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Abstract—As we enter the Internet of Things (IoT) era, the
size of mobile computing devices is largely reduced while their
computing capability is dramatically improved. Meanwhile,
machine learning technologies have been well developed and
shown cutting edge performance in various tasks, leading to
their wide adoption. As a result, moving machine learning,
especially deep learning capability to the edge of the IoT
is a trend happening today. But directly moving machine
learning algorithms which originally run on PC platform is not
feasible for IoT devices due to their relatively limited computing
power. In this paper, we first reviewed several representative
approaches for enabling deep learning on mobile/IoT devices.
Then we evaluated the performance and impact of these
methods on IoT platform equipped with integrated GPU and
ARM processor. Our results show that we can enable the deep
learning capability on the edge of the IoT if we apply these
approaches in an efficient manner.
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I. INTRODUCTION

Nowadays, machine learning (ML) technologies, espe-
cially deep learning (DL), have been widely applied in
various fields and achieved state-of-the-art level perfor-
mance. Meanwhile, mobile computing also keeps thriving
and evolves to the Internet of Things (IoT). Consequently,
the fusion of ML and mobile computing produces significant
advancements in fields such as autonomous driving, health
care, and identification technology. One step further, people
also try to bring deep learning into IoT, especially at the
edge of the IoT. If the IoT devices are only used as sensors
or video stream capturing devices, the central cloud servers
would need to sacrifice some processing power to handle
low-level tasks such as video processing, data fusion, face
or object detection. As a result, one promising approach is
to move these low-level processing to edge devices, so as to
free central servers from these tasks and let them perform
more high-level processing such as pattern extraction and
content analysis, etc.

But many of the deep learning models come with a
huge amount of parameters, which require a very high
computing overhead. Hence, porting deep learning model
such as Deep Neural Network (DNN) onto IoT device is
a challenging task. Because for most IoT devices such as
surveillance cameras, communication devices and sensors,
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they are designed for low power with only limited computing
capability, for example, few or a handful of ARM cores.

In this paper, we first conducted a brief review on the
representative methods for enabling deep learning on mo-
bile/IoT devices. Among all existing approaches, we mainly
focus on evaluating three approaches: 1) Parallel accelera-
tion; 2) Quantization; 3) Model pruning. In the experiment
part, we evaluated the impacts of these methods on an
exemplary Nvidia Tegra X2 platform, which is equipped
with both ARM cores and integrated GPU.

II. RELATED WORKS

In this section, we give a brief review of related researches
on enabling deep learning on IoT edge devices. First, we
review several typical approaches for ML model processing.
What’s more, since the DL models are another important
factor in this research area, we also review the approaches
for model optimization towards the IoT environment.

A. Related works for IoT

For running the ML models in IoT, people have done
works by the following configurations:

1) Direct ML model processing on mobile/loT-edge de-
vices: Cheng et al. [2] performed face recognition (FR)
on mobile phone equipped with integrated GPU. In their
experiment, the time for feature extraction and recognition
for single face image is at seconds level, which is not
suitable for processing real-time video sequence. Mandal et
al. proposed an FR solution on Google Glass with ARM
processor inside [7], which is similar to surveillance cameras
equipped with only ARM cores. In their work, the video
sequence is limited to 640 x 360 in size, which indicates
the computation overhead will increase dramatically if we
increase the resolution for different applications. From these
works mentioned above, we can see that directly running
ML models on IoT devices is still far from “satisfactory”.
Hence, more efficient framework is needed to handle ML
computation in IoT.

2) Accelerators for running ML model in IoT: In order to
accelerate the processing of ML models with the constraints
of speed and latency, some researchers introduced middle-
layer to offload some pre-processing works from the mobile
devices on network edge. Tolga et al. [12] proposed Mobile



Cloud Hybrid Architecture (MOCHA) to build a mobile-
cloudlet-cloud framework, which applies GPU-accelerated
cloudlet to transform face images to feature maps then trans-
fers them to central server in the cloud for final processing of
face recognition. With this middle-layer assisted framework,
they successfully reduced the overall processing latency to
meet the real-time requirement. Powers et al. [8] also applied
cloudlet as middle-layer to handle the pre-processing stage
of feature extraction for face recognition. Their experimental
results showed that the overall processing frame rate can be
accelerated by as much as 128X.

B. Related works for improving DL model

On the other side, researchers also investigated the poten-
tial of improving ML learning models.

1) Execution Acceleration: For the software side, we can
get the ideal performance if the program can fully utilize
the existing computing components. For example, Sun et
al. [13] did a test on DL model execution by using ARM
Compute Library (ACL), which is highly optimized for
ARM platform. From the experimental result, we can see
that the ACL-optimized version can reach a higher execution
speed than non-optimized version.

2) Model Quantization: Another technique related to the
hardware architecture is model quantization. For DL learning
model itself, researchers already found that we can still reach
almost the same level precision if we use model parameters,
mostly the weights, with reduced precision [3], [6]. As a
direct benefit, the memory overhead can be reduced by
50% or 75%, if we use 16-bit or 8-bit parameters instead
of 32-bit, respectively. Moreover, with the cooperation of
hardware, the quantization can also lead to faster model
execution speed. For both GPU and ARM processor in IoT
applications, a category of Single Instruction Multiple Data
(SIMD) instructions is introduced to accelerate the add and
multiply operations, which are the essential elements in DL
model execution. For Nivida’s GPU and ARM’s Mali GPU,
the model can be executed with 16-bit float or even 8-bit
integer to get 2X to 4X speedup compared with 32-bit float.
For ARM’s latest processor with v8.2 instruction set, the ML
models can also be executed in 8-bit or 16-bit mode.

3) Model Pruning: In additional to add more horsepower
to IoT platform, people also tried to make the DL models
themselves lighter with a similar level of performance. Han
et al. proposed a model pruning method by only learn-
ing important connections [4]. With further optimization
in quantization and weights sharing, they achieved higher
than 10X compression ratio on model size and higher than
3X execution speedup. In another channel-based pruning
method proposed by He at al. [5], they compressed the
fully convolutional network of VGG model by 5X and the
network with skip connections of ResNet by 2.X.
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III. ENABLING DEEP LEARNING TASKS ON IOT EDGE
A. Applied approaches in this work

As mentioned in Section II above, in order to enable DL
tasks on IoT edge side, there are two main considerations,
hardware acceleration and making DNN model lighter. As
shown in Fig.1, we mainly focus on three approaches in
this paper. For hardware acceleration, we consider multi-core
execution and applying optimized instructions. For making
DL model light-weight, we apply and evaluate the model
pruning. Lastly, the quantization method is related to the
optimization on both hardware and deep learning model
levels.

Hardware
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/
/
/

% i \
| |

Optimized Pruning
Instructions: Neon

Figure 1: Methods for Enabling DL. on ARM platform

B. Technical enablers in this work

In this work, we use the ARM Compute Library (ACL)
for the implementation on ARM platform and the Nvidia
TensorRT for embedded GPU platform. Both frameworks
not only provide functions for implementing ML models,
but also come with low-level optimization towards hardware
structures, which enables higher execution speed and effi-
ciency.

1) ARM Compute Library for ARM cores: The ARM
Compute Library (ACL) contains a comprehensive collec-
tion of software functions implemented and highly optimized
instruction sets like NEON, an advanced SIMD extension set
for the ARM Cortex-A family of CPU processors and the
ARM Mali family of GPUs. The ACL library includes: 1)
Functions for image and video processing like image re-size,
edge detection, color conversion, among others; 2) Functions
for building CNN models like: Activation layer, Convolution
layer, Fully Connected Layer, Pooling Layer, among others.

2) Nvidia TensorRT for Embedded GPU: TensorRT is a
light-weight framework provided by Nvidia with fine-grain
hardware optimizing towards Nvidia GPU, such as the one
on TX2 platform. Once we trained a DL model, we can
convert the model structure definition and model parameters
with the APIs or functions provided by TensorRT, and
perform further quantization with reduced precision data
type: 8-bit integer (INT8) or half-precision floating point
(FP16). Compared with full length data type (FP32), the
model with INT8 or FP16 can achieve 4.X or 2X speedup on
the platform which has the support of hardware optimization
for executing operations with reduced precision data.



IV. EXPERIMENTS

In this section, we conduct our experiments on the Nvidia
Jetson TX2 platform with one light-weight CNN model and
one deep CNN model. First, both models are evaluated with
different batch size and number of cores to show the effect
of parallel acceleration on ARM cores. Second, we evaluate
the effect and benefit of applying quantization on DL model.
Third, we apply pruning on the VGG16 network and run the
pruned model on ARM platform to verify the effect of using
pruning on IoT edge devices.

A. Experimental platform

The Nvidia Jetson TX2 platform used in this work is
consisted of GPU and ARM cores. The GPU has 256
stream processor units (SPUs), which can provide enough
computing power for tasks with high computing overhead
and huge data bandwidth. Hence, the GPU is very suitable
for running tasks with strict real-time demand. There are
also six ARM cores with ARM-V8 instruction set support
on TX2 platform. Among these 6 cores, two of them are high
performance “Denver” cores custom-designed by Nvidia,
which are suitable for handling Operating System (OS) tasks
and main programs; the other four cores are power-efficient
ARM AS57 cores, which are suitable for handling non-urgent
tasks or tasks that can be accelerated with higher parallel
degree.

B. DNN model for evaluation

For IoT edge devices, people intend to implement light-
weight ML models like CNN models with few convolution
layers. The consideration behind this choice is the trade-off
among accuracy, latency and relatively limited computing
capability provided by IoT edge devices. Besides, in those
cases without a strict latency demand, people also run larger-
scale DNN like VGG-16 with a deep structure on the IoT
devices. Hence, in our experiment, we evaluate two DL
models, one light-weight model and one larger DL model.

1) Light-Weight DL model - CNN for frame selection
from real-time video sequence: Light-weight DL models
are widely applied for the pre-processing of voice/video
sequence which has real-time demand due to its acceptable
computing overhead. In the experiment, we use a CNN
model for Face Quality Assessment (FQA) in video as an ex-
ample. The function for FQA model is to evaluate face image
quality and pick the best frame for the following processing
and reduce the data volume [9], [10]. The CNN architecture
of our FQA module is shown in Table I. Overall, the light-
weight CNN has four blocks of convolution operation, three
of which are ordinary convolutional operations. The one
special block called inception module [14] is a block which
contains four parallel paths with different convolution kernel
and has a combined output of all paths. The last sigmoid
function is used to remap numeric prediction value within
the range between 0.0 and 1.0.
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Table I: CNN architecture in our FQA module

Block Name | Kernel size Fegsz'l\(/)lflps
Input 64 x 64 1
CONV1 3 X3 12
. 4 paths: 1 x 1, 3 X 3, 5 X 5 convolution
Inception .
and max pooling
CONV2 3x3 96
CONV3 3x3 128
FC1 - 128
FC2 64
Output 1
(Sigmoid)

Table II: Structure of VGG16 model

Num. of Feature Num. of
Layers Map Size Conv. Kernels
Conv.
Block 1 2 224 x 224 64
Conv.
Block 2 2 112 x 112 128
Conv.
Block 3 3 56 x 56 256
Conv.
Block 4 3 28 x 28 512
Conv.
Block 5 3 14 x 14 512
FC layers 3 - -

2) Large DNN model - VGGI16: We also use VGG16
[11], a DL model which has 16 convolutional and fully
connected layers (except pooling layers) in total for eval-
uating the optimization methods towards the IoT platform.
The structure of VGG16 is shown in Table II. The VGG16
model groups several convolutional layers into one block and
processes the same size of feature maps within the block.
The model applies 3 x 3 as the unique convolutional kernel
and 2 x 2 kernel in all max-pooling layers. From the table
we can see that VGG16 is a much bigger model than the
FQA engine described in Table I according to its depth and
feature map sizes.

C. Implementing DNN model on ARM platform

For running DL models on ARM cores, we evaluate both
small-scale model like our FQA CNN and large scaled
model like VGG-16[11] which is widely used for various
purposes.

1) Light-weight CNN: We first run the light-weight CNN
model on four ARM cores. From the experimental results
in Table III and Fig.2, with more cores, we can run the DL
model in a parallel way and get a lot of speedup. One key
factor we need to mention here is the processor occupancy.
As we can see, if we only forward one image at one time, the
multiple cores are not fully utilized and the speedup is not
increasing obviously if we add cores from 2 to 4. Hence,
for small scale DL model, a larger batch size with more
images being forwarded to the model at same time will lead
to a higher processor utilization and a higher speedup. From



Fig.2 we can observe the speedup trend of batch size 4 is
better than batch size 1.

Table III: Running light-weight DL model on ARM

Batch

Num. of Total Throughput

Size cores Time(s) (faces/sec) speedup

1 51.073 524 -

1 2 36.580 73.1 1.396
4 33.326 80.2 1.533
1 51.316 52.1 -

2 2 34215 78.1 1.500
4 23.432 114.1 2.190
1 51.931 51.5 -

4 2 30.373 88.0 1.710
4 20.957 127.5 2.478
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Figure 2: Comparison with different batch size and core
number for light-weight CNN

2) Larger DL model - VGG16: We then run a larger DL
model, the VGG-16 on four ARM cores. As we can see
from Table IV and Fig. 3, for large scale DL model, the
processor is fully occupied when the batch is only 1. And
the speedup is only related to the parallelism degree, which
is the core number.

D. Quantization

1) Running quantized DL model on embedded GPU:
As described in Section IV-C, we use the FQA CNN as
an evaluation target to analysis the effects of quantization.
To evaluate the processing speed, we test with videos took
under two different scenes with three different resolutions:
1920 x 1080, 1280 x 720, and 640 x 480. The results of
average frame rates across different scenes and different
resolutions are shown in Table V. For here, the baseline
implementation means running the CNN model with full
length data type FP32, which is the un-quantized version.
For the quantized version, we quantize the CNN model
parameter to 16-bit float with TensorRT framework, which

=N=1
N=2

I N=4 5

|
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Table IV: Running VGG16 DL model on ARM

Batch | Num. of Total
size cores Time (s) speedup
1 6.10 -
1 2 3.52 1.73
4 2.48 2.46
1 12.09 -
2 2 6.525 1.85
4 4711 2.57
1 24.22 -
4 2 13.274 1.82
4 8.918 2.72
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Num. of Cores

Figure 3: Comparison with different batch size and core
number for VGG16
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is the only supported reduced precision format on TX2
platform. In other word, the 8-bit wide integer format is
not supported on this platform. From the result, we can see
that for baseline implementation, it fails to reach the real-
time speed (30fps) for all three resolution settings. Next,
we show the results after quantization with 16-bit float
point in the right column. After using quantization, we can
successfully reach real-time processing speed (30fps) across
all resolutions on TX2 platform. Especially for 1080p and
720p videos, we can see that we get 100% level performance
gain after using quantized FQA CNN with half-precision
float point weights.

The reasons for getting this satisfying speedup are: first,
the TensorRT framework is highly optimized towards our
platform’s hardware architecture. Hence, the overhead of
running deep learning support framework itself is reduced.
Second, the accumulative computing overhead brought by
this light-weight CNN model is reduced since we use 16-bit
precision instead of 32-bit. In other word, the 32-bit wide
computing unit in GPU can perform two 16-bit operations
at the same time, which means a 100% theoretical speedup
compared with performing 32-bit operations for models



Table V: Processing speed comparison before and after using
quantization

. Average
Vlde{? Processing Speed (fps)
Resolution - . : .
Baseline version Quantized version
(FP32 data format) | (FP16 data format)
1920 x 1080 16.17 34.25
1280 x 720 16.42 34.64
640 x 480 27.3 37.23

without quantization.

2) Accuracy impact analysis of using Qantization: We
also perform a calibration procedure after model quantiza-
tion. The calibration is a process which adjusts the output
as close as possible to original output for quantized DL
model. During the calibration, the output of quantized model
is compared with original output and the parameters are
tuned according to the difference, and the tuning target
is to minimize the difference. We choose the FQA CNN
model as the calibration target due to its regression nature,
whose output is continuous values but not discrete class
number of classification task. So it is a more difficult task for
calibration and a good example for showing the calibration
effects. Among all 2673 images in original test-set, we
test with 2573 images, and only use the other 100 images
for calibration. The result shows that the quantization only
causes 1.005% average difference with the original FP32
version, which means the accuracy is kept so well while
having dramatic speedup after applying quantization.

3) Quantize large DL model: We also test the VGG16
network with 8-bit integer quantization on discrete GPU.
We compare the inference performance between FP32 and
INTS version of VGG-16 model. The dataset we use is the
test-set in VGGFace2 dataset [1]. In Fig.4, we can see a
3.48X speedup under 128 batch size. And we can also get
similar conclusion as Section IV-C, which is larger batch
size can increase the hardware occupancy and get higher
speedup.

E. Model pruning on ARM platform

Following the approach described in [5], we list the
computation overhead of each layer before and after pruning
in VGG-16 model in Table VI. The computing overhead is
calculated based on Equation 1, which is the total number
of MACs (Multiply-Accumulates). The Hy and W are the
heights and width of input feature map. The Hy and Wy, are
the heights and width of covolutional kernel.

MACs = Hy x Wg X Nijp X Noyr x Hy, x Wy, D

The computing overhead is affected by both the number
of input(V;,,) and the number of output(/N,,;) kernels. We
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Figure 4: Speedup of using 8-bit Quantization under differ-
ent batch size

can observe that pruning not only reduces the number of
convolutional kernels on current compute stage, but also
leads to a smaller input size for the next stage. As we
can see, the theoretical speedup of using pruning is around
4.54X 1in total.

Table VI: Computing overhead comparison after pruning

Layer Feature Map Number
Name Size of Kernels GMACS
H*W Before After Before After
Pruning | Pruning | Pruning | Pruning
Convl_1 64 24 0.087 0.033
ComT 2| 224x224 o4 0 185 | 0238
Conv2_1 128 41 0.925 0.102
Com2 2| 12X 112 —g3 51 85 | 0236
Conv3_1 256 108 0.925 0.155
Conv3_2 56 x 56 256 89 1.85 0.271
Conv3_3 256 111 1.85 0.279
Conv4_1 512 184 0.925 0.144
Conv4_2 28 x 28 512 276 1.85 0.358
Conv4_3 512 228 1.855 0.444
Conv5_1 512 512 0.462 0.206
Conv5_2 14 x 14 512 512 0.462 0.462
Conv5_3 512 512 0.462 0.462
Total - - 15.38 3.39

In Table VI, we compare the execution time of VGG-
16 model before and after pruning. The speedup of testing
on ARM platform is close to theoretical analysis ratio of
4.54X, which means the pruning is working effectively for
real IoT application scenario.

Table VII: Execution time before/after pruning for VGG16
model

Num. of Ex.ecution
cores Time (s) Speedup
Before After
Pruning | Pruning
1 6.10 1.43 4.27X
2 3.52 0.83 4.24X
4 2.48 0.58 4.28X




V. CONCLUSIONS

The advancement in both hardware and software research
is making machine learning, especially deep learning pos-
sible on mobile devices and even IoT edge devices with
limited computing capability. In this paper, we reviewed
and evaluated three representative approaches, i.e., paral-
lel acceleration, quantization, and model pruning, for IoT
edge devices. We can discover optimization opportunities
for enabling deep learning capability on IoT edge across
hardware level to machine learning algorithm level. And
multiple aspects should be considered together if we want
to observe the optimization effects. For example, when we
perform model quantization, not only transferring the model
with reduced precision parameters need to be performed, but
also the type of reduced precision computations supported
by target hardware should be considered as well. In other
word, in order to making deep learning on IoT edge plausi-
ble, a comprehensive consideration of hardware acceleration
related approaches and deep learning model optimization
approaches is a must.
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