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Abstract—As we enter the Internet of Things (IoT) era, the
size of mobile computing devices is largely reduced while their
computing capability is dramatically improved. Meanwhile,
machine learning technologies have been well developed and
shown cutting edge performance in various tasks, leading to
their wide adoption. As a result, moving machine learning,
especially deep learning capability to the edge of the IoT
is a trend happening today. But directly moving machine
learning algorithms which originally run on PC platform is not
feasible for IoT devices due to their relatively limited computing
power. In this paper, we first reviewed several representative
approaches for enabling deep learning on mobile/IoT devices.
Then we evaluated the performance and impact of these
methods on IoT platform equipped with integrated GPU and
ARM processor. Our results show that we can enable the deep
learning capability on the edge of the IoT if we apply these
approaches in an efficient manner.
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I. INTRODUCTION

Nowadays, machine learning (ML) technologies, espe-

cially deep learning (DL), have been widely applied in

various fields and achieved state-of-the-art level perfor-

mance. Meanwhile, mobile computing also keeps thriving

and evolves to the Internet of Things (IoT). Consequently,

the fusion of ML and mobile computing produces significant

advancements in fields such as autonomous driving, health

care, and identification technology. One step further, people

also try to bring deep learning into IoT, especially at the

edge of the IoT. If the IoT devices are only used as sensors

or video stream capturing devices, the central cloud servers

would need to sacrifice some processing power to handle

low-level tasks such as video processing, data fusion, face

or object detection. As a result, one promising approach is

to move these low-level processing to edge devices, so as to

free central servers from these tasks and let them perform

more high-level processing such as pattern extraction and

content analysis, etc.

But many of the deep learning models come with a

huge amount of parameters, which require a very high

computing overhead. Hence, porting deep learning model

such as Deep Neural Network (DNN) onto IoT device is

a challenging task. Because for most IoT devices such as

surveillance cameras, communication devices and sensors,

they are designed for low power with only limited computing

capability, for example, few or a handful of ARM cores.

In this paper, we first conducted a brief review on the

representative methods for enabling deep learning on mo-

bile/IoT devices. Among all existing approaches, we mainly

focus on evaluating three approaches: 1) Parallel accelera-

tion; 2) Quantization; 3) Model pruning. In the experiment

part, we evaluated the impacts of these methods on an

exemplary Nvidia Tegra X2 platform, which is equipped

with both ARM cores and integrated GPU.

II. RELATED WORKS

In this section, we give a brief review of related researches

on enabling deep learning on IoT edge devices. First, we

review several typical approaches for ML model processing.

What’s more, since the DL models are another important

factor in this research area, we also review the approaches

for model optimization towards the IoT environment.

A. Related works for IoT

For running the ML models in IoT, people have done

works by the following configurations:

1) Direct ML model processing on mobile/IoT-edge de-

vices: Cheng et al. [2] performed face recognition (FR)

on mobile phone equipped with integrated GPU. In their

experiment, the time for feature extraction and recognition

for single face image is at seconds level, which is not

suitable for processing real-time video sequence. Mandal et

al. proposed an FR solution on Google Glass with ARM

processor inside [7], which is similar to surveillance cameras

equipped with only ARM cores. In their work, the video

sequence is limited to 640 × 360 in size, which indicates

the computation overhead will increase dramatically if we

increase the resolution for different applications. From these

works mentioned above, we can see that directly running

ML models on IoT devices is still far from “satisfactory”.

Hence, more efficient framework is needed to handle ML

computation in IoT.

2) Accelerators for running ML model in IoT: In order to

accelerate the processing of ML models with the constraints

of speed and latency, some researchers introduced middle-

layer to offload some pre-processing works from the mobile

devices on network edge. Tolga et al. [12] proposed Mobile
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Cloud Hybrid Architecture (MOCHA) to build a mobile-

cloudlet-cloud framework, which applies GPU-accelerated

cloudlet to transform face images to feature maps then trans-

fers them to central server in the cloud for final processing of

face recognition. With this middle-layer assisted framework,

they successfully reduced the overall processing latency to

meet the real-time requirement. Powers et al. [8] also applied

cloudlet as middle-layer to handle the pre-processing stage

of feature extraction for face recognition. Their experimental

results showed that the overall processing frame rate can be

accelerated by as much as 128X .

B. Related works for improving DL model

On the other side, researchers also investigated the poten-

tial of improving ML learning models.

1) Execution Acceleration: For the software side, we can

get the ideal performance if the program can fully utilize

the existing computing components. For example, Sun et

al. [13] did a test on DL model execution by using ARM

Compute Library (ACL), which is highly optimized for

ARM platform. From the experimental result, we can see

that the ACL-optimized version can reach a higher execution

speed than non-optimized version.

2) Model Quantization: Another technique related to the

hardware architecture is model quantization. For DL learning

model itself, researchers already found that we can still reach

almost the same level precision if we use model parameters,

mostly the weights, with reduced precision [3], [6]. As a

direct benefit, the memory overhead can be reduced by

50% or 75%, if we use 16-bit or 8-bit parameters instead

of 32-bit, respectively. Moreover, with the cooperation of

hardware, the quantization can also lead to faster model

execution speed. For both GPU and ARM processor in IoT

applications, a category of Single Instruction Multiple Data

(SIMD) instructions is introduced to accelerate the add and

multiply operations, which are the essential elements in DL

model execution. For Nivida’s GPU and ARM’s Mali GPU,

the model can be executed with 16-bit float or even 8-bit

integer to get 2X to 4X speedup compared with 32-bit float.

For ARM’s latest processor with v8.2 instruction set, the ML

models can also be executed in 8-bit or 16-bit mode.

3) Model Pruning: In additional to add more horsepower

to IoT platform, people also tried to make the DL models

themselves lighter with a similar level of performance. Han

et al. proposed a model pruning method by only learn-

ing important connections [4]. With further optimization

in quantization and weights sharing, they achieved higher

than 10X compression ratio on model size and higher than

3X execution speedup. In another channel-based pruning

method proposed by He at al. [5], they compressed the

fully convolutional network of VGG model by 5X and the

network with skip connections of ResNet by 2X .

III. ENABLING DEEP LEARNING TASKS ON IOT EDGE

A. Applied approaches in this work

As mentioned in Section II above, in order to enable DL

tasks on IoT edge side, there are two main considerations,

hardware acceleration and making DNN model lighter. As

shown in Fig.1, we mainly focus on three approaches in

this paper. For hardware acceleration, we consider multi-core

execution and applying optimized instructions. For making

DL model light-weight, we apply and evaluate the model

pruning. Lastly, the quantization method is related to the

optimization on both hardware and deep learning model

levels.

Figure 1: Methods for Enabling DL on ARM platform

B. Technical enablers in this work

In this work, we use the ARM Compute Library (ACL)

for the implementation on ARM platform and the Nvidia

TensorRT for embedded GPU platform. Both frameworks

not only provide functions for implementing ML models,

but also come with low-level optimization towards hardware

structures, which enables higher execution speed and effi-

ciency.
1) ARM Compute Library for ARM cores: The ARM

Compute Library (ACL) contains a comprehensive collec-

tion of software functions implemented and highly optimized

instruction sets like NEON, an advanced SIMD extension set

for the ARM Cortex-A family of CPU processors and the

ARM Mali family of GPUs. The ACL library includes: 1)

Functions for image and video processing like image re-size,

edge detection, color conversion, among others; 2) Functions

for building CNN models like: Activation layer, Convolution

layer, Fully Connected Layer, Pooling Layer, among others.
2) Nvidia TensorRT for Embedded GPU: TensorRT is a

light-weight framework provided by Nvidia with fine-grain

hardware optimizing towards Nvidia GPU, such as the one

on TX2 platform. Once we trained a DL model, we can

convert the model structure definition and model parameters

with the APIs or functions provided by TensorRT, and

perform further quantization with reduced precision data

type: 8-bit integer (INT8) or half-precision floating point

(FP16). Compared with full length data type (FP32), the

model with INT8 or FP16 can achieve 4X or 2X speedup on

the platform which has the support of hardware optimization

for executing operations with reduced precision data.
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IV. EXPERIMENTS

In this section, we conduct our experiments on the Nvidia

Jetson TX2 platform with one light-weight CNN model and

one deep CNN model. First, both models are evaluated with

different batch size and number of cores to show the effect

of parallel acceleration on ARM cores. Second, we evaluate

the effect and benefit of applying quantization on DL model.

Third, we apply pruning on the VGG16 network and run the

pruned model on ARM platform to verify the effect of using

pruning on IoT edge devices.

A. Experimental platform

The Nvidia Jetson TX2 platform used in this work is

consisted of GPU and ARM cores. The GPU has 256

stream processor units (SPUs), which can provide enough

computing power for tasks with high computing overhead

and huge data bandwidth. Hence, the GPU is very suitable

for running tasks with strict real-time demand. There are

also six ARM cores with ARM-V8 instruction set support

on TX2 platform. Among these 6 cores, two of them are high

performance “Denver” cores custom-designed by Nvidia,

which are suitable for handling Operating System (OS) tasks

and main programs; the other four cores are power-efficient

ARM A57 cores, which are suitable for handling non-urgent

tasks or tasks that can be accelerated with higher parallel

degree.

B. DNN model for evaluation

For IoT edge devices, people intend to implement light-

weight ML models like CNN models with few convolution

layers. The consideration behind this choice is the trade-off

among accuracy, latency and relatively limited computing

capability provided by IoT edge devices. Besides, in those

cases without a strict latency demand, people also run larger-

scale DNN like VGG-16 with a deep structure on the IoT

devices. Hence, in our experiment, we evaluate two DL

models, one light-weight model and one larger DL model.

1) Light-Weight DL model - CNN for frame selection

from real-time video sequence: Light-weight DL models

are widely applied for the pre-processing of voice/video

sequence which has real-time demand due to its acceptable

computing overhead. In the experiment, we use a CNN

model for Face Quality Assessment (FQA) in video as an ex-

ample. The function for FQA model is to evaluate face image

quality and pick the best frame for the following processing

and reduce the data volume [9], [10]. The CNN architecture

of our FQA module is shown in Table I. Overall, the light-

weight CNN has four blocks of convolution operation, three

of which are ordinary convolutional operations. The one

special block called inception module [14] is a block which

contains four parallel paths with different convolution kernel

and has a combined output of all paths. The last sigmoid

function is used to remap numeric prediction value within

the range between 0.0 and 1.0.

Table I: CNN architecture in our FQA module

Block Name Kernel size
Num. of

Feature Maps

Input 64× 64 1

CONV1 3× 3 12

Inception
4 paths: 1× 1, 3× 3, 5× 5 convolution

and max pooling

CONV2 3× 3 96

CONV3 3× 3 128

FC1 - 128

FC2 - 64

Output
(Sigmoid)

- 1

Table II: Structure of VGG16 model

Num. of
Layers

Feature
Map Size

Num. of
Conv. Kernels

Conv.
Block 1

2 224× 224 64

Conv.
Block 2

2 112× 112 128

Conv.
Block 3

3 56× 56 256

Conv.
Block 4

3 28× 28 512

Conv.
Block 5

3 14× 14 512

FC layers 3 - -

2) Large DNN model - VGG16: We also use VGG16

[11], a DL model which has 16 convolutional and fully

connected layers (except pooling layers) in total for eval-

uating the optimization methods towards the IoT platform.

The structure of VGG16 is shown in Table II. The VGG16

model groups several convolutional layers into one block and

processes the same size of feature maps within the block.

The model applies 3× 3 as the unique convolutional kernel

and 2 × 2 kernel in all max-pooling layers. From the table

we can see that VGG16 is a much bigger model than the

FQA engine described in Table I according to its depth and

feature map sizes.

C. Implementing DNN model on ARM platform

For running DL models on ARM cores, we evaluate both

small-scale model like our FQA CNN and large scaled

model like VGG-16[11] which is widely used for various

purposes.

1) Light-weight CNN: We first run the light-weight CNN

model on four ARM cores. From the experimental results

in Table III and Fig.2, with more cores, we can run the DL

model in a parallel way and get a lot of speedup. One key

factor we need to mention here is the processor occupancy.

As we can see, if we only forward one image at one time, the

multiple cores are not fully utilized and the speedup is not

increasing obviously if we add cores from 2 to 4. Hence,

for small scale DL model, a larger batch size with more

images being forwarded to the model at same time will lead

to a higher processor utilization and a higher speedup. From
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Fig.2 we can observe the speedup trend of batch size 4 is

better than batch size 1.

Table III: Running light-weight DL model on ARM

Batch
Size

Num. of
cores

Total
Time(s)

Throughput
(faces/sec)

speedup

1
1 51.073 52.4 -
2 36.580 73.1 1.396
4 33.326 80.2 1.533

2
1 51.316 52.1 -
2 34.215 78.1 1.500
4 23.432 114.1 2.190

4
1 51.931 51.5 -
2 30.373 88.0 1.710
4 20.957 127.5 2.478

Figure 2: Comparison with different batch size and core

number for light-weight CNN

2) Larger DL model - VGG16: We then run a larger DL

model, the VGG-16 on four ARM cores. As we can see

from Table IV and Fig. 3, for large scale DL model, the

processor is fully occupied when the batch is only 1. And

the speedup is only related to the parallelism degree, which

is the core number.

D. Quantization

1) Running quantized DL model on embedded GPU:

As described in Section IV-C, we use the FQA CNN as

an evaluation target to analysis the effects of quantization.

To evaluate the processing speed, we test with videos took

under two different scenes with three different resolutions:

1920 × 1080, 1280 × 720, and 640 × 480. The results of

average frame rates across different scenes and different

resolutions are shown in Table V. For here, the baseline

implementation means running the CNN model with full

length data type FP32, which is the un-quantized version.

For the quantized version, we quantize the CNN model

parameter to 16-bit float with TensorRT framework, which

Table IV: Running VGG16 DL model on ARM

Batch
size

Num. of
cores

Total
Time (s)

speedup

1
1 6.10 -
2 3.52 1.73
4 2.48 2.46

2
1 12.09 -
2 6.525 1.85
4 4.711 2.57

4
1 24.22 -
2 13.274 1.82
4 8.918 2.72

Figure 3: Comparison with different batch size and core

number for VGG16

is the only supported reduced precision format on TX2

platform. In other word, the 8-bit wide integer format is

not supported on this platform. From the result, we can see

that for baseline implementation, it fails to reach the real-

time speed (30fps) for all three resolution settings. Next,

we show the results after quantization with 16-bit float

point in the right column. After using quantization, we can

successfully reach real-time processing speed (30fps) across

all resolutions on TX2 platform. Especially for 1080p and

720p videos, we can see that we get 100% level performance

gain after using quantized FQA CNN with half-precision

float point weights.

The reasons for getting this satisfying speedup are: first,

the TensorRT framework is highly optimized towards our

platform’s hardware architecture. Hence, the overhead of

running deep learning support framework itself is reduced.

Second, the accumulative computing overhead brought by

this light-weight CNN model is reduced since we use 16-bit

precision instead of 32-bit. In other word, the 32-bit wide

computing unit in GPU can perform two 16-bit operations

at the same time, which means a 100% theoretical speedup

compared with performing 32-bit operations for models
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Table V: Processing speed comparison before and after using

quantization

Video
Resolution

Average
Processing Speed (fps)

Baseline version
(FP32 data format)

Quantized version
(FP16 data format)

1920× 1080 16.17 34.25

1280× 720 16.42 34.64

640× 480 27.3 37.23

without quantization.

2) Accuracy impact analysis of using Qantization: We

also perform a calibration procedure after model quantiza-

tion. The calibration is a process which adjusts the output

as close as possible to original output for quantized DL

model. During the calibration, the output of quantized model

is compared with original output and the parameters are

tuned according to the difference, and the tuning target

is to minimize the difference. We choose the FQA CNN

model as the calibration target due to its regression nature,

whose output is continuous values but not discrete class

number of classification task. So it is a more difficult task for

calibration and a good example for showing the calibration

effects. Among all 2673 images in original test-set, we

test with 2573 images, and only use the other 100 images

for calibration. The result shows that the quantization only

causes 1.005% average difference with the original FP32

version, which means the accuracy is kept so well while

having dramatic speedup after applying quantization.

3) Quantize large DL model: We also test the VGG16

network with 8-bit integer quantization on discrete GPU.

We compare the inference performance between FP32 and

INT8 version of VGG-16 model. The dataset we use is the

test-set in VGGFace2 dataset [1]. In Fig.4, we can see a

3.48X speedup under 128 batch size. And we can also get

similar conclusion as Section IV-C, which is larger batch

size can increase the hardware occupancy and get higher

speedup.

E. Model pruning on ARM platform

Following the approach described in [5], we list the

computation overhead of each layer before and after pruning

in VGG-16 model in Table VI. The computing overhead is

calculated based on Equation 1, which is the total number

of MACs (Multiply-Accumulates). The Hf and Wf are the

heights and width of input feature map. The Hk and Wk are

the heights and width of covolutional kernel.

MACs = Hf ×Wf ×Nin ×Nout ×Hk ×Wk (1)

The computing overhead is affected by both the number

of input(Nin) and the number of output(Nout) kernels. We

Figure 4: Speedup of using 8-bit Quantization under differ-

ent batch size

can observe that pruning not only reduces the number of

convolutional kernels on current compute stage, but also

leads to a smaller input size for the next stage. As we

can see, the theoretical speedup of using pruning is around

4.54X in total.

Table VI: Computing overhead comparison after pruning

Layer
Name

Feature Map
Size

Number
of Kernels

GMACS

H*W
Before
Pruning

After
Pruning

Before
Pruning

After
Pruning

Conv1 1
224× 224

64 24 0.087 0.033
Conv1 2 64 22 1.85 0.238

Conv2 1
112× 112

128 41 0.925 0.102
Conv2 2 128 51 1.85 0.236

Conv3 1
56× 56

256 108 0.925 0.155
Conv3 2 256 89 1.85 0.271
Conv3 3 256 111 1.85 0.279

Conv4 1
28× 28

512 184 0.925 0.144
Conv4 2 512 276 1.85 0.358
Conv4 3 512 228 1.855 0.444

Conv5 1
14× 14

512 512 0.462 0.206
Conv5 2 512 512 0.462 0.462
Conv5 3 512 512 0.462 0.462

Total - - 15.38 3.39

In Table VI, we compare the execution time of VGG-

16 model before and after pruning. The speedup of testing

on ARM platform is close to theoretical analysis ratio of

4.54X , which means the pruning is working effectively for

real IoT application scenario.

Table VII: Execution time before/after pruning for VGG16

model

Num. of
cores

Execution
Time (s) Speedup

Before
Pruning

After
Pruning

1 6.10 1.43 4.27X

2 3.52 0.83 4.24X

4 2.48 0.58 4.28X
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V. CONCLUSIONS

The advancement in both hardware and software research

is making machine learning, especially deep learning pos-

sible on mobile devices and even IoT edge devices with

limited computing capability. In this paper, we reviewed

and evaluated three representative approaches, i.e., paral-

lel acceleration, quantization, and model pruning, for IoT

edge devices. We can discover optimization opportunities

for enabling deep learning capability on IoT edge across

hardware level to machine learning algorithm level. And

multiple aspects should be considered together if we want

to observe the optimization effects. For example, when we

perform model quantization, not only transferring the model

with reduced precision parameters need to be performed, but

also the type of reduced precision computations supported

by target hardware should be considered as well. In other

word, in order to making deep learning on IoT edge plausi-

ble, a comprehensive consideration of hardware acceleration

related approaches and deep learning model optimization

approaches is a must.
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