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Abstract

Face in video recognition (FiVR) technology is widely
applied in various fields such as video analytics and real-
time video surveillance. However, FiVR technology also
faces the challenges of high-volume video data, real-time
processing requirement, as well as improving the perfor-
mance of face recognition (FR) algorithms. To overcome
these challenges, frame selection becomes a necessary and
beneficial step before the FR stage. In this paper, we pro-
pose a CNN-based key-frame extraction (KFE) engine with
GPU acceleration, employing our innovative Face Quality
Assessment (FQA) module. For theoretical performance
analysis of the KFE engine, we evaluated representative
one-person video datasets such as PaSC, FiA and Choke-
Point using ROC and DET curves. For performance anal-
ysis under practical scenario, we evaluated multi-person
videos using ChokePoint dataset as well as in-house cap-
tured full-HD videos. The experimental results show that
our KFE engine can dramatically reduce the data volume
while improving the FR performance. In addition, our KFE
engine can achieve higher than real-time performance with
GPU acceleration in dealing with HD videos in real appli-
cation scenarios.

1. Introduction

Face recognition (FR) is an essential tool for solving
identification problems in video analytics and video surveil-
lance. Previous researches using holistic methods such
as Principal Component Analysis (PDA), Linear Discrim-
inant Analysis (LDA) and Independent Component Analy-
sis (ICA) have shown their capability for FR [11]. Later,
researchers also exploited methods of extracting key com-
ponents of human face to solve FR problem. Ahonen et al.
proposed a method utilizing Local Binary Pattern (LBP) of
facial texture [1]. Scale Invariant Feature Transform (SIFT)
is another method proposed by Bicego et al. [5] which gen-
erates key-points of faces for matching purpose.

Different from extracting predefined types of face fea-

tures, Deep Neural Network (DNN) based approaches have
shown a much stronger and more robust capability and el-
evate FR performance to a whole new level. Taigman et
al. [24] proposed their DeepID network and achieved near
human-level FR performance. Parkhi et al. proposed VGG
network trained with large face dataset [17]. In their exper-
iment, the VGG network achieved a very high performance
in Labeled Faces in the Wild (LFW) [10] and YouTube
Faces in the Wild (YTF) [26] datasets. Similar works such
as OpenFace [2], FaceNet [20] and DeeplD [22] are also
DNN-based approaches which achieved very promising FR
performance. In real implementation of the neural network,
the second-to-last fully-connected layer right before the fi-
nal classification layer can be used as the low-dimension
representation of faces [17, 2]. Then, the FR or face match-
ing between a query face image and face image gallery
is completed by comparing their euclidean distance or co-
sine distance. Apparently, one benefit by following this ap-
proach is that we can perform FR on newly added identities
without retraining the DNN. Hence, we use this framework
as FR back-end in this work.

1.1. FiVR using DNN Based Feature Extractor

A typical DNN-based FiVR system can be described as
in Figure 1. For recognizing a person’s face image extracted
from video sequences, we need to prepare a gallery set
which consists of still face images beforehand. For a query,
we use a feature extractor to transform the query images
and gallery images into feature space. Traditionally, the fea-
tures in feature space can be predefined as LBP, HAAR or
HOG features [29]. With the development of deep learning
technology, the deep neural network (DNN) such as VGG
or GoogLenet [23] can also be used for image feature ex-
traction. In this work, we use VGG network trained with
VGG face database and GooglLenet trained with CASIA-
WebFace dataset as feature extractors. The feature for query
image and gallery images generated by DNN module is a
1-D “deep feature vector”. Then, the comparison between
query image and galley is transferred to the comparison be-
tween feature vector of query image and the vector gallery
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Figure 1: Typical FiVR framework

list generated from image gallery set. [R3A3] The one with
the nearest distance to the query sample from the galley
will be picked as a match. However, there exists a chance
that the nearest one maybe the wrong identity. This is
inherited from the FR back-end itself. As a result, in
this work when we evaluate the FR performance, we do
examine the correctness.

1.2. Our Proposed Approach

As shown in Figure 1, what we propose is a key-frame
extraction (KFE) engine with CNN-based Face Quality As-
sessment (FQA) module, which lies between the face de-
tection/tracking and face recognition (FR) procedures. The
function of our KFE engine is to pick frames with the
best quality face images of the detected persons and for-
ward them to FR back-end. The benefits of using KFE en-
gine come in two folds: first, we can reduce the data vol-
ume to be forwarded to FR backend, which dramatically
reduces the computing overhead for performing FR, espe-
cially DNN-based FR. Second, human faces in videos al-
way come with various head pose changes and background
condition changes such as lighting and appearance of other
objects. Hence, the KFE engine has the potential to improve
FR performance by rejecting video frames with poor quality
faces which can cause wrong identification result.

Figure 2 shows the structure of our KFE module. For
all incoming video frames, we perform face detection and
tracking first. Then, for detected faces we perform Face
Quality Assessment (FQA) and extract key-frames with
best quality face for each identity. To emphasize, face de-
tection, face tracking and CNN FQA module in our KFE en-
gine are all accelerated by GPU. [R1A2] In our implemen-
tation, if the number of people across frames changes,
we deem it a scene change and the KFE engine will for-
ward the current key-frame(s) to the back-end FR en-
gine, then flush the key-frame buffer and begin to gen-
erate new key-frames. Hence, the KFE engine could
generate more than one key-frame for the same identity.
[R1A3] Besides, in our framework we can set different
threshold to readily pick top-/NV best frames instead of
single best frame. By doing so, we can employ spatial
and temporal methods to restore more details of the face
image for a single identity to elevate the FR performance
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Figure 2: Structure of our KFE engine

Table 1: Typical Existing Face Database

Databases #ldentities | #Images | Public?
LFW [26] 5,749 13,233 Y
Celeb-Faces [21] 10,177 202,599 N
SFC [24] 4,030 4,400,000 N
VGG [17] 2,622 2,622,000 Y
CASIA-WebFace [28] 10,575 494,414 Y

in future research.

At the FR back-end, in this work we applied cosine
similarity as the FR performance value to generate final
FR result. For a vector generate from query image V' (q),
and a vector V(g;) from the vector gallery G, the co-
sine similarity between them is described as in Equation
1. For all identities in gallery set, we can generate a list {
IDy: Sim(V(q),V(g1)); ID2: Sim(V(q),V(92)); ...; IDy_1:
Sim(V(q),V(gn-1)); 1Dy: Sim(V(q),V(gn))}, which con-
tains all FR performance values for all identities in the
gallery. Then, the FR result from Rank 1 to Rank N can
be generated by sorting the FR performance values from
high to low for the list of identities. For constructing DNN
feature extractor in FR back-end, we choose two datasets:
VGG [17] and CASIA-WebFace [28] to train two different
DNN feature extractors for different experimental purposes
from existing face datasets listed in Table 1, according to
their scale in identities, total image number and accessibil-

1ty.
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The rest of paper is organized as follows: in Section 2,
we review several main-stream research in FQA-based KFE
for FiVR. Section 3 describes design details and perfor-
mance evaluation at the core of our KFE engine: the CNN
based FQA module. Section 4 is the experiments we con-
ducted to evaluate our approach. Lastly, we conclude in
Section 5.

2. Related Works

The existing frame selection approaches for FiVR can be
divided into three main categories [7]: face image cluster-
ing based, optical-flow based and face image quality based.
The clustering approach treats video with people as a set of
face images and transfer all of them into a high dimensional
space by extracting their feature vectors. Then, key-frames
of different identities are decided by clustering algorithms
such as K-means [9, 14]. The optical approach extracts



key-frames according to inter-frame human body’s motion
extracted by optical flow algorithm such as Lucas-Kanade
[19].

For quality based approach, Nasrollahi et al. used four
metrics: symmetry degree of face image, sharpness, con-
trast and brightness value to generate a face image’s quality
value and use it as the criteria to select key frames [15].
Similarly, Anantharajah et al. also applied face image met-
ric based quality value generation system for face image
clustering in news videos [3]. One obvious advantage of
face quality metric based approach is its low computation
overhead. For instance, Qi et al. achieved a faster than
real-time (>30fps) processing speed on HD videos with
1920 x 1080 resolution by applying quality metrics based
approach [18]. But for the purpose of generating a final
face quality value, the previous researches [15, 3, 18] asso-
ciate pre-defined empirical weights with different face im-
age quality metrics. Applying these fixed weights is not
capable nor adaptive in dealing with different videos with
various background, lighting condition, head poses, differ-
ent FR methods and other conditions. To fix this prob-
lem, Chen et al. [6] proposed a learning-to-rank based
method to elevate face quality assessment’s capability and
adaptiveness to videos with various conditions and different
face recognition method. During the feature vector weight
training stage, they applied three categories of face image
databases: high quality face images took under controlled
environment, face images captured from uncontrolled en-
vironment, and non-face images. Then, all different types
feature vectors: HoG, Garbor, Gist, LBP and CNN are ap-
plied with different trained weights and combined to one
rank-based quality score (RQS) vector. At last, the RQS
vector is transformed into a face quality score between 0
and 100 by a linear function. Moreover, there is another
variant of learning to rank approach proposed in [13]. In
this work, the mismatch between training and testing im-
ages is considered as another impact factor and the visual
quality of face image. As a result, the overall accuracy
is further improved compared with the original work of
Chen et al. [6]. Vignesh et al. proposed another learn-
ing based approach which utilizes a convolutional neural
network (CNN) based face quality assessment module for
frame selection of video with faces [25]. With the enhanced
feature extraction and learning capabilities brought by deep
neural network (DNN), their frame selection scheme out-
performed the rank-based approach [6] without extracting
pre-defined face features and learned different weights for
different feature vectors in their experiment. But the FR
engines in their work are all feature based, still lacking of
deep learning based FR frameworks. What’s more, evaluat-
ing only on Top-4,8,16 ranks accuracy in this paper [25] is
not comprehensive enough to evaluate a FR system and the
performance improvement brought by frame selection en-

12
™ l
__conv L
_com
55
conv
2|
v2| 9%
12
v3 128
13
1,128
it

&4

[F

Face
Image
12
Conv 1
12
Po‘nl 1
¥
Concate
v
.
v
==
¥
FC2
v
Sigmoid
v
Predicted

Performance
Value

1M
|__conv
33
conv
Co
P
Col
P

Figure 3: CNN architecture in FQA module

gine. What’s more, the relatively simple CNN architecture
in their FQA module can be further improved and evaluated.

Hence, in this work firstly we introduce a more ad-
vanced, brand new CNN architecture for face quality as-
sessment and evaluate the performance of our CNN based
FQA engine. Secondly, our work follows the deep neu-
ral network based FR framework described in Section 1.1
and Section 1.2. Thirdly, we employed Receiver Oper-
ating Characteristic (ROC) curve, Detection Error Trade-
off (DET) curve and Cumulative Match Curve (CMC) as
performance metrics to evaluate our proposed scheme on
PaSC, ChokePoint, FiA datasets and HD videos took by
ourselves. We deem these performance metrics can reveal
more of performance trade-off on true identification, false
positive and false negative identification, which makes eval-
uations more complete. Lastly, we also dive deeper into
practical applications with GPU acceleration and evaluate
the processing speed and video data volume reduction ratio.

3. CNN Based Key Frame Extraction
3.1. CNN structure

As shown in Figure 3, our CNN network has three convo-
lution layers, three following pooling layers, two full con-
nection layers and final sigmoid output node. In addition,
we applied an inception module at the early stage of our
CNN between first and second convolution layers. The key
idea behind the inception module is to concatenate differ-
ent features extracted by convolution kernels with different
sizes. Hence, with the consideration of extracting both fine
grain and coarse grain features of face images in this work,
we applied the inception module here with four paths: 1 x 1,
3 x 3,5 x 5 convolution and 3 x 3 max pooling. The other
reasons for this implementation are: first, we did experi-
ments with more than one inception module and found no
significant performance improvement. Hence, to reduce the
computation overhead, we implemented only one here. Sec-
ond, implementing the inception module at early stage can
extract more face features or loss less details than imple-
menting after second or third convolution layer. The other
layer configurations of our CNN network is also shown in
Figure 3. The numbers next to each layer are the number
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Figure 4: CNN training procedure for PaSC dataset

of convolution kernels or number of nodes in full connec-
tion layers. Besides, face images are all scaled to 64 x 64
as input and all pooling operations are 3 X 3 max-pooling.
The single node with sigmoid function is used to generate
numeric output of predicted FR performance value, which
has a range of 0.0 to 1.0.

3.2. CNN Training

On a theoretical aspect, let a training sample set S = { sy,
S92, ..., SN—1, SN } be a set of N face images. For each sam-
ple s;, we obtain a true face recognition performance value
Prr(s;) generated by FR back-end and a predicted perfor-
mance value Proa(s;) generated by our CNN-based FQA
module. Specifically, the Ppr(s;) value is the cosine simi-
larity value between sample’s feature vector and its nearest
vector in gallery set, which is describe in Section 1. The
loss function of training set L(.5) is defined as the euclidean
loss which shown in Equation 2. Hence, the training target
is to minimize the total loss L(.S) of the training set. In our
experiment, the Nesterov accelerated gradient (NAG) [16]
optimizer is applied to achieve the training target.

1 N
L(8) = 5 D_[IPra(si) — Proa(s)ll* @
n=1

On implementation aspect, we use a specific example
shown in Figure 4 to illustrate the CNN training procedure.
The training with PaSC dataset follows four steps: 1) There
are 2872 still images in PaSC’s training set used as gallery.
We forward all these still gallery images to DNN feature
extractor and generate the feature vector gallery. 2) There
are 280 videos in PaSC’s training set. We detect faces from
these videos and generate feature vectors by forwarding all
faces to DNN feature extractor. 3) We generate faces FR
performance value by looking up the vector gallery, and find
the one with the nearest cosine distance value as the FR re-
sult. For instance, as in Figure 4, if we find ID2 in vector
gallery is the nearest one to the training sample with a co-
sine similarity of 0.75, we use 0.75 as the FR performance
value. In other word, the FR performance value stands for
query sample’s highest acceptability by the gallery set. 4)
WE feed all face images and their corresponding FR values
to train our CNN based FQA engine. For other datasets we
tested in this work, we follow the same FQA CNN training
framework.

3.3. Performance of our CNN model

We conducted a performance analysis by using 10% of
face image samples extracted from the portal 1 (P1) of 1-
person videos in ChokePoint dataset, which has 2,417 face
image samples in total. For all test samples, firstly, we per-
form FR on them to generate true FR performance value.
Then, we forward them through our CNN FQA model to
predict their FR performance value. Finally, the perfor-
mance of our CNN based FQA model can be evaluated by
the correlation and the absolute error between samples’ true
FR value and predicted FR value. [R3A4] To emphasize,
We did split the data when conducting the experiment,
where the testing data for correlation verification is not
appeared in training stage. Figure 8 shows the perfor-
mance analysis of our CNN model. In sub-figure 5a, the
x-axis is the true FR performance value of test sample and
the y-axis is the predicted FR performance value output by
our CNN model. Overall, our CNN FQA module achieves a
correlation of 94.30% , which means a strong linear relation
between sample’s true performance value and predicted per-
formance value. In sub-figure 5b, we also show the absolute
error histogram between test sample’s true FR performance
value and predicted FR performance value. From this fig-
ure we can see that 94.08% of samples have the absolute
prediction error less than 0.1 and only 5.83% samples have
a larger error between 0.1 and 0.2. To conclude, Figures
5a and 5b prove that our CNN model is highly effective to
perform as a FQA module in KFE engine for face in video
recognition.

4. Evaluations

In order to verify the performance improvements brought
by our KFE engine on FR back-end, we arrange our exper-
iments into two categories:

Theoretical performance evaluation category with
abundant 1-person videos from PaSC and ChokePoint
datasets. With the consideration of meeting the concep-
tual idea of KFE - choosing the best frame for one specific
identity, we let all frame selection methods under evalua-
tion to choose one best frame and compare with all-frame
based FR approach for every 1-person video/clip. This set-
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ting is valid as in this category of videos there is no need
of applying face tracking module, since we have the prior
knowledge of the identify of “l-person”. Moreover, there
are lots of face tracking approaches and implementations,
which will make the evaluation less fair since the number
of selected key-frames can be affected by the performance
of the face tracking module, for example, lost detection or
re-detect the same person with new label. For evaluation
metrics, ROC curve and DET curve are used as evaluation
metrics to reveal the precision trade-off of true Positive Rate
(TPR), False Positive Rate (FPR) and False Negative Rate
(FNR).

Practical performance evaluation category with mul-
tiple people videos. [R2A1] Compared with 1-person
videos in existing datasets, we also evaluate our KFE
engine under the crowd case to a certain extent, such
as the two long videos from ChokePoint dataset with
29 identities and other two HD videos we took our-
selves, to prove our KFE engine is capable of handling
multiple-people case. Compared with abundant 1-person
videos, the scarcity of multiple people videos in existing
datasets makes ROC and DET curves less confident, be-
cause we can only generate limited face sample. In this
case, the CMC curve is a suitable metric to reveal system’s
recognition accuracy without affecting test sample number.
On the other hand, face tracking is unavoidable in multi-
people videos. Hence, more than one key-frames can be
extracted for the same person. We will evaluate the data re-
duction ratio in this evaluation category to prove the effec-
tiveness of our KFE engine. Besides, we also evaluate HD
videos (1920 x 1080) to verify the processing ability of our
GPU accelerated KFE engine. [R3A1] We implemented
two different FR back-ends trained with different face
databases because the performance of our key-frame ex-
traction (KFE) engine will be impacted by the back-end
face recognition (FR) engine. Moreover, we also want to
validate the KFE engine design we proposed as a general
approach in selecting frame(s) with the best face quality
and it can work with different FR back-end.

4.1. Evaluation Datasets

PaSC dataset [4]: The Point and Shoot Face Recogni-
tion Challenge (PaSC) dataset has 9,376 still images and
2,802 1-person videos of 293 different identities. [R3AS]
The PaSC dataset also provides several file lists to de-
scribe which files can be used for training or testing,
which files are still images that can be used for building
the gallery. Hence, we followed the official ground-truth
files to build our gallery in experiment. For evaluation,
we use 4,688 still images (16 still images/person on aver-
age) to form gallery set and all 2,802 videos as the query
set. There is also a small training set provided, which con-
sists of 2,872 still images and 280 videos.

ChokePoint dataset [27] : The ChokePoint dataset con-
tains 16 footages with people passing one by one, and 2
footages with crowds. In our experiments, the 90% faces
extracted from Portal 1 (P1) of 1-person videos are used for
training our FQA CNN. Since there are no official gallery
set provided in ChokePoint dataset, we follow the same
configuration as PaSC with 16 images/identity to form the
gallery set. Hence, for 29 identities in this dataset, we
picked 464 images in total from the remaining 10% data
of P1 to form the gallery set.

FiA dataset [8] : The Face in Action (FiA) dataset con-
tains three sessions of videos taken at different date and
each session consists of two parts: indoor and outdoor. We
design a more challenging experimental scenario where we
build the gallery set from the indoor videos in Session 1,
and use 233 identities and randomly pick 7 gallery images
for each identity. We train our CNN based FQA by using
the outdoor videos in Session 1 and use the outdoor videos
in Sessions 2 and 3 as test set. As we can see, the gallery
building is to imitate people taking registration photos in in-
door controlled environment and the testing is to imitate the
real application in outdoor uncontrolled environment.

Full HD videos: We also took two HD videos (1920 x
1080) for testing processing speed and data volume reduc-
tion. The first video shown in Figure 6a was taken in a cor-
ridor with 4 different people, and the second video shown
in Figure 6b was taken in the hallway with 22 identities.
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(a) Video took in corridor (b) Video took in hallway
Figure 6: Scenes of HD videos

4.2. Experimental Settings

Settings for DNN in FR back-end: The first DNN fea-
ture extractor we use in FR back-end is VGG-16 network
[17] trained with VGG face dataset. We directly applied
the pre-trained Caffe model by VGG team [17]. We use the
second-to-last fully-connected layer as the deep feature vec-
tor of face image, and the vector width is 4096 float point
numbers. Besides, we also used GoogLenet inception-v3
DNN architecture trained with CASIA-WebFace dataset to
form another back-end. The purpose of introducing a sec-
ond FR back-end is to prove our approach is compatible
with different FR engine in practical cases. Hence, for the
practical performance analysis in Section 4.4, we test mul-
tiple people videos with both VGG and WebFace-based FR
back-ends. For web-face trained FR engine, we also use the
second-to-last fully-connected layer as the deep feature vec-



tor of face image. The only difference is the width of feature
vector width generated from WebFace-based is 2048.

Other methods to be compared with: In our exper-
iments for theoretical performance analysis, [R1A1] we
compared our approach against several representative
schemes for video based frame selection, which use dif-
ferent criteria in selecting key frames: Performing FR on
all frames; Random picking; Face quality metrics based
picking [18]; Face quality based pick by using Learning
to rank method [6]; Reference work by using CNN based
face quality assessment [25]. [R1A1]Since the focus of
this work is face-quality-assessment-based Key-Frame
Extraction (KFE) engine, we deem the organization of
our experiment is fair.

Gallery Settings: [R3A7] It is widely accepted that
gallery picking can affect the FR performance, as being
quantified in [12]. But we want to examine our KFE en-
gine can work with non-ideal conditions. Hence, we did
not choose the gallery in a particular way, but just ran-
domly pick images to form the gallery, which contains
both good and poor-quality images.

4.3. Theoretical Performance Evaluation Results

For PaSC dataset in Figure 7a, the ROC curve shows that
our CNN-based approach outperforms all other methods
and performing FR on all frames. Specifically, for global
metric of AUC (Area Under Curve), our approach achieved
the highest value. For the True Positive Rate (TPR) at 1%
False Positive Rate (FPR), our approach is also the best.
It means for reaching the same true identification rate, our
approach has the least trade-off of false positive identifica-
tion. What’s more, from the curves’ trend we can see that
the advantage of our approach becomes more obvious af-
ter the 3% FPR. Figure 7d shows the DET (Detection Error
Trade-off) analysis of all evaluated methods. Again, our
CNN-based FQA approach outperforms all other methods
with least trade-off in FNR (False Negative Rate) and FPR.
Besides, our method has the lowest Equal Error Rate (EER)
!. To conclude, the EDT analysis also proves our method
has the lowest trade-off of negative effects.

For ChokePoint dataset in Figure 7b, from the ROC
curve we can see that our CNN-based approach outperforms
all other methods and performing FR on all frames. Specif-
ically, for global metric AUC (Area Under Curve), our ap-
proach achieved the highest value. For the TPR at 1% and
10% FPR, our approach is also the best one. What’s more,
from the curves’ trend we can see that the advantage of our
approach becomes more obvious after the 5% FPR. Figure
7e is the DET analysis of all methods. Again, our CNN-
based FQA approach outperforms all other methods with
the least trade-off in FNR and FPR. Besides, our method
has the lowest EER.

'EER: the cross point with 45 degree dashed line).

For FiA dataset in Figure 7c, our approach is the only
one which could bring improvement in AUC metric com-
pared with all frame based FR. In addition, our approach
improved the TPR within a low FPR zone (1% to 5%), and
works better than other methods, too. The only unsatisfiable
result occurs in the zone of (0.05,0.1), which we can see that
our approach performs slightly worse than all-frame based
method. To analyze the reason, we went back and observed
the face images with wrong FR result. We found that many
of these wrong identified face images are with dull illumi-
nation, and the face images in gallery set are all with some-
what good lighting condition. Since our experiment setting
is to imitate a real world process: gallery images taken in
controlled environment and tested in uncontrolled environ-
ment, hence, it would be better if we can take face photos
with dark and bright lighting during the registration process.
On the other hand, in the DET analysis shown in Figure 71,
our method is the only one which can improve the perfor-
mance of all-frame based FR. To conclude, the ROC and
DET analysis with FiA dataset shows that our approach can
handle more challenging scenario with time and location
variation.

From the theoretical evaluation we can conclude that:
first, random picking is obviously not a good approach, al-
though it could reduce the data volume for FR; second, the
face image metric based approach is better than random
picking, but still has a larger performance trade-off than
with all-frame based FR approach, since it is not adaptive
to different conditions in videos; third, learning based ap-
proaches such as learning to rank [6], reference CNN [25]
and our approach are capable of performing KFE for FR
and achieve better performance than all-frame based ap-
proach, since these methods extract and learn features of
faces under different conditions. Among these learning
based approaches examined in the experiments, our CNN-
based FQA approach has the best performance and least
trade-off on FPR and FNR.

4.4. Practical Performance Evaluation Results

We evaluated the two multi-person videos in ChokePoint
dataset. From the CMC in Figures 8a, 8b, 8c and 8d, we
can see that our CNN based FQA method can improve the
recognition accuracy compared with performing FR on all
frame under both back-ends: VGG-16 network trained with
VGG dataset and GoogLenet-inception_v3 trained with
web-face dataset. This means in real application with multi-
ple people, our approach can bring the benefit of improving
FR accuracy as well as reducing the data volume by pick-
ing frames with good quality faces. [R3A6] We use videos
with high resolution to verify our systems processing ca-
pability. Hence, we used two HD videos with 1920 x 1080
resolution to test our system. The result in Table 2 shows
that our GPU accelerated KFE engine can reach higher
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Figure 7: Performance evaluation results on PaSC, ChokePoint and FiA datasets
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than real-time (24 or 30 fps) processing speed. More-
over, using key-frames instead of all frames for FR re-
duces more than 90% of frame data.

Table 2: Performance analysis on HD videos

Video Total | Processing | Extracted Redugtion
Frames Speed Key-Frames Ratio
Corridor 292 35.75fps 24 91.78%
Hallway | 1508 36.92tps 134 91.11%

5. Conclusion

Face in video recognition plays a key role in video an-
alytics and video surveillance. To address the challenges
caused by variations in face quality, heavy video data vol-
ume, real-time processing demand and the need for improv-
ing identification accuracy, in this paper we propose a GPU
accelerated key-frame extraction (KFE) engine with CNN
based face quality assessment (FQA) module. Under the
experiments of theoretical performance analysis, our KFE
engine achieved the best performance among all compar-
ing methods in ROC and DET metrics. Moreover, under
the experiments of practical performance analysis, our KFE
engine also shows a good capability in dealing with videos
with crowds in close to real application scenarios. What’s
more, by applying the GPU acceleration, our KFE engine
reaches higher than real-time processing speed when deal-
ing with HD videos. For future works, we will continue
to improve our KFE engine’s capability to fit more uncon-
trolled application scenarios better. [R2A3] What’s more,



the handling of crowd scenario is another important fu-
ture direction. [R2A1] Since the focus of this work is
the Key-Frame Extraction (KFE) engine, which is the
stage after the face detector, we used the default face de-
tector module of OpenCYV. Hence, our work inherits the
limitation of this face detector when it comes to the case
of handling the crowd scenario. In addition to improve
the face detector itself, we can consider digital zooming.
For improving the quality of detected face image we can
apply super resolution, face image artifacts mitigation
and other approaches, which can be set as target of our
next-stage work. Lastly, we will also consider other pos-
sible directions such as taking identity related background
and object information into consideration.
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