

Engaging Preservice Secondary Science Teachers in a NGSS-Based Energy Lesson: A Nanoscience Context

Deepika Menon,^{*1} Mary Sajini Devadas^{*2}

^{*1}Department of Physics, Astronomy, Geosciences, Towson University, Towson, Maryland 21252 United States

^{*2}Department of Chemistry, Towson University, Towson, Maryland 21252 United States

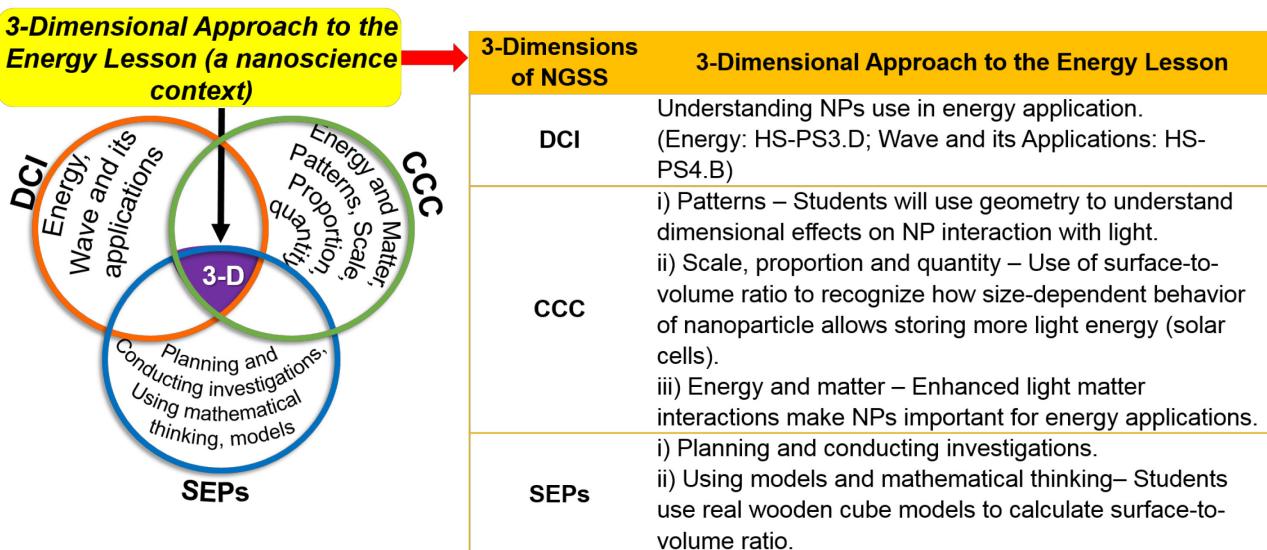
ABSTRACT

The new approach to teaching science presented by Next Generation Science Standards (NGSS) warrants trained high-quality science, technology, engineering, and mathematics (STEM) teachers to prepare the future STEM workforce. We share the implementation of an energy lesson using a *nanoscience* approach, well-aligned with the NGSS vision, in a secondary STEM education course for preservice science teachers. First, we engaged preservice teachers in discussions related to alternate sources of energy followed by the case study approach to illustrate a real-world problem of energy deficiency and solar energy (solar cells using nanoparticles) as one potential solution because it is cost-efficient, clean, and a renewable source of energy. Preservice teachers conducted several hands-on explorations in groups using real cube-models to understand and illustrate the size-dependent nature and dimensions of nanoparticles, used lasers and visuals of a UV-vis spectrum, and observed the trends in voltage and current outputs for fluorine-doped tin oxide electrodes with and without nanoparticle solution. Formulating evidence-based explanations, students summarized their findings as a case study report regarding the nanoparticle approach as a remedy to the energy deficit problem. The lesson provides opportunities for preservice science teachers to develop an understanding of green energy as well as illustrating how the NGSS standards are tied together in a science lesson.

GRAPHICAL ABSTRACT

KEYWORDS

Continuing Education, Laboratory Instruction, Hands-On Learning/Manipulatives, Materials Science


INTRODUCTION

Understanding energy and its fundamental laws is an integral part of the school curriculum across disciplines. Despite its significance, K-12 students are often not exposed to practical applications of clean and renewable (alternative sources) energy and *how* they work to meet the growing energy demand around the world.^{1,2} One such alternative source of energy is the use of nanoparticles that

35 inquires remedy to the energy deficit problems especially light harvesting (make efficient solar cells).^{3,4} Scientists and educators across the globe have recognized nanoscience education as an inspiring field offering exciting new phenomena, unseen mysteries, and a spectrum of globally relevant applications.^{5,6}

36 Most recently, the Next Generation Science Standards⁷ (NGSS) presents the three-dimensional approach to science learning that includes the following constructs: disciplinary core ideas (DCI),
 40 cross-cutting concepts (CCC), and science and engineering practices (SEP). While the new vision for science learning has been emphasized by the NGSS, there are limited resources and models available for science teacher educators to support prospective science teachers in this endeavor. Preparing *high-quality science teachers* during their teacher preparation programs is warranted for them to execute NGSS-based learning in their future classrooms. Herein, we describe a NGSS-based energy activity
 45 designed for a science, technology, engineering, and mathematics (STEM) education methods course for prospective secondary science teachers (referred to as students hereafter). The overall goal of the methods course was to familiarize preservice teachers with appropriate methods of teaching science and engineering in secondary science classrooms. The lesson, laboratory experiment, and the associated activities were designed for preservice teachers to experience NGSS and its three
 50 dimensions in action for them to be able to develop skills to design their own NGSS-based science lessons in the future. Although this is not the complete unit but a tool to build upon, we contend that **the lesson and associated activities will serve as an example** for college faculty to train future STEM teachers to meet the new NGSS standards while developing a basic understanding of nanoscience.

55 While this project has two parts—a laboratory experiment and a discussion on the pedagogical principles that aligns well with the three dimensions of the NGSS—**instructors** may choose the laboratory activity and/or subparts of the associated activities in a college general chemistry or nonmajors chemistry and physics courses. The activities described can also be used as a part of professional development opportunities for inservice STEM teachers or college STEM faculty to understand the connections between science topics and pedagogical principles (aligned with NGSS).
 60 The laboratory activity can be used in high school chemistry courses as well. In the literature, nanoparticle synthesis and characterization has been used to develop an understanding of size dependent optical properties and applications, which include sensing, catalysis, and energy conversion.⁸⁻¹⁶ Here, we focus on nanoparticles (NP) and their applications to energy to line up as the DCI. The CCCs are: (i) patterns; (ii) scale, proportion, and quantity; and (iii) energy and matter. The
 65 SEPs include planning and carrying out various investigations, and using real wooden cube models and mathematical thinking to understand the size-dependent behavior of nanoparticles (Figure 1).^{13,17-20} The details on the NGSS connections to the three dimensions are provided in the Supporting Information.

70 Figure 1. The three-dimensional approach to the energy lesson.

THE CONTEXT

The activity was implemented in a STEM education course designed for STEM secondary education majors who aim to teach science at the secondary or high school level. The class met three times a week, for a 50 min per class period over the course of a 16-week semester. The course was structured as a combined lecture-laboratory format, wherein students participated in various hands-on inquiry-based investigations, collaborative teamwork, and group discussions. There were 27 students enrolled, 10 were secondary mathematics education majors, and 17 were science majors from various science disciplines (biology, chemistry, and earth and space science). For all the activities discussed below, students were divided into 6 groups of 4, and 1 group of 3. This activity was completed in one week (three class periods). The description and list of activities per class period is given in Table 1. In class, students worked in groups to conduct hands-on investigations and to collect and analyze their data to generate findings based on evidence and reasoning. Students then wrote an individual report to present their findings. Below we report the systematic procedure to describe the activity, investigations, and the final report.

Table 1. Gold Nanoparticle Activities and Their Component Descriptions by Class Period

Class	Activity	Description
1	Part 1: Motivation and case study approach	<p>Introduction to the NGSS and the three-dimensional approach to science learning. Prior knowledge on energy and nanoscience was discussed.</p> <p>The history of nanoscience was introduced, followed by the focus question and the case study scenario.</p> <p>Students conducted mathematical investigations by calculating the size-dependence (surface to volume ratio) using wooden cubes of varying sizes.</p>
2	Part 2: Size-dependent nature of nanoparticles	Students were given 3 vials of gold nanoparticles and a 532 nm laser. They recorded the appearance of the solution before and after shining the laser through the solution.
	Part 3: Experimental set-up (preparation of solar cell)	Students were provided with two solar cells: one with nanoparticles and another without nanoparticles. They compared the voltage and current outputs between the two electrodes.
3	Part 4: The results	<p>Students discussed the absorption spectrum of the three nanoparticle solutions (handout) to develop evidence-based reasoning from their experimental data from earlier explorations.</p> <p>Discussion on the alignment of the lesson in terms of DCI, CCC, and SEPs, and integrating science, mathematics, creativity in one lesson.</p>

PROCEDURE

Part 1: Motivation and the Case Study Approach

We began the lesson by engaging preservice teachers in a discussion of the NGSS standards and the three dimensions. After the discussion, each individual student visited the online NGSS website⁷ to get further familiarity with the standards. We then began our science lesson for students to make connections with how the lesson aligns with the NGSS. The lesson began by addressing the whole class, and asking questions to gain information about students' prior knowledge of energy. For example, we asked, "What are the examples for renewable and non-renewable sources of energy?" Then, we used the case study method to pique students' interest in the topic of energy. Case studies are often stimulating as they allow students to "*think and act like scientists*" to solve a real-world problem.²¹ This case focused on solving the energy deficit by using solar energy (solar cells using nanoparticles) because it is a cheaper, cleaner, and a renewable source of energy. We proposed the following scenario along with a focus question (see the Supporting Information):

Your school is a strong advocate of green energy and cutting energy consumption and cost, for which they need funding from the state to

105

change inefficient light bulbs to light-emitting diodes (LEDs) and install solar panels. So, you are required to submit a justification/report explaining why and how solar panels (a nanotechnology approach) are a better option. **Focus question:** What makes nanoparticles an efficient component in renewable energy applications?

110

115

After presenting the scenario, we asked questions to assess students' background knowledge about nanoscience. For example, we asked, "What do you know about nanoscience?" While many students shared applications of nanotechnology they had heard of such as sensors, nano computers and so on, they struggled to share what "nano" meant to them. Often times, students struggle to conceptualize the size as small as a nanometer (10^{-9} meters) and that of a nanoparticle. Therefore, we used several everyday examples for students to develop a perspective for a nanoscale, for instance: "How does the height of an average human being compare to the diameter of a human hair?", or "How does the diameter of a human hair compare to the size of a water molecule?" We then introduced a number line (see Figure 2) and conversion items for students to interpret and use the nanoscale.

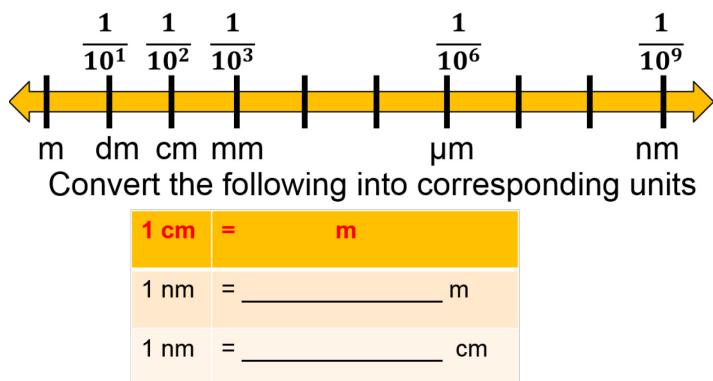


Figure 2. The number line showing meter-to-nanometer conversion.

120

125

130

During whole-group discussions, we realized that students perceived nanoscience applications as fairly new. We therefore presented historical evidences for the use of nanoparticles deep-rooted in ancient times (without being known as nanoparticle/nanoscience then). We discussed the use of nanoparticles in the 4th century BCE by glass blowers where metal nanoparticles of silver and gold were embedded in glass chalices and stained-glass windows to impart color. In Ayurveda (an ancient Indian system of medicine), metals were used as a form of treatment called *Bhasma*²² (a concoction of metal and herbal juice producing biologically active nanoparticles).^{23,24} At the 95th Indian Science Congress, Dr. Robert Curl, Nobel Laureate in 1996 for the discovery of Buckminster fullerene, "nano" carbon, brought to light that blacksmiths from southern India manufactured daggers used by warriors by reinforcing iron with carbon to enhance sharpness and strength, akin to the Damascus sword.²⁵

Part 2: Size-Dependent Nature of Nanoparticles

135

Each student group was engaged in hands-on activities to understand the size-dependent nature²⁶ and dimensions of nanoparticles. They were provided wooden cubes (see Figure 3) with varying sizes (example, cubes with side length as 2 in., 1 in., and 0.5 in.) and were asked to calculate the total surface-to-total volume ratios in each case. The data recording sheet is available in the Supporting Information. Students noted patterns in the data and found that the smaller the size of the cube, the larger the total surface-to-total volume ratio.

140

During the whole-group discussions, we explained that as the dimensions of the nanoparticle become smaller, they begin to absorb light due to increased surface-to-volume ratios and its electronic structure,^{27,28} unlike in synthetically manufactured organic dye molecule, where nanoparticles can absorb only a smaller wavelength range or energy of incident light. The concept of increasing surface-to-volume ratio was used to correlate the changes that take place when bulk gold (Au) transitions to a nanoparticle Au→AuNP.^{29,30} This concept of size-dependent absorption behavior was further developed through experiments described below.

145

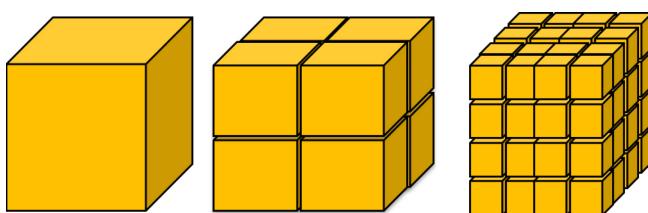


Figure 3. Cube model showing increased surface-to-volume ratio in nanoscale material.

Part 3: Experimental Set-Up—Preparation of Solar Cell with AuNP

Metal nanoparticles discussed in this activity are made of gold (AuNP). AuNPs have a property called surface plasmon resonance, which is the oscillation of electrons due to perturbations (absorption) caused by light. This light-matter interaction makes AuNPs important for energy applications because of their capacity to absorb light over a range of energies in the electromagnetic spectrum.³¹ AuNPs also have the capacity of promoting electron transfer needed for current generation. From the literature, it is evident that when AuNPs are coupled with titanium dioxide, they produce photocurrent.^{32,33}

Synthesis of Gold Nanoparticles. All chemicals were purchased from Sigma Aldrich. The Turkevich method was followed for the synthesis of colloidal gold (intermediate and largest size).^{34,35} For the 1 nm (smallest) AuNP solution, a literature procedure was used.³⁶ Details of the syntheses are in the Supporting Information.

Size Dependence and Color. Each student group was provided with premade samples of three nanoparticle solution vials of three different sizes made from the gold salt (Figure 4). Students observed and recorded the appearance of the gold nanoparticle solutions (Figure 4) using key words such as transparent, intermediate, or opaque (the sample data recording work sheet is available as the Supporting Information). Students observed that the opaque sample containing the largest AuNP particles scattered light and showed a dichromatic effect of purple when light is transmitted and orange when light is scattered. The intermediate solution absorbed a little light and the solution was denser than the transparent sample (semitransparent). In the transparent sample (smallest AuNP particles), students could see the light transmit clearly. This is because of the absence of Mie scattering, as there were no large particles in the sample.³⁷

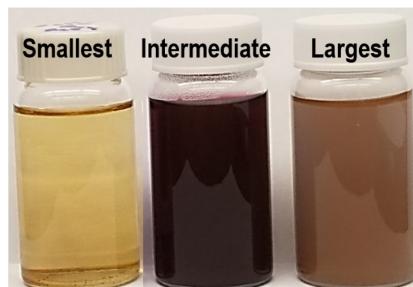
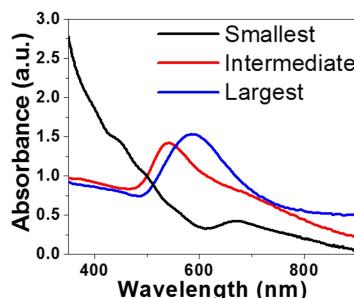


Figure 4. Gold nanoparticle solutions with particle sizes of 1–100 nm used for analysis.

Then, students were provided with lasers (a 532 nm laser pointer, green wavelength) and were asked to observe the trends in color change when the laser passed through each of the solutions. The largest sample did not show any change, the intermediate sample absorbed some of the light but the change was not clearly seen with the naked eye, and the students could quantify the difference in opacity from the largest sample vial. The smallest AuNP (~1 nm) absorbed the 532 nm laser light and emitted red light. This is dictated by the surface-to-volume ratio, that is, the dimension or *geometry* of the nanomaterial.³⁸ We further discussed with the whole group that bulk gold/ornamental gold reflects light and is opaque. As the dimensions become smaller, smaller AuNPs with increased surface-to-volume ratios, when embedded in solar cells, will absorb more sunlight. Based on the above observations, students concluded that the smallest AuNP solution will be best suited for making the

185 solar cell, thus making AuNPs excellent material for energy applications, namely light harvesting.^{32,39,40} Therefore, for constructing a working solar cell the smallest AuNP (~1 nm diameter) solution was the only one used. The procedure is given below.

190 **Preparation of the Electrodes.** The solar cell was constructed based on literature procedures.³² The fluorine-doped tin oxide (FTO) electrodes were purchased from Hartford glass; details of the product are given in the Supporting Information. They were precut to 1 in. dimension squares. These FTO electrodes were sonicated with acetone and ethanol before they were used. Then TiO_2 paste ordered from Solaronix was coated on the conductive side. This was then heated on a hotplate to remove any organic material. On cooling this electrode, a layer of gold nanoparticle solution was added dropwise. To the second FTO electrode, carbon was deposited from soot to make electrical contact. The two electrodes were then held together via a binder clip. This assembly was given to students to add the electrolyte. The electrolyte used was 1M potassium iodide in water. When students were ready to measure the current being generated with and without nanoparticles, they used alligator clips to connect to a multimeter and then they recorded the current in ohms. (See Figure 5.) Details are in the Supporting Information. Alternatively, a commercially available kit can be used for this purpose; details are also available in the Supporting Information.


200 Part 4: The Results

205 Each student group measured and compared the changes in voltage and current outputs for the two FTO electrodes (Figure 5), one with AuNP solution (~1 nm samples only), and the other without AuNP using three trials. (See the Supporting Information for the data recording sheet.) Results showed that the solar cell with AuNP exhibited higher levels of voltage (4.6 mV) as compared to the solar cell without AuNP (1.3 mV). The higher levels of voltage generation are only possible in the solar cell coated with the ~1 nm AuNP solution because it can absorb a higher quantity of UV and visible radiation.

210 Figure 5. Students measuring photocurrent using ~1 nm AuNP solution coated FTO electrodes.

215 To reinforce this idea that the ~1 nm AuNP solution was the best choice for constructing a solar cell, each student group was provided a handout of the UV-vis spectrum generated by the instructor previously. Students can also generate their own spectrum using a handheld UV-vis spectrophotometer, directions are given in the Supporting Information. This spectrum was collected from the three nanoparticle solutions that students used in the laser exercise. From the UV-vis spectrum (Figure 6), students observed the variations in the profile: the wavelengths of absorption were 300–900 nm for the smallest sample. Second, they observed that as the size of the particle increases, the background signal increased (i.e., the absorption value did not begin at zero at 900 nm). This indicates greater scattering than absorption for larger diameter nanoparticles. Additionally, the red-shift in the absorption maximum (from 538 nm to 582 nm) is also indicative of the larger size of the nanoparticle. For the smallest AuNP particle, which is ~1 nm, the UV-vis spectrum showed the characteristic peak at 670 nm and higher absorption below 450 nm.

225

Figure 6. Absorption spectrum of the nanoparticles used in this experiment.

HAZARDS AND SAFETY PRECAUTIONS

Before beginning the activity, students must wear chemical resistant safety goggles at all times to prevent splashes. All chemicals and glassware should be handled with chemical resistant gloves. All glassware, such as disposable pipettes and FTO electrodes, are disposed of in glass disposal and/or a solid waste container, and liquids into a designated liquid waste container. Coating of FTO electrodes and heating them on hotplates should be done in the fume hood. Similarly, using an open flame to coat carbon soot should be done in a hood with heat resistant gloves on. In case of an accident, students should be instructed to notify the instructor for immediate assistance. In this experiment, the electrodes and AuNP solutions were premade by the project directors.

230

235

DISCUSSION: THE NGSS CONNECTIONS

Considering the overall goal of the lesson is to help preservice teachers understand how the NGSS and the three dimensions are applied to a science lesson, we engaged student groups in a rich discussion to illustrate the DCI, CCC, and SEPs used in the lesson. To begin the discussion, each group was provided a blank handout of Figure 1 for them to brainstorm, and write what DCI, SEPs, and CCC they think were the focus of the nanoscience lesson. The goal of this activity was to allow preservice teachers to identify how the science activities aligned with the three dimensions of the NGSS. For each of the SEPs and CCCs the students identified, they were asked to provide examples from the activities they had completed. For instance, a group of students identified “use of models” as a SEP and justified the use of cube models to understand the dimensions of nanoparticles. When each group was ready with their completed handout we asked questions such as, “What crosscutting concepts were used in the lesson, and how?” and “What scientific practices were utilized in the lesson, and how?” Most student responses included “energy and matter” as the cross-cutting concept and “planning and carrying out investigations”.

240

245

250

255

260

After the discussion on how the activities aligned with the pedagogical principles as suggested by NGSS in terms of DCI, CCC, and SEP connections, we provided the handout of Figure 1. We discussed additional CCCs such as patterns and scale, proportion, and quantity to illustrate the use of real cube models to understand the size-dependent behavior of nanoparticles. Similarly, we discussed additional scientific practices used in the lesson, such as the use of models and mathematical thinking with real wooden cube models to calculate surface-to-volume ratio. In summary, this lesson offered ample opportunities for preservice teachers to deepen their understanding of energy in a nanoscience context through a collaborative learning experience as well as developing a shared understanding of NGSS in action. Although we are aware that the energy conversion is not the best that is experimentally reported, after all the evidence from investigations, and used only as a demonstration of the concept, students were able to put together their case study reports providing justification of use of nanoparticles in solar cells as an effective source of energy.

CONCLUSIONS

The overall goal of the lesson was to develop a clear understanding of the alignment of the NGSS and its dimensions within a science lesson. Based on this goal, we had students complete an online open-ended questionnaire outside of class as a pre- and posttest to share their views on their

familiarity with the standards and how confident they feel designing science lessons to align with the standards. Figure 7 shows that a majority of students were familiar with the NGSS standards at the end of the lesson. At the end of the laboratory activity nearly 69% of all students indicated greater familiarity with the NGSS than before, where only 11% reported being familiar with it. The open-ended responses are in line with the aforementioned trends of the survey results; many students shared how engaging in the lesson promoted their understanding of the NGSS:

270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
9510
9515
9520
9525
9530
9535
9540
9545
9550
9555
9560
9565
9570
9575
9580
9585
9590
9595
9600
9605
9610
9615
9620
9625
9630
9635
9640
9645
9650
9655
9660
9665
9670
9675
9

295 Figure 8. Percentage of students ($n = 27$) who reported their confidence to design NGSS based science lesson before (presurvey) and after (postsurvey) completing the lesson and associated set of activities.

300 In summary, this laboratory activity is unique as it blends a contemporary science topic (nanoscience) with the understanding of the NGSS. Thus, science methods courses should provide more opportunities early on for prospective teachers to develop a deeper understanding of standards and to use the three dimensions in structuring their own lessons.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available on the ACS Publications website at DOI: 10.1021/acs.jchemed.

305 Details of experimental set-up and lesson plan and worksheets (DOCX)

AUTHOR INFORMATION

Corresponding Author

*E-mail: dmenon@towson.edu, mdevadas@towson.edu

ACKNOWLEDGMENTS

310 The authors thank Sarah Talamantez-Lyburn for solution preparation. We thank Towson University's Faculty Development Research Committee grant and Fisher Endowment grants for funding. MSD thanks the Fisher College of Science and Mathematics for the Fisher Endowed Chair award and NSF MRI 1626326.

REFERENCES

315 (1) Asif, M.; Muneer, T. Energy Supply, Its Demand and Security Issues for Developed and Emerging Economies. *Renew. Sustain. Energ. Rev.* **2007**, *11*, 1388–1413.

(2) Kamat, P. V. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. *J. Phys. Chem. C* **2007**, *111*, 2834–2860.

320 (3) Neder, V.; Luxembourg, S. L.; Polman, A. Efficient Colored Silicon Solar Modules Using Integrated Resonant Dielectric Nanoscatterers. *Appl. Phys. Lett.* **2017**, *111*, 073902.

(4) Zahn, M. Magnetic Fluid and Nanoparticle Applications to Nanotechnology. *J. Nanopart. Res.* **2001**, *3*, 73–78.

(5) Greenberg, A. Integrating Nanoscience into the Classroom: Perspectives on Nanoscience Education Projects. *ACS Nano* **2009**, *3*, 762–769.

325 (6) Jackman, J. A.; Cho, D.-J.; Lee, J.; Chen, J. M.; Besenbacher, F.; Bonnell, D. A.; Hersam, M. C.; Weiss, P. S.; Cho, N.-J. Nanotechnology Education for the Global World: Training the Leaders of Tomorrow. *ACS Nano* **2016**, *10*, 5595–5599.

(7) National Research Council. *Next Generation Science Standards: For States, By States*; National Academies Press: Washington, DC, 2013; <https://www.nextgenscience.org/> (accessed Dec 2018).

330 (8) Smestad, G. P.; Gratzel, M. Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter. *J. Chem. Educ.* **1998**, *75*, 752.

(9) Zemke, J. M.; Franz, J. A Biphasic Ligand Exchange Reaction on CdSe Nanoparticles: Introducing Undergraduates to Functionalizing Nanoparticles for Solar Cells. *J. Chem. Educ.* **2016**, *93*, 747–752.

335 (10) Cea, P.; Martín, S.; González-Orive, A.; Osorio, H. M.; Quintín, P.; Herrero, L. Nanofabrication and Electrochemical Characterization of Self-Assembled Monolayers Sandwiched between Metal Nanoparticles and Electrode Surfaces. *J. Chem. Educ.* **2016**, *93*, 1441–1445.

(11) Markina, N. E.; Pozharov, M. V.; Markin, A. V. Synthesis of Copper(I) Oxide Particles with Variable Color: Demonstrating Size-Dependent Optical Properties for High School Students. *J. Chem. Educ.* **2016**, *93*, 704–707.

340 (12) Jenkins, S. V.; Gohman, T. D.; Miller, E. K.; Chen, J. Synthesis of Hollow Gold–Silver Alloyed Nanoparticles: A “Galvanic Replacement” Experiment for Chemistry and Engineering Students. *J. Chem. Educ.* **2015**, *92*, 1056–1060.

(13) Jenkins, J. A.; Wax, T. J.; Zhao, J. Seed-Mediated Synthesis of Gold Nanoparticles of Controlled Sizes To Demonstrate the Impact of Size on Optical Properties. *J. Chem. Educ.* **2017**, *94*, 1090–1093.

345 (14) Njagi, J.; Warner, J.; Andreescu, S. A Bioanalytical Chemistry Experiment for Undergraduate Students: Biosensors Based on Metal Nanoparticles. *J. Chem. Educ.* **2007**, *84*, 1180.

(15) Raghuwanshi, V. S.; Wendt, R.; O'Neill, M.; Ochmann, M.; Som, T.; Fenger, R.; Mohrmann, M.; Hoell, A.; Rademann, K. Bringing Catalysis with Gold Nanoparticles in Green Solvents to Graduate Level Students. *J. Chem. Educ.* **2017**, *94*, 510–514.

350 (16) Feng, Z. V.; Lyon, J. L.; Croley, J. S.; Crooks, R. M.; Vanden Bout, D. A.; Stevenson, K. J. Synthesis and Catalytic Evaluation of Dendrimer-Encapsulated Cu Nanoparticles. An Undergraduate Experiment Exploring Catalytic Nanomaterials. *J. Chem. Educ.* **2009**, *86*, 368.

(17) Zhang, X.; Wang, Z.; Xu, C. Demonstrating the Many Possible Colors of Gold-Supported Solid Nanoparticles. *J. Chem. Educ.* **2015**, *92*, 336–338.

355 (18) Sharma, R. K.; Gulati, S.; Mehta, S. Preparation of Gold Nanoparticles Using Tea: A Green Chemistry Experiment. *J. Chem. Educ.* **2012**, *89*, 1316–1318.

(19) Frank, A. J.; Cathcart, N.; Maly, K. E.; Kitaev, V. Synthesis of Silver Nanoprisms with Variable Size and Investigation of Their Optical Properties: A First-Year Undergraduate Experiment Exploring Plasmonic Nanoparticles. *J. Chem. Educ.* **2010**, *87*, 1098–1101.

360 (20) Orbaek, A. W.; McHale, M. M.; Barron, A. R. Synthesis and Characterization of Silver Nanoparticles for an Undergraduate Laboratory. *J. Chem. Educ.* **2015**, *92*, 339–344.

(21) Herreid, C. F.; Schiller, N. A. Case Studies and the Flipped Classroom. *J. Coll. Sci. Teach.* **2013**, *42*, 62–66.

(22) Chaudhary, A. Ayurvedic Bhasma: Nanomedicine of Ancient India and Its Global Contemporary Perspective. *J. Biomed. Nanotechnol.* **2011**, *7*, 68–69.

365 (23) Pal, D.; Sahu, C. K.; Haldar, A. Bhasma: The Ancient Indian Nanomedicine. *J. Adv. Pharm. Technol. Res.* **2014**, *5*, 4–12.

(24) Duncan, K. A.; Johnson, C.; McElhinny, K.; Ng, S.; Cadwell, K. D.; Zenner Petersen, G. M.; Johnson, A.; Horoszewski, D.; Gentry, K.; Lisensky, G.; Crone, W. C. Art as an Avenue to Science Literacy: Teaching Nanotechnology through Stained Glass. *J. Chem. Educ.* **2010**, *87*, 1031–1038.

370 (25) Verhoeven, J. D.; Pendray, A. H.; Dauksch, W. E. The Key Role of Impurities in Ancient Damascus Steel Blades. *JOM* **1998**, *50*, 58–64.

(26) Guedens, W. J.; Reinders, M.; Van den Rul, H.; Elen, K.; Hardy, A.; Van Bael, M. K. ZnO-Based Sunscreen: The Perfect Example To Introduce Nanoparticles in an Undergraduate or High School Chemistry Lab. *J. Chem. Educ.* **2014**, *91*, 259–263.

375 (27) Varnavski, O.; Ramakrishna, G.; Kim, J.; Lee, D.; Goodson, T. Optically Excited Acoustic Vibrations in Quantum-Sized Monolayer-Protected Gold Clusters. *ACS Nano* **2010**, *4*, 3406–3412.

(28) Kim, J.; Lee, D. Size-Controlled Interparticle Charge Transfer between TiO₂ and Quantized Capacitors. *J. Am. Chem. Soc.* **2007**, *129*, 7706–7707.

380 (29) Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. *J. Phys. Chem. B* **2006**, *110*, 7238–7248.

(30) Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. *Chem. Rev.* **2016**, *116*, 10346–10413.

385 (31) Zhan, Z. B.; Grote, F.; Wang, Z. J.; Xu, R.; Lei, Y. Degenerating Plasmonic Modes to Enhance the Performance of Surface Plasmon Resonance for Application in Solar Energy Conversion. *Adv. Energy Mater.* **2015**, *5*, 7.

(32) Chen, Y.-S.; Choi, H.; Kamat, P. V. Metal-Cluster-Sensitized Solar Cells. A New Class of Thiolated Gold Sensitizers Delivering Efficiency Greater Than 2%. *J. Am. Chem. Soc.* **2013**, *135*, 8822–8825.

390 (33) Choi, H.; Chen, Y.-S.; Stamplecoskie, K. G.; Kamat, P. V. Boosting the Photovoltage of Dye-Sensitized Solar Cells with Thiolated Gold Nanoclusters. *J. Phys. Chem. Lett.* **2015**, *6*, 217–223.

(34) Turkevich, J.; Stevenson, P. C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. *Discuss. Faraday Soc.* **1951**, *11*, 55–75.

(35) Turkevich, J. Colloidal Gold. Part I. *Gold Bulletin* **1985**, *18*, 86–91.

395 (36) Devadas, M. S.; Bairu, S.; Qian, H.; Sinn, E.; Jin, R.; Ramakrishna, G. Temperature-Dependent Optical Absorption Properties of Monolayer-Protected Au25 and Au38 Clusters. *J. Phys. Chem. Lett.* **2011**, *2*, 2752–2758.

(37) Graaff, R.; Aarnoudse, J. G.; Zijp, J. R.; Sloot, P. M. A.; de Mul, F. F. M.; Greve, J.; Koelink, M. H. Reduced Light-Scattering Properties for Mixtures of Spherical Particles: A Simple Approximation Derived from Mie Calculations. *Appl. Opt.* **1992**, *31*, 1370–1376.

400 (38) Devadas, M. S.; Kim, J.; Sinn, E.; Lee, D.; Goodson, T.; Ramakrishna, G. Unique Ultrafast Visible Luminescence in Monolayer-Protected Au25 Clusters. *J. Phys. Chem. C* **2010**, *114*, 22417–22423.

(39) Devadas, M. S.; Kim, J.; Sinn, E.; Lee, D.; Goodson III, T.; Ramakrishna, G. Unique Ultrafast Visible Luminescence in Monolayer-Protected Au25 Clusters. *J. Phys. Chem. C* **2010**, *114*, 22417–22423.

405 (40) Abbas, M. A.; Kim, T.-Y.; Lee, S. U.; Kang, Y. S.; Bang, J. H. Exploring Interfacial Events in Gold-Nanocluster-Sensitized Solar Cells: Insights into the Effects of the Cluster Size and Electrolyte on Solar Cell Performance. *J. Am. Chem. Soc.* **2016**, 138, 390–401.