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Abstract. This paper is concerned with long-time dynamics of a full von

Karman system subject to nonlinear thermal coupling and free boundary con-
ditions. In contrast with scalar von Karman system, vectorial full von Karman

system accounts for both vertical and in plane displacements. The correspond-

ing PDE is of critical interest in flow structure interactions where nonlinear
plate/shell dynamics interacts with perturbed flows [vicid or invicid] [8, 9, 15].

In this paper it is shown that the system admits a global attractor which is
also smooth and of finite fractal dimension. The above result is shown to hold

for plates without regularizing effects of rotational inertia and without any

mechanical dissipation imposed on vertical displacements. This is in contrast
with the literature on this topic [15] and references therein. In order to handle

highly supercritical nature of the von Karman nonlinearities, new results on

“hidden” trace regularity generated by thermal effects are exploited. These
lead to asymptotic compensated compactness of trajectories which then allows

to use newly developed tools pertaining to quasi stable dynamical systems [8].

1. Introduction. This paper is concerned with long-time behavior and theory of
global attractors associated with dynamic system of nonlinear elasticity modeled
by a full vectorial von Karman system subject to thermal effects. This system
describes nonlinear oscillations in a plate dynamics which account for both vertical
and in plane displacements - denoted respectively by w and u = (u1, u2) –as well as
the averaged thermal stresses φ and θ affecting each of these displacements [17, 18,
34, 35]. The introduced mathematical model, being of interest on its own, is also a
prototype for shallow shells with thermal effects [46, 52]. The latter are the building
blocks for flow-structure interactions which have attracted a considerable attention
in recent literature [9, 11, 15, 16]. In fact, the importance and interest in studying
dynamical properties of vectorial Karman system can not be overstated. This is
particularly pronounced for plate/shell models without the regularizing effects of
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rotational inertia. Indeed, stabilizing effect of the flow can only be attested for very
thin plates which do not account for rotational inertia [9] and references therein.
It is thus critical to be able to handle the analysis of full vectorial von Karman
system without rotational inertia. On the other hand, mathematical treatment of
such models is challenging due to severe singularities caused by nonlinear effects
which are no longer mitigated by the additional regularity of vertical velocity exhi-
bited in rotary inertial models. We shall exploit thermal effects as the carriers and
propagators of partial regularity which, in turn, will allow for construction of a well
posed dynamical system with a smooth and finite-dimensional long time behavior.

1.1. The problem studied. PDE model. Let Ω ⊂ R2 be a bounded domain
with smooth boundary Γ = Γ0 ∪ Γ1, where Γ0 and Γ1 are two nonintersecting
nonempty portions. We consider the following PDE evolutionary system

utt−div{σ[ε(u) + f(∇w)]}+∇φ+ p1(u,w) = 0 in Ω×R+, (1.1)

wtt+∆2w−div{σ[ε(u) + f(∇w)]∇w+φ∇w}+∆θ + p2(u,w) = 0 in Ω×R+, (1.2)

with Dirichlet boundary conditions on the portion of the boundary Γ0,

u = 0, w = 0, ∇w = 0 on Γ0 × R+. (1.3)

The boundary conditions on Γ1 are of free type and given by

σ[ε(u) + f(∇w)]ν + κu− φν + ut = 0, (1.4)

∆w + (1− µ)B1w + θ = 0, (1.5)

∂ν(∆w) + (1− µ)B2w − σ[ε(u) + f(∇w)]ν ·∇w − φ∂νw + ∂νθ = 0. (1.6)

The average thermal stress φ and thermal moment θ are given by the following
system of equations

φt −∆φ+div{ut}−∇w·∇wt = 0 in Ω× (0,∞), (1.7)

θt −∆θ −∆wt = 0 in Ω× (0,∞), (1.8)

with boundary conditions

∂νφ+ λ1φ = ∂νθ + λ2θ = 0 on Γ× (0,∞), (1.9)

where λ1, λ2 > 0. The initial conditions are given by

u(·, 0) = u0, ut(·, 0) = u1, w(·, 0) = w0, wt(·, 0)= w1, φ(·, 0) = φ0, θ(·, 0) = θ0.

(1.10)

In the system (1.1)-(1.2), p1(u,w) = (p1,1(u,w), p1,2(u,w)) and p2(u,w) repre-
sent forces exerted by some nonlinear elastic foundation. Regarding physical pa-
rameters of the system, we have that µ ∈ (0, 1

2 ) is the Poisson’s modulus and σ[ · ]
is a tensor defined by

σ[A] = λ trace[A]I + 2ηA, (1.11)

where λ = Eµ/(1− 2µ)(1 +µ), η = E/2(1 +µ) and E is the Young’s modulus. The
strain tensor is given by ε(u) = 1

2

(
∇u + (∇u)>), where ∇u denotes the Jacobian

matrix of vector u, and the nonlinearity f is defined by f(s) = 1
2 (s ⊗ s), s ∈ R2.

The boundary operators are given by

B1w = 2ν1ν2wxw − ν2
1wyy − ν2

2wxx,

B2w = ∂τ
[
(ν2

1 − ν2
2)wxy + ν1ν2 (wyy − wxx)

]
− lw,
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where ν = (ν1, ν2) and τ = (τ1, τ2) represent normal and tangential directions to
the boundary Γ1, and l is a positive parameter.

We note that the presence of in-plane displacements provides for a nonlinear
mixing of high energy between vertical and in plane accelerations. This very feature
proves challenging in establishing uniqueness and continuous dependence on the
data within finite energy framework. When rotational inertia are included (ie the
term −γ∆wtt added to the “w” equation (1.2)), methods of weak compactness and
cancellations come to rescue [28]. This is no longer valid when γ = 0 - as in the
present model.

The goal of the paper is to establish existence of global attractor which cap-
tures asymptotic behavior of the nonlinear dynamics. In addition, we shall prove
that such attractor is both finite dimensional and smooth. We note that the model
neither includes mechanical dissipation on vertical displacements of the plate, nor
accounts for rotational inertia term γ∆wtt which has regularizing effect on the dy-
namics. This is in striking contrast with the most of the literature on the topic
[5, 15, 32, 33, 34, 35, 37]. In fact, since both regularity of the dynamics and a pre-
sence of sufficient dissipation have critical bearing on establishing smooth asymp-
totic behavior of the trajectories, proving such property for a model which has only
limited dissipation and limited regularity is the main challenge undertaken in the
present paper. Even more, γ > 0 is essential in proving uniqueness of weak solutions
to a full vectorial von Karman system [28]. With γ = 0 the uniqueness and well-
posedness of the corresponding dynamical system must be harvested from thermal
effects.

The system described by (1.1)-(1.9) involves nonlinearly coupled thermoelastic
plate with thermoelastic waves. Since thermoelastic plates are associated with an-
alytic semigroups [41, 42, 44], we are faced with a combination of parabolic and
hyperbolic like dynamics. The nonlinear effects are at the supercritical level (this
means that the nonlinear terms for finite energy solutions are not bounded in a
finite energy space). Indeed, finite energy displacements u ∈ H1(Ω), w ∈ H2(Ω)
produce nonlinear stresses

div{f(∇w)}∈H−ε(Ω) and div{σ[ε(u) + f(∇w)]∇w}∈H−1−ε(Ω), ε > 0 (small).

Thus we are dealing with a loss of 1 + ε derivative. This feature becomes a ma-
jor difficulty in the study of Hadamard wellposednesss (uniqueness and continuous
dependence on the initial data) and, above all, in obtaining the needed estimates
for the existence of attractors. While parabolic like structure is typically equipped
with additional regularity properties, the challenge in the present problem is the
“transfer” of these beneficial effects to the hyperbolic part of the system. The car-
riers of propagation in the case of free boundary conditions are boundary traces.
Thus, at the technical level, we will be concerned with “hidden” trace regularity
properties which will play a role of propagators of both regularity and stability. It is
well known that the analysis of free boundary conditions, in the context of thermo-
elasticity, is a challenging subject-even within the linear theory [41]. This is due to
the fact that Kirchhoff plate with free boundary conditions does not satisfy strong
Lopatinski condition [50]. It is well known that Lopatinski condition is responsible
for “hidden” regularity of boundary traces in hyperbolic dynamics [40, 50]. In the
absence of such, other tools based on microlocal calculus need to be brought to the
analysis.
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To our best knowledge the present paper is a first study of attractors for the
dynamics described by full vectorial von Karman thermoelastic system with free
boundary conditions and with no dissipation, nor regularity imposed on vertical dis-
placement. This will be even more evident from the detailed review of the literature
provided below.

1.2. Discussion of the literature. The analysis of wellposedness and of long-time
behavior in nonlinear thermoelasticity has been a subject of long lasting interest
[1, 19, 32, 45, 46]. Various models with different boundary conditions have been
considered. However the physical interest-relevance and the degree of mathematical
challenge does depend critically on the specific model and the associated boundary
conditions. These create different configurations that require diverse mathematical
treatments. The overriding desire has been to control long-time behavior of the
model with a minimal amount of dissipation. By controlling, we mean either to
steer trajectories to zero, when the external forces are absent, or driving solutions
asymptotically to a pre-assigned compact set in the phase space (attractor). The
structure of such attractor depends on the forcing terms p1(u,w), p2(u,w). It has
been observed that thermal dissipation provides substantial damping mechanism
for the oscillations so that there may be no need for mechanical dissipation. In
fact, such property has been proved for the first time in a special case of a scalar
linear plate equation with hinged boundary conditions [26] and in one-dimensional
configuration such as thermoelastic rods [23]. However, in the case of free boundary
conditions stabilization results in [32, 33] do require mechanical dissipation (also
for thermal plates) imposed on the boundary of the plate. Only recently it has
been shown that in the case of linear thermoelastic plates, uniform decay to zero
of the energy can be achieved without any mechanical dissipation, regardless of the
boundary conditions [2, 3, 41, 42]. The situation is very different when one con-
siders vectorial structures, including thermoelastic waves. Here no longer one has
smoothing property of the dynamics or uniform decay to zero of the energy. The
best one can achieve ,without additional mechanical dissipation, is strong stability
to zero with a polynomial rate [19, 27]. The problem considered in this paper falls
into a category of mixed (parabolic-hyperbolic) dynamics with vectorial structure of
thermal plates and waves which are nonlinear and strongly coupled. Our aim is to
show that nonlinear coupling, while making estimates challenging (due to singular-
ities of nonlinear terms), does provide beneficial mechanism in propagating thermal
dissipation onto the entire system - thus forging the desired long-time behavior.
The final result is that the dynamics becomes asymptotically finite dimensional
and smooth. While this kind of result is to be expected for the dynamics with
an overall smoothing effect, it is much less expected in hyperbolic type of models
without strong mechanical dissipation and with highly unbounded nonlinear effects.
The analysis in this paper illustrates the situation when asymptotic regularity and
dissipation can be harvested from thermal effects via boundary traces which become
the carriers of the propagation. Since the dynamics of the plate alone is hyperbolic-
like and unstable, establishing the said propagation is a subtle issue-mainly due to
the nature of “free” boundary conditions.

From the above discussion it follows that the combination of free boundary con-
ditions in vectorial structure with the lack of rotational inertia (γ = 0) and strong
nonlinearity induced by vectorial structure of the system are the main new features
and obstacles in the analysis. The very first result addressing this problem was
given in [39] where full von Karman system, without rotational inertia (γ = 0)
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and with thermal effects was considered. Uniform stabilization to zero with free
boundary conditions and boundary dissipation imposed on the in plane velocities
was there established. The critical ingredient used for the analysis in [39] is partial
thermal smoothing of a single unperturbed trajectory. The present paper takes
this analysis to the next level, in the direction of dynamical systems and theory
of attractors. This presents new set of challenges mainly due to nonlinear effects
which are supercritical (with respect to finite energy space). These prevent the
use of known tools in the area of attractors. Nevertheless, we shall show that this
strongly nonlinear nonsmooth transient dynamics can be reduced asymptotically
to a smooth and finite dimensional set. This will be achieved through a boundary
frictional damping applied only to in plane displacements and without any mechan-
ical damping imposed on vertical displacements. The necessity of some mechanical
damping imposed on in plane displacements results from well known negative results
on the lack of uniform stability in thermal linear waves whenever the dimension of
the domain is greater than one [19]. At the technical level, our results critically
benefit from the new quasi stability theory [8, 13] and “hidden trace regularity”
harvested from thermal effects. While [39] provides preliminary road map for the
needed estimates, there is a fundamental difference between the theory of attractors
dealt with in the present paper and stabilization theory of [39]. While stabilization
requires estimates for a single trajectory, theory of attractors require estimates for
the differences of trajectories. In the case when nonlinearity of the dynamics is su-
percritical, single trajectory estimates may still exploit some cancellations. This is
not the case with the estimates for the difference of trajectories where the mixing of
nonlinearities occurs. Superlinearity does not disappear in the calculations. In or-
der to handle this difficulty, new set of boundary trace estimates will be developed.
These estimates are also of independent PDE interest.

1.3. Main results. We begin by introducing some notation. For the norms of
standardHs (Sobolev) and L2 spaces we use: ‖u‖α,Ω =‖u‖Hα(Ω), ‖u‖α,Γ =‖u‖Hα(Γ),

and the case α = 0, which corresponds to L2 spaces, we write ‖u‖Ω = ‖u‖L2(Ω)

and ‖u‖Γ = ‖u‖L2(Γ). The corresponding inner products are denoted by (u, v)Ω =
(u, v)L2(Ω) and 〈u, v〉Γ = 〈u, v〉L2(Γ). For α > 0, the space Hs

0(Ω) is the closure of

C∞0 (Ω) in Hs(Ω), and H−α(Ω) = [Hα
0 (Ω)]′, where the duality is taken with respect

to L2(Ω) inner product. Occasionally, by the same symbol , we denote norms and
inner products of n-copies of L2(O), where O is either Ω or Γ. The same is applied
to Hα(O). We also consider the following Sobolev spaces

Hi
Γ0

(Ω) ≡
{
v ∈ Hi(Ω) | trace of v = 0 on Γ0

}
, i = 1, 2, with ‖v‖H1

Γ0
(Ω) = ‖∇v‖Ω,

The analysis for weak solutions of our system will be done on the (phase) space

H ≡ [H1
Γ0

(Ω)]2×[L2(Ω)]2×H2
Γ0

(Ω)×L2(Ω)×[L2(Ω)]2,

and the regularity of solutions will be studied in

H1 ≡ [H2(Ω)]2 × [H1(Ω)]2 ×H4(Ω)×H2(Ω)× [H2(Ω)]2.

The assumptions imposed on the external forcing terms p1, p2 are introduced below.
Let u = (u1, u2) and p1(u,w) =

(
p1,1(u,w), p1,2(u,w)

)
, we assume that there exists

a C2 function P : R3 → R such that

∇P (u,w) =
(
p1,1(u,w), p1,2(u,w), p2(u,w)

)
, (1.12)
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and satisfies the following conditions: there exist M,mP > 0 such that

P (u,w) > −M
(
|u1|+ |u2|+ |w|2

)
−mP , ∀u1, u2, w ∈ R, (1.13)

with

0 6M < M0, (1.14)

where M0 is a positive constant to be defined in (2.25), dependent on σ and on the
Korn and Sobolev inequalities. We also assume there exist r > 1 and Mp > 0 such
that, for i = 1, 2,

|∇p1,i(u,w)| 6Mp

(
1 + |u1|r−1 + |u2|r−1 + |w|r−1

)
, ∀u1, u2, w ∈ R, (1.15)

|∇p2(u,w)| 6Mp

(
1 + |u1|r−1 + |u2|r−1 + |w|r−1

)
, ∀u1, u2, w ∈ R. (1.16)

Furthermore, we assume that

∇P (u,w)·(u,w)− P (u,w) > −M
(
|u1|+ |u2|+ |w|2

)
−mP , ∀u1, u2, w ∈ R.

(1.17)

We note that (1.15)-(1.16) imply that there exists MP > 0 such that

P (u,w) 6MP

(
1 + |u1|r+1 + |u2|r+1 + |w|r+1

)
, ∀u1, u2, w ∈ R. (1.18)

The wellposedness and regularity of solutions to our system are given below.

Theorem 1.1. Assume that the forcing terms pi satisfy (1.12)-(1.17). Then:
(i)Weak solutions: For any T > 0 and initial data (u0, u1, w0, w1, φ0, θ0) ∈ H,
problem (1.1)-(1.10) has a unique weak (finite energy) solution (u, ut, w, wt, φ, θ)∈
C
(
[0, T ];H

)
. In addition ut|Γ ∈ L2(0, T ;L2(Γ)), and ∇θ,∇φ ∈ L2(0, T ;L2(Ω)).

Moreover, this solution depends continuously on the initial data.

(ii)Regular solutions: Assume that above initial data has further regularity H1 and
appropriate compatibility with respect to the boundary. Then problem (1.1)-(1.10)
has a unique regular solution (u, ut, w, wt, φ, θ) ∈ C

(
[0, T ];H1

)
with (utt, wtt, φt, θt)

∈ C
(
[0, T ]; [L2(Ω)]5

)
.

In the absence of forcing terms p1, p2, the wellposedness of problem (1.1)-(1.10)
with respect to weak and strong solutions was proved in [39, Theorem 1.1] by using
nonlinear semigroup theory along with partial analyticity generated by thermal
effects. Since the Nemytskii mapping associated to the forcing p1, p2, is locally
Lipschitz on H, the existence of a unique local solution is granted by semigroup
theory (e.g. [10, Theorem 7.2]). Such solutions can be extended to any time interval
[0, T ] by using apriori estimate (2.24) below.

Remark 1.1. Theorem 1.1 implies that the (weak) solution operator of problem
(1.1)-(1.10) is a strongly continuous semigroup {S(t)} on H, which generates well-
defined nonlinear dynamical system (H, S(t)).

Remark 1.2. With γ > 0 and absence of thermal effects, Hadamard wellposedness
has been proved in [28]. Wellposedness of full von Karman system with thermal
effects, γ = 0 and strains accounting for shell’s curvature has been recently shown
in [46] by resorting to methods of [28].

To establish the existence of attractors one needs the following geometric con-
dition imposed on the “uncontrolled” portion of the boundary Γ0. There exists
x0 ∈ R2 such that

(x− x0)·ν 6 0, x ∈ Γ0. (1.19)
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Remark 1.3. We note that the geometric assumption in (1.19) is much weaker
than the geometric assumption typically imposed in controllability/stabilizability
theory [30, 32, 35]. It involves only uncontrolled part of the boundary Γ0, rather
than a full boundary ∂Ω.

Our main result reads as follows.

Theorem 1.2. Assume that conditions (1.12)-(1.17) and (1.19) are in force. Then,
the dynamical system (H, S(t)) generated by the problem (1.1)-(1.10) admits a com-
pact global attractor A⊂H. The said attractor is of finite fractal dimension and it
is bounded in a more regular space H1.

Remark 1.4. By assuming additional regularity on the forcing p1(u,w), p2(u,w)
one can reiterate the proof of Theorem 1.2 in order to obtain C∞ dynamics on the
attractor A. See for instance [13, 21].

Remark 1.5. The result stated in Theorem 1.2 is also valid with nonlinear damping
imposed on ut in (1.4). Instead of ut one can take g(ut) with g(s) monotone
increasing, continuous, g(0) = 0 and subject to: g(s)s 6 Ms2, |s| > 1 and g(s)s >
ms2 for |s| < 1. The above modification will introduce additional technicalities
which can be handled as in [12]. In the case when g(s) has unqualified growth at
the origin, only the first statement in Theorem 1.2 remains valid.

Remark 1.6. It will be interesting to see whether the result in Theorem 1.2 still
holds when (1) Γ0 has zero measure and (2) in plane displacements do not account
for thermal effects φ. We note that in this situation uniform stability to an equi-
librium for the unforced plate still holds [39]. However, when studying attractors,
items (1) and (2) are needed for the proof of an appropriate unique continuation
property. Whether the latter can be proved under weaker assumption, remains an
open problem.

The proof of Theorem 1.2 will be given in Section 3. Here, we note, that the
key of the proof relies on the following two ingredients: (1) novel abstract criterion
in the area of dynamical systems which relies on quasistability property of the dy-
namical system presented in Section 2 and (2) verification of the abstract condition
which depends on new PDE - boundary trace estimates for nonlinear system under
consideration. The latter are presented in Section 3.

2. Preliminary results and inequalities.

2.1. Energy relations. Along a solution y(t) = (u(t), ut(t), w(t), wt(t), φ(t), θ(t)),
t > 0, the energy of the system is defined by

Ey(t)=Ey(t) +

∫
Ω

P (u,w) dΩ, (2.20)

where Ey(t)=Ek(t) + Ep(t). Here, Ek(·) is the kinetic energy defined by

Ek(t)=
1

2

∫
Ω

[
|ut|2 + |wt|2

]
dΩ,

and Ep(·) is the potential energy given by

Ep(t)=
1

2

∫
Ω

[
σ[N(u,w)]N(u,w) + |φ|2 + |θ|2

]
dΩ +

1

2
a(w,w) +

κ

2

∫
Γ1

|u|2dΓ1,
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where the resultant stress N(u,w) is given by N(u,w) = ε(u) + f(∇w) and

a(w, z)=

∫
Ω

[
wxxzxx+wyyzyy+µwxxzyy+µwyyzxx+2(1−µ)wxyzxy

]
dΩ+l

∫
Γ1

wzdΓ1.

It follows that the energy satisfies the identity

Ey(t)+

∫ t

s

[
‖ut(τ)‖2Γ1

+‖∇φ(τ)‖2Ω+‖∇θ(τ)‖2Ω+λ1‖φ(τ)‖2Γ+λ2‖θ(τ)‖2Γ
]
dτ=Ey(s).

(2.21)

Indeed, for regular solutions, the proof of (2.21) is standard and follows from clas-
sical energy type arguments. For weak solutions the energy function satisfies the
inequality. However, due to the uniqueness of weak solutions, one also shows by
convexity methods [39] that actually (2.21) holds for all weak solutions.

Next we establish a relation between Ey(·) and Ey(·). To this end, we note that
for u ∈ H1(Ω), the Korn inequality together with Sobolev embedding give

‖u‖21,Ω 6MK

[
‖N(u, v)‖2Ω + ‖w‖4W 1,4(Ω)

]
. (2.22)

Also, the definition of tensor σ[ · ] in (1.11) implies that∫
Ω

σ[N(u,w)]N(u,w)dΩ >Mσ‖N(u, v)‖2Ω. (2.23)

The following lower bound is critical.

Lemma 2.1. Let the assumption (1.12)-(1.17) be satisfied. Then, there exists con-
stants ME ,mE > 0 such that

Ey(t) >MEEy(t)−mE , ∀ t > 0. (2.24)

Proof. Let us define

M0 = min

{
Mσ

4MpMK
,

Ma

4(MpMKM2 +Mp)

}
, (2.25)

with Mp = max{M1,M2} > 0, where M1,M2 denote the corresponding embedding
constants

‖u‖Ω 6M1‖u‖1,Ω, ‖w‖2Ω + ‖w‖2W 1,4(Ω) 6M2‖w‖22,Ω,
and Ma > 0 is a constant such that a(w,w) >Ma‖w‖22,Ω. From inequalities (2.22)-

(2.23) we obtain

Ey(t) = Ek(t) +
1

2
Ep(t) +

1

4

∫
Ω

[
σ[N(u,w)]N(u,w) + |φ|2 + |θ|2

]
dΩ +

1

4
a(w,w)

+
κ

4

∫
Γ1

|u|2dΓ1 +

∫
Ω

P (u,w) dΩ

> CEy(t) +
Mσ

4
‖N(u, v)‖2Ω +

Ma

4
‖w‖22,Ω −MMp

[
‖u‖1,Ω + ‖w‖22,Ω

]
−mP |Ω|

> CEy(t)+

[
Mσ

4
−MMpMK

]
‖N(u, v)‖2Ω −MMpMk‖w‖2W1,4(Ω)

+

[
Ma

4
−MMp

]
‖w‖22,Ω−mE

> CEy(t) +

[
Mσ

4
−MMpMK

]
‖N(u, v)‖2Ω

+

[
Ma

4
−MMpMKM2 −MMp

]
‖w‖22,Ω −mE ,
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where mE = mP |Ω| + (1/4)MMK . Since M < M0 (assumption (1.14)), it follows
that (2.24) holds.

Remark 2.1. We note that the potential energy Ep(·) is topologically equivalent
to space [H1(Ω)]2×H2(Ω)× [L2(Ω)]2 and therefore Ey(·) is topologically equivalent
to the space H.

2.2. Tensor identities. In order to simplify the verification of some rather long
calculations, we provide a few elementary tensor identities. Let us define the vector
field: h(x) = x− x0 with x0 ∈ R2. Then we have that

ε(h∇u) = ε(u) + R, (2.26)

where R is a tensor given by

R =


2∑
i=1

∂2u1

∂x1∂xi
hi

1
2

2∑
i=1

[
∂2u1

∂xi∂x2
+ ∂2u2

∂x1∂xi

]
hi

1
2

2∑
i=1

[
∂2u1

∂xi∂x2
+ ∂2u2

∂x1∂xi

]
hi

2∑
i=1

∂2u2

∂xi∂x2
hi

 .
Given two (fourth order) tensors A,B, written as 4-vectors, we define (A,B)R4 the
inner product in R4. Then, if A = [ai,j ] is a symmetric tensor, we can show that

(A,R)R4 =
2∑

i,j,k=1

ak,j
∂2uj
∂xk∂xi

hi. (2.27)

Let B = [bi,j ] be another symmetric tensor such that aj,i =
2∑
l=1

cj,lbl,i, with constant

and symmetric coefficients cj,i. Then

div{(A,B)R4h} = (A,B)R4 div{h}+
2∑

i,j,k,l=1

ci,l
∂

∂xk

[
bl,jbj,i

]
hk

= (A,B)R4 div{h}+ 2
2∑

i,j,k=1

aj,i
∂bj,i
∂xk

hk.

Taking A = σ[ε(u)] and B = ε(u), we obtain

div{(σ[ε(u)], ε(u))Ωh} = 2
(
σ[ε(u)], ε(u)

)
Ω

+2
2∑

i,j,k=1

(
ai,j ,

∂2ui
∂xk∂xj

hk

)
Ω
. (2.28)

Now, taking A = σ[ε(u)] and using identities (2.26) and (2.27), we obtain(
σ[ε(u)], ε(h∇u)

)
Ω

=
(
σ[ε(u)], ε(u)

)
Ω

+
2∑

i,j,k=1

(
ai,j ,

∂2ui
∂xk∂xj

hk

)
Ω
. (2.29)

2.3. Dynamics of quasi-stable systems. In this subsection we provide recent re-
sults pertaining to long time behavior of quasi–stable systems [8, 13]. These results
are critical for the development, since classical approaches in dynamical system the-
ory based on decomposition of trajectories [22, 31, 45, 51] are not applicable within
the context of supercritical nonlinearities. We begin with the following classical
result, cf. [4, 12, 13, 22, 31, 51].

Theorem 2.1. Let (H,S(t)) be a dynamical system, dissipative and asymptotically
smooth. Then it possesses a unique compact global attractor A ⊂ H.
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Another type of dissipativeness is characterized by gradient systems, that is,
systems possessing a strict Lyapunov function. In other words, there is a functional
Φ : H → R such that
(i) the map t 7→ Φ(S(t)y) is non-increasing for any y ∈ H,
(ii) if Φ(S(t)y) = Φ(y) for all t, then y is a stationary point of S(t).

Regarding the structure of the attractors we know that M+(N ) ⊂ A, where N is
the set of stationary points of {S(t)} and M+(N ) is the unstable manifold of y ∈ H
such that there exists a full trajectory u(t) satisfying

u(0) = y and lim
t→−∞

dist(u(t),N ) = 0.

For gradient systems it is possible to prove that the unstable manifold M+(N )
coincides with the attractor A. The following result is well-known. See for instance
[13, Corollary 7.5.7].

Theorem 2.2. Let (H,S(t)) be an asymptotically smooth gradient system with the
corresponding Lyapunov functional denoted by Φ. Suppose that

Φ(y)→∞ if and only if ‖y‖H →∞, (2.30)

and that the set of stationary points N is bounded. Then (H,S(t)) has a compact
global attractor which coincides with the unstable manifold M+(N ).

Remark 2.2. The advantage of the theorem above is that for gradient systems an
existence of global attractor does not require proving existence of an absorbing ball
- a task that can be technical and cumbersome.

Our aim is to establish existence of a global attractor along with the properties
such a finite-dimensionality and smoothness. In order to achieve this we shall exploit
the concept of quasistability - Definition 7.9.2 in [13, Chapter 7] - which allows to
prove such properties in “one shot” provided one has “good” estimates for the
differences of two trajectories originating in a bounded set B ⊂ H.

Let X,Y, Z be three reflexive Banach spaces with X compactly embedded into
Y , and define H = X × Y × Z. Suppose that (H,S(t)) is a dynamical system of
the form

S(t)y = (u(t), ut(t), ξ(t)), y = (u(0), ut(0), ξ(0)) ∈ H, (2.31)

where the functions u and ξ have regularity

u ∈ C([0,∞);X) ∩ C1([0,∞);Y ), ξ ∈ C([0,∞);Z). (2.32)

Then we say that (H,S(t)) is quasi-stable on a set B ⊂ H, if there exists a compact
semi-norm nX on X and nonnegative scalar functions a(t) and c(t), locally bounded
in [0,∞), and b(t) ∈ L1(0,∞) with limt→∞ b(t) = 0, such that,

‖S(t)y1 − S(t)y2‖2H 6 a(t)‖y1 − y2‖2H, (2.33)

and, for S(t)yi = (ui(t), uit(t), ξ
i(t)), i = 1, 2,

‖S(t)y1 − S(t)y2‖2H 6 b(t)‖y1 − y2‖2H + c(t) sup
06s6t

[
nX(u1(s)− u2(s))

]2
, (2.34)

for any y1, y2 ∈ B. In this case the following result holds.

Remark 2.3. Quadratic dependence of the compact term in the inequality (2.34)
is critical. In fact, achieving this quadratic dependence is one of the main technical
difficulties of the problem. We note that in order to obtain just an existence of
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compact attractor, a much weaker form of this inequality suffices. In particular,
there is no restriction on the power of compact term (could be sublinear).

Theorem 2.3. [13, Proposition 7.9.4] Let (H,S(t)) be a dynamical system given
by (2.31) and satisfying (2.32). Then (H,S(t)) is asymptotically smooth if it is
quasi-stable on every bounded positively invariant set of H.

The most useful property of quasi-stable systems is that quasistability on the
attractor implies automatically smoothness and finite-dimensionality of the said
attractor. This fact is stated in theorem below.

Theorem 2.4. [13, Theorems 7.9.6 and 7.9.8] Let (H,S(t)) be a dynamical sys-
tem given by (2.31) and satisfying (2.32). Assume that it has a global attractor A.
Then if (H,S(t)) is quasi-stable on A, this global attractor has finite fractal dimen-
sion. Moreover, if c(t) in (2.34) is globally bounded, its complete trajectories have
additional (time) regularity∥∥∥∥ d

dt
(S(t)y)

∥∥∥∥
L∞(R,H)

6M, y ∈ A,

where M depends on c(t).

By summarizing the results stated in Theorem 2.2 which guarantees the existence
of a global attractor, and Theorem 2.4, which provides finite fractal dimension and
smoothness of the said attractor, we arrive at:

Corollary 2.1. Let (H,S(t)) given by (2.31) and satisfying (2.32) be a quasistable,
gradient system with Lyapunov function satisfying (2.30) and a bounded set of sta-
tionary points. Then (H,S(t)) admits a finite-dimensional global attractor A which
is also “smooth”: d

dt

(
S(t)y

)
∈ L∞(R, H), for y ∈ A. If, in addition, c(t) in (2.34)

is bounded for t > 0 , there exists M <∞ such that ‖ d
dt (S(t)y)‖H 6M, t ∈ R.

3. Global attractors-proof of Theorem 1.2. This section is devoted to the
proof of the main result formulated in Theorem 1.2. This is based on the appli-
cation of Corollary 2.1. To this end we must show that (H, S(t)) is: (1) gradient
system with a Lyapunov function satisfying (2.30), and (2) quasi-stable system with
the appropriate bounds for c(t). The property of gradient system relies on a new
unique continuation property shown for the system under consideration. The prop-
erty of quasi-stability is the most technical part of the proof which requires deep
PDE results related to hidden regularity of the boundary traces corresponding to
vectorial systems with free boundary conditions. These results are of independent
PDE interest.

3.1. Proving quasi-stability. In this subsection we shall prove that our problem
is quasi-stable. Accordingly, we must show that the difference of two trajectories
satisfies estimate (2.34). To this end one needs rather extensive background and
several energy estimates. This will be established in five subsections.

In what follows we use the notations Q = [0, T ]× Ω, T > 0 and Σα = [α, T −
α]×Γ1, 0 < α < T

2 . Moreover, C will denote several positive constants and, in the
case it depends on some specific parameter ρ, then we write Cρ.
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3.1.1. Comparing two trajectories. Let B be a bounded set of H and consider two
solutions of (1.1)-(1.10),

S(t)yi = (ui, uit, w
i, wit, φ

i, θi), i = 1, 2, (3.1)

with corresponding initial data yi(0) = (ui0, u
i
1, w

i
0, w

i
1, φ

i
0, θ

i
0) ∈ B, i = 1, 2. Then

the difference

(ũ, w̃, φ̃, θ̃) = (u1 − u2, w1 − w2, φ1 − φ2, θ1 − θ2), (3.2)

solves the problem,

ũtt − div
{
σ[ε(ũ)]}+∇φ̃+ P1(ũ, w̃) = div

{
N1

}
in Ω× (0,∞), (3.3)

w̃tt + ∆2w̃ + ∆θ̃ + P2(ũ, w̃) = div
{
N2

}
in Ω× (0,∞), (3.4)

where

Pi(ũ, w̃) = pi(u
1, w1)− pi(u2, w2), i = 1, 2,

N1 = σ[f(∇w1)− f(∇w2)],

N2 = σ[N(u1, w1)]∇w1−σ[N(u2, w2)]∇w2+φ1∇w1−φ2∇w2,

with thermal components

φ̃t−∆φ̃+div{ũt}−
[
∇w1 ·∇w1

t−∇w2 ·∇w2
t

]
= 0 in Ω× (0,∞),

θ̃t −∆θ̃ −∆w̃t = 0 in Ω× (0,∞),
(3.5)

and boundary conditions

ũ = 0, w̃ = 0, ∇w̃ = 0 on Γ0 × (0,∞),

σ[ε(ũ)]ν + σ[f(∇w1)− f(∇w2)]ν + κũ− φ̃ν + ũt = 0 on Γ1 × (0,∞),

∆w̃ + (1− µ)B1w̃ + θ̃ = 0 on Γ1 × (0,∞),

∂ν(∆w̃) + (1− µ)B2w̃ −N2 ·ν + ∂ν θ̃ = 0 on Γ1 × (0,∞),

∂ν φ̃+ λ1φ̃ = ∂ν θ̃ + λ2θ̃ = 0 on Γ× (0,∞),

(3.6)

with the corresponding initial data

ũ(·, 0) = u1
0 − u2

0, ũt(·, 0) = u1
1 − u2

1,

w̃(·, 0)= w1
0− w2

0, w̃t(·, 0)= w1
1− w2

1,

φ̃(·, 0) = φ1
0 − φ2

0, θ̃ (·, 0) = θ1
0 − θ2

0.

(3.7)

The unperturbed energy of (3.3)-(3.7) is defined by

Ẽ(t) =
1

2

∫
Ω

[
|ũt|2+|w̃t|2+σ[ε(ũ)]ε(ũ)+|φ̃|2+|θ̃|2

]
dΩ+

1

2
a(w̃, w̃)+

κ

2

∫
Γ1

|ũ|2dΓ1.

Then we have the following energy equality,

Ẽ(t) +Dt
s(ũ, φ̃, θ̃) = Ẽ(s)+

∫ t

s

4∑
i=1

Ri(τ)dτ, (3.8)
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where

R1(t) = −
∫

Ω

P1(ũ, w̃) · ũt dΩ−
∫

Ω

P2(ũ, w̃)w̃t dΩ,

R2(t) =

∫
Ω

σ[f(∇w1)− f(∇w2)]ũt dΩ +

∫
Γ1

σ[f(∇w1)− f(∇w2)]·νũt dΓ1,

R3(t) =

∫
Ω

[
N(u1, w1)∇w1 −N(u2, w2)∇w2

]
∇w̃t dΩ,

R4(t) = −
∫

Ω

[
φ1∇w1 − φ2∇w2

]
∇w̃t dΩ +

∫
Ω

[
∇w1 ·∇w1

t −∇w2 ·∇w2
t

]
φ̃ dΩ,

Dt
s(ũ, φ̃, θ̃) =

∫ t

s

[
‖ũt‖2Γ1

+ ‖∇φ̃‖2Ω + ‖∇θ̃‖2Ω,+λ1‖φ̃‖2Γ + λ2‖θ̃‖2Γ
]
dτ.

Remark 3.1. We verify condition (2.34) by obtaining the following estimate

Ẽ(t) 6 CẼ(0)e−βt+C
[

sup
τ∈[0,t]

‖ũ(τ)‖2Lr+1(Ω)+ sup
τ∈[0,t]

‖ũ(τ)‖21−ε,Ω+ sup
τ∈[0,t]

‖w̃(τ)‖22−ε,Ω
]
,

for suitable constants C, β, ε > 0. This will be achieved in Lemma 3.7.

We end this subsection with some estimates for f(∇wi), i = 1, 2.

Lemma 3.1. For every ε ∈ (0, 1) the following estimates holds:

(i)

∫ T

0

‖f(∇w1)− f(∇w2)‖2Ωdt 6 CB,T l.o.t.(ũ, w̃),

(ii)

∫ T

0

‖f(∇w1)− f(∇w2)‖21,Ωdt 6 CB

∫ T

0

‖w̃‖22+ε,Ωdt,

where the lower orders terms are given by

l.o.t.(ũ, w̃) = sup
t∈[0,T ]

‖ũ(t)‖2Lr+1(Ω) + sup
t∈[0,T ]

‖ũ(t)‖21−ε,Ω + sup
t∈[0,T ]

‖w̃(t)‖22−ε,Ω.

Proof. We shall use the identity

f(∇w1)− f(∇w2) = f(∇w̃) +∇w̃ ⊗∇w2 +∇w2 ⊗∇w̃.

To prove (i), the inequality ‖u⊗ v‖Ω 6 C‖u‖ε,Ω‖v‖1−ε,Ω implies that∫ T

0

‖f(∇w1)−f(∇w2)‖2Ωdt 6 C
∫ T

0

[
‖w̃‖21+ε,Ω‖w̃‖22−ε,Ω+‖w2‖21+ε,Ω‖w̃‖22−ε,Ω

]
dt

6 CB,T l.o.t.(ũ, w̃).

To prove (ii), we will use the inequality ‖u⊗ v‖1,Ω 6 C‖u‖1,Ω‖v‖1+ε,Ω, and then∫ T

0

‖f(∇w1)− f(∇w2)‖21,Ωdt 6 CB

∫ T

0

‖w̃‖22+ε,Ωdt.

3.1.2. A first observability inequality. Here we obtain an observability inequality
that reconstructs the integral of the linear energy in terms of the dissipation, lower
order terms and also boundary traces, which are not apriori bounded by the energy.
The estimate will be obtained by multipliers method applied to all three compo-
nents of the system [2, 39]. In order to control these boundary terms, more subtle
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estimates will be needed which invoke partially regularizing effect of thermoelastic-
ity as well as micro local estimates applied to a hyperbolic component represented
by u. This will be done in Subsection 3.1.3.

Lemma 3.2. Let (ũ, ũt, w̃, w̃t, φ̃, θ̃) be a solution of the system (3.3)-(3.7). Then
there exists T > 0 large enough, such that for any ε ∈ (0, 1

4 ), the following estimate
holds.∫ T

0

Ẽ(t)dt 6C
[
Ẽ(0)+Ẽ(T )

]
+CB

∫ T

0

[
‖ũt‖Γ1 +‖φ̃‖21,Ω+‖θ̃‖21,Ω

]
dt+C

∫ T

0

‖∇ũ‖2Γ1
dt

+ CB

∫ T

0

[
‖∆w̃‖2− 1

2 ,Γ0
+‖w̃t‖21

2−ε,Γ1
+‖w̃‖22+ε,Ω

]
dt+CB,T l.o.t.(ũ, w̃).

Proof. The proof of this lemma is divided into several steps. The geometric condi-
tion (1.19) will be used.

Step 1. Estimate for kinetic energy of in-plane displacement: Multiplying both
sides of equation (3.3) by h∇ũ, where h(x) = x − x0, and integrate in time and
space. We find∫ T

0

(
ũtt − div

{
σ[ε(ũ)] + σ[f(∇w1)− f(∇w2)]

}
+∇φ̃+ P1(ũ, w̃), h∇ũ

)
Ω

dt = 0.

(3.9)

Integrating by parts in time and using divergence theorem yield∫ T

0

(
ũtt, h∇ũ

)
Ω

dt =
[(
ũt, h∇ũ

)
Ω

]T
0

+

∫
Q

|ũt|2dQ− 1

2

∫
Σ1

|ũt|2h·ν dΣ1. (3.10)

Applying the divergence and Gauss theorems in the second term of (3.9), we obtain∫ T

0

(
div{σ[ε(ũ)]}, h∇ũ

)
Ω

dt =

∫ T

0

〈
σ[ε(ũ)]ν, h∇ũ

〉
Γ
dt−

∫ T

0

(
σ[ε(ũ)],∇(h∇ũ)

)
Ω

dt.

(3.11)

Note that∫ T

0

〈
σ[ε(ũ)]ν, h∇ũ

〉
Γ
dt =

∫ T

0

〈
σ[ε(ũ)]ν, h∇ũ

〉
Γ0

dt+

∫ T

0

〈
σ[ε(ũ)]ν, h∇ũ

〉
Γ1

dt.

Then, the identity 〈
σ[ε(ũ)]ν, h∇ũ

〉
Γ0

=
〈
σ[ε(ũ)], ε(ũ)h·ν

〉
Γ0
,

together with boundary condition (3.6)2 imply that∫ T

0

〈
σ[ε(ũ)]ν, h∇ũ

〉
Γ
dt =

∫ T

0

〈
σ[ε(ũ)], ε(ũ)h·ν

〉
Γ0

dt

−
∫ T

0

〈
σ[f(∇w1)− f(∇w2)]ν+κũ−φ̃ν−ũt, h∇ũ

〉
Γ1

dt. (3.12)

It follows from identity (2.29) that∫ T

0

(
σ[ε(ũ)],∇(h∇ũ)

)
Ω

dt =

∫ T

0

(
σ[ε(ũ)], ε(h∇ũ)

)
Ω

dt

=

∫ T

0

(
σ[ε(ũ)], ε(ũ)

)
Ω

dt+

2∑
i,j,k=1

∫ T

0

(
ai,j ,

∂2ũi
∂xk∂xj

hk
)

Ω
dt,
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which combined with (2.28) and with Gauss theorem implies that∫ T

0

(
σ[ε(ũ)], ε(ũ)

)
Ω

dt+
2∑

i,j,k=1

∫ T

0

(
ai,j ,

∂2ũi
∂xk∂xj

hk
)

Ω
dt

=
1

2

∫ T

0

〈
σ[ε(ũ)], ε(ũ)h·ν

〉
Γ0

dt+
1

2

∫ T

0

〈
σ[ε(ũ)], ε(ũ)h·ν

〉
Γ1

dt.

(3.13)

Consequently from (3.11)-(3.13) we find that∫ T

0

(
div{σ[ε(ũ)]}, h∇ũ

)
Ω

dt =
1

2

∫ T

0

[〈
σ[ε(ũ)], ε(ũ)h·ν

〉
Γ0
−
〈
σ[ε(ũ)], ε(ũ)h·ν

〉
Γ1

]
dt

−
∫ T

0

〈
σ[f(∇w1)−f(∇w2)]ν+κũ−φ̃ν+ũt, h∇ũ

〉
Γ1

dt.

(3.14)

Combining (3.10) and (3.14) with (3.9) we obtain∫
Q

|ũt|2dQ =−
[(
ũt, h∇ũ

)
Ω

]T
0

+
1

2

∫
Σ1

|ũt|2h·νdΣ1

+
1

2

∫ T

0

〈
σ[ε(ũ)], ε(ũ)h·ν

〉
Γ0

dt− 1

2

∫ T

0

〈
σ[ε(ũ)], ε(ũ)h·ν

〉
Γ1

dt

−
∫ T

0

〈
σ[f(∇w1) − f(∇w2)]ν + κũ − φ̃ν + ũt, h∇ũ

〉
Γ1

dt

+

∫ T

0

(
div{σ[f(∇w1)−f(∇w2)]}− ∇φ̃−P1(ũ, w̃), h∇ũ

)
Ω

dt.

(3.15)

Let us estimate the nonlinear term P1(ũ, w̃). Using the assumption (1.15) we find
that

|p1,i(u
1, w1)− p1,i(u

2, w2)| 6 C(∇p)
(
|ũ|+ |w̃|

)
, i = 1, 2,

where

C(∇p) = C
(
1 + |u1

1|r−1 + |u2
1|r−1 + |u1

2|r−1 + |u2
2|r−1 + |w1|r−1 + |w2|r−1

)
.

Then Hölder’s inequality with (r−1)
2(r+1) + 1

r+1 + 1
2 = 1 implies that∫ T

0

(
P1(ũ, w̃), h∇ũ

)
Ω

dt 6 Cδ,B,T l.o.t.(ũ, w̃) + δ

∫
Q

|∇ũ|2dQ. (3.16)

The geometric condition (1.19) implies that 1
2

∫ T
0

〈
σ[ε(ũ)], ε(ũ)

〉
Γ0
h·νdt 6 0.

Finally, using these inequalities and Lemma 3.1 in (3.15) we obtain∫
Q

|ũt|2dQ 6 C
[
Ẽ(0) + Ẽ(T )

]
+Cδ

∫
Σ1

[
|ũt|2+|∇ũ|2

]
dΣ1+Cδ

∫ T

0

‖φ̃‖21,Ωdt

+δκ

∫
Σ1

|ũ|2dΣ1 + δ

∫
Q

|∇ũ|2dQ+ CB,δ

∫ T

0

‖w̃‖22+ε,Ωdt+ CB,T,δl.o.t.(ũ, w̃).

(3.17)
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Here we used the fact that
∫ T

0

〈
σ[ε(ũ)], ε(ũ)h·ν

〉
Γ1

dt 6 C
∫

Σ1
|∇ũ|2dΣ1.

Step 2. Estimate for the difference of potential and kinetic energies: Multiply both
sides of equation (3.3) by ũ and integrate in time and space∫ T

0

(
ũtt − div

{
σ[ε(ũ)] + σ[f(∇w1)− f(∇w2)]

}
+∇φ̃+ P1(ũ, w̃), ũ

)
Ω

dt = 0.

(3.18)

Using Gauss theorem in the second term of (3.18) we find∫ T

0

(
div{σ[ε(ũ)]}, u

)
Ω

dt =

∫ T

0

〈
σ[ε(ũ)]ν, ũ

〉
Γ
dt−

∫ T

0

(
σ[ε(ũ)], ε(ũ)

)
Ω

dt.

Boundary conditions (3.6)1 and (3.6)2 imply that∫ T

0

〈
σ[ε(u)]ν, u

〉
Γ
dt = −

∫ T

0

〈
σ[f(∇w1)− f(∇w2)]ν + κũ− φ̃ν + ũt, ũ

〉
Γ1

dt.

These identities in (3.18) imply in the following equality

−
∫ T

0

∫
Ω

|ũt|2dΩdt+

∫ T

0

∫
Ω

σ[ε(ũ)]ε(ũ)dΩdt+ κ

∫ T

0

∫
Γ1

|ũ|2dΓ1dt

= −
[(
ũt, ũ

)
Ω

]T
0
−
∫ T

0

〈
σ[f(∇w1)−f(∇w2)]ν+κũ−φ̃ν+ũt, ũ

〉
Γ1

dt

+

∫ T

0

(
div{σ[f(∇w1)− f(∇w2)]} − ∇φ̃−P1(ũ, w̃), ũ

)
Ω

dt.

Proceeding as in (3.16) we obtain the following estimate
∫ T

0

(
P1(ũ, w̃), ũ

)
Ω

dt 6
CB,T l.o.t.(ũ, w̃). This inequality and Trace theorem imply that

−
∫ T

0

∫
Ω

|ũt|2dΩdt+

∫ T

0

∫
Ω

σ[ε(ũ)]ε(ũ)dΩdt+ κ

∫ T

0

∫
Γ1

|ũ|2dΓ1dt

6 C[Ẽ(0)+Ẽ(T )]+Cδ

∫ T

0

[
‖f(∇w1)−f(∇w2)‖21,Ω+‖ũt‖2Γ1

]
dt

+ Cδ

∫ T

0

‖φ̃‖21,Ωdt + δ

∫ T

0

‖ũ‖21,Ωdt + CB,T,δ l.o.t.(ũ, w̃).

Choosing δ > 0 small enough and using Lemma 3.1 we find

−
∫ T

0

∫
Ω

|ũt|2dΩdt+

∫ T

0

∫
Ω

σ[ε(ũ)]ε(ũ)dΩdt+ κ

∫ T

0

∫
Γ1

|ũ|2dΓ1dt

6 C[Ẽ(0)+Ẽ(T )]+C

∫ T

0

[
‖ũt‖2Γ1

+‖φ̃‖21,Ω
]
dt

+CB

∫ T

0

‖w̃‖22+ε,Ωdt + CB,T,δ l.o.t.(ũ, w̃).

(3.19)

Now, multiplying both sides of equation (3.4) by w̃ and integrating in time and
space, ∫ T

0

(
w̃tt + ∆2w̃ − div{N2}+ ∆θ̃ + P2(ũ, w̃), w̃

)
Ω

dt = 0. (3.20)
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To handle the second term in (3.20) we use the following identity(
∆2w̃, ψ

)
Ω

= a(w̃, ψ) +

∫
Γ1

[∂ν(∆w̃) + (1− µ)B2w̃]ψ dΓ1

−
∫

Γ1

[
∆w̃+(1− µ)B1w̃

]
∂νψdΓ1+

∫
Γ0

[∂ν(∆w̃) ψ −∆w̃∂νψ]dΓ0,

where ψ∈H2(Ω). Taking ψ = w̃ and using boundary conditions (3.6)1, (3.6)3,(3.6)4

we find∫ T

0

(
∆2w̃, w̃

)
Ω

dt =

∫ T

0

a(w̃, w̃)dt+

∫ T

0

〈N2 ·ν − ∂ν θ̃, w̃〉Γ1
dt+

∫
Σ1

θ̃∂νw̃dΣ1. (3.21)

Using Gauss theorem we can rewrite the third term of (3.20) as∫ T

0

(
div{N2}, w̃

)
Ω

dt = −
∫ T

0

(
N2,∇w̃

)
Ω

dt+

∫ T

0

〈
N2 ·ν, w̃

〉
Γ1

dt. (3.22)

Combining (3.21) and (3.22) with (3.20) we obtain

−
∫
Q

|w̃t|2dQ+

∫ T

0

a(w̃, w̃)dt=−
[(
w̃t, w̃

)
Ω

]T
0
−
∫ T

0

[
〈θ̃, ∂νw̃〉Γ1−

(
∇θ̃,∇w̃

)
Ω

]
dt−R, (3.23)

where

R =

∫ T

0

(
σ[N(u1, w1)]∇w1 − σ[N(u2, w2)]∇w2,∇w̃

)
Ω

dt

+

∫ T

0

(
φ1∇w1 − φ2∇w2,∇w̃

)
Ω

dt+

∫ T

0

(
P2(ũ, w̃), w̃

)
Ω

dt.

Next, we estimate the integrals on the right-hand side of (3.23). Trace theorem
provides

〈θ, ∂νw̃〉Γ1 6 ‖θ‖Γ1 ‖∂νw̃‖Γ1
6 Cδ‖θ‖21,Ω + δ‖w‖22,Ω. (3.24)

Let us estimate R. Using the definition of stress N(·, ·) we find∫ T

0

(
σ[N(u1, w1)]∇w1 − σ[N(u2, w2)]∇w2,∇w̃

)
Ω

dt

=

∫
Q

σ[ε(ũ)]·(∇w2 ⊗∇w̃)dQ+

∫
Q

σ
[
f(∇w1)− f(∇w2)

]
·(∇w2 ⊗∇w̃)dQ

+

∫
Q

σ
[
ε(u1) + f(∇w1)

]
·(∇w̃ ⊗∇w̃)dQ.

The inequality ‖u⊗v‖Ω 6 C‖u‖ε,Ω‖v‖1−ε,Ω, which holds for ε ∈ (0, 1), implies that∫
Q

σ
[
ε(ũ)

]
·(∇w2 ⊗∇w̃)dQ 6 δ

∫ T

0

‖σ[ε(ũ)]‖2Ωdt+ CB,T,δl.o.t.(ũ, w̃),

∫
Q

σ
[
f(∇w1)− f(∇w2)

]
· (∇w2 ⊗∇w̃)dQ

6 C
∫ T

0

‖f(∇w1)−f(∇w2)‖2Ωdt+ CB,T l.o.t.(ũ, w̃),

∫
Q

[σ
[
ε(u1) + f(∇w1)

]
·(∇w̃ ⊗∇w̃)dQ 6 CB,T l.o.t.(ũ, w̃),
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0

(
φ1∇w1 − φ2∇w2,∇w̃

)
Ω

dt 6 C
∫ T

0

‖φ̃‖2Ωdt+ CB,T l.o.t.(ũ, w̃)

and
∫ T

0

(
P2(ũ, w̃), w̃

)
Ω

dt 6 CB,T l.o.t.(ũ, w̃). These estimates and Lemma 3.1 imply
that

R 6 δ
∫ T

0

‖σ[ε(ũ)]‖2Ωdt+ C

∫ T

0

‖φ̃‖2Ωdt+ CB,T,δ l.o.t.(ũ, w̃). (3.25)

Inserting this and (3.24) into (3.23), we obtain

−
∫
Q

|w̃t|2dQ+

∫ T

0

a(w̃, w̃)dt 6 C[Ẽ(0)+Ẽ(T )]+CB

∫ T

0

[
‖φ̃‖21,Ω + ‖θ̃‖21,Ω

]
dt

+ δ

∫ T

0

‖σ[ε(ũ)]‖2Ω dt + CB,T,δ l.o.t.(ũ, w̃).

This estimate and (3.19), for δ > 0 small enough, show that∫ T

0

[
Ẽp(t)−Ẽk(t)

]
dt 6C[Ẽ(0)+Ẽ(T )] + CB

∫ T

0

[
‖ũ‖21,Γ1

+‖φ̃‖21,Ω+‖θ̃‖21,Ω
]
dt

+ CB

∫ T

0

‖w̃‖22+ε,Ωdt+ CB,T l.o.t.(ũ, w̃). (3.26)

Step 3. Estimate for kinetic energy of vertical displacement: Let us consider the
following operators.
• The Laplace operator: AD : L2(Ω) → L2(Ω), where AD =−∆, equipped with

Dirichlet boundary condition and domain D(AD) = H2(Ω) ∩H1
0 (Ω).

• The elliptic operator D: Dh = v ⇔
{

∆v = 0 in Ω
v = h on Γ.

Classical elliptic regular-

ity [43] provides

‖A−1
D v‖2,Ω 6 C‖v‖Ω v ∈ L2(Ω),

and
D ∈ L(Hs(Γ), Hs+ 1

2 (Ω)), s ∈ R.
For v∈H2(Ω) we have that

−v +D(v|Γ) ∈ D(AD) and A−1
D ∆v = −v +D(v|Γ). (3.27)

Now, multiply both sides of equation (3.4) by A−1
D θ and integrating in time and

space, ∫ T

0

(
w̃tt + ∆2w̃ − div{N2}+ ∆θ̃ + P2(ũ, w̃),A−1

D θ̃
)

Ω
dt = 0.

Proceeding as before, we obtain∫ T

0

(
w̃tt,A−1

D θ̃
)

Ω
dt+

∫ T

0

[
a(w̃,A−1

D θ̃)+
(
N2,∇(A−1

D θ̃)
)

Ω
+
(
P2(ũ, w̃),A−1

D θ̃
)

Ω

]
dt

=

∫ T

0

[
−
〈
θ̃, ∂ν(A−1

D θ̃)
〉

Γ1
+
〈
∆w̃, ∂ν(A−1

D θ̃)
〉

Γ0
+
(
∇θ̃,∇(A−1

D θ̃)
)

Ω

]
dt.

(3.28)

Using relation (3.27) we obtain∫ T

0

(w̃tt,A−1
D θ̃)Ωdt=

[
(w̃t,A−1

D θ̃)Ω

]T
0
+

∫ T

0

‖w̃t‖2Ω−
(
w̃t,D(w̃t|Γ)− θ̃ +D(θ̃|Γ)

)
Ω

dt.
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On the other hand, for every δ, δ0 > 0, there exist constants Cδ, Cδ0 > 0 such that∫ T

0

(
w̃t,D(w̃t|Γ)

)
Ω

dt 6
∫ T

0

‖w̃t‖−(1−ε),Ω‖D(w̃t|Γ)‖1−ε,Ω dt

6 δ0

∫ T

0

‖w̃t‖2Ωdt+ Cδ0

∫ T

0

‖w̃t‖21
2−ε,Γ1

dt,

(3.29)

∫ T

0

(
w̃t, θ̃−D(θ̃|Γ)

)
Ω

dt 6 δ0

∫ T

0

‖w̃t‖2Ωdt+Cδ0

∫ T

0

‖θ̃‖21,Ωdt, (3.30)

∫ T

0

a(w̃,A−1
D θ̃)dt 6 δ

∫ T

0

‖w̃‖22,Ωdt+ Cδ

∫ T

0

‖θ̃‖2Ωdt, (3.31)

∫ T

0

(
P2(ũ, w̃),A−1

D θ̃
)

Ω
dt 6 CB,T l.o.t.(ũ, w̃) + C

∫ T

0

‖θ̃‖2Ωdt, (3.32)

∫ T

0

[(
∇θ̃,∇(A−1

D θ̃)
)

Ω
−
〈
θ̃, ∂ν(A−1

D θ̃)
〉

Γ1

]
dt 6 C

∫ T

0

‖θ̃‖21,Ωdt, (3.33)

∫ T

0

〈
∆w̃, ∂ν(A−1

D θ̃)
〉

Γ0
dt 6 C

∫ T

0

‖∆w̃‖2− 1
2 ,Γ0

dt+ C

∫ T

0

‖θ̃‖2Ωdt. (3.34)

It remains to estimate the nonlinear terms in (3.28). For this, considering the
definition of N2, we find∫ T

0

(
N2,∇(A−1

D θ̃)
)

Ω
dt =

∫ T

0

(
σ[N(u1, w1)]∇w1−σ[N(u2, w2)]∇w2,∇(A−1

D θ̃)
)

Ω
dt

+

∫ T

0

(
φ1∇w1 − φ2∇w2,∇(A−1

D θ̃)
)

Ω
dt.

(3.35)

Let us estimate the integrals on the right-side of (3.35). Proceeding as in (3.25) we
obtain∫ T

0

(
σ[N(u1, w1)]∇w1 − σ[N(u2, w2)]∇w2,∇(A−1

D θ̃)
)

Ω
dt

6 δ
∫ T

0

‖σ[ε(ũ)]‖2Ωdt+ CB,δ

∫ T

0

‖θ̃‖2Ωdt+ CB,T,δl.o.t.(ũ, w̃),

∫ T

0

(
φ1∇w1−φ2∇w2,∇(A−1

D θ̃)
)

Ω
dt 6 CB

∫ T

0

[
‖φ̃‖21,Ω+‖θ̃‖21,Ω

]
dt+CB,T l.o.t.(ũ, w̃).

Then we have∫ T

0

(
N2,∇(A−1

D θ̃)
)

Ω
dt

6 δ
∫ T

0

‖σ[ε(ũ)]‖2Ωdt+ CB,δ

∫ T

0

[
‖φ̃‖21,Ω+‖θ̃‖21,Ω

]
dt+ CB,T,δl.o.t.(ũ, w̃).

(3.36)
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Therefore the estimates (3.29)-(3.34) and (3.36) applied in (3.28), for δ0 > 0 small
enough, yield∫ T

0

‖w̃t‖2Ωdt

6 C[Ẽ(0)+ Ẽ(T )]+δ

∫ T

0

‖σ[ε(ũ)]‖2Ωdt+ CB,δ

∫ T

0

[
‖θ̃‖21,Ω+‖φ̃‖21,Ω

]
dt

+ CB

∫ T

0

[
‖∆w̃‖2− 1

2 ,Γ0
+‖w̃t‖21

2−ε,Γ1
+‖w̃‖22+ε,Ω

]
dt+CB,T,δl.o.t.(ũ, w̃).

(3.37)

Step 4. Completion of the proof: Combining the inequalities (3.17), (3.26), (3.37)
and selecting suitable δ > 0 small we obtain the conclusion.

3.1.3. Trace regularity and analytic estimates. In order to control boundary terms
in estimate given in Lemma 3.2, more subtle estimates are needed, including trace
regularity and analytic estimates. They are essential to prove the quasistability
inequality. Our result is based on the corresponding trace estimate for the linear
model of dynamic elasticity [24]. The analytic estimates rely on the analyticity of
the semigroup generator associated with the linear thermoelastic plate.

Lemma 3.3. Let (ũ, ũt, w̃, w̃t, φ̃, θ̃) be a regular solution of the system (3.3)-(3.7).
Then for any ε∈(0, 1

4 ) and α∈(0, T2 ) the following trace regularity is valid.∫
Σα

|∇ũ|2dΣα 6 Cα

∫ T

0

[
‖ũt‖2Γ1

+‖φ̃‖21,Ω
]
dt+ Cα,B

∫ T

0

‖w̃‖22+ε,Ωdt+ Cα,B,T l.o.t.(ũ, w̃).

Proof. The proof is divided into several steps.

Step 1. Trace regularity for the linear model: Consider

F̃ = div{σ[f(∇w1)− f(∇w2)]} − ∇φ̃−P1(ũ, w̃). (3.38)

Then the solution ũ = ũ(x, y, t) satisfies the problem

ũtt − div{σ[ε(ũ)]} = F̃ .

By using the trace regularity stated in [24] we obtain the estimate∫
Σα

|∇ũ τ |2dΣα 6 Cα

∫ T

0

[
‖ũt‖2Γ1

+ ‖F̃‖2− 1
2 ,Ω

+ ‖σ[ε(ũ)]ν‖2Γ1
+ ‖ũ‖21−ε,Ω

]
dt,

(3.39)

where we used the inequality ‖ũ‖21
2 +ε,Ω

6 C‖ũ‖21−ε,Ω.

Step 2. Estimate for F̃ defined in (3.38): For ε ∈ (0, 1
2 ), we have

‖F̃ (t)‖2− 1
2 ,Ω
6 CB‖w̃‖22+ε,Ω + C‖φ̃‖21,Ω + CB l.o.t.(ũ, w̃), ∀ t > 0. (3.40)

To prove this, consider ψ ∈ H 1
2 (Ω). Then(

div{σ[f(∇w1)− f(∇w2)]}, ψ
)

Ω

6 C
[
‖w̃‖2,Ω‖∇w̃·ψ‖Ω+‖w̃‖2,Ω‖∇w2 ·ψ‖Ω+‖w2‖2,Ω‖∇w̃·ψ‖Ω

]
.

Hölder inequality and Sobolev embeddings H2−ε(Ω)⊂W 1,4(Ω) and H
1
2 (Ω)⊂L4(Ω)

imply that

‖w̃‖2,Ω‖∇w̃·ψ‖Ω 6 CB‖w̃‖W 1,4(Ω)‖ψ‖L4(Ω) 6 CB‖w̃‖2−ε,Ω‖ψ‖ 1
2 ,Ω

,
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‖w̃‖2,Ω‖∇w2 ·ψ‖Ω 6 C‖w̃‖2,Ω‖w2‖W 1,4(Ω)‖ψ‖L4(Ω) 6 CB‖w̃‖2,Ω‖ψ‖ 1
2 ,Ω

,

‖w2‖2,Ω‖∇w̃·ψ‖Ω 6 CB‖w̃‖W 1,4(Ω)‖ψ‖L4(Ω) 6 CB‖w̃‖2−ε,Ω‖ψ‖ 1
2 ,Ω

.

These inequalities and Sobolev embedding H2+ε(Ω) ⊂ H2(Ω) imply that

‖div{σ[f(∇w1)−f(∇w2)]}‖2− 1
2 ,Ω
6 CB‖w̃‖22+ε,Ω + CB l.o.t.(ũ, w̃). (3.41)

Using Hölder’s inequality and Sobolev embedding we find that

(∇φ̃, ψ
)

Ω
6 ‖∇φ̃‖Ω‖ψ‖Ω 6 C‖φ̃‖1,Ω‖ψ‖ 1

2 ,Ω
, (3.42)

which with (1.15) lead to(
P1(ũ, w̃), ψ

)
Ω
6 CB‖ũ‖Lr+1(Ω)‖ψ‖Ω 6 CB‖ũ‖Lr+1(Ω)‖ψ‖ 1

2 ,Ω
. (3.43)

Therefore (3.41) together with (3.42) and (3.43) shows the estimate (3.40) holds.

Step 3. Estimate for the stress tensor: For ε ∈ (0, 1
2 ), we have∫

Σα

|σ[ε(ũ)]|2dΣα 6 C
∫ T

0

[
‖f(∇w1)−f(∇w2)‖2Γ1

+‖ũ‖21−ε,Ω+‖φ̃‖21,Ω+‖ũt‖2Γ1

]
dt.

(3.44)

Indeed, the boundary condition (3.6)2 implies that

‖σ[ε(ũ)]‖2Σ1
6 C

[
‖f(∇w1)− f(∇w2)‖2Σ1

+ ‖ũ‖2Σ1
+ ‖φ̃‖2Σ1

+ ‖ũt‖2Σ1

]
.

Then using inequalities ‖ũ‖2Σ1
6 C‖ũ‖21−ε,Ω and ‖φ̃‖2Σ1

6 C‖φ̃‖21,Ω, we obtain (3.44).

Step 4. Estimate for |∇ũ|: We have

|∇ũ| 6 C
[
|∇ũ τ |+ |σ[ũ] ν|

]
, (3.45)

where ν=(ν1, ν2) and τ=(τ1, τ2)=(−ν2, ν1) denote, respectively, the outward unit
normal and the unit tangential vectors, at a point of Γ. To prove this, let us denote
∇ũ as a 4-vector (∇ũ) = (ũ1,x, ũ1,y, ũ2,x, ũ2,y). Then we obtain the algebraic system

A(∇ũ)> = (∇ũ τ, σ[ũ] ν)>,

where A is a 4 × 4 matrix with constant determinant over Γ. Note that the right
hand side of above identity denotes indeed a 4-vector. Then we obtain

(∇ũ)> = A−1(∇ũ τ, σ[ũ] ν)>,

and this implies (3.45).

Step 5. Conclusion: Integrating in time and space the inequality (3.45) we obtain∫
Σα

|∇ũ|2 dΣα 6 C
∫

Σα

|∇ũ τ |2 dΣα + C

∫
Σα

|σ[ũ] ν|2dΣα.

Inequalities (3.39), (3.40) and (3.44) imply∫
Σα

|∇ũ|2 dΣα 6Cα

∫ T

0

‖f(∇w2)− f(∇w2)‖2Γ1
dt+ Cα

∫ T

0

‖ũt‖2Γ1
dt

+ Cα

∫ T

0

[
‖φ̃‖21,Ω + ‖w̃‖22+ε,Ω

]
dt+ Cα,T l.o.t.(ũ, w̃).

Then, inequality (ii) of Lemma 3.1 implies in the assertion of Lemma 3.3.
Next we prove an improved regularity for the vertical displacement w̃. This is

done by exploiting the analyticity of the thermoelastic semigroup.
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Lemma 3.4. Let (ũ, ũt, w̃, w̃t, φ̃, θ̃) be a regular solution of the system (3.3)-(3.7).
Then for any ε ∈ (0, 1

2 ),∫ T

0

[
‖w̃‖23−ε,Ω+‖w̃t‖21−ε,Ω+‖θ̃‖21−ε,Ω

]
dt 6 CẼ(0) + CB

∫ T

0

‖φ̃‖21,Ωdt+ CB,T l.o.t.(ũ, w̃).

Proof. The proof of the lemma is divided into three parts.

Step 1. Abstract setting: We rewrite the original problem via variation of param-
eters. To accomplish this we introduce the following operators.
• The biharmonic operator: Let AM be a positive and self-adjoint operator on

L2(Ω) given by AMv = ∆2v with domain

D(AM ) =

v ∈ H4(Ω)

∣∣∣∣∣∣
v = 0, ∇v = 0 on Γ0,[
∆v + (1− µ)B1v

]∣∣
Γ1

= 0,[
∂
∂ν (∆v) + (1− µ)B2v

] ∣∣
Γ1

= 0.

 .

• The Green’s operators: Let Gi, i = 1, 2, be the operators corresponding to the
mechanical boundary conditions defined by

G1g = v ⇔


∆2v = 0 in Ω,

v = 0, ∇v = 0 on Γ0,[
∆v + (1− µ)B1v

]∣∣
Γ1

= g,[
∂

∂ν
(∆v) + (1− µ)B2v

] ∣∣
Γ1

= 0,

and

G2g = v ⇔


∆2v = 0 in Ω,

v = 0, ∇v = 0 on Γ0,[
∆v + (1− µ)B1v

]∣∣
Γ1

= 0,[
∂

∂ν
(∆v) + (1− µ)B2v

]∣∣∣∣
Γ1

= g.

.

Elliptic regularity (e.g. [43]) gives G1 : L2(Γ1) → H
5
2 (Ω)⊂H 5

2−4ε(Ω)≡D(A
5
8−ε
M )

and G2 : L2(Γ1) → H
7
2 (Ω) ⊂ H

7
2−4ε(Ω) ≡ D(A

7
8−ε
M ), ε > 0. By application of

Green’s formula (e.g. [42, 43]) we get, for v ∈ D(AM ),

G∗1AM v = − ∂

∂ν
(v|Γ1), G∗2AM v = −v|Γ1 . (3.46)

We have that

w :=

[
w̃ +G1(θ̃|Γ1

) +G2

(
∂θ̃

∂ν

)]
∈ D(AM ).

Then from the definition of operators AM , G1, G2 and A, we have, (cf. [41])

w̃tt+AMw−div{F (ũ, w̃, φ̃)}−AMG2(F (ũ, w̃, φ̃)·ν)+∆θ̃ + P2(ũ, w̃) = 0,

θ̃t −∆θ̃ −∆w̃t = 0,

where

F (ũ, w̃, φ̃) = σ[N(u1, w1)]∇w1 − σ[N(u2, w2)]∇w2 + φ1∇w1 − φ2∇w2.
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Therefore, we can rewrite the problem for (w̃, θ̃) in the following form w̃t
w̃tt
θ̃t

 = A

 w̃w̃t
θ̃

+

 0

div{F (ũ, w̃, φ̃)}+AMG2(F (ũ, w̃, φ̃)·ν)−P2(ũ, w̃)
0

,
(3.47)

where A : H2(Ω)× L2(Ω)× L2(Ω)→ H2(Ω)× L2(Ω)× L2(Ω) with domain

D(A) =

(w, v, θ) ∈ H4(Ω)× [H2(Ω)]2

∣∣∣∣∣∣∣∣
w = 0,∇w = 0 on Γ0,
∆w + (1− µ)B1w + θ|Γ1

= 0,
∂ν(∆w) + (1− µ)B2w + ∂νθ

∣∣
Γ1

= 0,

∂νθ + λ2θ = 0 on Γ.


and defined by

A

 w̃
w̃t
θ̃

 =

 w̃t

−AM w̃ −AM (G1θ̃|Γ1
)−AMG2( ∂θ̃∂ν )−∆θ̃

∆θ̃ + ∆w̃t

 .
The operator A generates an analytic and exponentially stable semigroup on the
space

H = H2(Ω)× L2(Ω)× L2(Ω),

cf. [41]. Moreover A is m-dissipative and A−1 is bounded in H. Therefore, from
[6, Proposition 6.1] we infer that, for α ∈ (0, 1),

D(Aα) = [D(A), H]1−α ⊂ H2(1+α)(Ω)×H2α(Ω)×H2α(Ω). (3.48)

Then, for ε < 1
2 , we can rewrite the solution of (3.47) using variation of parameters

formula,

A
1−ε

2

 w̃
w̃t
θ̃

 = A
1−ε

2 eAt

 w̃0

w̃1

θ̃0

+

∫ t

0

AeA(t−s)A−
1+ε

2

 0

F(ũ, w̃, φ̃)
0

ds, (3.49)

where F(ũ, w̃, φ̃) = div{F (ũ, w̃, φ̃)}+AMG2(F (ũ, w̃, φ̃)·ν)−P2(ũ, w̃).

Step 2. Some estimates: Since A is m-dissipative, invertible and generates an
analytic semigroup which is exponentially stable, the following estimates are valid,
for α 6 1

2 ,∥∥∥∥∫ t

0

Ae(t−s)Af(s)ds

∥∥∥∥
L2(0,T ;H)

+

∥∥∥∥∫ t

0

Aαe(t−s)Af(s)ds

∥∥∥∥
H

6 C‖f‖L2(0,T ;H),∥∥AαetAx∥∥
L2(0,T ;H)

6 C‖x‖H .
(3.50)

Inserting inequalities (3.50) in (3.49), for ε ∈ (0, 1
2 ), shows that∥∥∥∥∥∥A 1−ε

2

 w̃
w̃t
θ̃

∥∥∥∥∥∥
L2(0,T ;H)

6 C

∥∥∥∥∥∥
 w̃0

w̃1

θ̃0

∥∥∥∥∥∥
H

+ C

∥∥∥∥∥∥A− 1+ε
2

 0

F(ũ, w̃, φ̃)
0

∥∥∥∥∥∥
L2(0,T ;H)

.

(3.51)
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Using the characterization (3.48), with α = 1+ε
2 , and by duality we find that∥∥∥∥∥∥A− 1+ε

2

 0

F(ũ, w̃, φ̃)
0

∥∥∥∥∥∥
H

6C‖F(ũ, w̃, φ̃)‖−(1+ε),Ω. (3.52)

Let us estimate ‖F(ũ, w̃, φ̃)‖−(1+ε),Ω. The equalities (3.46) imply, for every ψ ∈
H1+ε(Ω),

(F(ũ, w̃, φ̃), ψ)Ω =
(
div{F (ũ, w̃, φ̃)}+AMG2(F (ũ, w̃, φ̃)·ν), ψ

)
Ω
−(P2(ũ, w̃), ψ)Ω

= −(F (ũ, w̃, φ̃),∇ψ)Ω − (P2(ũ, w̃), ψ)Ω.

(3.53)

First, using the definition of F we obtain(
F (ũ, w̃, φ̃),∇ψ

)
Ω

=
(
σ[ε(ũ)]∇w2,∇ψ

)
Ω

+
(
σ[f(∇w1)−f(∇w2)]∇w2,∇ψ

)
Ω

+
(
σ[ε(u1)+f(∇w1)]∇w̃,∇ψ

)
Ω

+
(
φ̃∇w2+φ1∇w̃,∇ψ

)
Ω
.

(3.54)

Let us estimate the inner products in (3.54). For this we recall the following in-
equalities (cf. [13]) (

uv,w
)

Ω
6 C‖uv‖η,Ω‖w‖−η,Ω,

‖uv‖η,Ω 6 C‖u‖1,Ω‖v‖η+η0,Ω,

‖uv‖−η,Ω6 C‖u‖1−η,Ω‖v‖Ω,

where η < 1
2 and η0 ∈ R. Consider η < ε. Then(
σ[ε(ũ)]∇w2,∇ψ

)
Ω
6 C‖ε(ũ)‖−η,Ω‖∇w2 ·∇ψ‖η,Ω
6 C‖ε(ũ)‖−η,Ω‖∇w2‖1,Ω‖∇ψ‖η+η0,Ω,

and taking η0∈R such that η0 + η 6 ε, we obtain(
σ[ε(ũ)]∇w2,∇ψ

)
Ω
6 C‖ũ‖1−η,Ω‖w2‖2,Ω‖ψ‖1+ε,Ω.

To the others terms, we use Hölder inequality and Sobolev embedding, so we find(
σ[f(∇w1)−f(∇w2)]∇w2,∇ψ

)
Ω
6 C‖f(∇w1)−f(∇w2)‖Ω‖w2‖2+ε,Ω‖ψ‖1+ε,Ω

6 CB‖w̃‖2−ε,Ω‖w2‖2+ε,Ω‖ψ‖1+ε,Ω,

(
σ[ε(u1) + f(∇w1)]∇w̃,∇ψ

)
Ω
6 CB‖w̃‖

1−2ε
3−ε

Ω ‖w̃‖
2+ε
3−ε
3−ε,Ω‖ψ‖1+ε,Ω

6
[
δ‖w̃‖3−ε,Ω + CB,δ‖w̃‖Ω

]
‖ψ‖1+ε,Ω,(

φ̃∇w2 + φ1∇w̃,∇ψ
)

Ω
6 C

[
‖φ̃∇w2‖−ε,Ω + ‖φ1∇w̃‖−ε,Ω

]
‖∇ψ‖ε,Ω

6 C
[
‖φ̃‖Ω‖w2‖2−ε,Ω + ‖φ1‖Ω‖w̃‖2−ε,Ω

]
‖ψ‖1+ε,Ω.

Finally, by (1.16) we obtain

(P2(ũ, w̃), ψ)Ω 6 CB
[
‖ũ‖Lr+1 + ‖w̃‖Lr+1

]
‖ψ‖Ω.

Combining these estimates with (3.53) we obtain

‖F(ũ, w̃, φ̃)‖2−(1+ε),Ω 6 CB‖φ̃‖
2
Ω + δ‖w̃‖23−ε,Ω + CB,δ l.o.t.(ũ, w̃). (3.55)
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Step 3. Conclusion: Combining the estimate (3.55) together with (3.51)-(3.52),

and the characterization of D(A 1−ε
2 ), it follows that∫ T

0

[
‖w̃‖23−ε,Ω + ‖w̃t‖21−ε,Ω + ‖θ̃‖21−ε,Ω

]
dt

6 CẼ(0) + CB

∫ T

0

[
‖φ̃‖2Ω + δ‖w̃‖23−ε,Ω

]
dt+ Cδ,B,T l.o.t.(ũ, w̃).

Taking δ > 0 small enough we obtain the main result of Lemma 3.4.

Remark 3.2. The estimate in the Lemma 3.4 and the Trace Theorem imply that∫ T

0

[
‖∆w̃‖2Γ0

+ ‖w̃t‖21
2−ε,Γ1

]
dt 6 CẼ(0) + CB

∫ T

0

‖φ̃‖21,Ωdt+ CB,T l.o.t.(ũ, w̃),

holds for ε ∈ (0, 1
2 ).

3.1.4. A second observability inequality.

Lemma 3.5. Let (ũ, ũt, w̃, w̃t, φ̃, θ̃) be a solution of the system (3.3)-(3.7). Then
for α ∈ (0, T2 ), there exist positive constants Cα, Cα,B , Cα,B,T , such that

TẼ(T ) +

∫ T

0

Ẽ(t)dt+

∫ T

0

[
‖ũt‖2Γ1

+ ‖φ̃‖21,Ω
]
dt+

[
sup
t∈[0,T ]

Ẽ
1
2 (t)

]2
6 CẼ(0) + [C + 2α]Ẽ(T ) + Cα,B D

T
0 (ũ, φ̃, θ̃) + Cα

∫ T

0

∣∣∣∣∣
4∑
i=1

Ri(t)

∣∣∣∣∣ dt
+

∫ T

0

∫ T

s

∣∣∣∣∣
4∑
i=1

Ri(t)

∣∣∣∣∣dtds+ Cα,B,T l.o.t.(ũ, w̃). (3.56)

Proof. The Lemma 3.2 applied to the interval [α, T −α] and estimate in the Lemma
3.3 imply that∫ T−α

α

Ẽ(t)dt

6 C
[
Ẽ(α) + Ẽ(T − α)

]
+Cα,B

∫ T−α

α

[
‖ũt‖2Γ1

+ ‖θ̃‖21,Ω + ‖φ̃‖21,Ω
]
dt

+ Cα,B

∫ T−α

α

[
‖∆w̃‖2− 1

2 ,Γ0
+‖w̃t‖21

2−ε,Γ1
+‖w̃‖22+ε,Ω

]
dt+Cα,B,T l.o.t.(ũ, w̃).

Interpolation inequality ‖w‖2+ε,Ω 6 C‖w‖
1−2ε
3−ε

Ω ‖w‖
2+ε
3−ε
3−ε,Ω, together with Lemma 3.4

imply that∫ T−α

α

Ẽ(t)dt 6 C
[
Ẽ(0)+Ẽ(α)+Ẽ(T − α)

]
+Cα,BD

T
0 (ũ, φ̃, θ̃) + Cα,B,T l.o.t.(ũ, w̃).

(3.57)

We shall extend the integral on the left-hand side to the interval (0, T ). To this
end, using the energy equality (3.8) we find that∫ α

0

Ẽ(t)dt 6 αẼ(α) +

∫ α

0

∫ t

0

4∑
i=1

Ri(s)dsdt,
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T−α
Ẽ(t)dt 6 αẼ(T − α) +

∫ T

T−α

∫ t

0

4∑
i=1

Ri(s)dsdt,

Ẽ(α) 6 Ẽ(T ) +DT
α (ũ, φ̃, θ̃) +

∣∣∣∣∣
∫ T

α

4∑
i=1

Ri(t)dt

∣∣∣∣∣ ,
Ẽ(T − α) 6 Ẽ(T ) +DT

T−α(ũ, φ̃, θ̃) +

∣∣∣∣∣
∫ T

T−α

4∑
i=1

Ri(t)dt

∣∣∣∣∣ ,
and thus∫ α

0

Ẽ(t)dt+

∫ T

T−α
Ẽ(T ) dt 6 2αẼ(T ) + 2αDT

0 (ũ, φ̃, θ̃)+2(α+ 1)

∫ T

0

∣∣∣∣∣
4∑
i=1

Ri(t)

∣∣∣∣∣dt.
(3.58)

The energy identity (3.8) also implies that

TẼ(T ) 6
∫ T

0

Ẽ(s)ds+

∫ T

0

∫ T

s

∣∣∣∣∣
4∑
i=1

Ri(t)

∣∣∣∣∣ dtds. (3.59)

Combining (3.58) and (3.59) with (3.57) we obtain the inequality

TẼ(T ) +

∫ T

0

Ẽ(t)dt

6 CẼ(0) + [C + 2α]Ẽ(T ) + Cα,B D
T
0 (ũ, φ̃, θ̃) + Cα,B,T l.o.t.(ũ, w̃)

+ Cα

∫ T

0

∣∣∣∣∣
4∑
i=1

Ri(t)

∣∣∣∣∣dt+
∫ T

0

∫ T

s

∣∣∣∣∣
4∑
i=1

Ri(t)

∣∣∣∣∣dtds. (3.60)

In order to absorb some terms that will come from the nonlinearities, we shall add∫ T
0

[
‖ũt‖2Γ1

+‖φ̃‖21,Ω
]
dt+

[
supt∈[0,T ] Ẽ

1
2 (t)

]2
in both sides of (3.60). Then using the

energy equality (3.8) we obtain[
sup
t∈[0,T ]

Ẽ
1
2 (t)

]2
6 Ẽ(0) +DT

0 (ũ, φ̃, θ̃) +

∣∣∣∣∣
∫ T

0

4∑
i=1

Ri(t)dt

∣∣∣∣∣ .
Therefore we obtain (3.56). This completes the proof of Lemma 3.5.

3.1.5. Quasistability inequality. We begin with estimates for Ri(t), 1 6 i 6 4.

Lemma 3.6. One has

max
{∫ T

0

∫ T

s

∣∣∣ 4∑
i=1

Ri(t)
∣∣∣dtds ,∫ T

0

∣∣∣ 4∑
i=1

Ri(t)
∣∣∣dt}

6 δ
∫ T

0

[
‖σ[ε(ũ)]‖2Ω + ‖ũt‖2Γ1

+ ‖ũt‖2Ω + ‖w̃t‖2Ω + ‖φ̃‖21,Ω
]
dt+δẼ(T )

+ δ
[

sup
t∈[0,T ]

Ẽ
1
2 (t)

]2
+ CB,T,δ

∫ T

0

‖w̃‖22+ε,Ωdt+ CB,T,δ l.o.t.(ũ, w̃).

(3.61)

Proof. The inequalities (1.15) and (1.16) imply that∫ T

0

∫ T

s

R1(t) dtds 6 CB,T,δl.o.t.(ũ, w̃) + δ

∫ T

0

[
‖ũt‖2Ω + ‖w̃t‖2Ω

]
dt. (3.62)
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Using estimates of Lemma 3.1 we find that∫ T

0

∫ T

s

R2(t) dtds 6 CB,T,δ

∫ T

0

‖w̃‖22+ε,Ωdt+ δ

∫ T

0

[
‖ũt‖2Ω + ‖ũt‖2Γ1

]
dt. (3.63)

Now,∫ T

0

∫ T

s

R3(t)dtds =

∫ T

0

∫ T

s

(
σ[ε(ũ)]∇w2,∇w̃t

)
Ω

dtds

+

∫ T

0

∫ T

s

(
σ
[
f(∇w1)−f(∇w2)

]
∇w2,∇w̃t

)
Ω

dtds

+

∫ T

0

∫ T

s

(
σ
[
ε(u1) + f(∇w1)

]
∇w̃,∇wt

)
Ω

dtds.

(3.64)

We estimate the three integrals in (3.64). Integrating by parts in time we obtain∫ T

0

∫ T

s

(
σ[ε(ũ)]∇w2,∇w̃t

)
Ω

dtds =

∫ T

0

(
σ[ε(ũ)]∇w2,∇w̃

)
Ω

∣∣∣T
s

ds

−
∫ T

0

∫ T

s

(
σ[ε(ũt)]∇w2−σ[ε(ũ)]∇w2

t ,∇w̃
)

Ω
dtds.

(3.65)

But,∫ T

0

(
σ[ε(ũ)]∇w2,∇w̃

)
Ω

∣∣∣T
s

ds

= T
(
σ[ε(ũ(T ))]∇w2(T ),∇w̃(T )

)
Ω
−
∫ T

0

(
σ[ε(ũ)]∇w2,∇w̃

)
Ω

dt.

Using Sobolev embedding H2−ε(Ω) ⊂W 1,4(Ω), we can show that

T
(
σ[ε(ũ(T ))]∇w2(T ),∇w̃(T )

)
Ω
6 δẼ(T ) + CB,T,δl.o.t.(ũ, w̃),∫ T

0

(
σ[ε(ũ)]∇w2,∇w̃

)
Ω

dt 6 δ
∫ T

0

‖σ[ε(ũ)]‖2Ωdt+ CB,T,δl.o.t.(ũ, w̃).

Therefore we conclude that∫ T

0

(
σ[ε(ũ)]∇w2,∇w̃

)
Ω

∣∣∣T
s

ds 6 δẼ(T ) + δ

∫ T

0

‖σ[ε(ũ)]‖2Ωdt+ CB,T,δl.o.t.(ũ, w̃).

Integration by parts in space variable and the Trace Theorem imply that∫ T

0

∫ T

s

(
σ[ε(ũt)]∇w2,∇w̃

)
Ω

dtds 6 δ
∫ T

0

[‖ũt‖2Γ1
+‖ũt‖2Ω]dt+CB,T,δ

∫ T

0

‖w̃‖22+ε,Ωdt.

Hölder inequality and Sobolev embedding imply that∫ T

0

∫ T

s

(
σ[ε(ũ)]∇w2

t ,∇w̃
)

Ω
dtds 6 δ

[
sup
t∈[0,T ]

Ẽ
1
2 (t)

]2
+ CB,T,δ

∫ T

0

‖w̃‖22+ε,Ωdt.

Inserting these estimates in (3.65) we obtain∫ T

0

∫ T

s

(
σ[ε(ũ)]∇w2,∇w̃t

)
Ω

dtds

6 δẼ(T )+δ

∫ T

0

[
‖σ[ε(ũ)]‖2Ω + ‖ũt‖2Γ1

+ ‖ũt‖2Ω
]
dt
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+ δ
[

sup
t∈[0,T ]

Ẽ
1
2 (t)

]2
+ CB,T,δ

∫ T

0

‖w̃‖22+ε,Ωdt+ CB,T,δl.o.t.(ũ, w̃). (3.66)

Let us estimate the second integral in (3.64). Taking ε̃ < 1 − 2ε, we have that
H2−ε(Ω) ⊂ H1+ε+ε̃(Ω), and then∫ T

0

∫ T

s

(
σ
[
f(∇w1)−f(∇w2)

]
∇w2,∇w̃t

)
Ω

dtds

6 CT

∫ T

0

‖f(∇w1)−f(∇w2)‖1,Ω‖∇w2‖ε+ε̃,Ω‖∇w̃t‖−ε,Ωdt

6 CB,T,δ

∫ T

0

‖w̃‖22+ε,Ωdt+ δ

∫ T

0

‖w̃t‖21−ε,Ωdt. (3.67)

To conclude, we have to estimate the third integral in (3.64). Integration by parts in
time and space, and the fact that ‖|∇w̃|2‖1,Ω = ‖∇w̃·∇w̃‖1,Ω 6 C‖w̃‖1,Ω‖w̃‖2+ε,Ω,
we obtain∫ T

0

∫ T

s

(
σ
[
ε(u1)

]
∇w̃,∇w̃t

)
Ω

dtds

6 CT ‖ε(u1(T ))‖Ω‖|∇w̃(T )|2‖Ω+CT

∫ T

0

‖ε(u1)‖Ω‖|∇w̃|2‖Ωdt

+ CT

∫ T

0

‖u1
t‖Γ1
‖|∇w̃|2‖Γ1

dt+ CT

∫ T

0

‖u1
t‖Ω‖|∇w̃|2‖1,Ωdt

6 CB,T

∫ T

0

‖w̃‖22+ε,Ω + CB,T l.o.t.(ũ, w̃).

(3.68)

As before, from the fact that H2−ε(Ω) ⊂ H1+ε+ε̃(Ω) we see that∫ T

0

∫ T

s

(
σ
[
f(∇w1)

]
∇w̃,∇w̃t

)
Ω

dtds

6 CT

∫ T

0

‖σ
[
f(∇w1)

]
‖1,Ω‖∇w̃‖ε+ε̃‖w̃t‖1−ε,Ωdt

6 δ
∫ T

0

‖w̃t‖21−ε,Ω + CB,T,δ l.o.t.(ũ, w̃).

(3.69)

Inserting the estimates (3.66)-(3.69) into (3.64) implies that∫ T

0

∫ T

s

R3(t)dtds

6 δẼ(T ) + δ

∫ T

0

[
‖σ[ε(ũ)]‖2Ω + ‖ũt‖2Γ1

+ ‖ũt‖2Ω + ‖w̃t‖21−ε,Ω
]
dt

+ δ
[

sup
t∈[0,T ]

Ẽ
1
2 (t)

]2
+CB,T,δ

∫ T

0

‖w̃‖22+ε,Ωdt+CB,T,δl.o.t.(ũ, w̃).

(3.70)

Finally we estimate
∫ T

0

∫ T
s

R4(t)dtds. Taking ε̃ < 1− 2ε, as in 3.67 we see that∫ T

0

∫ T

s

R4(t)dtds

=

∫ T

0

∫ T

s

[
−
(
φ1∇w̃,∇w̃t

)
Ω

+
(
∇w̃·∇w2

t , φ̃
)

Ω
+
(
φ̃∇w̃,∇w̃t

)
Ω

]
dtds
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6 δ
∫ T

0

[
‖φ̃‖21,Ω+‖w̃t‖21−ε,Ω

]
dt+δ

[
sup
t∈[0,T ]

Ẽ
1
2 (t)

]2
+ CB,T,δ

∫ T

0

‖w̃‖22+ε,Ωdt+ CB,T,δ l.o.t.(ũ, w̃). (3.71)

Combining (3.62), (3.70)-(3.71) and observing that ‖w̃t‖21−ε,Ω was estimated in the

Lemma 3.4, we conclude that
∫ T

0

∫ T
s
|
∑

Ri(t)|dtds satisfies the desired estimate.

Analogous argument shows that
∫ T

0
|
∑

Ri(t)|dt also satisfies the same estimate.

Lemma 3.7. (Stabilizability estimate) Under hypotheses of Theorem 1.2, let
B be a bounded set of H. Then in the context of (3.1)-(3.2), for ε ∈ (0, 1

4 ), there
exist constants β > 0 and C1, C2 > 0, depending only on B, such that

Ẽ(t) 6C1Ẽ(0)e−βt + C2[ sup
τ∈[0,t]

{
‖ũ(τ)‖2Lr+1(Ω)+‖ũ(τ)‖21−ε,Ω

}
+ sup
τ∈[0,t]

‖w̃(τ)‖22−ε,Ω].

Proof. Inserting estimate from Lemma 3.6 into (3.56) and using interpolation in-
equality we find that

TẼ(T ) +

∫ T

0

Ẽ(t)dt+

∫ T

0

[
‖ũt‖2Γ1

+ ‖φ̃‖21,Ω
]
dt+

[
sup
t∈[0,T ]

Ẽ
1
2 (t)

]2
6 CẼ(0)+

[
Cδ + 2α

]
Ẽ(T )+δ

[
sup
t∈[0,T ]

Ẽ
1
2 (t)

]2
+CB,αD

T
0 (ũ, φ̃, θ̃)+ δ

∫ T

0

E(t)dt

+ δ

∫ T

0

[
‖ũt‖2Γ1

+ ‖φ̃‖21,Ω+‖w̃t‖21−ε,Ω+‖w̃‖23−ε,Ω
]
dt+Cα,B,T,δ l.o.t.(ũ, w̃).

(3.72)

This together with (3.72) and estimate from Lemma 3.4 imply that

TẼ(T ) +

∫ T

0

Ẽ(t)dt+

∫ T

0

[
‖ũt‖2Γ1

+ ‖φ̃‖21,Ω
]
dt+

[
sup
t∈[0,T ]

Ẽ
1
2 (t)

]2
6 CẼ(0)+

[
Cδ+2α

]
Ẽ(T )+CB,α D

T
0 (ũ, φ̃, θ̃)+Cα,B,T,δ l.o.t.(ũ, w̃)

+ δ

∫ T

0

Ẽ(t)dt+ δ

∫ T

0

[
‖ũt‖2Γ1

+ ‖φ̃‖21,Ω
]
dt+ δ

[
sup
t∈[0,T ]

Ẽ
1
2 (t)

]2
.

Now let δ > 0 be small enough. For T > 4Cδ = T0 and α = Cδ <
T
2 we have that

Ẽ(T ) +

∫ T

0

Ẽ(t)dt+

∫ T

0

[
‖ũt‖2Γ1

+ ‖φ̃‖21,Ω
]
dt+

[
sup
t∈[0,T ]

Ẽ
1
2 (t)

]2
6 CT Ẽ(0) + CB,TD

T
0 (ũ, φ̃, θ̃) + CB,T l.o.t.(ũ, w̃).

(3.73)

Next, we estimate the damping termDT
0 (ũ, φ̃, θ̃). Energy equality (3.8) and estimate

from Lemma 3.6 imply that

DT
0 (ũ, φ̃, θ̃) 6 Ẽ(0)− Ẽ(T ) +

∫ T

α

∣∣∣∣∣
4∑
i=1

Ri(t)

∣∣∣∣∣dt
6 Ẽ(0)− Ẽ(T ) + δẼ(T ) + δ

∫ T

0

Ẽ(t)dt+δ

∫ T

0

[
‖ũt‖2Γ1

+ ‖φ̃‖21,Ω
]
dt

+ δ
[

sup
t∈[0,T ]

Ẽ
1
2 (t)

]2
+ CB,T,δ l.o.t.(ũ, w̃).
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This inequality together with (3.73) give, for δ small enough, the inequality

Ẽ(T ) 6 CB,T Ẽ(0)− CB,T Ẽ(T ) + CB,T l.o.t.(ũ, w̃)

and therefore

Ẽ(T ) 6
CB,T

1 + CB,T
Ẽ(0) + CB,T l.o.t.(ũ, w̃).

Repeating this argument on the interval Im = [mT, (m+ 1)T ], m ∈ N, we obtain

Ẽ((m+ 1)T ) 6
CB,T

1 + CB,T
Ẽ(mT ) + CB,T l.o.t.m(ũ, w̃),

for fixed T > T0, where

l.o.t.m(ũ, w̃) = sup
t∈Im

‖ũ‖2Lr+1(Ω) + sup
t∈Im

‖ũ‖21−ε,Ω + sup
t∈Im

‖w̃‖22−ε,Ω.

Denoting γB =
CB,T

1+CB,T
< 1, we can show, by induction, that

Ẽ(nT ) 6 γnBẼ(0) + CB,T

n∑
k=1

γn−kB l.o.t.k−1(ũ, w̃), ∀n ∈ N. (3.74)

Using the energy equality we can prove that

Ẽ(t) 6 C1
B,T Ẽ(nT )eωT for all nT 6 t 6 (n+ 1)T, (3.75)

where the constant ω depends on B. Let β = 1
T ln 1

γB
, then, for t = nT + m with

m < T , we have

γnB 6 exp(−βt)γ−1
B

and for k 6 n

γn−kB = exp(−β(n− k)T ) 6 1.

These facts combined with (3.74) and (3.75) imply the desired conclusion with
C1 = C1

B,T γ
−1
B eωT and C2 = C1

B,TCB,T e
ωT .

Lemma 3.8. Under hypotheses of Theorem 1.2, the dynamical system (H, S(t)) is
quasi-stable on every bounded forward invariant set.

Proof. By using an isomorphism, we can reorder the components of a trajectory as
(u,w, ut, wt, φ, θ). That is, we can assume S(t) : H → H, with H = X × Y × Z,
where

X = [H1
Γ0

(Ω)]2 ×H2
Γ0

(Ω), Y = [L2(Ω)]3, Z = [L2(Ω)]2.

Then conditions (2.31), (2.32) and (2.33) are clearly satisfied. Let show that (2.34)
also holds. To this end, we consider a X-seminorm defined by,

nX(u,w)2 = ‖u‖2Lr+1(Ω) + ‖u‖21−ε,Ω + ‖w‖22−ε,Ω.

This is compact on X since the embedding [H1
Γ0

(Ω)]2 ⊂ [Lr+1(Ω)]2, [H1
Γ0

(Ω)]2 ⊂
[H1−ε(Ω)]2 and H2

Γ0
(Ω) ⊂ H2−ε(Ω) are compact. Therefore, given a bounded

forward set B ∈ H, using Lemma 3.7, we can write

‖S(t)y1 − S(t)y2‖2H 6 b(t)‖y1 − y2‖2H + c(t) sup
τ∈[0,t]

[
nX
(
u1(τ)−u2(τ), w1(τ)−w2(τ)

)]2
,

where b(t) = C1e
−βt and c(t) = C2. This proves that our system is quasi-stable

on B with the c(t) independent on time t > 0 -as desired.
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3.2. Gradient systems and completion of the proof of the Theorem 1.2.
The proof of Theorem 1.2 will follow from Theorem 2.2. To accomplish this we
need to establish gradient structure of system (H, S(t)). We shall take the energy
functional Ey as a Lyapunov function Φ(y), where Ey corresponds to the energy at
the point y defined by (2.20). Thus Φ(S(t)y) = ES(t)y of the trajectory S(t)y with
a given initial data y ∈ H. From (2.21) it follows that t → Φ(S(t)y) is decreasing
for any y ∈ H. The fact that Lyapunov function is strict follows from the following
Unique Continuation Property formulated in the Lemma below.

Lemma 3.9. Let Γ0 6= ∅. The following property holds

Ey(t) = Ey(0),∀t > 0⇒ S(t)y = y,∀t > 0.

Proof. Weak solutions under consideration satisfy

(u, ut, w, wt, θ, φ) ∈ C([0, T ],H),

ut|Γ ∈ L2(0, T ;L2(Γ)), σ[ε(u)]ν ∈ L2(0, T ;L2(Γ)),

where the last boundary regularity follows from f(∇w)|Γ1 ∈ C([0, T ];L2(Γ1)) on
the strength ∇w|Γ ∈ C([0, T ], H1/2(Γ)). By the assumption and the energy relation
(2.21) we have that

ut|Γ = 0 in L2((0, T )× Γ), φ = 0 in L2(0, T ;H1(Ω)), θ = 0 in L2(0, T ;H1(Ω)).

Hence, distributionally, ∆wt = 0 and also wt = 0, ∇wt = 0 on Γ0. Since meas(Γ0) >
0, by the elliptic unique continuation property we infer that wt ≡ 0. Since φ ≡ 0,
we read off from φ equation that div{ut} ≡ 0. Feeding this information back to
(1.1) and (1.2) we find

utt − div{σ[ε(u) + f(∇w)]}+ p1(u,w) = 0 in Ω× (0,∞), (3.76)

with the overdetermined boundary conditions

ut = 0 on Γ0, ut = 0 on Γ, σ[ε(u) + f(∇w)]ν + κu = 0 on Γ1, (3.77)

and the elliptic problem

∆2w − div{σ[ε(u) + f(∇w)]∇w}+ p2(u,w) = 0 in Ω× (0,∞). (3.78)

with boundary conditions on the portion of the boundary Γ0 given by

u = 0, w = 0, ∇w = 0 on Γ0 × R+, (3.79)

∆w + (1− µ)B1w = 0 on Γ1 × R+, (3.80)

∂ν(∆w) + (1− µ)B2w − σ[ε(u) + f(∇w)]ν ·∇w = 0 on Γ1 × R+. (3.81)

Since the system (3.76)-(3.81) is overdetermined, it is expected that the correspond-
ing weak solutions are more regular. As always, this is a general property derived
from Observability Estimates (often Carleman’s based) obtained for finite energy
solutions [38]. In our case, this follows from Observability Estimates obtained for a
difference of two solutions in Lemma 3.5 along with energy estimate (3.8) and the
estimate in Lemma 3.6. Indeed, the second observability inequality applied to the
overdetermined problem along with energy estimate yields

TẼ(T ) +

∫ T

0

Ẽ(t)dt+
[

sup
t∈[0,T ]

Ẽ
1
2 (t)

]2
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6 CẼ(T ) + Cα

∫ T

0

∣∣∣∣∣
4∑
i=1

Ri(t)

∣∣∣∣∣ dt+

∫ T

0

∫ T

s

∣∣∣∣∣
4∑
i=1

Ri(t)

∣∣∣∣∣dtds+ Cα,B,T l.o.t.(ũ, w̃).

(3.82)

Applying the estimate in Lemma 3.6 where ‖w̃‖22+ε is estimated via analytic bound
in Lemma 3.4 and interpolation, and taking δ sufficiently small gives

(T − C)Ẽ(T ) +

∫ T

0

Ẽ(t)dt+
[

sup
t∈[0,T ]

Ẽ
1
2 (t)

]2
6 Cα,B,T l.o.t.(ũ, w̃). (3.83)

Taking T large enough (note C does not depend on T ) allows us to deduce that
the energy of the difference of two finite energy solutions can be estimated by lower
order terms which have quadratic dependence with respect to lower order norms.
The latter implies, in a standard way, that the time derivatives of weak solutions
are of finite energy as well - see [12, p.101] or [13, p. 386]. This additional regularity
of the overdetermined solutions allows to consider ū ≡ ut ∈ C([0, T ], H1(Ω)). Then
(3.76) and (3.85) with wt ≡ 0 lead to

ūtt − div{σ[ε(ū)]} = −
( d

du1
p1,1(u,w)ū1,

d

du2
p1,2(u,w)ū2

)
in Ω× (0,∞) (3.84)

with the overdetermined boundary conditions

ū = 0 on Γ, σ[ε(ū)]ν = 0 on Γ1. (3.85)

We note that for divergence free vectors u one has div[σ(ε(u))] = η(∆u1,∆u2).
Moreover for u = 0 on Γ, we have ε(u) · ν = M ∂ū

∂ν , where the determinant of the

matrix M is equal to 1/2. Indeed, let ν = (ν1, ν2) with ν2
1 + ν2

2 = 1. In addition
we have that uτ = 0 on Γ1, where τ denotes tangential direction to the boundary.
Then the algebraic formulas in [42, p. 299] give

ux = ν1uν , uy = ν2uν . (3.86)

This gives the following representation of stress tensor

ε(u)ν =

[
ν1u

1
ν 1/2(ν1u

2
ν + ν2u

1
ν)

1/2(ν1u
2
ν + ν2u

1
ν) ν2u

2
ν

]
ν = Muν ,

where the matrix M has the form

M ≡
[
ν2

1 + 1/2ν2
2 1/2ν2ν1

1/2ν1ν2 ν2
2 + 1/2ν2

1

]
.

The determinant of M is equal to 1/2(ν2
1 + ν2

2)2 = 1/2. Since ū = 0 on Γ and
divū = 0 we obtain that ūi, for i = 1, 2, satisfy

ūitt − η∆ūi = Viū
1, ū ∈ C([0, T ];L2(Ω)), (3.87)

ūi = 0 on Γ,
∂ūi

∂ν
= 0 on Γ1. (3.88)

where the potential

Vi = Vi(u,w) = − d

dui
(p1,i(u,w))

Thus, we are in a position to apply UCP principle applicable to wave equations
ūi, i = 1, 2 with overdetermined Cauchy data on the boundary. Since, in particular,
ūi ∈ L2(0, T ;L2(Ω)), we can apply unique continuation principle in [47], provided
the potential Vi ∈ Ln(Ω× (0, T )). Let us determine the regularity of the potential



LONG-TIME DYNAMICS OF VECTORIAL VON KARMAN SYSTEM 1069

Vi(u,w) = d
dui (p1,i(u,w)). Since u ∈ C([0, T ];H1(Ω)) and w ∈ C([0, T ];H2(Ω)) the

growth condition imposed on p implies that

V1, V2 ∈ L∞(0, T ;Lq(Ω)), ∀q <∞. (3.89)

Thus (3.87) is overdetermined on the boundary wave equation with a potential
satisfying regularity assumption in (3.89). We appeal now to [47] [ or Theorem 1.2
in [25] and [20] ] to claim that ū = ut ≡ 0 in Ω. Thus, the dynamics has been
reduced to a stationary elliptic problem.

Remark 3.3. It is interesting to note the role played by the second thermal variable
φ. In the previous calculations [leading to quasistability] the additional dissipation
due to φ did not play any major role. However, when dealing with weak solutions
which are overdetermined on the boundary, the condition div{ut} = 0 – resulting
from the dissipation in φ variable, allows to reduce system of dynamic elasticity to a
classical wave equation (3.87) with Cauchy zero data on Γ1. For such equation UCP
property has been shown [47] for just L2 solutions (as in our case). Otherwise, one
would need to introduce appropriate approximations of overdetermined problems (as
in Proposition 2.1 in [38], or [25]) which would allow to deduce additional regularity
of the overdetermined problem. This, however, will make the analysis much more
technical -see [37], Section 6).

Lemma 3.10. Under the hypotheses of Theorem 1.2, the set of equilibrium points
N is bounded in H.

Proof. If y ∈ N , we have that y = (u, 0, w, 0, 0, 0) and satisfies the stationary
problem

− div{σ[ε(u) + f(∇w)]}+ p1(u,w) = 0 in Ω, (3.90)

∆2w − div{σ[ε(u) + f(∇w)]∇w}+ p2(u,w) = 0 in Ω, (3.91)

with clamped boundary condition on Γ0 and

σ[ε(u) + f(∇w)]ν + κu = 0 on Γ1,

∆w + (1− µ)B1w = 0 on Γ1,

∂ν(∆w) + (1− µ)B2w − σ[ε(u) + f(∇w)]ν ·∇w = 0 on Γ1.

Multiplying (3.90), (3.91) by u,w, respectively, and integrating over Ω, we obtain

1

2

∫
Ω

σ[N(u,w)]N(u,w)dΩ +
1

2
a(w,w)+

κ

2

∫
Γ1

|u|2dΓ1 = −
∫

Ω

∇P (u,w)·(u,w) dΩ.

Using inequalities (1.17), (2.22) and (2.23) we find that

−
∫

Ω

∇P (u,w)·(u,w) dΩ

6 2MMpMK

[
‖N(u, v)‖Ω + ‖w‖2W 1,4(Ω)

]
+2MMp‖w‖22,Ω + 2mE

6 2
MMpMK

Mσ

∫
Ω

σ[N(u,w)]N(u,w)dΩ+2
M(MpMKM2+Mp)

Ma
a(w,w)+2mE .

Since M < M0 (see (2.25)), we conclude that for some δp ∈ (0, 1
2 ),

−
∫

Ω

∇P (u,w)·(u,w) dΩ 6 δp

∫
Ω

σ[N(u,w)]N(u,w)dΩ + δp a(w,w) + 2mE .
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This shows that N is bounded in H.

Proof of Theorem 1.2. From Lemmas 3.8 and 3.10 we know that (H, S(t)) is an
asymptotically compact gradient system with bounded set of stationary points. To
apply Corollary 2.1 it remains to show condition (2.30). To see this, from (1.18)
and (2.20) we have that

Ey(t) 6 ‖y(t)‖2H + C(1 + ‖y(t)‖r+1
H ).

Then Ey(t) → ∞ implies that ‖y(t)‖H → ∞, t > 0. On the other hand, the
inequality (2.24) implies that Ey(t) 6 1

ME
(Ey(t) + mP |Ω|), and then ‖y(t)‖H →

∞ implies that Ey(t) → ∞, t > 0. Then condition (2.30) is satisfied. Therefore
system (H, S(t)) has a global attractor A.

From Theorem 2.4, A has finite fractal dimension and further “time” regularity,∥∥∥∥ d

dt
S(t)y0

∥∥∥∥
H
6 C, ∀ t ∈ R, ∀ y0 ∈ A. (3.92)

The improved spatial regularity follows from updating problem (1.1)-(1.10) with
(3.92) and then applying elliptic regularity. The argument is analogous to the one
in [36, Section 2]. Therefore we conclude that

‖u(t)‖2,Ω + ‖w(t)‖4,Ω + ‖θ(t)‖2,Ω + ‖φ(t)‖2,Ω 6 C, t ∈ R.

This ends the proof of Theorem 1.2.
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tions and Their Applications. Collège de France Seminar, Vol. XIV (Paris, 1997/1998),

Stud. Math. Appl., North-Holland, Amsterdam, 31 (2002), 329–349.
[21] P. G. Geredeli, I. Lasiecka and J. T. Webster, Smooth attractors of finite dimension for

von Karman evolutions with nonlinear frictional damping localized in a boundary layer, J.

Differential Equations, 254 (2013), 1193–1229.
[22] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Mono-

graphs 25, AMS, Providence, 1988.

[23] S. Hansen, Boundary control of a one dimensional linear thermoelastic rod, SIAM J. Control
Optim., 32 (1994), 1052–1074.

[24] M. A. Horn, Sharp trace regularity for the solutions of the equations of dynamic elasticity, J.

Math. Systems Estim. Control, 8 (1998), 11pp.
[25] V. Isakov, A nonhyperbolic Cauchy problem for �a�b and its applications to elasticity theory,

Comm. Pure Appl. Math., 39 (1986), 747–767.
[26] J. U. Kim, On the energy decay of a linear thermoelastic bar and plate, SIAM J. Math. Anal.,

23 (1992), 889–899.

[27] H. Koch, Slow decay in linear thermoelasticity, Quart. Appl. Math., 58 (2000), 601–612.
[28] H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic

elasticity-full von Karman systems, Evolution Equations, Semigroups and Functional Analysis

(Milano, 2000), Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 50 (2002),
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