preprint arXiv:1703.09039,
2017. 3

[11] J. Tang, D. Sun, S. Liu, and J.-L. Gaudiot. Enabling deep learning on
iot devices. Computer, 50(10):92–96, 2017. 2

644

