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From the Editor’s Desk

Dear Reader,

We are proud to relaunch "Nonlinear World", at the International Conference on Recent Advances in Mathematical

Sciences and Applications, held from 19th-22nd December,2017, at GVP College of Engineering (A), India.

This issue takes it shape, as it was envisioned by late Prof. V. Lakshmikantham, as a compendium of advances in

nonlinear research in a diverse range of fields, and to serve as a guiding torch of knowledge.

My sincere thanks to the International Federation of Nonlinear Analysts, for their continued support over the years,

as well as to all the honored editors, knowledgable contributors and esteemed readers, all without whom this journal

would not have been possible.

Dr.J.Vasundhara Devi

Professor, Dept of Mathematics and

Associate Director - GVP - Prof. V. Lakshmikantham Institute for Advanced Studies

GVP College of Engineering

Madhurawada

Viakhapatnam 530 048

India
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Differential Inequalities and the Comparison Principle:
the Core of Professor V. Lakshmikantham’s Research

Z. Drici , J. Vasundhara Devi , F. A. McRae

Department of Mathematics,
Illinois Wesleyan University,

Bloomington, IL 61702-2900, USA.
G. V. P. Prof. Lakshmikantham Institute for Advanced Studies,

G.V.P. College of Engineering, Visakhapatnam, India.
Department of Mathematics, Catholic University of America, Washington,

DC 20064, USA.

ABSTRACT: In this article we give a brief exposition of how Professor V. Lakshmikantham used the principle of

comparison in his work.

A review of the literature indicates that by the time Professor V. Lakshmikantham began his research the concepts

of differential inequalities, upper and lower solutions and the idea of comparison were known. With his insight, he

recognized the importance of these ideas and exploited them to open a whole new area of research. In this article we

illustrate how his research was dominated by the theory of differential inequalities and the comparison principle.

In his first paper [1], which appeared in the Proceedings of the American Mathematical Society, Professor V.

Lakshmikantham recognized that using differential inequalities instead of the commonly used integral inequalities to

obtain qualitative results in differential equations, such as convergence of successive approximations, and uniqueness,

boundedness and asymptotic behavior of solutions, one could dispense with the required monotonicity property of the

functions involved.

Consider the differential system
dy

dx
= f(t, x), x(t0) = x0, (1)

where f ∈ C[R+ × Rn,Rn] satisfies the inequality

||f(t, x)|| ≤ g(t, ||x||), (2)

where g ∈ C[R× R+,R]. Lettingm(t) = ||x(t)||, it follows that∣∣∣∣dm(t)

dt

∣∣∣∣ ≤ g(t,m(t)) a.e. (3)

Using the theory of differential inequalities Professor V. Lakshmikantham showed that one can obtain from (3) the

following estimate

m(t) ≤ r(t; t0, u0), (4)

providedm(t0) ≤ u0, where r(t; t0, u0) is the maximal solution of the scalar differential equation

du

dt
= g(t, u), u(t0) = u0, (5)

existing on [t0,∞), without requiring the function g to be monotone nondecreasing. He further observed that in order to

obtain the estimate (4), it is sufficient to have

Dm(t) ≤ g(t,m(t)), (6)

where Dm(t) is any one of the Dini Derivatives. This observation led him to conclude that all that was needed is an

assumption of the following type

||x + hf(t, x)|| ≤ ||x|| + hg(t, ||x||) + o(h), (7)

instead of (2) in order to obtain the desired inequality (6). Furthermore, he also observed that the advantage of assumption

(7) is that g is not even required to be nonnegative, which results in a better estimate for ||x(t)||.
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From equations (6) and (7), he noted that instead of ||x(t)||, one could use a nonnegative function with some properties of

norm as follows

V(t + h, x + hf(t, x)) ≤ V(t, x) + hg(t, V(t, x)) + o(h),

where V ∈ C[R+ × Rn, Rn] and V(t, x) is locally Lipschitz in x. Setting m(t) = V(t, x(t)) leads to the differential

inequality (6) from which the estimate (4) is obtained.

Thus, given an initial-value problem, an important technique in the theory of differential equations consists of first

obtaining a scalar differential equation, such as equation (4) and then estimating the solution of the differential system

(1) in terms of the extremal solution of the scalar differential equation (4).

This development of the theory of differential and integral inequalities using norms or Lyapunov-like functions led to

a number of results, such as convergence of successive approximations and stability and boundedness of solutions.

The central theme in all generalizations, extensions, and refinements is the use of the comparison method in terms of

Lyapunov-like functions. Professor V. Lakshmikantham recognized the advantage of using vector Lyapunov functions,

which were first introduced by Bellman [2] and Matrosov [3], to investigate and refine the Lyapunov theory of stability.

This intense research activity by Professor V. Lakshmikantham resulted in a two-volume monograph [4,5], entitled

Differential and Integral Inequalities, which is much more comprehensive than the books by Szarski [6] and Walter

[7] on the same topic. In Volume I, for the first time, a whole chapter is devoted to the Method of Vector Lyapunov

Functions.

The well-known Lyapunov Second Method deals with questions of stability. Its main characteristic is the introduction of

a function, namely the Lyapunov function, which defines a generalized distance. The theory of differential inequalities

together with the concept of Lyapunov function provides a very general comparison principle under much less restrictive

conditions. This has resulted in its wide use not only in the theory of stability [8], but also in the investigation of various

other properties of solutions of differential equations. An interesting idea was the use of two Lyapunov functions by

Salvadori [9] to extend Marachkov’s [10] stability result. It was therefore natural to ask whether it might be more fruitful

to use several Lyapunov functions [11]. The answer is yes, and this approach, known as the Method of Vector Lyapunov

Functions, offers a more flexible mechanism since each function can satisfy less rigid requirements. Using this concept,

Professor V. Lakshmikantham obtained global results, which proved to be useful tools in dealing with various problems

of stability and boundedness.

Analytic solutions of nonlinear problems are rarely possible and various methods are required to obtain approximate

solutions of such problems. A fruitful idea of Chaplygin [12] for obtaining approximate solutions of nonlinear differential

equations, such as

u′ = f(t, u), u(0) = u0, (8)

is as follows. Suppose, we have f1(t, u) ≤ f(t, u) ≤ f2(t, u) for all (t, u), where f1 and f2 are such that the equations

u′ = f1(t, u), u(0) = u0 and u′ = f2(t, u), u(0) = u0 are comparatively simple to solve. Then, the solutions

of these simpler differential equations can be used to bound the solutions of the original equation (8). This technique

brings into play the theories of differential inequalities, upper and lower solutions, and monotone operators. Professor

V. Lakshmikantham and his collaborators developed the basic theory of this method known as the Monotone Iterative

Technique [13]. Such an iterative scheme, in addition to offering a flexible mechanism to find theoretical, as well as

constructive existence results in a closed set, is also useful for investigating qualitative properties of solutions.

The iterates, constructed using the Monotone Iterative Technique, converge linearly. However, if the method of lower and

upper solutions is combined with the method of quasilinearization, developed by Bellman and Kalaba [14], and with the

idea of Newton-Fourier, it is possible to construct concurrently lower and upper bounding monotone sequences which

converge quadratically. This unified methodology, developed by Professor V. Lakshmikantham and his collaborators, is

known as the method of Generalized Quasilinearization. For details see the monograph [15].

Fractional Differential Equations is another area where Professor V. Lakshmikantham used the comparison

principle. He and Professor Vatsala first developed the basic differential inequality result [16], parallel to Theorem

1.4.1 in [4]. With the differential inequality in place, they next developed a comparison result relating the solution of the
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considered fractional differential equation

Dqx = f(t, x), x(t)(t − t0)
1−q

|t=t0 = x0, (9)

to the maximal solution of a scalar ordinary differential equation [17]. In the monograph, Theory of Fractional

Dynamic Systems [18], the complete theory of existence, uniqueness and approximate solutions was developed using

the comparison principle. We note that, due to the complexity of the problem, the variation of parameters formula for

fractional differential equations is still an open problem. However, Professor V. Lakshmikantham developed a relationship

between a fractional differential equation and an ordinary differential equation, and using this relation he obtained a

variation of parameters formula in terms of the corresponding ordinary differential equation.

Yet another area where differential inequalities and the comparison principle play a significant role is the stability of

multi-order fractional systems [ 18 ]. Vector Lyapunov functions, together with the comparison principle and differential

inequalities, are employed to relate the original multi-order fractional differential system to a system of ordinary

differential equations with order one. The well-known theory of non-fractional ordinary differential equations is then

used to develop the corresponding theory of the original multi-order fractional system.

Differential inequalities and the comparison principle also play an important role is the area of causal set differential

equations. A causal operator is a nonanticipative operator. Differential equations involving causal operators unify

a variety of dynamic systems, including ordinary differential equations, delay differential equations and integro -

differential equations, to name only a few. On the other hand, set differential equations are useful in the study of

multivalued differential equations and multivalued differential inclusions [20]. Set differential equations include the

theory of ordinary differential systems as a special case. Thus, combining these two very general and fruitful areas

of research naturally results in a theory encompassing many types of dynamic systems, along with their special cases.

Professor V. Lakshmikantham motivated initial research in this area, resulting in a first paper [ 21] on existence and

uniqueness. This paper was followed by a systematic study of set differential equations involving causal operators, giving

rise to publications on this topic by a number of researchers [19].

In conclusion, it is interesting to note that Professor V. Lakshmikantham always said that to him life and mathematics are

the same. For instance, to him inequalities and comparison techniques pervade both mathematics and life. He observed

that without comparison there is no growth, sustenance or development, as there can be no motivation without comparison.

But, he understood something more. He saw a parallel between these two principles of inequality and comparison, which

are central to his research, and their counterparts in real life, which could dominate someone’s life and pull that person

into a vicious circle of inequality and comparison. With his keen sense of perception, Professor V. Lakshmikantham was

able to transcend these limitations in his life, and in some sense, in his research.

We express our immense respect and deep reverence to this great Rishi.
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Fallacy: Category and Role of Environment/Assumption

Syamal K. Sen, GVP-Prof. V. Lakshmikantham Institute for Advanced Studies and Department

of Computer Science and Engineering, GVP College of Engineering, Visakhapatnam 530048

Email: sksenfit@gmail.com

Abstract Fallacy refers to defective logic/faulty reasoning. It is an integral/inseparable part of a living

being, specifically living human being and is strictly undesirable irrespective of low or high/severe impact on

inference-drawing/decision-making. For a non-living being such as a digital computer, it is non-existent. If the computer

depicts a fallacy, then the reason/root can be traced to the concerned human being. There are many possible categories

of fallacies. However, the list of all possible categories/ types of fallacies seems to be non-exhaustive since there are

indefinitely large possible defects. Nevertheless a reasonably comprehensive list of fallacies, we believe, throws light on

how a fallacy pops up often without our knowledge/ready detection. We present here such a list along with the effect/role

of social/cultural/environmental factors as well as assumptions when present. The list includes not only those fallacies in

our everyday lives (including those concerning philosophy, psychology, and legal arena) but also those in sciences such

as mathematics including computer/computational mathematics and statistics.

Keywords Assumptions, List of fallacies, Mathematics, Social/ cultural/ environmental factors, Statistics.

1. Introduction

1.1 Definition and categories/types A fallacy is an erroneous argument dependent upon an unsound or illogical contention.

A fallacy may be defined as a deceptive, misleading, or false notion, or blind (false) belief or a combination of one or

more of the foregoing terms.

A popular fallacy at one time was that the earth is flat. In other words a fallacy is an idea/reasoning/argument that

many people think is true but is in fact false.

There are many possible types of fallacies. It is not possible to exactly state this number of types. This number depends

from one context to another or/and from one perception to another. It could be in the range [1, indefinitely large]. Just

‘1’ type implies ‘error in any reasoning’. In fact there are numerous ways by which a fallacy may be introduced/ injected

often unknowingly by a living being e.g. a living human being.

There are many fallacy examples that we can find in everyday conversations and even in serious scientific,

mathematical, and legal arenas. While it is practically impossible to categorize exhaustively and precisely all (indefinitely

large) the possible fallacies, the following categories will give some useful insight/idea about fallacies which may creep

in the process of an argument (by a human being). Alternatively, a fallacy is anyone of the total number of defects in a

reason connected with a subject or with a particular thing to be inferred.

1.2 Wrong inference is also a fallacy The outcome of a fallacy is a wrong inference. An inference is the process of

deriving logical conclusions from premises/propositions known/assumed to be correct. A wrong inference also is known

as a fallacy.

1.3 Informal logic, induction of incorrect reasoning, and formal logic Philosophers who study informal logic have

compiled large lists of them, and cognitive psychologists have documented many biases in human reasoning, that

favour/induce incorrect reasoning.

Informal logic is a logic suited for understanding and improving thinking, reasoning, and argument as they occur

in real life contexts such as in public discussion and debate, in educational and intellectual exchange, in interpersonal

relations, and in legal/medical professions. It intuitively refers to the principles of logicand logical thought outside of a

formalsetting. It is associated with(informal) fallacies.

Formal logic also called symbolic logic, on the other hand, is the study of systems of deductive argument in which

symbols are used to represent precisely categories of expressions.
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Some definitions Fallacies of definitionis used to denote the various ways in which definitions can fail to explain terms.

The phrase is used to suggest an analogy with an informal fallacy"Definitions that fail to have merit because they are too

broad, use obscure or ambiguous language, or contain circular reasoning are called fallacies of definition.3 major fallacies

are too broad, too narrow, and mutually exclusive definitions. The 4th one is incomprehensible definitions,while 1 most

common fallacy is the circular definition.

(i) Circular definition/reasoning fallacy You may refer Circular argument under the section Categories of fallacies

commonly encountered. A circular definition, to put it in another way, is one in which 1st concept is defined by the

2nd concept, and the 2nd one is defined by the 1st: Neither offers enlightenment about what one wanted to know.It is

a fallacy because by using a synonym in thedefiniens (the word definiens is that which defines the definiendum in a

definition; For instance, in the defining statement An island or isle is any piece of sub-continental land surrounded by

water. , any piece of sub-continental land surrounded by water is the definiens), the reader is told nothing significantly

new.

A simple example would be to define ‘‘ Christian" as "a person believing in Christianity", and "Christianity" as "the

religion of the Christian people", which would make "Christianity" "the religion of the people believing in Christianity" .

(ii) Too broad and/or too narrow definition fallacy A definition intended to describe a given set of individuals fails

if its description of matching individuals is incongruous: too broad (excessively loose with parameters) or too narrow

(excessively strict with parameters). For example, "a shape with four sides of equal length" is not a good definition for

"square", because squares are not the only shapes that can have four sides of equal length; rhombido as well.

Likewise, defining a "rectangle" as "a shape with four perpendicular sides of equal length" is not useful because it

is too narrow, as it describes only squares while excluding all other kinds of rectangles, thus being a plainly incorrect

definition.

If a cow were defined as an animal with horns, this would be overly broad (including goats, for example), while if a

cow were defined as a black-and-white quadruped, this would be overly narrow (excluding all-black and all-white cows,

for example)and also overly broad (including Dalmatians — a breed of medium sized dog, noted for its unique black or

liver spotted coat, for example).

(iii) Mutually exclusive definition fallacy Consider, for example, the propositions: (i) No mountains are horses, (ii) Some

horses are not pets, and, therefore, (iii) Some pets are not mountains. In this example we can see that the physical

difference between a horse and a mountain has no correlation to the domestication of horses. The two premises are

mutually exclusive and the subsequent conclusion is nonsense, as the transpose would imply that some pets are mountains.

1.5 AI system produces logical/fallacy-free inferences An artificial intelligence (AI) system first provided automated

formal logical inferences. During the later half of the 20th century, this was an extraordinarily popular research topic,

leading to scientific and industrial applications and is called an expert systemand sometimes a business rule engines (a

software systemthat executes one or morebusiness rules, that might come from legal regulation,in a runtime production

environment). In course of time the formal logic became a stronger basis for automated theorem proving.

An inference system’s job is to extend a knowledge base (KB) automatically. The knowledge base is a set of

propositions that represent what the system knows about the world. Several techniques can be used by that system to

extend KB by means of valid inferences. An additional requirement is that the conclusions the system arrives at are

relevantto its task.

Example in Prolog Prolog — abbreviation of ‘Programming in Logic’ — is a programming language based on a subset of

predicate calculus (also called by names such as predicate logic, first order logic, elementary logic, restricted functional

calculus, relational calculus, and theory of quantification). Its main job is to check whether a certain proposition can be

inferred from a KB using an algorithm calledbackward chaining.

We enter into our KB the following piece of Prolog code, where : − denotes ‘if’

Mortal(X):-tree(X).
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tree(teak).

The 2 lines of the Prolog program says: all trees are mortal and that teak is a tree. Now we can ask the Prolog system

about teak:

?-mortal(teak).

(where?-signifies a query: Canmortal(teak).be deduced from the KB using the rules) gives the answer "Yes" (if the KB

of Prolog knows/has about teak as a tree).

On the other hand, asking the Prolog system the following:

?-mortal(banyan).

gives the answer "No".

This is because KB of Prologdoes not have any information about banyan, and hence defaults to any property about

banyan being false (the so-calledclosed world assumption).

1.6 Undesirability of fallacy A fallacy of any kind is absolutely unwelcome and needs to be definitely eliminated. Else, it

could/would cause a disaster in any decision-making or in determining the validity of a statement or in an inference. Only

by going deepest into an argument (logical) through intense thinking and taking into account the context/environment

will bring down the occurrence of fallacies to a minimum or possibly zero.

1.7 How to eliminate fallacies completely: Silence state At the ultimate state of mind viz. the silence (no-thought) state

or, equivalently, the Nirvikalpa Samadhi state (the highest/deepest state of mind), the very problem of the fallacy on

which the mind had focused and reached this state is resolved. No further search, no further question, and no further

conflict of any kind exist. The concerned man will be able to tell whether there is a fallacy when he returns to the one- or

more-thought state. In a no-thought state all body functions come to a total halt amounting to/resembling a clinical death.

In the process of the mind dropping down to deeper concentration, we have, to put it in another way, the last or,

equivalently the ultimate state viz. the Samadhi state and the last but one state viz. the Dhyana (meditation) state. In the

Dhyana state, there is the unbroken or uninterrupted flow of thought on the object of contemplation while in the Samadhi

state, there is oneness with the absolute. These are concepts which cannot be described in words, but only experienced.

Entry of any prejudice, superstition, bias, and blind belief/faith in logical thought process is strictly and completely

forbidden. One may have eliminated all fallacies except 1, say, occurring in a communication such as an article, a report,

a speech, a conversation, and a debate. This 1 fallacy, irrespective of the degree of relative seriousness of the fallacies,

is enough to mislead one to make a wrong decision/ draw a wrong inference. It is imperative to completely root out

all the fallacies from any possible communication for drawing/making a correct inference/a conclusion/a decision or

establishing the validity of a statement.

However, such a complete fallacy-free inference/statement may not be always possible nor may be always confirmed.

Moreover, to prove logically/mathematically that the concerned statements/inferences are completely devoid of any

fault/fallacy is not possible under all circumstances except in the situation when the intensely focussed mind (on the

concerned statements has reached the silence state and then bounced back to one- or more- thought state.

In section 2, we present reasonably comprehensive categories of fallacies besides those specifically in statistics and

in mathematics. The role of environment and assumptions is described with a real life incidence in section 3 while the

conclusions are presented in section 4.

2. Comprehensive Categories of Fallacies Including Those in Statistics and Mathematics

2.1 Is it essential to be fallacy-literate One does not need to be well-versed/knowledgeable about various categories of

fallacies (possibly indefinitely large in the number of categories) in achieving a fallacy-free argument (as long as a sound

logic not marred by any kind of bias and/or belief/superstition, pervades at each and every step of the argument). In the

following types of fallacies, a careful evaluation will readily demonstrate that the sound logic is undermined/ interfered.
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2.2 Categories of fallacies in Indian philosophy According to Navya-Nayaya or Neological Darśana (view, system)

viz. the new school of Indian Logic and Indian Philosophy, there are 5 categories of fallacies viz. (i) Inconstant (not

constant i.e. changing often) fallacy (In contrast, the constant fallacy is a specific logical defect that is often introduced

in sciences that deal with interpretation), (ii) Contradictory (Inconsistency) fallacy, (iii) Unfounded (not based on fact,

and/or realistic considerations) fallacy, (iv) Counter-balanced (force or influence equally counter-acting) fallacy, and (v)

Incongruous (incompatible) fallacy.

This school was founded in the 13th century CE (AD)by the philosopher Gangeśa Upādhyāya of Mithila

(theMaithilispeaking region of Northern and EasternBihar, a state of India). It was a development of the classical

Nyāya Darśana. Other influences on Navya-Nyāya were the work of earlier philosophersVācaspati Miśra(900–980 AD)

andUdayana(late 10th century AD). It remained active in India through to the 18th century AD.

The pre-13th century Indian logic which was meticulously developed between 3350 BCE and 1200 CE (over 4500

years) is essentially referred to as the old Indian (Hindu) school of philosophy and logic.

For examples of fallacies in Indian philosophy the reader may refer [1, 2, and the references cited therein]. A student

of Nyaya, however, should always remember that, no matter how good an English translation is, he must be ready to do

hard thinking for a proper understanding of the subject.

2.3 Categories of fallacies with examples commonly encountered However, here are a few well-known categories of

fallacies we might experience when making an argument:

(a)Appeal to Ignorance Appeal to ignorance happens when one individual utilizes another individual’s lack of information

on a specific subject as proof that his or her own particular argument is right.

Example 1 ‘‘ You cannot show that there are no Martians living in caves of the mountains situated on the surface of the

planet Mars. So it is sensible for me to accept that there are."

Example 2 ‘‘ You cannot demonstrate there are no living beings on the surface of the planet Gleise 163 c (with 6.9 times

the mass of the earth and discovered in September, 2012). So it is sensible for me to accept that there are."

Example 3 We cannot demonstrate that there are no living beings on a planet (which is 4.2 light-years or about 25 trillion

miles away from earth) orbiting Proxima Centauri, the closest neighbour to our solar system; so it is sensible for us to

accept there are.

(b)Appeal to Authority This sort of error is also known as ‘‘ Argumentum Verecundia" (argument from modesty). Instead

of concentrating on the benefits of an argument, the arguer will attempt to append their argument to an individual of

power or authority in an effort to give trustworthiness to their argument.

Example1 ‘‘ American scientist and 1954 Chemistry Noble Laureate Linus Pauling (1901-1994) trusted in the use of

intravenous and oral high-dose (10 gm) vitamin C as cancer therapy for terminal patients. Do you suppose that you know

more than Pauling?"

Example 2 ‘‘ Well, Sir Isaac Newton had faith in Alchemy. Do you consider you are more knowledgeable than Newton?"

(c)Appeal to Popular Opinion This sort of appeal is when somebody asserts that a thought or conviction is correct since

it is the thing that the general population accept.

Example Lots of people have been purchasing this tooth paste, so it must be great."

(d)Association FallacySometimes called ‘‘ guilt by affiliation," this happens when somebody connects a particular thought

or drill to something or somebody negative so as to infer blame on another individual.

Example Adolf Hitler (1889-1945) was a veggie lover. So I do not trust vegans (vegetarians who do not use animal

products and by-products)."

(e)Attacking the PersonAlso regarded as ‘‘ Argumentumad Hominem" (argument against the man), this is a common

fallacy used during debates where an individual substitutes a rebuttal with a personal insult.

Example ‘‘ Do not follow Jack’s advice. He is a simpleton."

(f )Begging the QuestionThe conclusion of a contention is accepted in the statement of the inquiry itself.
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Example 1 ‘‘ If an outsider did not take my newspaper, then who did?" (Accept that the newspaper is really stolen.)

Example 2 ‘‘ If the maid servant did not lift my ear rings from the bath room, then who did?" (Accept that the ear rings are

really stolen.)

(g)Circular Argument This fallacy is also known as ‘‘ Circulus in Probando" . This error is committed when an argument

takes its evidence from an element inside the argument itself instead of from an outside one.

Example ‘‘ A Hindu" is "the person believing in Hinduism", and "Hinduism is "the religion of the Hindu people", which

would make "Hinduism" "the religion of the people believing in Hinduism" .

(h)Relationship Implies Causation FallacyAlso called ‘‘ Cum Hoc Ergo Propter Hoc" , this fallacy is a deception in which

the individual making the contention joins two occasions that happen consecutively and accepts that one made the other.

Example ‘‘ I saw a black cat and 10 minutes after the fact, I crashed my motor-cycle, in this manner, black cats are terrible

fortunes."

(i)False Dilemma/DichotomySometimes called ‘‘ Bifurcation" , this sort of error happens when somebody presents their

argument in such a way that there are just two conceivable alternatives left.

Example ‘‘ If you do not vote for this candidate, then you must be a communist."

(j)Illogical conclusionThis is a fallacy wherein somebody attests a conclusion that does not follow from the suggestions.

Example All Londoners are from England. John is not a Londoner, in this way he is not English."

(k)Slippery SlopeThe error happens when one contends that an exceptionally minor movement will unavoidably prompt

great and frequently ludicrous conclusions.

Example ‘‘ If we permit gay individuals to get hitched, what is afterwards? Allowing individuals to wed their pooches (a

colloquial term/slang for ‘dogs’)?"

(l)SyllogismFallacy This fallacy may also be used to form incorrect conclusions that are odd. Syllogism fallacy is a false

argument as it implies an incorrect conclusion.

Example ‘‘ All parrots are green and the bird in my cage is green. So the bird in my cage is a parrot."

2.4 A list of fallacies without explicit examples The foregoing categories are just a few of many possible categories of

fallacies [3-7] that we may encounter. The following is a list of fallacies which include most of the foregoing fallacies in

some form or the other. We provide the list without explicit examples. The internet/concerned literature may be referred

to for specific examples. The list is considerably comprehensive but cannot be said exhaustive. We can never be sure

about the total number of distinct categories of fallacies that a human can ever encounter in a reasoning/argument.

Number of categories of fallacy: How many If we talk about the number of categories of fallacy, then one may talk about

just only one category viz. the category in which there is an error in any reasoning. One may also talk about 3 categories

viz. (i) Formal fallacies that include Propositional, Quantification, and Formal syllogistic fallacies, (ii) Informal fallacies

that comprise Faulty generalizations and Red herring fallacies, and (iii) Conditional/questionable fallacies.

Each one of these 3 categories can be further divided into a number of sub-categories. Each sub-category is also a

category. In this way, there could be an indefinite number of varieties or categories as there could be an indefinite number

of possible faults in a reasoning. Consequently, it is not possible to exhaustively state the total number of fallacies

objectively. Based on a gross perception, however, one may categorize fallacies depending on some high level possibly

exhaustively but not at the lowest possible level exhaustively.

2.4.1 Formal fallacies

(i) Appeal to probability fallacy (a statement that takes something for granted since it would probably the case),

(ii) Base rate fallacy (a conditional probability oriented statement that has not considered the influence of prior

probabilities),

(iii) Fallacy fallacy (also called argument from fallacy — if an argument is fallacious, then the claim/conclusion is false)

(iv) Jumping to conclusion fallacy (the statement based on the act of taking decision without having sufficient

information to be certain that they are valid),
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(v)Masked-man fallacy (also called illegal substitution of identical fallacy — replacing a designator by an identical one

in a valid statement may lead to an invalid one),

(vi) Conjunction fallacy (an assumption that an outcome satisfying several conditions at the same time is more probable

than an outcome satisfying only one of the several conditions),

(vii) Propositional fallacy A compound proposition having 2 or more constituent parts should satisfy the logical

connectives such as and, or, not, if then, only if, and if and only if. A propositional fallacy is an error in logic in a

compound proposition. A propositional fallacy may be of 3 types viz.

(a) Affirming the consequent fallacy (the antecedent in an indicative conditional is claimed to be true since the consequent

is true — if A then B; B, hence A),

(b) Affirming a disjunct fallacy (one disjunct of a logical disjunction is claimed to be false since the other disjunct is true

— A or B; A, hence not B), and

(c) Denying the antecedent (the consequent in an indicative conditional is claimed to be false since the antecedent is false

— if A then B; not A hence not B

(viii) Quantification fallacy (when the quantifier of the conclusion contradicts the quantifiers of the premises, an error

in logic occurs). An existential fallacy viz. a fallacy in which an argument has a universal premise and a particular

conclusion is a type of quantification fallacy.

(ix) Formal syllogistic fallacy (a logical fallacy in a syllogism — a kind of logical argumentthat appliesdeductive

reasoningto arrive at aconclusionbased on 2 or morepropositionsthat are asserted or assumed to be true). There are

several types of this fallacy:

(a) Illegal major fallacy(Since the major term of a categorical syllogism is not distributed in the major premise but

distributed in the conclusion, the syllogism is illicit),

(b) Illegal minor fallacy (Since the minor term of a categorical syllogism is not distributed in the minor premise but

distributed in the conclusion, the syllogism is illegal),

(c) Illegal affirmative fallacy viz. Negative conclusion from affirmative premises fallacy (When a categorical syllogism

has a negative conclusion but affirmative premises),

(d) Illegal negative fallacy viz. Affirmative conclusion from a negative premise fallacy (When a categorical syllogism

has a positive conclusion but one or more negative premises),

(e) Modal fallacy (Confusing possibility with necessity),

(f) Distributed middle term fallacy (The middle term in a categorical syllogism is not distributed),

(g) Exclusive premises fallacy (Since both of its premises are negative, the categorical syllogism is illegal),

(h) Four terms fallacy (A categorical syllogism that has 4 terms).

(x) Questionable fallacy or conditional fallacy (A fallacy which is conditional or questionable). There are several types

of this fallacy:

(a) Broken window fallacy (a fallacy in which an argument that attaches no importance to lost costs connected with

destroying property of others or associated with other ways of externalizing costs onto others — an argument that states

breaking a window generates income for a window fitter, but it attaches no importance to the fact that the money spent

on the new window cannot now be spent on, say, new television,

(b) Slippery slope fallacy or an appeal to Probability fallacy (a fallacy in which a comparatively small 1st step unavoidably

leads to chain of associated events resulting in some significant event that should not occur; hence the 1st step should not

happen.— if a person p does q then r would probably occur, leading to s, leading to t, leading to v, leading to g. This is

related to Reductio ad absurdum or, specifically, proof by contradiction),

(c) Definist fallacy (a fallacy that involves confusion between 2 notions by defining one in terms of the other), (d) Appeal

to nature fallacy or Naturalistic fallacy (a fallacy that is used to prove a claim about ethics by appealing to a definition of

the term ‘‘ good" in terms of one or more claims about natural properties or God’s will).
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(xi) Faulty generalization fallacy (Arriving at a wrong inference from weak premises) The following types of fallacy

come under a faulty generalization fallacy.

(a) Overwhelming exception fallacy (a correct generalization which occurs with qualifications that removes many cases

so that the remainder is less impressive than the initial statement which might have led one to assume),

(b) Hasty generalization fallacy (insufficient sample/statistics fallacy, lonely fact fallacy, jumping to a conclusion fallacy,

hasty induction fallacy, converse accident fallacy, inductive fallacy are some of the alternative/closely related names; it

occurs when an inference is made of premises that weakly supports it),

(c) Incorrect analogy fallacy (a reasoning based on an unsuitable/defective analogy),

(d) Ignoring an exception to a generalization fallacy (An accident fallacy i.e. an exception to a generalization is ignored or

no-true Scotsman fallacy i.e. forcing a generalization true by changing the generalization that excludes a counterexample),

(e) Misleading vividness fallacy (an exceptional occurrence is described in vivid details to convince someone that it is the

problem),

(f) Survivorship bias fallacy (lobbying/promoting small number of survivors/successes while completely ignoring a large

number of deaths/failures; also known as cherry-picking fallacy — act of suppressing evidence or, in other words, act of

pointing at individual cases or data that seem to confirm a particular position while ignoring considerable relevant cases

or data that could contradict the position),

(g) Thought-terminating cliché fallacy (a thought-terminating stereotyped phrase, known as cliché, used to conceal lack

of thought-entertainment or jump on to a different topic, in any case terminate the debate with a trite not a point).

2.4.2 Informal fallacies (fallacious argument for reasons other than formal (structural) faults and needs checking critically

the contents of the argument)

The following types come under informal fallacy.

(a1) Argument from silence fallacy (The conclusion is based on the absence of evidence and not on the presence/existence

of evidence),

(a2) Argument from (Appeal to) ignorance fallacy (The conclusion is based on the assumption that a claim is true since it

has not been or cannot be proved false or vice versa),

(a3) Argument from incredulity (Appeal to common sense) fallacy (It must be false because I cannot imagine how this

could be true),

(a4) Argument from repetition fallacy (something has been discussed so extensively that no one likes to discuss it any

further (could be confused with proof by assertion)),

(a5) Argument to moderation fallacy (fallacy of the mean or middle ground, false compromise — assuming compromise

between two positions is always correct),

(b1) Appeal to the stone fallacy (rejecting a claim as absurd without proving for its absurdity),

(b2) Begging the question fallacy (The conclusion of a contention is accepted in the statement of the inquiry itself, see

the example in the earlier part of this chapter),

(b3) Shifting the burden of proof fallacy (I do not require to prove my claim, you must prove it is false),

(b4) Circular argument fallacy (when the arguer starts with what he is trying to end up with, may also be called assuming

the conclusion),

(b5) Circular cause and effect fallacy (The effect/consequence of the phenomenon is claimed to be its root cause),

(c1) Bald man fallacy (also called line-drawing fallacy, continuum fallacy, fallacy of the heap or beard — improperly

rejecting a claim for being imprecise),

(c2) Correlation proves causation fallacy (a faulty assumption that since there is a correlation between 2 variables that

one caused the other),

(c3) Suppressed correlative fallacy (when a correlative is redefined so that one alternative is rendered impossible),

(c4) Divine fallacy (also called Argument from incredulity fallacy — something is so incredible that it must be outcome

due to divine/paranormal power),
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(c5) Ecological fallacy (conclusions about the nature of specific individuals are on aggregate statistics obtained for the

group consisting of these individuals),

(d1) Double counting fallacy (counting events more than once in probabilistic argument, which leads to the sum of the

probabilities of all cases>1),

(d2) Equivocation fallacy (the use of ambiguous term with 2 or more meanings to mislead — it could be Ambiguous

middle term fallacy i.e. a common ambiguity in syllogisms in which the middle term is equivocated, or it could be

Definitional retreat fallacy i.e. changing the meaning of a word to deal with an objection raised against the original

wording),

(d3) Fallacy of composition (Something that is true of part of a whole should necessarily be true of the whole),

(d4) Fallacy of accent (In a written passage when it is left unclear which word the emphasis was supposed to be on),

(d5) Etymological fallacy (Which reasons that the historical meaning of a word/phrase is necessarily similar to its actual

present-day meaning),

(e1) Fallacy of division (Something that is true of a thing should necessarily be true of the whole or some of its parts),

(e2) False attribution fallacy (also Quoting out of context fallacy i.e. referring to plucked out words selectively from the

original context in such a way that distorts the intended meaning — a lawyer appeals to an irrelevant source in support of

an argument),

(e3) False (Appeal to) authority fallacy (Using one expert of controversial credentials or using only one opinion to sell a

product/to lobby in favour of someone/some ideology),

(e4) False dichotomy fallacy (also called fallacy of bifurcation, false dilemma, or black-or-white fallacy — 2 alternative

propositions are shown to be the only possible options, while there are more),

(e5) False equivalence fallacy (bringing in a situation of apparent equivalence while in reality there is none),

(f1) Historian’s fallacy (happens when one assumes that decision makers of the past viewed events from the same outlook

and with the same as those subsequently analyzing the decision),

(f2) Historical fallacy (occurs when a set of considerations is satisfied just because a completed process is inserted into

the content of the process which conditions the completed one),

(f3) Gambler’s fallacy (occurs when the false belief that independent events can influence the likelihood of another

random event — if a fair coin shows tails 15 times in a row on tossing, the belief that it is due to the number of times it

has previously landed on heads)

(f4) Furtive fallacy (occurs when outcomes are asserted to have caused by the wrongdoings of the decision makers),

(f5) Fallacy of the single cause (happens when it is assumed that there is one cause of an outcome whereas it might have

been caused by several causes put together),

(g1) Fallacy of presupposition (also called fallacy of many questions — occurs when somebody asks a question that

presupposes something that has not been proved/accepted by all involved; this fallacy is usually rhetorically used so that

the question limits direct replies to those that serves the questioner’s agenda),

(g2) Homunculus fallacy (occurs when an argument which accounts for a phenomenon in terms of the very phenomenon

that it is meant to explain resulting an infinite regress — Phenomenon P needs to be explained, Reason R is specified.

But Reason R depends on Phenomenon P),

(g3) If-by-whiskey fallacy (occurs when an argument that supports both sides of an issue using terms which are selectively

emotionally sensitive),

(g4) Inflation of conflict fallacy (The experts of a particular area of knowledge disagree on a certain point, so the scholars

must not know anything resulting in doubt about the legitimacy/validity of their entire area),

(g5) Inconsistent comparison fallacy (occurs when several methods of comparison are used, leaving us with a wrong

impression of the (only one) whole comparison),

(h1) Incomplete comparison fallacy (occurs when information provided is insufficient for making a complete

comparison),
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(h2) Missing the point fallacy (also known as irrelevant conclusion fallacy — a reasoning that may itself be correct, but

does not address the issue in question),

(h3) Intentionality fallacy (the final meaning of a communication must be consistent with the intention of the

communicator; for instance, a fiction known as an allegory must not necessarily be regarded as such if the author intended

it not to be so),

(h4) Kettle logic fallacy (occurs when arguments with inherent inconsistencies are used to defend a position),

(h5) Ludic fallacy (occurs when the probabilistic games are misused to model a real-life situation),

(i1) Quantitative fallacy (also called McNamara fallacy — occurs when a decision is made only on quantitative

observations, discounting all other considerations),

(i2) Is-ought fallacy (also sometimes called Naturalistic fallacy — occurs when an evaluative conclusion is made from

factual premises violating fact-value distinction; inferring ‘ought’ from ‘is’ is an instance of naturalistic fallacy),

(i3) Ought-is fallacy (also called Moralistic fallacy — occurs when a factual conclusion is made from evaluative premises

violating fact-value distinction; inferring ‘is’ from ‘ought’ is an instance of moralistic fallacy; Ought-is fallacy is the

inverse of Is-ought fallacy),

(i4) Moving the goalposts (often raising the bar) fallacy (occurs when evidence provided in response to a specific claim

is dismissed and some (often) greater evidence is demanded),

(i5) Anti-naturalistic fallacy (also called Naturalistic fallacy fallacy is an instance of argument from fallacy),

(j1) Perfect solution fallacy ( also called Nirvana fallacy — occurs when a solution to a problem is rejected since it is not

perfect),

(j2) Faulty cause/effect fallacy (also called correlation without causation fallacy, and coincidental correlation fallacy —

the event E happened and then the event F happened; hence E caused F),

1. (j3) Proof by repeated assertion fallacy (a proposition is stated again and again irrespective of contradiction),

(j4) Prosecutor’s fallacy (a fallacy of statistical reasoning, used by the prosecution to argue for the guilt of a defendant

during a criminal trial),

(j5) Proving too much fallacy (occurs when an argument reaches the desired conclusion so that it is only aspecial caseof

a larger absurd/undesirable conclusion),

(k1) Psychologist’s fallacy (occurs when an observer assumes that his subjective experience reflects the true nature of an

event),

(k2) Referential fallacy (occurs when the term is used to refer to the assumption that it is a necessary condition of a sign

that the signifier has a referent say, a real material object or that the meaning of a sign lies purely in its referent. Such an

assumption is faulty since many signifiers such as the connective ‘and’ do not have referents),

(k3) Regression fallacy (occurs when it assumes that something has returned to normal due to corrective actions taken

while it was abnormal and fails to account for natural fluctuations — it is often a special kind of the post hoc fallacy),

(k4) Fallacy of ambiguity (occurs when it is the error of treating something as a real thing, which is not a real thing but

just an idea. In other words, abstract belief is treated as if it were a physical entity or a concrete real event),
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(k5) Retrospective determinism (occurs when the argument that since an event has happened under some circumstance,

the circumstance was responsible for its occurrence),

(l1) Wrong direction fallacy (occurs when the cause is said to be the effect and vice versa),

(l2) Special pleading fallacy (occurs when a person argues in favour of something by attempting to cite it as an exemption

to a generally accepted rule/principle without justifying the exemption),

(l3) Shotgun argumentation fallacy (occurs when the arguer puts forth such a large number of arguments in favour of a

position that the opponent cannot possibly respond to all of them),

(l4) Abusive fallacy (also called Ad hominem fallacy or personal attack fallacy — occurs when the arguer is attacked

instead of his argument), the subtypes of this fallacy include Appeal to motive fallacy (occurs when an idea is discarded

by questioning the motive of the proposer), Poisoning the well fallacy (occurs when adverse information is presented

about a target person with the motive of discrediting everything that the target person says), Tone argument fallacy

(occurs when emotion behind a message is focussed and not the message itself as a discrediting tactic), Traitorous critic

fallacy (occurs when responding to the criticism by implying that the critic is biased by the affiliation to an out-group and

not responding to the criticism itself),

(l5) Argument from inappropriate authority fallacy (also called Argumentum ad Verecundiam fallacy — occurs when an

assertion is regarded as true because of the authority of the person asserting it),

(m1) Appeal to accomplishment/ emotion/ fear/ flattery/ pity/ ridicule/ spite/ nature/ novelty/ poverty/ tradition/ wealth/

stick/ force/ threat/ belief fallacy ( occurs when any of the terms such as fear, poverty, and belief dominates rather than pure

logic; as a matter of fact, the fallacy crops because of somebody’s weaknesses toward another person’s accomplishment

or/and wealth or/and power, say).

2.5 Mathematical fallacy

Underlying any scientific/technological activity is mathematics. It is accepted by one and all in scientific/engineering

community as the most powerful justification for the validity of scientific innovation. In all theoretical and applied

scientific activities such as electrical, electronics, mechanical, civil, computer, biological, chemical, and physical sciences

activities, mathematics is the most vital tool for their logical validation. Until such a validation is done, nothing will be

accepted/given importance by the scientific community, however vital/outstanding the innovation is. Hence the concerned

mathematics should be absolutely free from all kinds of fallacy.

In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a

concept of mathematical fallacy [8, 9]. There is a distinction between a simplemistakeand amathematical fallacyin a

proof: a mistake in a proof leads to an invalid proof just in the same way, but in the best-known examples of mathematical

fallacies, there is some concealment in the presentation of the proof. For example, the reason validity fails may be a
division by zero that is hidden by algebraic notation. There is a striking quality of the mathematical fallacy: as

typically presented, it leads not only to an absurd result, but does so in a crafty or clever way.Therefore, these fallacies,

for pedagogic reasons, usually take the form of spurious proofs of obvious contradictions. Although the proofs are flawed,

the errors, usually by design, are comparatively subtle, or designed to show that certain steps are conditional, and should

not be applied in the cases that are the exceptions to the rules.

The traditional way of presenting a mathematical fallacy is to give an invalid step of deduction mixed in with valid

steps, so that the meaning of fallacy is here slightly different from the logical fallacy. The latter applies normally to

a form of argument that is not a genuine rule of logic, where the problematic mathematical step is typically a correct

rule applied with a tacit wrong assumption. Beyond pedagogy, the resolution of a fallacy can lead to deeper insights
into a subject (such as the introduction of Pasch’s axiomof Euclidean geometry and the five color theorem of graph

theory).Pseudaria, an ancient lost book of false proofs, is attributed to Euclid.

Mathematical fallacies exist in many branches of mathematics. In elementary algebra, typical examples may involve

a step where division by zero is performed, where a root is incorrectly extracted or, more generally, where different
values of a multiple valued function are equated. Well-known fallacies also exist in elementary Euclidean geometry

and calculus.
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2.5.1 Howler fallacy If an argument, however true the inference, is mathematically false, then it is called ahowler — a

fallacy. Consider for instance the calculation (anomalous cancellation):

Example 2 19/95 =1/5 by cancelling 9 from numerator as well as denominator.

Although the conclusion{ \ displaystyle \ textstyle { \ frac { 16} { 64} } ={ \ frac { 1} { 4} } } 16/64 =1/4 as well as 19/95

=1/5 are correct, there is a fallacious, invalid cancellation in the middle step. Bogus proofs, calculations, or derivations

constructed to produce a correct result in spite of incorrect logic or operations were termed howlersby Edwin Arthur

Maxwell (1907-1987).Outside the field of mathematics the term howler has various meanings, generally less specific.

2.5.2 Division-by-zero fallacy Division by zero explicitly or implicitly in mathematics and elsewhere is completely

forbidden. It is considered an unpardonable mathematical sin. Ithas many variants. The following example uses division

by zero to "prove" that{ \ displaystyle 2=1} 1=2, but can be modified to prove that any number equals any other number.

Let a and b be equal non-zero quantities.

S.1 a=b.

S.2 Multiply both sides by a: a2=ab.

S.3 Subtract b2 from both sides: a2 - b2 = ab - b2.

S.4 Factor both sides: (a + b)(a - b)=b(a - b).

S.5 Divide both sides by (a-b): (a + b) = b. (Note that a=b: b + b = b i.e. 2b = b.)

S.6 Divide both sides by non-zero b: Hence 2=1.

The fallacy is in step S5 i.e. in ‘‘ Divide both sides by (a – b)" . Since (a – b) is 0, division by 0 is undefined. Hence

the argument is wrong. In a proof (rather in an involved long proof) by a human being /mathematician/physicist, such an

error (mistake) is not uncommon.

2.5.3 Equating 2 distinct values of multi-valued function fallacy Many functions do not have a unique inverse. For

example squaring a real number gives a unique value, but there are two possible square roots of a positive number. The

square-root is multi-valued (here 2-valued). One value can be chosen by convention as the principal value, in the case of

the square-root the non-negative value is the principal value, but there is no guarantee that the square-root function given

by this principal value of the square of a number will be equal to the original number, e.g. the square-root of the square

of − 6 is 6.

Similarly, the 4th root of the 4th power of -10 could be 10. Here the 4th root is 4-valued (viz. 10, -10, 10i, -10i).

2.5.4 Fallacies in Calculus Calculus as the mathematical study of infinitesimal change and limit scan lead to mathematical

fallacies if (i) the properties of integrals and differentials and (ii) the properties of limits are ignored. For instance, a naive

use of integration by part scan be used to give a false proof that 0 = 1. { \ display style \ textstyle dv={ \ frac { dx} { x} }

} We may write:

∫
(1/ (xlog x))dx = 5 +

∫
(1/ (xlog x))dx

{ \ displaystyle \ int { \ frac { 1} { x\ ,\ log x} } \ ,dx=1+\ int { \ frac { 1} { x\ ,\ log x} } \ ,dx} after which the

anti-derivatives may be cancelled yielding 0 = 5. The problem is that anti-derivatives are only defined up to a constant

and shifting them by 5 or indeed by any number is allowed. The error really comes to light when we introduce arbitrary

integration limitsaandb.

{ \ displaystyle \ int _ { a} ^ { b} { \ frac { 1} { x\ ,\ log x} } \ ,dx=1| _ { a} ^ { b} +\ int _ { a} ^ { b} { \ frac { 1} { x\
,\ log x} } \ ,dx=0+\ int _ { a} ^ { b} { \ frac { 1} { x\ ,\ log x} } \ ,dx=\ int _ { a} ^ { b} { \ frac { 1} { x\ ,\ log x} } \ ,dx}

Since the difference between two values of a constant function vanishes, the same definite integral appears on both sides

of the equation.

Consider, for example, computing the limit of the function
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limx→0√(1−cos2x)
x

.

If we equate the numerator viz.
√
1 − cos2x =

√
2sinx since cos2x = 1 − 2sin2x and then compute the limit

limx→0√2sinxx
=
√
2 limx→0 sinxx =

√
2 ,

we go wrong. The limit x could tend to 0 not only from the positive side but also from the negative side (of 0). Both

these limits must be the same for the limit to exist or, in other words, in the engineering sense, for the result to exist and

to produce correct value of the function. The value of sinx when x tends to 0 both from the negative side (4th quadrant)

as well as from the positive side 1st quadrant is 0. But x is negative from the negative side and positive from the positive

side. Thus the foregoing limits are −
√
2 from the negative side and +

√
2 from the positive side. Since these 2 limits

are different, the limit for the foregoing function does not exist. That is, the function value is non-existent at x = 0 (in

any real-world engineering implementation; here ‘=’ implies ‘not necessarily exactly equal to’; in a continuous physical

quantity, the exact quantity, though physically exist, is never known to us in exact (finite) numerical form — only best

possible bounds in which the exact numerical quantity lies would be known depending on the accuracy of the measuring

device).

Matlab takes care of such kinds of fallacy and compute the left-hand and right-hand limits correctly numerically. For

instance, the Matlab commands

format long; x=10^ -4, r1=sqrt(1-cos(2*x))/x, x=-x, r2=sqrt(1-cos(2*x))/x, r3=abs(r1-sqrt(2))

produce r1=1.414213558075674, r2=-1.414213558075674, r3=4.297421085652786e-009 (Accuracy), while the Matlab

commands

» format long; x=10^ -5,r1= sqrt(1-cos(2*x))/x, x=-x, r2=sqrt(1-cos(2*x))/x, r3=abs(r1-sqrt(2))

produce r1=1.414213620879371, r2=-1.414213620879371, r3=5.850627626813321e-008 and

» format long; x=10^ -3,r1= sqrt(1-cos(2*x))/x, x=-x, r2=sqrt(1-cos(2*x))/x, r3=abs(r1-sqrt(2))

produce r1=1.414213326683278, r2=-1.414213326683278, r3=2.356898167743537e-007.

Thus, in Matlab, a best accuracy is achieved for x = ±0.0001 for the left-hand limit as well as the right these-hand

limit. Both these limits are different. Hence the required limit does not exist. In other words, if we are asked to compute

the value of the function
√
(1−cos2x)

x
at x = 0 (numerical zero), then the answer will be: the value of the function does

not exist. This answer is given by actually computing the foregoing limits. An analogous problem is to compute the

value of the function
(
x2 − 4

)
/ (x − 2) at x = 0 (a numerical zero, not the mathematical zero). Then the answer will

be 4 obtained by computing both the left-hand as well as the right-hand limits and observing that these two limits are the

same.

For the mathematical 0, the function value is undefined because of 0/0 form. In engineering computation, it is implicit

that the value of x is not exactly 0 — the difference between the exact 0 and a numerical 0 could be taken as even

±10−500 times the value of an average element (a relatively extremely small value not exactly equal to 0). Since we have

everything to do with numerical 0 in the physical world/engineering computation, we need to be careful not to introduce

a fallacy by saying that the value of the function is undefined.

Fallacies may result due to violating elementary arithmetic rules through an incorrect manipulation of the radical.
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2.5.5 Positive and negative roots Care must be taken when taking the square root of both sides of an equality.
Failing to do so may result in a proof of 5=7. We can write (6 – 5)2 = (6-7)2. Taking square-root of both sides we
have 6 – 5= 6 – 7. Hence 5 = 7. The fallacy is in the last but one sentence, where the square root of both sides is
taken:a2=b2only implies a=b if a and b have the same sign, which is not the case here. In this case it implies a= –b
and should read6 – 5 = -(6 - 7). This is 1= 1 which is correct. { \display style 5=4. }

{ \ display style 5=4.} { \ display style 5^ { 2} -5\ times 9=4^ { 2} -4\ times 9} As another example of the danger

of squaring both sides of an equation, consider the fundamental identity cos2x = 1 − sin2x { \ display style \ cos

^ { 2} x=1-\ sin ^ { 2} x} which holds as a consequence of the Pythagorean theorem. Then, by taking a square-root,

cosx =
√
1 − sin2x { \ display style \ cos x={ \ sqrt { 1-\ sin ^ { 2} x} } } so that 1 + cosx = 1 +

√
1 − sin2x . For

x = π , the foregoing identity gives 0=2 which is wrong.

The error in each of these examples fundamentally lies in the fact that any equation of the form x2 = a2 { \ display

style x^ { 2} =a^ { 2} } has two distinct solutions viz. (i) x = +a and (ii) x = −a , whena6= 0.{ \ display style x=\ pm a}

It is imperative to check which of these solutions is relevant to the problem at hand.In the above fallacy, the square-root

that allowed the second equation to be deduced from the first is valid only when cosxis positive. In particular, whenxis

set to π , the second equation is rendered invalid.

2.6 Fallacy in Statistics

Introduction Improper sampling or/and wrong interpretation of data generally leads to statistical fallacies [10, 11]. A

statistical fallacy may also be termed as wrong interpretation of data.

Human psychology may not always be completely unbiased. Sometimes there may be a tendency on one’s part to force

an inference by manipulating the statistical data and inject among the audience/public a positive feeling about the health

of, say, a country’s economy. A prediction of rosy future for a state or a country to induce a powerful positive attitude

among her citizens could be a fallacy but it has a potential to greatly improve the optimism and consequently enhanced

collective/individual contribution to the society.

A completely unbiased correct interpretation out of the data, though may not be palatable and contribute to greatly

improve the optimism among the people, will be definitely good to the society in the long run. The faith/dependence of

the people on statistical inferences will be significantly enhanced and unshakeable.

Hence any statistician should strive for truly unbiased conclusions/inferences out of the correct interpretation of data

based on proper sampling and not on any compulsion — external or/and internal . For any wrong interpretation of data,

it is not the statistics but we, the concerned people, are fully responsible and are to be blamed.

In other words, the interpretation of data is a difficult task and needs a high degree of skill, care, judgement, and

objectivity. Automation of interpretation entirely based on computer (i.e. without any live human interaction) is very

difficult or almost impossible (to be programmed).

In the absence of these — skill, care, judgement, and objectivity — there is every likelihood of the data being misused

to prove/interpret things that are not at all true. In reality, the largest number of mistakes are committed consciously

or unconsciously (intentionally or unintentionally) while interpreting statistical data. Very often facts and figures are

presented in such a manner that these are misinterpreted by majority of the readers.

The effect of a fallacy designed to mislead and the one committed unintentionally will not be distinguished. The effect

is the same in both cases. However, there is an abuse of statistics in the first case while it is only a misuse in the second

case.

Statistical fallacies could crop up in collection, presentation, analysis, and interpretation of data. Following are a

few examples illustrating how statistics can be misinterpreted or how fallacies arise in using statistical data and statistical

methods.

2.6.1 Inconsistency in definitions Improper definition of an object under consideration as well as failure of keeping the

definition constant (unchanged) would result in wrong inferences. For instance, to compare the national income of 2
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countries India and the USA, it is imperative that the definition of the national income is taken to be the same in both

the countries. Else, if one country includes the services of homemakers in the computation of national income while the

other country does not, the national income figures cannot be compared. Moreover, to felicitate the comparison over a

period of time, it is essential to retain the definition unchanged. If, however, a change in the definition is unavoidable in

future, then a footnote needs to be provided regarding the likely impact on comparability.

2.6.2 Erroneous deductions A general rule when applied mistakenly to a specific case, it would lead to faulty deduction.

If, for instance, the profits of an industry producing 20 different items have declined in 2015-16 compared to 2014-15, it

should not lead one to conclude that the industry is necessarily showing deficiency in performance. It is quite possible

that it may have improved out of 20 in 19 items it is producing and has stopped the production of 1 item altogether. Let

the profits of an industry in 2015-16 have come down from $ 15 million in 2014-15 to $ 12 million. The industry stops the

production of item ‘A’ which was fetching $ 5 million/year due to the non-availability of raw materials. This implies that

the industry has improved on he whole. But most people would conclude that the industry has performed badly compared

to the preceding year.

2.6.3 Erroneous generalizations A common error in statistics in to rush to a conclusion or a generalization based on too

small a sample or a sample not representative of the population to which the conclusion is applied.

Consider a college having, say, 3000 students. If by taking, for example, a sample of, say, 30 students from a particular

section we make a generalization that on the whole the students of that college are very intelligent, then it would be faulty.

There are 2 reasons. (i) the size of the sample is too small and (ii) the sample is not at all representative since the all the

students have been taken from the same section and it is quite possible that this particular section may be comprised of

the best students.

Consider, as another example, that 85% of those who smoke develop indigestion in the middle age. We may thus

conclude that smoking leads to indigestion. This type of generalization is invalid unless we know the percentage of

smokers and non-smokers in the population. If the total population of a district is 200,000 and the percentage of smokers

and non-smokers is 10 and 90, respectively. This implies that out of 20,000 smokers, 80% viz. 16,000 develop indigestion

in the middle age. On this basis, we cannot conclude that smoking leads to indigestion. Furthermore we must study the

causes of indigestion.

From the foregoing examples, it is clear that a sweeping generalization about a population based on inadequate and

individualized data needs to be avoided in the interest of a correct inference.

2.6.4 Faulty comparisons To draw inferences from the data, comparisons are needed. Comparisons between 2 items

cannot be made unless they are similar. This important point is generally overlooked and comparisons are made between

2 dissimilar items, thereby leading to fallacious inferences.

If, for instance, we are comparing the wholesale price index of November, 2016 with that of November, 2017, it is

imperative that (i) the number of commodities included, (ii) (their qualities, and (iii) the procedure of constructing the

index are the same in both the years. Else the 2 indices cannot be compared.

If the per capita income of USA in 2017 is 4 times as high as that in 1995, then on the basis of this information we

should not infer that the people are 4 times better today than what they were in 1995. We must study the behaviour of

prices during this period. If there is no change in prices during this period, then only we can make the inference, else not.

2.6.5 Faulty use of tools of analysis such as mean, median, mode, dispersion, and correlation The various tools of

statistical analysis are frequently misused to depict information in such a way that the information deceives the public.

Consider, for example, a company having 2010 shareholders declares that the average holding of the shares of their

shareholders is 100. However, an analysis of each and every shareholder reveals that 10 persons who control the company

have in all 198,000 shares. The remaining 2,000 shareholders have only 3,000 shares. This implies that an average of 1.5

shares is held by each of the 2,000 shareholders.
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Likewise, the range can be used to exaggerate disparities in distribution of wages. For instance, the wages of an

employee in an industry are in the range $ 21,600-$ 42,600 per annum. The general manager of the industry gets $

300,000 per annum. A report that wages of the employees of the industry range from $ 21, 600 to $ 42, 600 per annum is

deceptive (true though). A measure of dispersion must accompany the average for a proper interpretation of the average.

Similarly a correlation procedure may also be used in such a way that it could establish a faulty conclusion. For

instance one may notice that a high degree of correlation between yield of wheat per acre and rainfall in a given area.

One should not infer on the basis of this correlation that the higher the rainfall is, the higher will be the yield. In fact, the

excessive rains can reduce the yield drastically instead of increasing the yield.

We could have curvilinear (consisting of or bounded by curved lines) correlation with a positive relationship up to a

certain point (instead of positive linear correlation) and then a negative relationship setting in after that point.

The coefficient of correlation may also be used to measure the covariation of 2 series which are truly independent

of each other. We may show that increase in weight of human beings is associated with increase in income and the

spread of certain disease in Florida with the increase in imports of apples. Covariation alone should not be interpreted as

manifestation of functional relationship or causation.

2.6.6 Faulty interpretation of trend, seasonal variation, and cyclical variation Analysing various components of a time

series (a series of data pointsindexed (or listed or graphed) in time order) incorrectly results in a wrong interpretation. A

straight line, for instance, may be fitted for the complete data instead of a curve. Further, while extrapolating the trend, an

assumption is made that other parameters remain unchanged. However, this assumption is rarely true particularly when

projections are made over a long period of time.

In addition, at times a seasonal variation may be interpreted as a cyclical one and vice versa (resulting in a seasonal

variation as a trend).

2.6.7 Error in technical aspects An incorrect conclusion for the given data results due to many types of possible technical

errors committed in statistical works. Errors may be committed in the choice of an appropriate formula. For instance, the

arithmetic mean is employed in a situation the harmonic mean is more appropriate.

While analyzing the data or classifying the data, arithmetic errors may be committed. Errors in units of measurement

are also common. A often committed error is to confuse between 2 kinds of logarithms — natural (base e) and common

(base 10), the former being 2.3026 times the later.

Another type of error that frequently prevails in statistical works is the use of percentages and ratios. A comparison of

percentages without knowing the base to which they refer to would result in error and confusion.

Take, for example, 3 industries in 2016 employment. One industry expects employment 10% below normal, the 2nd

industry expects employment 15% below normal while the third one expects employment 25% above normal. Can we

conclude that there would be no additional unemployment since the 3rd industry would be able to absorb those displaced

by other 2 industries? This type of comparison without the knowledge of the base is misleading (If the base viz. number

of employees in all 3 industries are the same then it is fine, else not). If the number of employees in the 1st two industries

is 20.000 and 10,000, then the number of workers unemployed would be 3,500. Suppose that th 3rd industry normally

employs 12,000 people. An increase of 25% would mean 3,000 more jobs. This implies that still 500 people would

remain unemployed. Hence knowledge of base is essential while comparing percentages.

Often 100 is not subtracted in figuring increases and this leads to an incorrect conclusion. The price of a commodity

has increased from $ 100 in 1996 to $ 300 in 2016. One may say that there is 300% increase in price. However, a little

thinking would show that the true increase is 200% .

2.6.8 Failure to comprehend total background of the data Often figures are interpreted without comprehending the total

background of the data. This results in a wrong conclusion. For example, the mortality statistics show that the deaths

from cigarette smoking (including passive smoking) have increased from 480,000 in 2015 to 576,000 in 2016 and it may
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be concluded that the deaths from smoking are increasing. However, for a proper interpretation of these figures, it is

necessary to comprehend the total background of the data in terms of the following considerations.

(i) The collection and reporting of mortality statistics has improved over the years.

(ii) Deaths due to other diseases have been brought under control and consequently many more die of smoking now who

would have died due to other diseases in earlier times.

(iii) Some deaths formerly listed as ‘‘ causes unknown" are now correctly diagnosed as deaths from smoking.

(iv) Due to increasing autopsy analysis, there have been an increase in post-mortem diagnoses of smoking which show

that the cause of death originally reported was not the actual cause.

Thus just on the basis of certain figures one should not rush to conclusions. One should try to interpret the figures in

the light of the background of the data. The foregoing statistical fallacies are far from exhaustive.

However, statistics can neither prove nor disprove anything unlike mathematics/ computational mathematics. In fact,

many persons use statistics like a blind man. Anybody who uses statistics should not be misled by bad statistics — one

should not only avoid outright falsehood and must be alert to detect possible distortion of truth.

Statistics should not be condemned since it can be abused and misused. The fault lies not with statistics but with the

user of statistics. Statistics are like clay of which one can make a God or a Devil as one pleases. W. Allen Wallis and

Henry V. Roberts have rightly said: ‘‘ He who accepts statistics indiscriminately will often be duped unnecessarily. But

he who distrusts statistics indiscriminately will often be ignorant unnecessarily" .

3. Role of Environment and Assumptions in Fallacy

We specifically describe below the environmental/social/cultural influence leading to fallacy. In addition, we examine

the effect of assumptions in the logical reasoning process. To which extent such an effect is not considered to generate a

fallacy is discussed.

3.1 Environmental/social/cultural influence leading to fallacy

Scriptures-human values conflict fallacy One Bengali poet had written ‘‘ Devatare mora atmiya jani akashe pradip jali;

amaderi ei kuthire dekhechi manusher thakurali" The meaning of the foregoing 2 lines of the poem is: We know that all

the gods and goddesses are our relatives and we light lamps in the sky; in our own home we have seen gods in human

bodies.

This is a firm faith among Hindus. When they worship a stone/clay image of, say, Radha-Krishna (Hindu goddess and

god (respectively) with a significant story of great moral value behind them in Mahabharata), they simply consider the

image as actual live Radha and Sri Krishna as their own most beloved and revered beings.

The story [12] goes that one priest slipped while carrying this stone image/statue after giving bath to the statue at the

river Ganga (also called the river Hooghly) adjacent to the Dakshineswar (North Kolkata) Kali temple. Krishna’s foot

got broken and, since a broken image should not be worshipped as per the scripture, pundits (learned scholars) after lot

of deliberation recommended to immerse it in the Ganga (Ganges).

The Rani (Rani Rashmoni) who built the Dakshineswar Kali Temple was heartbroken because she had become very

attached to this image of Krishna. To her, it was not just a mere image/stone statue. It was Sri Krishna, the god of

compassion, tenderness, and love, himself in all his glory. Sri Ramakrishna (SR), the young priest of the Kali temple

came to the rescue. He said, ‘‘ If your son-in-law breaks his leg, will you throw him into the Ganges (Ganga)?" This very

question of SR immediately made the Rani to see clearly what she should do.

Readily she rejected the pundits’ recommendation. SR himself fixed this image which has been worshipped for

the last over 160 years and is still being worshiped with tremendous zeal and devotion by people from various parts of

India/the world.

Was the pundits’ logic fallacious? If we really see from another angle (not exactly analogous to the present context),

we see why the scripture suggests a broken image should not be worshiped. We should worship only a perfect unbroken

image possibly imagining/attributing to it the manifestation of all the ideal qualities originating from a perfect body. This
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was probably due to the fact that when we get old, we discard our body like torn clothes, burn or bury the body, and

assume a new body to start from where we had left in the previous birth with all the new energy and vigour. For Hindus,

a rebirth is not a philosophy but a reality. At the highest state of mind (Samadhi state) only, one can verify the exact

(fallacy-free) ultimate truth (for instance, rebirth) and convince oneself perfectly and once for all. That is precisely the

concerned sages/rishis have experienced most intensely and brought the knowledge to the humanity. For them rebirth is

not a belief/faith, it is the fact of life. From a lower state of mind, it may not be possible to have the first-hand experience

of the truth of rebirth. One may refer the monograph ‘‘ The Complete Works of Swami Vivekananda" [13] and follow the

Raja-Yoga (science of mind control) way of practice to experience the truth through focusing the mind on rebirth. We

may thus conclude that given the environment in which Sri Krishna was a vibrant youth (not an old or a dead man whose

body is like torn clothes) of all godly qualities, should not be immersed or thrown away but should be treated for the

fractured leg and cure it as we always do in our human lives.

To recognize/detect such a fallacy as the foregoing one and take an appropriate course of action/decision clearly needs

intense concentration with uncommon critical analyzing power.

3.2 Role of assumptions in fallacy Assumptions are also not desirable since these distort to a varying degree the real

physical problem. Then why do we bring assumptions into real-world problem-solving? If the real-world problem can

be solved computationally sufficiently meaningfully then we will not or definitely should not resort to make/introduce

assumptions.

The nature of an axiom and that of an assumption are similar. While an axiom is the perceived (self-evident) truth and

does not distort the truth, an assumption introduces errors and distorts the truth [14].

However, there are many situations in problem solving, where assumptions are necessitated to get a solution of the

problem. But for the assumption(s), a solution may be intractable/impossible within the means/tools (computational)

available at that time and in the concerned environment. This solution is that of the distorted problem rather than that of

the exact real-world problem.

To know to which extent the problem is distorted due to introduction of an assumption is important. Error in the

solution is always injected due to an assumption. Verification of the solution against the experimental result or the result

obtained by some other means tells us whether the solution is acceptable within the specified/permitted range in the

context.

If the solution is acceptable, then the assumption will be considered fallacy-free and only acceptable error component

is present. Else, it may be considered fallacious in the given context. Such a fallacious assumption is not only undesirable

but also should be removed/ rejected. Instead, a new assumption with reduced distortion effect should be sought and

introduced for a new solution. The process may be continued till a fallacy-free (not error-free since error is an inseparable

part of all numerical solutions) solution is obtained. In case we are not able to get a fallacy-free assumption given the

available resources, then the resulting solution should be rejected. Consequently the problem remains unsolved.

4. Conclusions

4.1 Root of fallacy is a living being A fallacy originates from a living being such as a living human being and not from

a non-living being such as a computer. If we discover a fallacy in a computer database, then we should go backward

and search the cause/origin. Invariably we will find the origin viz. a fallacious statement introduced by a living human

being. Such a statement needs to be rectified readily. In fact, a fallacy/mistake and a living being are inseparable. The

proverb ‘‘ To err (mistake/fallacy) is human" is eternally true. It is impossible for any human being including the greatest

prodigy in any field, who can say that he does not commit any mistake/fallacy at all. However, anything/any statement

or realization originating from the ultimate state of mind (Samadhi or, equivalently, no-thought state) of a human being

is fallacy-free. Any sayings/actions of Ramakrishna Paramahamsa, an outstanding modern mystic saint of 19th century

India has not been found/proved to be fallacious.

4.2 Living being and proof Any being never starts life with a clean slate. He is endowed with certain inherent physical

and mental qualities from the very first day of his birth. He is born not with just a living body and nothing else such as a
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feeling of fear, love, hunger, which and how to eat and drink, a faculty for recognizing the environment, and the knowledge

of a language. Certain faculty such as swimming and producing a particular sound implying certain message/feeling (to

attract attention to get help from his mother/others) comes along with the birth of some living beings viz. waterfowls,

dolphins, tigers, and elephants.

There are trades such as hunting, saving oneself from predators through running (for

life)/dodging/hiding/camouflaging, and adapting the environment are either learnt and/or improved as he grows.

He also grows in experience with time subject to his learning abilities which vary from one living being to another of his

kind.

This experience implicitly/explicitly is connected with the ‘proof’ of a statement/knowledge. It is intimately linked

with cause and effect (action and reaction). As instances, we may cite the following.

i. Smoking cigarettes, John got lung cancer.

ii. The city received 21 cm of rain in 5 hours. — The low-lying roads were flooded.

iii. Seeing animals such as dogs, cats, and goats, Mathew stopped brushing his teeth. — He developed 3 cavities in 6

months.

iv. Illegal hunting killed many Royal Bengal tigers in Sundarban, West Bengal (India) and Bangladesh. — The tigers

almost became extinct.

It is not far to realize that we, the human beings — quite like other living beings and more — implicitly or

explicitly, consciously or unconsciously or subconsciously, look for a proof of the effect of any event or any statement.

This immensely helps us to take decision and/or build further valid statements that are useful and may not be readily

comprehended.

It may be remarked that a scientist — and for that matter any logical human being — will not or should not accept any

statement without fully convincing himself i.e. without getting a proof of the validity of the statement. If he does so i.e.

if he accepts any statement without proof, then he may be called a pseudo-scientist (or a pseudo-logician). As a matter of

fact, a ‘faith’ — unproved, might be valid though — should not be advised to be practised by a scientist or a logician.

However, sometimes a statement already proved/experienced by our forefathers/rishis as valid/proved and if the

statement is not easy to be proved by us or see/experience its validity, we may still assume its validity in our quest to

prove further statements. This implies that these further statements, if proved, are valid based on this assumption. In case

these further statements become invalid, then either our proof is faulty or the assumption is wrong or both are defective.

We do emphasize this ‘assumption’ fact clearly. If, in future, some effect contradicts the ‘further statements’ which is

unlikely though, then one should fall back on the ‘assumption’ and make necessary corrections and also critically check

the proof to avoid/overcome all defects.

4.3 Human being — the final judge to verify proof but could be fallible It may be remarked that every ‘proof’ is always

essentially done and verified by a human being. No human being in the universe and, for that matter, any living being

anywhere can ever be free from error. ‘‘ To err (mistake) is human (living being)" is a proverb which is eternally true

assuming that the action/ saying of the human being has not sprung up from the ultimate (the highest super-conscious)

state of his mind. Occurrence of such an action/a saying is, however, a numerical zero in our current (21st century)

environment.

On the other hand, only negligibly few ‘proofs’ can be performed by a computer (non-living being) subject to the

adequate axioms and assumptions supplied along with the requisite proof procedures.

4.4 Is there an absolutely fail-proof way to check the validity of a proof always? A living being, a living human

being for example, can never vouch that he never goes wrong. Even the help rendered by a computer cannot be

always bug-free/error-free since the program executed by the computer has been written by a human (who can never

be non-error-prone. Even before this question, comes the question: Who is the final authority to check the correctness of
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a proof? The answer of the later question is ‘human(s)’. The answer to the former question is ‘No’. Checking the validity

of a proof can be only done by human(s) or by a combination of human(s) and a computer. There exists no other way that

can be scientifically/logically accepted by a human being.

The foregoing precise meaning/definition of ‘‘ Proof" is simple enough, but the insurmountable problems are that this

checking has to be done by (i) a human only or by (ii) a human assisted by a computer (which always executes a program

(error-freely subject to the precision of the computer, which is always finite and never infinite) written by a human).

While ‘‘ To err (meaning mistake here) is human (implying any living being including a human being here)" is eternally

true, ‘‘ Not to err is computer (modern)" is also true. But the program written by a human may not be bug-free (error-free).

What if the person (or a group of persons), say, Person 1 (assisted/not assisted by a computer) checking a proof for

correctness makes a mistake and thinks that a step which is logically correct is in fact incorrect or vice versa? Obviously

another person, say Person 2 (assisted/not assisted by a computer) will need to check that the Person 1 doing the checking

did not commit any mistake. Again somebody else, say, Person 3 will need to check Person 2, and so on. Eventually we

may run out of people who could check the proof and it is possible not only theoretically but also practically that they

all could have made a mistake! The probability of committing a mistake might come down by successive checking. It

cannot, however, be ascertained that it is exactly 0 in every situation.

4.5 Digital computer versus natural computer While man-made computers are all finite-precision (finite word-length)

machines, the natural computers (computations carried out by nature always eternally, parallely and error-freely without

any machine failure and without any maintenance) are infinite precision machines.

The real quantities in the natural computation have exact real (physical) existence but cannot be exactly captured

by us (in the form of an exact finite number), so are the outputs of any natural computation. While ‘error’ is ever

existent, impossible to be removed, in any computation by a man-made computer — digital, analog, as well as hybrid, it

is completely non-existent in every natural computation. Also, the inputs of a natural computer is exact while these are

never so in a digital computer.

In every natural computation, not a single law of nature — known to us or not — is violated. This may be viewed as

an axiom (self-evident truth). We have not experienced any violation of any law of nature as we go on observing natural

activities such as an earth-quake, a tsunami, and a hurricane. As a matter of fact, we are ignorant of most laws of nature

and even if we know a negligibly few, these laws are not always exactly known to us.

It has happened, rarely though, that a flower plant which has been producing red flowers rather eternally might have

produced a white one in the same plant. This might lead one to believe that a law of nature has been violated. In fact,

believing and actually establishing the real reason are different. ‘‘ Belief" has no place in scientific investigation.

4.6 Truths/statements arising out of subtle insight versus blind faith However, the great sages and rishis

(spiritual/materials scientists) of history possessed extraordinarily subtle insight as well as unique experiences, which

led them to establish certain truths which are well-established time-tested empirical laws/generalizations/theories about

the properties (of objects) derived by examining many instances and observing that these conform, without exception, to

a single general pattern.

One accepts such theories because of his total faith in the wisdom of these sages, or because he believes this to be the

primary (or the sole) path to knowledge. These are like axioms and are used for further conclusions/inferences. Accepting

these as valid will not be construed as blind faith.

However, to have the first hand experience of these truths/ theories one really needs to have the state of mind similar

to that of a rishi so that he develops extraordinarily subtle insight and also unique experiences/critical analyzing power.

These evidently require extraordinary mind control that needs sincere practice (of, say, Raja-Yoga) and consequent time.

On the other hand, much easier is to accept these truths as axioms and proceed to develop/innovate further truths/theories.

4.7 Laws of nature has never been violated: An eternal axiom Consider the foregoing white flower in a red flower

plant. There must be some solid reason for such a rare happening viz. the red-flower plant producing a white flower. Our

ignorance of most laws of nature and also our knowledge of a very few laws of nature often quite approximately (i.e. in
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a macro-level) should be the reason of our failure for a plausible explanation of such a happening. We have not critically

observed any violation of a law of nature.

Consider the tossing of a coin. It is not possible to say whether we get a head in the next toss. If the same coin is tossed

1000 times exactly under the identical conditions, then we should definitely get all the 1000 heads if the first one was a

head. However, it is practically impossible to retain identical conditions for every toss. The laws of nature here too seem

to have not been violated. At least nobody has ever demonstrated such a violation.

Another instance is the Brownian motion of particles in a colloidal solution. We say that the particles move

randomly between any 2 collisions. Are these really random not following a law of nature? Or, are these our failure of

capturing/determining exactly the path of the particle between any 2 successive collisions based on the several parameters

such as angle of collision, strength of the impact between 2 particles, and other environmental parameters related to

colloidal solutions?

Whenever any parameter is highly sensitive (a slightest change in the parameter causes very large change in the system),

we have the inadequacy (in tools) of capturing the parameters sufficiently accurately to get an acceptable deterministic

solution. Further, if the number of collisions is in billions, then the solution of the problem becomes intractable. Under

these circumstances, we use a probabilistic approach such as a randomized algorithm, to obtain a probabilistic solution.

A deterministic solution is practically impossible and would continue to remain impossible perhaps eternally.

4.8 Proof originating from ultimate state of mind is fallacy-free Although ‘‘ Not to err (mistake) is computer
(non-living being)" , it is only the error-prone human beings who are the final judges in deciding the validity of a proof.

Probably at the ultimate state of mind (state of Nirvikalpa Samadhi), when attained, a man will be completely error-free

(and exact) in his judgment.

To appreciate the validity of such a judgment, one needs to focus his mind intensely on the judgment and critically

analyze it. Ideally he should pass through the same procedure as the man did to achieve the Samadhi (a no-thought or,

equivalently, a state of silence that results from the 1-thought (viz. the intense thought of the correct judgment) state.

While it is easy to talk about this silence state implying complete control over the flickering mind, it is difficult but not

impossible for a common man to achieve this control, say, through Raja-yoga [Complete Works of Swami Vivekananda,

Vol. 1]. One may correctly say in a positive sense that the greater the control over mind is, the greater is the man.

In an elementary state of mind, mind is random, moving from one thought to another (usually unconnected) randomly.

Just now I am thinking about my mother’s ill-health. In the next moment I will be thinking about the basket ball match

between our university and university of Southern California and at the following moment I will be thinking about

tomorrow’s class test.

When we read a book with concentration, we will have a chain of connected thoughts. These thoughts are not random.

This is a higher state of mind.

If we keep our mind focussed intensely on one thought, say, a thought of a beautiful scenery or a thought of an

extraordinary soothing music or a thought of how to discover a medicine based on herbs for epilepsy or a thought of

solving a non-linear optimization problem in polynomial-time, then this one thought condition is still a higher state of

mind. Most of the revelations/discoveries of a scientist spring from this 1-thought state of mind.

From this 1-thought state, mind sometimes drops down to silence i.e. no-thought or, equivalently, 0-thought state. In

this state, the heart (a small amazingly powerful pumping system), the lung, and all other organs stop functioning. There

is nobody to pump our blood that circulates in our body 4 times in 1 minute and nobody to digest our food. The body

becomes cold like a dead body. This is the highest state of mind. When one reaches this state, he has known everything

i.e. he is ‘‘ all-knowing" . He has no question to ask. This state is called ‘‘ Nirvikalpa Samadhi — the highest (ultimate)

state of mind which is underlying the 1-thought state" . There can never be a state higher than this 0-thought state (highest

potential energy state of mind).

Any living being — human or not — in any planet or any region of the universe can never be superior than a

living being (on earth) who has reached the ultimate state of mind. The fictional stories of extra-terrestrial living beings

depicting their superiority over the counter-parts on earth are nothing but just fond stories based on our imagination.
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These stories should not be viewed as the ones having some substance for us to believe or sincerely learn. As a matter of

fact, we, the humans, are the greatest in the universe. No living being at any location of the universe, maybe 5 billion

light-years away, can ever be superior to us. They may be at best equal to us.

The 0-thought state of mind is analogous to the ‘‘ absolute zero" viz. 0 Kelvin temperature state of matter. At this state

the volume of matter turns out to be ‘‘ numerical zero" . There is no physical state of matter below 0 Kelvin — the lowest

limit of temperature.

The highest limit of temperature is not yet known or possibly there is none (no highest limit). This highest temperature

(rather limitless/unbounded) is analogous to lowest elementary state of mind where the thoughts are most random —

impossible to find any pattern. The ultimate lowest state of mind possibly is non-existent or, in other words, like ‘‘ the

highest temperature" , it is boundless/limitless.

When one reaches this ‘‘ silence’ (ultimate) state (or possibly the next lower state i.e. ‘‘ 1-thought" state), fallacy i.e.

logical defect in reasoning ceases. Any proof that crops up from this 0-thought state is supposed to be ever valid.

A proof of a statement is always based on one or more axioms (statements which are accepted without proof)

explicitly or implicitly used and possibly also on one or more assumptions (statements which distort the corresponding

natural problem to a varying extent so that a solution can be obtained/computed within the available means).

All said and done, as long as a human being is to certify the validity of the statement through critically

verifying/checking the proof given by a person or a group of persons, there could still remain a non-zero probability

of an error/mistake in the proof. This is based on the assumption that the person or the group of persons is or are checking

the proof not from 1-thought or 0-thought mind but from lower (2- or more thought) state of mind. This is particularly so

if the proof is involved and borders around the limit of common human comprehension.

4.9 Various kinds of fallacy: Another classification A fallacy is (the use of) a faulty reasoning as stated earlier. The faulty

reasoning could arise from adeceptive, misleading, or false notion/blind faith/ deeply rooted conviction which has never

even prompted the concerned man to critically analyze the validity of the conviction. There are several proof procedures.

A proof should definitely avoid every possible fallacy which could crop up in the garb of a valid/correct statement thus

leading to a wrong/disastrous conclusion/inference/consequence. Else the proof will become invalid and consequently

the resulting statement is prohibited to be used.

In literature/internet we have observed many possible types of fallacy that might crop up in reasoning put forth

by a human being. Although it is not possible to exhaustively enumerate all types of fallacy, these types definitely

provide enough information to anyone regarding the possible pitfalls in reasoning one may encounter. Knowledge of

these fallacies would definitely minimize or even eliminate a fallacy in a proof procedure.

However, if one has been told none of the possible many fallacies discussed here but is guided by his pure conscience

without any bias due to environmental factors, then he will be using consciously fallacy-free reasoning. In fact, it is

not essential to have extensive knowledge of numerous fallacies to discover a fallacy, if any, inside a proof. An intense

logical thinking (free from faculties such as a superstition, an emotion, a deeply rooted conviction, and a blind faith), in

the concerned statement whether it is valid or not (i.e. whether its proof is free from fallacy or not) is definitely helpful.

4.10 Limitation of common human comprehension A common human being comprehends 7± 2 things at a time. This

limitation has lot to do in understanding a long/complicated proof. Consequently, it is desirable to construct/develop

the proof procedure into parts of reasonable sizes (sizes neither too physically large nor too physically small so

that it can be easily understood and at the same time not too simple/obvious). These parts are logically connected

to one another and constitute step-by-step development. Such a part is termed in mathematics as a lemma whose

proof can be easily understood. If a long complicated proof is described without several logically connected
structures (lemmas), comprehending/grasping the whole of the proof correctly could be difficult for a common
man/scientist/mathematician. Such common human beings constitute majority of the population including the
scientific ones.
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4.11 Non-limitation of computer comprehension So far as the non-living computer is concerned, there is no such

limitation as the comprehension. A computer can be made to comprehend lots of things correctly artificially always.

As a matter of fact, in the current (21st century) scenario a combination of man and machine (computer) could be a better

alternative in a proof procedure than just the man.

However, such a combination does not necessarily imply that a fallacy (error in reasoning) will definitely be

non-existent. It could possibly make our lives relatively easy.

4.12 Use of data and facts to avoid bias An important need for one is to be guided by data and facts to arrive at a valid

conclusion. This guidance will help him avoid being biased/opinionated. One who makes such a guidance a regular habit

and practise all his life is less likely to make a faulty reasoning and introduce a fallacy.
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ABSTRACT: We discuss the interaction between a flow and a nonlinear oscillating structures through various PDE

models. The goal is to study structural instability (flutter) induced by a fluid flow, and how it can be suppressed or

eliminated. The analysis provided focuses on effects brought about by different plate and fluid boundary conditions. We

discuss an assortment of models related to reductions of the full flow-structure coupled systems, and discuss the axial

flow configuration of recent interest.
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The authors would like to dedicate this work to: (1) Professor A.V. Balakrishnan, whose pioneering work on flow-structure

interactions served as a major motivation for much of what is reviewed here and to (2) Professor V. Lakshmikantham,

whose seminal work in nonlinear analysis has provided a road map to study the qualitative properties of nonlinear

phenomena under consideration.

0.1 INTRODUCTION

In this paper we provide a mathematical survey of various PDE models for fluttering plates [5, 14, 42, 49, 57, 90]

and associated results, as well as discuss some compelling open problems. Some of the exposition here focuses on

modeling concerns, and we provide a presentation of mathematical results and their relationship with known physical

results regarding the flutter phenomenon. We shall give descriptions of results and a sense for why they hold. In addition

we mention a handful of mathematical models which are of recent interest in aeroelasticity and also represent fertile

ground from the point of view of mathematical analysis.

The flutter phenomenon is of interest across many fields; flutter is a sustained, self-excitation instability that occurs

as a feedback between an elastic structure and a fluid flow, when the natural structural modes “couple" with the fluid’s

dynamic loading. For certain flow velocities a bifurcation may occur in the dynamics of the coupled flow-structure system,

and stable dynamics may become oscillatory (limit cycle oscillations, or LCO) or chaotic [97]. A static bifurcation may

also occur, known as divergence or buckling (depending on the structural boundary conditions).

The above phenomena can occur in a multitude of applications: buildings and bridges in strong winds, panel and

flap structures on vehicles, and in the human respiratory system (snoring and sleep apnea [61]). Recently, flutter resulting

from axial flow (which can be achieved for low flow velocities) has been studied from the point of view of energy

harvesting [52]. Flutter considerations are paramount in the supersonic and transonic regime, with the renewed interest

in supersonic flight. Here we consider flow-plate dynamics corresponding to both subsonic and supersonic flow regimes

and a wide array of structural boundary conditions and flow-plate coupling conditions.

Flow-structure models have attracted considerable attention in the past mathematical literature, see, e.g., [6, 7, 15,

16, 17, 23, 31, 32, 42, 96] and the references therein. However, the majority of the work (predominantly in the engineering

literature) that has been done on flow-structure interactions has been devoted to numerical and experimental studies, see,

for instance, [5, 14, 42, 49, 55], and also the survey [78]. Many mathematical studies have been based on linear, two

2010Mathematics Subject Classification: 74F10; 74H40; 34D45; 35M32; 74B20; 74K20; 76G25; 76J20
Keywords: flow-structure interaction; flutter; nonlinear plates; well-posedness; long-time dynamics; global attractors.
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dimensional, plate models with specific geometries, where the primary goal was to determine the flutter point (i.e., the

flow speed at which flutter occurs) [5, 14, 49, 55, 78]. See also [6, 8, 9, 88] for the recent studies of linear models with

a one dimensional flag-type structure (beams). This line of work has focused primarily on spectral properties of the

system, with particular emphasis on identifying aeroelastic eigenmodes corresponding to the associated Possio integral

equation (addressed classically by [93]). We emphasize that these investigations have been linear, as their primary goal

is to predict the flutter phenomenon and isolate aeroelastic modes. Given the difficulty of modeling coupled PDEs at

an interface [71, 73], theoretical results have been sparse. On the other hand, it is known that post-flutter dynamics are

inherently nonlinear; although the flutter point (the flow velocity for which the transition to periodic or chaotic behavior

occurs) can be ascertained within the realm of linear theory, predicting the magnitude of the post-onset instability requires

a nonlinear model of the structure (and potentially for the flow as well) [42, 43, 44, 45].

The challenges in the analysis involve (i) the mismatch of regularity between two types of dynamics: the flow

and the structure which are strongly coupled, (ii) the presence of unbounded or ill-defined terms (boundary traces in

the coupling conditions), and (iii) intrinsically non-dissipative generators of dynamics, even in the linear case. For

flow-structure dynamics, the type of instability, whether static (divergence) or dynamic (LCO), depends both on the

plate boundary conditions and on the free-stream (or unperturbed) flow velocity. For example, one observes that if a

(two-dimensional) panel is simply supported or clamped on the leading and trailing edge it undergoes divergence in

subsonic flow but flutters in supersonic flow; conversely, a cantilevered panel clamped at one end and free along the

others flutters in subsonic flow and may undergo divergence in supersonic flows [65].

This paper primarily addresses the interactive dynamics between a nonlinear plate and a surrounding potential flow

[14, 42]. The physical description of flutter and divergence translates into mathematical questions related to existence of

nonlinear semigroups representing a dynamical system, asymptotic stability of trajectories, and convergence to attracting

sets. Interestingly enough, different model configurations lead to an array of diverse mathematical issues that involve not

only classical PDEs, but subtle questions in non-smooth elliptic theory, harmonic analysis, and singular operator theory.

For more details concerning the mathematical theory developed for the flutter models discussed below, see [35, 29].

0.2 FLOW STRUCTURE INTERACTIONS-PDE MODEL

The principal model under consideration involves the interaction of a plate with a flow above it. To describe the behavior

of the gas (inviscid fluid), the theory of potential flows [14, 42, 49] is utilized. The dynamics of the plate are governed by

plate equations with the von Karman (vK) nonlinearity [31, 40, 66]. This model is appropriate for plate dynamics with

“large" displacements (characteristic displacements on the order of a few plate thicknesses), and therefore applicable for

the flexible structures of interest [14, 40, 42, 49, 66]. There will be configurations in the sequel where vK theory is not

valid (e.g., in a flag-like, axial flow configuration), but this will be indicated. Including nonlinearity in the structure of the

model is critical, not only for the sake of model accuracy, but also because nonlinear effects play a major mathematical

role in controlling ground states; most of the mathematical results reported in this paper are no longer valid for linearized

structures.

For generality, let us first simply consider the interaction between a nonlinear plate and some fluid flow above it.

In this case, take the domain O ⊆ R3+ ≡ {x : z > 0} to be filled with fluid whose dynamics are governed by the

compressible Navier–Stokes system which are written for the density ρ̃, velocity ũ and pressure p̃. Let T = {T ij}3i,j=1 be

the total stress tensor of the fluid,

T ij ≡ T ij(u, p) = ν
(
vixj + v

j
xi

)
+
[
λ div v − p

]
δij, i, j = 1, 2, 3,

with the dynamic viscosity of the fluid given by ν, and λ is Lamé’s first parameter (both of which vanish in the case of

inviscid fluid). Linearize with respect to a reference state {ρ∗;U;p∗} and suppose that unperturbed flow U represents an

ambient fluid flow, and ρ∗, p∗ are constant in time. For small perturbations {ρ; u;p} of this state, assuming that the fluid

is isothermal and taking p̃ = ρ̃ with p∗ = ρ∗ = 1; then:

(∂t + U · ∇)p + div u + (div U)p = F in O× R+, (0.2.1a)

(∂t + U · ∇)u − ν∆u − (ν + λ)γdiv u + γp + u · ∇U + (U · ∇U)p = F in O× R+, (0.2.1b)
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In this case we need to also supply the fluid equation with appropriate boundary conditions. We consider Ω to be the

interactive portion of the boundary, and takeΩ to be flat and embedded in the plane {z = 0}. In line with classic [14] and

more recent references [24, 25], we choose impermeable boundary conditions, which look as follows:

Tn · τ = 0 on ∂O, u · n = 0 on ∂O \Ω, u · n = [ut +Uux] onΩ,

where n is the unit outer normal to ∂O, τ is a unit tangent direction to ∂O, u is the deflection of a flexible, flat portionΩ

of the boundary.

Remark 0.2.1. The boundary condition (0.2.2) is the general analog of the so called Kutta-Joukowski condition,

described below. The latter (0.2.3) is the adherence condition.

Tn = 0 on S; u · n = wt +Uux1 on Ω; (0.2.2)

u = 0 on S; u · n = wt +Uux1 on Ω, (0.2.3)

where, again, T ij is the total stress tensor of the fluid.

For more discussion of the compressible, viscous model above, including semi-group well-posedness in a simplified

case, see [3], as well as [24] when U ≡ 0, and [25] for the inviscid, incompressible case. The survey [38] provides a nice

overview. (Each of these references takes O to be bounded.)

The environment we now consider is R3+ = {(x, y, z) ∈ R3 : z > 0}. The thin plate has negligible thickness in

the z-direction. The unperturbed flow field moves in the x-direction at the fixed velocity U (i.e., U = 〈U, 0, 0〉). The

physical constants have been normalized (corresponding to the linear potential flow) such that U = 1 corresponds to

Mach 1 (to simplify the models and to emphasize the mathematical properties of interest). The plate is modeled by a

bounded domainΩ ⊂ ∂R3+ with smooth boundary ∂Ω = Γ .

0.2.1 Flow of Gas

Assuming the flow, in addition to being compressible, is irrotational, we invoke the theory of potential flows [14, 42]. In

this case, u = ∇φ, where the scalar function φ : R3+ × R→ R is the linear flow potential and satisfies:(∂t +U∂x)
2φ = ∆x,y,zφ in R3+

FC(φ),
(0.2.4)

with appropriate initial data φ0 and φ1. We also note that in this case the dynamic pressure p(x, t) can be explicitly

solved for in terms of the acceleration potential of the flow: p(x, t) = φt + Uφx. The term FC(φ) represents the

flow boundary conditions or interface conditions. We will consider two primary flow conditions, written in terms of the

transverse (Lagrangian) displacement u(x, y; t) onΩ:

(NC) The standard flow boundary conditions—the full Neumann condition—are henceforth denoted (NC). This is typically

utilized when a majority of the plate boundary is clamped or hinged. It takes the form:

∂zφ
∣∣
z=0

= (∂t +U∂x)uext, on R2 = ∂R3+, (0.2.5)

where the subscript ‘ext’ indicates the extension by zero for functions defined onΩ to all of R2.

(KJC) The Kutta-Joukowsky flow condition, henceforth denoted (KJC), is a mixed (Zaremba-type [85]) condition which will

be discussed below. Then the Kutta-Joukowsky flow condition on R2 is

∂zφ = (∂t +U∂x)u on Ω; ψ = 0 on R2 \Ω. (0.2.6)

In both cases above the interface coupling on the surface of the plate occurs in a Neumann type boundary condition known

as the downwash of the flow. The choice of flow conditions is itself dependent upon the plate boundary conditions, and

this is determined by application.
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0.2.2 Structure

The scalar function u : Ω× R+ → R represents the displacement of the plate in the z-direction at the point (x, y) at the

moment t. The plate is taken with general boundary conditions BC(u), which will be specified later. The dynamics are

thus given by: utt + ∆
2
x,yu + k0ut + f(u) = p(x, t) inΩ

BC(u) on ∂Ω,
(0.2.7)

with appropriate initial data u0 = u(0), u1 = ut(0). The quantity p(x, t) corresponds to the aerodynamic pressure of

the flow on the top of the plate and, in the standard configuration, is given in terms of the flow:

p(x, t) = p0(x) + (∂t +U∂x)tr[φ]
∣∣
Ω
, x ∈ Ω. (0.2.8)

The quantity p0 represents static pressure applied on the surface of the plate. The coefficient k0 captures structural

viscous damping or a feedback controller. The vK nonlinearity is given by:

f(u) = −[u, v(u) + F0],

where F0 is a given in-plane load (of sufficient regularity). The vK bracket above corresponds to

[u,w] = uxxwyy + uyywxx − 2uxywxy,

and the Airy stress function v(u1, u2) solves the elliptic problem

∆2v(u1, u2) + [u1, u2] = 0 in Ω, ∂νv(u1, u2) = v(u1, u2) = 0 on Γ,

(the notation v(u) = v(u, u) is employed).

Remark 0.2.2 (Rotational Inertia). In line with the conventions of aeroelasticity [14, 49], we omit the structural rotational

inertia parameter, which would be given as α > 0 in the plate equation:

(1 − α∆)utt + ∆
2
x,yu + k0(1 − α∆)ut + f(u) = p(x, t) (0.2.9)

Much of the early mathematical work on the flow-plate interactions utilized this term [15, 16], owing to its regularizing

effects on the plate velocity ut ∈ H1(Ω) (rather than L2(Ω)), and the impact this has on the ability to study the

flow-structure problem component-wise (see Section ??). Recent work [60] on the flutter of cantilever beams has also

discussed this inertia term extensively.

The following types of boundary conditions for the displacement u are typical for flow-structure interaction models.

(C) Clamped boundary conditions (corresponding to a panel element) take the form

u = ∂νu = 0 on Γ.

In this case, the plate is considered to be embedded in or affixed to a large rigid body.

(CF) Let the boundary be partitioned in two pieces: Γ0 and Γ1. Clamped-free boundary conditions (possibly corresponding

to a flap, flag, or cantilevered airfoil) are given by
u = ∂ν = 0 on Γ0

∆u + (1 − µ)B1u = D1(∂νut) on Γ1,

∂ν∆u + (1 − µ)B2u − µ1u = D2(u, ut) + α∂νutt on Γ1,

where the boundary operators B1 and B2 are given by [66]:

B1u = 2ν1ν2uxy − ν
2
1uyy − ν

2
2uxx = −∂2τu −∇ · ν(x)∂νu ,

B2u = ∂τ
[(
ν21 − ν

2
2

)
uxy + ν1ν2 (uyy − uxx)

]
= ∂τ∂ν∂τu;

(0.2.10)

The parameter µ1 is nonnegative and 0 < µ < 1 is the Poisson modulus. The operators Di for i = 1, 2 are possible
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energy damping/dissipation functions.

0.3 ULTIMATE MODEL: COUPLING OF FLOW AND STRUCTURE
Our primary interest here is the following PDE system:

utt + ∆
2u + k0ut + f(u) = p0 +

(
∂t +U∂x

)
tr[φ] inΩ× (0, T),

u(0) = u0; ut(0) = u1,

u = ∂νu = 0 on ∂Ω× (0, T),

(∂t +U∂x)
2φ = ∆φ in R3+ × (0, T),

φ(0) = φ0; φt(0) = φ1 in R3+
∂zφ =

[
(∂t +U∂x)u(x)

]
ext

on R2{(x,y)} × (0, T).

(0.3.1)

We focus on this panel flutter model as a starting point for the analysis of coupled flow-plate systems. After providing

results for this model (a majority of extant mathematical results hold for this model), we describe extensions to

accommodate other configurations.

0.3.1 Energies and Topology of Solutions

Finite energy constraints (as dictated by the physics of the model) manifest themselves in the natural topological

requirements on the solutions φ and u to (0.3.1). Letting H correspond to the state space for plate displacements

u(t) (depending on boundary conditions). Solutions we consider here will have the properties: u ∈ C(0, T ;H) ∩
C1(0, T ; L2(Ω)); φ ∈ C(0, T ;H1(R3+))∩C1(0, T ; L2(R3+)). To set up the model in a dynamical systems framework, the

principal state space is taken to be

Y = Yfl × Ypl ≡
(
W1(R3+)× L2(R3+)

)
×
(
H× L2(Ω)

)
whereW1(R3+) will denote the homogeneous Sobolev space of order 1. We will also consider a stronger space:

Ys ≡ H1(R3+)× L2(R3+)×H× Lα2 (Ω).

Remark 0.3.1 (Parameters). The central parameters in the PDE analysis of the general models above are the rotational

inertia parameter α ≥ 0 and the flow velocity U. First, α is critical in that the model of primary physical interest in

the theory of large deflections takes α = 0, yet the essential nonlinearity and interactive flow terms are not of a compact

nature in this case. Indeed, the presence of rotational terms provides an additional regularizing effect on the transverse

velocity of the plate, ut [15, 17, 31]; this, in turn, leads to several desirable mathematical properties such as compactness

of trajectories, gain of derivatives, etc. It is also clear that, with respect to U, when U > 1, there is a loss of spatial

ellipticity of the principal part of the flow operator ∂2t − ∆ + U2∂2x, and near U = 1 there is full x degeneracy in the

model.

Remark 0.3.2. For the remainder of the text the case of clamped plate boundary conditions (C) with standard Neumann

flow conditions (NC) is referred to as the standard panel configuration.

The subsonic case, U ∈ [0, 1), is initially considered. The following “energies" are observed with the standard

velocity multipliers (we suppress the dependence on t in the expressions below):

Epl(u) =
1

2
[||ut||

2
Lα
2
(Ω) + ||∆u||20,Ω +

1

2
||∆v(u)||20,Ω] − 〈F0, [u, u]〉Ω + 〈p, u〉Ω (0.3.2)

Efl(φ) =
1

2
[||φt||

2
0,R3+

+ ||∇φ||20,R3+ −U2||φx||
2
0,R3+

] (0.3.3)

Eint(u,φ) = U〈φ,ux〉Ω; E = Epl + Efl + Eint (0.3.4)

where Eint represents the (not necessarily positive) interactive “energy".

In the discussion below, we will encounter strong (classical), generalized (mild), and weak (variational) solutions.

In obtaining existence and uniqueness of solutions, semigroup theory is utilized; this necessitates the use of generalized

solutions. These are strong limits of strong solutions and satisfy an integral formulation of (0.3.1) (they are called mild
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by some authors). We note that generalized solutions are also weak solutions and satisfy a variational formulation of the

flow-plate system (see, e.g., [31, Section 6.5.5] and [96]). For the exact definitions of strong and generalized solutions

we refer to [31, 32, 34, 96].

0.3.2 Hadamard Well-Posedness of Nonlinear Panel Model

Mathematical wellposedness of solutions is a fundamental issue which need to be dealt with whenever discussing

qualitative properties of the physical model. Particularly important, and also quite delicate, are issues of

stability/robustness with respect to the initial conditions and the parameters of the model. This area has attracted enormous

attention in mathematical literature with seminal and very general works going back to [68]. In what follows we shall

focus on the past literature dealing with wellposedness of the model under consideration. Well-posedness results in the

past literature deal mainly with the dynamics possessing some regularizing effects. This has been accomplished by either

accounting for non-negligible rotational inertia effects through the mass operator (1−α∆) acting on utt [15, 17, 31] and

strong damping of the form −α∆ut, or by incorporating helpful thermal effects into the structural model [82, 83]. In

the cases listed above, the natural structure of the dynamics dictate that the plate velocity has the property ut ∈ H1(Ω),

which provides the needed regularity for the applicability of many standard tools in nonlinear analysis. One is still faced

with the low regularity of boundary traces, due to the failure of the Lopatinski conditions [84].

The first contribution to the mathematical analysis of the problem is [16, 17] (see also [31, Section 6.6]), where the

case α > 0 (rotational) is fully treated. The method employed in [16, 17, 31] relies on sharp microlocal estimates for

the solution to the wave equation driven by H1/2(Ω) Neumann boundary data given by ut + Uux. This gives φt|Ω ∈
L2(0, T ;H

−1/2(Ω)) [80]. Along with an explicit solver for the three dimensional flow equation (the Kirchhoff formula),

and a Galerkin approximation for the structure, one may construct a fixed point for the appropriate solution map. This

method works well for all values of U 6= 1.

Related ideas were used more recently in the thermoelastic flow-plate interactions in [82, 83]; in this case the

dynamics enjoy H1(Ω) regularity of the velocity ut (independent of α) due to the analytic regularity induced by

thermoelasticity [73]. When α = 0, and we take no additional smoothing in the model, the estimates corresponding

to the above approaches become singular, destroying the applicability of the previous techniques. The main mathematical

difficulty of this problem is the presence of the boundary terms: (φt + Uφx)|Ω acting as the aerodynamic pressure on

the plate. When U = 0, the corresponding boundary terms exhibit monotone behavior with respect to the natural energy

inner product (see [31, Section 6.2] and [71]), which is topologically equivalent to the topology of the state space Y. The

latter enables the use of monotone operator theory [31] (and references therein). However, when U > 0 this is no longer

true, and other techniques must be employed to obtain solutions [32, 96].

In [5, 6, 87, 88] (and references therein) a linear airfoil immersed in a subsonic flow is considered. The wing is

taken to have a high aspect ratio thereby allowing for the suppression of the span variable, and reducing the analysis to

individual chords normal to the span. By reducing the problem to a one dimensional analysis, many technical hangups

are avoided, and Fourier-Laplace analysis is effective. The analysis of two dimensional structures requires very different

tools. subsubsectionGeneration of Nonlinear Semigroup. We begin with an overview of the well-posedness results for

the standard panel model which simultaneously covers both subsonic and supersonic cases (and thus is a weaker result

than what appears in the sequel). However, in both cases we are able to establish generation of nonlinear semigroups

describing flow-structure interaction. This allows to consider the problem within the realm of dynamical systems.

Theorem 0.3.1. Consider problem in (0.3.1) with U 6= 1, p ∈ L2(Ω), F0 ∈ H3+δ(Ω). Let T > 0 and

(φ0, φ1;u0, u1) ∈ Y = Yfl × Ypl ≡
(
W1(R3+)× L2(R3+)

)
×
(
H20(Ω)× L2(Ω)

)
. (0.3.5)

Then there exists unique generalized solution

(φ(t), φt(t);u(t), ut(t)) ∈ C([0, T ], Y). (0.3.6)

This solution is also weak and generates a nonlinear continuous semigroup St : Y → Y.

The proof of the above theorem in the general (supersonic) case makes use of a change of state variable: the
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dynamic variable ψ = φt +Uφx is considered as the second flow state. In this case the adapted energies are:

Êfl =
1

2
[||∇φ||20,R3+ ] + ||ψ||20,R3+

, Êint = 0, Ê = Epl + Êfl + Êint. (0.3.7)

Generalized solutions satisfy the identity is given by:

Ê(t) +
∫ t
s

∫
Ω

k0u
2
t +U

∫ t
0

〈ux, ψ〉Ωdτ = Ê(s). (0.3.8)

Remark 0.3.3. Note that when U > 1 the equation (0.3.1) displays degeneracy of ellipticity of the stationary problem.

This results in the loss of dissipativity in the energy relation (0.3.8). In addition, the boundary term ψ|Ω is not well

defined on the energy space. Handling of these obstacles requires the development of an appropriate “hidden" trace

regularity theory for the aeroelastic potential ψ, which plays pivotal role in the proof of Theorem 0.3.1.

In the subsonic case, instead, there is no spatial “degeneracy" in the flow equation, leading to a stronger

well-posedness result:

Theorem 0.3.2. Suppose U < 1, p ∈ L2(Ω) and F0 ∈ H3+δ(Ω). Assume that initial data sytisfy (0.3.5). Then there

exists unique generalized solution to (0.3.1)

(φ(t), φt(t);u(t), ut(t)) ∈ C([0, T ], Y). (0.3.9)

This solution is also weak and generates a nonlinear continuous semigroup St : Y → Y. Every generalized solution

is also weak. Moreover these solutions to (0.3.1) generates a nonlinear continuous semigroup (St, Y). Any generalized

(and hence weak) solution to (0.3.1), satisfies the global-in-time bound

sup
t≥0

{
||ut||

2
0,Ω + ‖∆u‖2Ω + ‖φt‖2R3+ + ‖∇φ‖2R3+

}
< +∞. (0.3.10)

and thus (St, Y) is uniformly bounded in time, i.e., there exists a constant C such that

||St(y0)||Y ≤ C(||y0||Y), t > 0.

The dynamics satisfy the energy identity

E(t) +
∫ t
s

∫
Ω

k0u
2
t = E(s), t ≥ s, (0.3.11)

Remark 0.3.4. This theorem remains true if the von Karman nonlinearity is replaced by any nonlinearity f : H2(Ω) ∩
H10(Ω)→ L2(Ω) which is (a) locally Lipschitz, and (b) the nonlinear trajectories possess a uniform bound in time which

typically holds when nonlinearity satisfies some coercivity properties, see [30].

The proof of Theorem 0.3.2 given in [31] and [96] relies on three principal ingredients: (i) renormalization of the

state space which yields shifted dissipativity for the dynamics operator (which is nondissipative in the standard norm on

the state space); (ii) the sharp regularity of Airy’s stress function, which converts a supercritical nonlinearity into a critical

one [31] (and references therein):

||v(u)||W2,∞(Ω) ≤ C||u||
2
H2(Ω); (0.3.12)

and (iii) control of low frequencies for the system by the nonlinear source, represented by the inequality

||u||2L2(Ω) ≤ ε[||u||2H2(Ω)2 + ||∆v(u)||2L2(Ω)] + Cε. (0.3.13)

where ε > 0 can be taken arbitrary small. An alternative proof based on a viscosity method can be found in [32].

In comparing the results obtained for supersonic and subsonic cases, there are two major differences at the

qualitative level, in addition to an obvious fact that Efl is no longer positive when U > 1: First, the regularity of

strong solutions obtained in the subsonic case [32, 96] coincides with regularity expected for classical solutions. In

the supersonic case, there is a loss of differentiability in the flow in the tangential x direction, which then propagates

to the loss of differentiability in the structural variable u. As a consequence, strong solutions do not exhibit sufficient

regularity in order to perform the needed calculations. To cope with the problem a special regularization procedure was

37



introduced in [34], where strong solutions are approximated by sufficiently regular functions, though not solutions to the

given PDE. The limit passage allows one to obtain the needed estimates valid for the original solutions [34]. Secondly,

in the subsonic case, one shows that the solutions are bounded in time, see [31, Proposition 6.5.7] and also [32, 96]. This

property cannot be shown in the supersonic analysis. The leak of the energy in the energy relation can not be compensated

by the nonlinear terms. In fact, while in the subsonic case one deals with gradient system, in the supersonic regime, the

resulting dynamical system is not dissipative.

0.3.3 Flow-Structure Model—Dynamical System Properties

It is known [49] (and references therein) that, although the flow coupling may introduce potential instability, it can also

help bound the plate dynamics and may assist in the dissipation of plate energy associated to high frequencies [44, 45].

The work in [33] is an attempt to address these observations rigorously, via the result in Theorem 0.3.4 below, which

reduces the full flow-plate dynamics to a plate equation with a delay term. This result is implemented and the problem

is cast within the realm of PDE with delay (and hence our state space for the plate contains a delay component which

encapsulates the flow contribution to the dynamics). One would like to show that such dynamics, as described above,

are stable in the sense that trajectories converge asymptotically to a “nice" set. Unlike parabolic dynamics, there is

no a priori reason to expect that hyperbolic-like dynamics can be asymptotically reduced to a truly finite dimensional

dynamics. By showing that the PDE dynamics converges to a finite dimensional (compact) attractor it effectively allows

the asymptotic-in-time reduction of the analysis of the infinite dimensional, unstable model to a finite dimensional set

upon which classical control theory can be applied. We note that owing to the non-dissipative terms present in flutter

models, global attractors associated to plate’s flutter dynamics (as well as the set of equilibria points for the full flow-plate

system) can have non-trivial structure. See [48] and references cited therein, as well as [50, 97, 98] for the engineering

discussion of these properties.

The main point of the treatment in [33] is to demonstrate the existence and finite-dimensionality of a global attractor

for the reduced plate dynamics (see Theorem 0.3.4) in the absence of any imposed damping mechanism and in the absence

of any regularizing mechanism generated by the dynamics itself. Imposing no mechanical damping, taking α = 0, and

assuming the flow data are compactly supported we obtain the primary theorem in [33]:

Theorem 0.3.3. Suppose 0 ≤ U 6= 1, α = 0, F0 ∈ H3+δ(Ω) and p0 ∈ L2(Ω). Then there exists a compact set U ⊂ Ypl
of finite fractal dimension such that

lim
t→∞dYpl

(
(u(t), ut(t)),U

)
= lim
t→∞ inf

(ν0,ν1)∈U

(
||u(t) − ν0||

2
2 + ||ut(t) − ν1||

2
)
= 0

for any weak solution (u, ut;φ,φt) to (0.3.1) with initial data

(u0, u1;φ0, φ1) ∈ Y, Y ≡ H20(Ω)× L2(Ω)×W1(R3+)× L2(R3+),

which are localized in R3+ (i.e., φ0(x) = φ1(x) = 0 for |x| > R for some R > 0). Additionally, there is the extra

regularity U ⊂
(
H4(Ω) ∩H20(Ω)

)
×H2(Ω).

A key to obtaining attracting sets is the representation of the flow on the structure via a delay potential (see Section

3.3 in [31]). Reducing this full flow-plate problem to a delayed von Karman plate is the primary motivation for our main

result and permits a starting-point for long-time behavior analysis of the flow-plate system, which is considerably more

difficult otherwise. The exact statement of this key reduction is given in the following assertion:

Theorem 0.3.4. Let the hypotheses of Theorem 0.3.3 be in force, and (u0, u1;φ0, φ1) ∈ H×L2(Ω)×H1(R3+)×L2(R3+).
Assume that there exists an R such that φ0(x) = φ1(x) = 0 for |x| > R. Then the there exists a time t#(R,U,Ω) > 0

such that for all t > t# the weak solution u(t) to (0.3.1) also satisfies the following equation:

utt + ∆
2u − [u, v(u) + F0] = p0 − (∂t +U∂x)u − qu(t) (0.3.14)

with

qu(t) =
1

2π

∫ t∗
0

ds

∫2π
0

dθ[M2
θuext](x − (U + sin θ)s, y − s cos θ, t − s). (0.3.15)
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Here,Mθ = sin θ∂x + cos θ∂y and

t∗ = inf{t : x(U, θ, s) /∈ Ω for all x ∈ Ω, θ ∈ [0, 2π], and s > t} (0.3.16)

with x(U, θ, s) = (x − (U + sin θ)s, y − s cos θ) ⊂ R2.

Thus, after some time, the behavior of the flow can be captured by the aerodynamical pressure term p(t) in the

form of a delayed forcing. Theorem 0.3.4 allows us to suppress the dependence of the problem on the flow variable φ.

The flow state variables (φ,φt) manifest themselves in our rewritten system via the delayed character of the problem;

they appear in the initial data for the delayed component of the plate, namely ut
∣∣
(−t∗,0)

. Here we emphasize that the

structure of aerodynamical pressure posited in the hypotheses leads to the velocity term −ut. We may utilize this as

natural damping appearing in the structure of the reduced flow pressure. One should also note that the main tool used

for the derivation of the reduced formula Huygen’s Principle and the associated three-dimensional nature of the problem.

The effect of the flow is dispersed after some time.

The reduced model displays the following features: (i) it does not have gradient structure (due to dispersive and

delay terms), (ii) the delay term appears at the critical level of regularity. However, despite of the lack of gradient

structure, compensated compactness methods allow to “harvest" some compactness properties from the reduction, so the

ultimate dynamics does admit global attracting set.

The proof of Theorem 0.3.3 requires modern tools and new long-time behavior technologies applied within this

delay framework. Specifically, the approach mentioned above (and utilized in [31, 82, 83]) does not apply in this

case. A relatively new technique [30, 31] allows one to address the asymptotic compactness property for the associated

dynamical system without making reference to any gradient structure of the dynamics (not available in this model, owing

to the dispersive flow term). In addition, extra regularity and finite dimensionality of the attractor is demonstrated via a

quasi-stability approach [31] (see also [26] for recent developments of quasi-stability techniques). The criticality of the

nonlinearity and the lack of gradient structure prevents one from using a powerful technique of backward smoothness of

trajectories [31], where smoothness is obtained near the equilibria points and propagated forward. Without a gradient

structure for this model, the associated attractor may have complicated structure (not being strictly characterized by the

equilibria points).

In the presence of additional damping imposed on the structure, it is reasonable to expect that the entire evolution

(both plate and flow) is strongly stable in the sense of strong convergence to equilibrium states. Such results are shown for

the model above (in the same references) only for the case of subsonic flows, U < 1. The key to obtaining such results is

a viable energy relation and a priori bounds on solutions which yield finiteness of the dissipation integral. When U > 1,

recent calculations reported in [94] indicate that such results are false, even for low supersonic speeds. The following

result provides a stabilization of the full subsonic flow-plate dynamics (as opposed to the result above we obtain for all

flow velocities, but only the structural dynamics).

For this we recall the global bound in (0.3.10) which along with the energy identity in (0.3.11) allows us to obtain

the following:

Corollary 0.3.5. Let k0 > 0, 0 ≤ U < 1 and α = 0. Then the dissipation integral is finite. Namely, for a generalized

solution to (0.3.1) we have ∫∞
0

‖ut(t)‖20,Ωdt ≤ Ku,k0 <∞.
From this finiteness, we can show the following result [75] for smooth initial data. Let N denote the set of stationary

solutions to (0.3.1) (for the existence and properties see [31]).

Theorem 0.3.6. Let 0 ≤ U < 1 and α = 0. Assume p0 ∈ L2(Ω) and F0 ∈ H4(Ω). Assume thatN is discrete1 Then for

all k0 > 0, any solution (u(t), ut(t);φ(t), φt(t)) to the flow-plate system (0.3.1) with initial data

(u0, u1;φ0, φ1) ∈ (H20 ∩H4)(Ω)×H20(Ω)×H2(R3+)×H1(R3+).

that are spatially localized in the flow component (i.e., there exists a ρ0 > 0 so that for |x| ≥ ρ0 we have φ0(x) =

1This is generically true; see [31, 75] for a more detailed discussion.
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φ1(x) = 0) has the property that

lim
t→∞
{
‖u(t) − û‖2H2(Ω) + ‖ut(t)‖

2
L2(Ω) + ‖φ(t) − φ̂‖2H1(Kρ) + ‖φt(t)‖

2
L2(Kρ)

}
= 0

for some (û, φ̂) ∈ N , and for any ρ > 0, where Kρ = {x ∈ R3+ : ‖x‖ ≤ ρ}.

The above result remains true for finite energy initial data (only in Y) with convergence in a weak sense.

Additionally, for the system with rotational inertia present α > 0 (and corresponding strong damping) [23, 31] or with

thermal effects present [82, 83] the analogous strong stabilization result holds for finite energy initial data

(u0, u1;φ0, φ1) ∈ Y = H20(Ω)× Lα2 (Ω)×W1(R3+)× L2(R3+).

The fact that k0 > 0 is needed in order to obtain convergence to equilibria is corroborated by the counterexample

[27], which shows that, with k0 = 0, periodic solutions may remain in the limiting dynamics. This example indicates

the necessity of introducing mechanical damping in the plate model if one expects a strong convergence to equilibria

of the full flow-structure system. In fact, taking k0 > 0 allows one to prove that the entire flow-structure system is a

gradient-type system.

In view of the above result—Theorem 0.3.6—with smooth initial data, we see that any damping imposed on the

structure seems to eliminate the flutter in the subsonic case. (This is consistent with experiment for clamped plates [47].)

From a physical point of view, the aerodynamic damping for a plate in subsonic flow is much lower than in supersonic

flow, so the plate tends to oscillate in a neutrally stable state in the absence of aerodynamic damping or structural damping

[48].

We also note that when the vK nonlinearity is replaced by Berger’s nonlinearity, and the damping coefficient k0 > 0

is taken sufficiently large, it has been shown [76] that all finite energy trajectories converge strongly to equilibria, and

hence the flutter is eliminated. Though we have Theorem 0.3.6 for smooth initial data, the analogous result for the vK

nonlinearity is still unknown. In [75] we consider finite energy data and the vK or Berger nonlinearity; when large static

and large viscous damping is active in the model, we can show strong convergence of the entire flow-plate system to

equilibria.

0.4 PISTON–THEORETIC PLATES

In the analysis of the full flow-plate model one considers the pressure acting on the surface of the plate, p(x, t), as a

function of the flow dynamics restricted to the interface. In classical piston theory [14, 42, 63] one replaces flow effects

driving the plate dynamics (the dynamic pressure across the plate) with a nonlinear function of the so called downwash:

p(x, t) = p0(x) +D
(
[ut +Uux]

)
,

where, D(·) can be any number of (potentially nonlinear [2, 77, 28, 29]) expressions. However, the most common

piston theoretic model (utilized for the sake of simplicity, and which is sufficiently accurate here [94, 95]) is linear.

Thus, standard, linear piston theory (or law of plane sections [14, 42, 63]) replaces the acceleration potential of the

flow, ψ = tr[φt + Uφx] with −[ut + Uux] in the RHS of the reduced plate equation (0.3.14). Thus we arrive at the

following piston-theoretic model (with imposed viscous damping k0 ≥ 0):utt + k0ut + ∆
2u + f(u) = p0(x) − β[ut +Uux] in Ω× (0, T),

u = ∂νu = 0 on ∂Ω× (0, T).
(0.4.1)

Here U > 0 is the unperturbed flow velocity and β > 0 measures the strength of the interaction between the fluid and the

structure (and typically depends on, for instance, free-stream density [95], or can be written as β(U)).

Remark 0.4.1. Formally, we could arrive at the aforementioned, standard (linear) piston theory model by utilizing the

reduction result in Theorem 0.3.4 and neglecting the delay potential in the case of large speeds U.

We note that the effects of the flow are two-fold and conflicting: (i) a linear damping term with “good sign",

fully-supported on the interior of the plate, and (ii) a non-dissipative (and destabilizing) term, scaled by the flow velocity

parameter U. In some sense the interaction between these two terms is the key driver of interest in this plate problem
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(and in the general flutter phenomenon). Such a non-dissipative, piston-theoretic model has been intensively studied in

the literature for different types of boundary conditions and resistive damping forces, see [30, 22, 31]. It is natural to ask

what results (on long-time behavior) can be obtained for given β > 0 and k0 = 0 (no imposed damping), and perhaps,

what further can be said in the case of imposed damping k0 > 0 (and perhaps large).

This model was intensively studied in the literature for different types of boundary conditions and frictional

damping forces, see [31] and also [30] for related second order abstract models. In the recent work [59], an α = 0

abstract piston-theoretic panel is thoroughly investigated in the presence of control-theoretic interior damping (β > 0

fixed, large k0).

Theorem 0.4.1. The equations (0.4.1) generates a dynamical system in the state space H20(Ω) × L2(Ω), possessing a

compact global attractor of finite fractal dimension which is also more regular than the state space, in the sense of a gain

of two derivatives in each component.

Existence of compact and finite dimensional attractor for the structure yields an important reduction of an infinite

dimensional, hyperbolic-like PDE system to a finite dimensional dynamics (ODE) system in the asymptotic limit. Such

a result can not to be (a priori) predicted by a specific or numerical experiment. In addition, the rigorous mathematical

validation of this fact is far from obvious, since the reduced plate system is not a gradient dynamical systems, and there

is no natural compactness built in into the dynamics. In fact, one of the key roles is played by the nonlinearity, whose

presence is critical for proving an existence of the absorbing set.

Many of the steps in [59] mirror those presented in the analysis of the delay plate in (0.3.16), and compact global

attractors are obtained (exploiting the recent quasi-stability theory [26, 31]). A stronger class of result is then given

in [59]: a (fractal) exponential attractor [26, 31]. The technique melds the quasi-stability analysis of [31, 26] with the

transitivity of exponential attraction [53]. A key point in all of the analysis in [59] is the size of the damping; results on

attractors are given in the form of: (i) “for any damping coefficient k > 0..." or (ii) “for k > kc sufficiently large". Finally,

the obtained attractors are then studied numerically by investigating a large class of trajectories for various parameters in

the 1-D case. (We note that in this work, the Berger plate nonlinearity and the vK nonlinearity are studied side by side,

with different results based on the results of differentiating the nonlinearities.)

Remark 0.4.2. Free plate boundary conditions have also been studied in [13] in the context of piston theory with

boundary (and/or geometrically constrained) dissipation.

Remark 0.4.3. We note that, as mentioned above, some classical piston-theoretic analyses [12] retain polynomial terms

in −[ut+Uux] up to the third order. Adding third powers of −[ut+Uux] will lead to a model with nonlinear, monotone

(cubic-type) damping in ut (see also some discussion in [30, p.161]). Such damping has already been considered in wave

and plate models [31], and is known to induce stronger stability properties in mitigating effects of nonconservative terms

in the equation. It would be interesting to study this situation in the context of the piston model under consideration.

0.5 KUTTA-JOUKOWSKY FLOW WITH A CLAMPED-FREE PLATE

As one might surmise, allowing a portion of the panel boundary to be free is a scenario of great physical applicability

(airfoils and cantilevers), as well as of great mathematical interest. Although the crux of the problem occurs in 1-D spatial

dynamics, we describe the problem in full generality below with a 2-D structure and 3-D flow.

A general configuration that supports multiple models of interest is now described; the principal distinction of

this configuration is the existence of large portion of the plate boundary Γ2 ≡ ∂Ω2 that is free. Taking a clamped-free

plate boundary allows one to consider (in generality) the situation of an airfoil, as well as a mostly clamped panel, or a

flap/flag in so called axial flow. When one considers a free plate coupled to fluid flow (unlike the clamped case) the key

modeling issues correspond to (i) the validity of the structural nonlinearity and (ii) the aerodynamic theory near the free

plate boundary.

In these configurations, the natural flow interface boundary condition is the aforementioned Kutta-Joukowsky flow

condition KJC [54]. Simply put, the KJC corresponds to a zero pressure jump off the wing and at the trailing edge [6, 49].

The KJC has been implemented in numerical aeroelasticity as mechanism for “...removal of a velocity singularity at some

distinguished point on a body in unsteady flow" [41]. From an engineering standpoint, the KJC is required to provide a

unique solution for the potential flow model for a lifting surface, and gives results in correspondence with experiment, i.e.
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the pressure difference across the trailing edge is zero and the pressure difference at the leading edge is a near maximum.

Studies of viscous flow models in the limit of very high Reynolds numbers lend support to the KJC.

The configuration below represents an attempt to model oscillations of a plate which is mostly free. The dynamic

nature of the flow conditions corresponds to the fact that the interaction of the plate and flow is no longer static at the free

edge. In this case we take the free-clamped plate boundary conditions, and the mixed flow boundary conditions:

u = ∂νu = 0, on ∂Ω1 × (0, T)

B1u = 0, B2u = 0, on ∂Ω2 × (0, T)

∂zφ = (∂t +U∂x)u, onΩ× (0, T)

∂zφ = 0, on Θ1 × (0, T)

ψ = φt +Uφx = 0, on Θ2 × (0, T)

(0.5.1)

where ∂Ωi, i = 1, 2 are complementary parts of the boundary ∂Ω , and B1, B2 represent moments and shear forces,

given by [66] (and earlier here) and, Θi extend in the natural way into the remainder of the x − y plane)

Remark 0.5.1. The configuration above arises in the study of airfoils. In this case, we refer to normal flow (along

the x-axis). Another interesting configuration is referred to as axial flow, which takes the flow occurring along y axis

and reduces the structural theory to a 1-D beam. Physically, the orientation of the flow can have a dramatic effect

on the occurrence and magnitude of the oscillations associated with the flow-structure coupling. This manifests itself,

specifically, in the choice of nonlinearity modeling the plate (or possibly beam) equation.

From the mathematical point of view, the difficulty arises at the level of linear theory when one attempts to construct

“smooth" solutions of the corresponding evolution. The typical procedure of extending plate solutions by zero outside

Ω leads to the jump in the Neumann boundary conditions imposed on the flow. In order to contend with this issue,

regularization procedures are needed in order obtain smooth approximations of the original solutions. While some

regularizations have been already introduced in [34], more work is needed in order to demonstrate the effectiveness

of this “smoothing" for the large array of problems described in this work.

Remark 0.5.2. With regard to the above, we note that when we are in the case of normal flow (as opposed to axial

flow (as in Remark 0.5.1) the scalar von Karman model is largely still viable [49] (based on extensibility—the dominant

nonlinear effect is that of stretching on bending [66]). Additionally, any configuration where the free portion of the plate

boundary conditions is “small" with respect to the clamped portion will satisfy the hypotheses for the theory of large

deflections, and hence, von Karman theory is applicable. However, in the context of axial flow, a complete reformation

of the appropriate inextensible theory is needed. See Section ?? below.

0.5.1 Mathematical Treatment of (KJC)

Arguably, the Kutta-Joukowsky boundary conditions for the flow (0.2.6) are the most important when modeling an

airfoil immersed in a flow of gas [4, 5]. Not surprisingly, these boundary conditions are also the most challenging

from mathematical stand point. This was recently brought to the fore in an extensive treatise [5]. Various aspects of the

problem—in both subsonic and supersonic regime—have been discussed in [5] in the context of mostly one dimensional

structures.

The aim of this section is to address the mathematical problem posed by (KJC), by putting them within the

framework of modern harmonic analysis. We consider the “toy" problem of (KJC) conditions coupled with clamped

plate boundary conditions below. Indeed, the recently studies [35, 74] show how the flow condition (KJC) interacts

with the clamped plate in subsonic flows in order to develop a suitable abstract theory for this particular flow condition.

The resulting papers [35, 74] give well-posedness of this fluid-structure interaction configuration. Though the analysis

is subsonic for (KJC), utilizing the flow energy from the supersonic panel (as above in Theorem 0.3.1) is effective in

the abstract setup of this problem. In fact, even in the subsonic case, the analysis of semigroup generation proceeds

through the technicalities developed earlier for supersonic case [34]. The key distinction from the analysis of the clamped

flow-plate interaction (owing to the dynamic nature of the boundary conditions) is that a dynamic flow-to-Neumann map

must be utilized to incorporate the boundary conditions into the abstract setup. The regularity properties of this map
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are critical in admitting techniques from abstract boundary control [73], and are determined from the Zaremba elliptic

problem [85]. The necessary trace regularity hinges upon the invertibility of an operator which is analogous (in two

dimensions) to the finite Hilbert transform [5, 6, 93]. And this is a critical additional element of the challenging harmonic

analysis brought about by the (KJC). When the problem is reduced in dimensionality to a beam structural model, this

property can be demonstrated and our analysis has parallels with that in [5, 6] (and older references which are featured

therein). Specifically, one must invert the finite Hilbert transform in Lp(Ω) for p 6= 2; in higher dimensions, this brings

about nontrivial (open) problems in harmonic analysis and the theory of singular integrals.

From the mathematical point of view the difficulty lies, again, at the level of the linear theory. In order to deal

with the effects of the unbounded traces tr[ψ] in the energy relation microlocal calculus is necessary. This has been

successfully accomplished in [34] where clamped boundary conditions in the supersonic case were considered. However,

in the case of (KJC) there is an additional difficulty that involves “invertibility" of finite Hilbert (resp. Riesz) transforms.

This latter property is known to fail within L2 framework, thus it is necessary to build the Lp theory, p 6= 2. This was

for the first time observed in [6] and successfully resolved in the one dimensional case. However, any progress to higher

dimensions depends on the validity of the corresponding harmonic analysis result developed for finite Riesz transforms.

The full system with (0.2.6) can be written in terms of aeroelastic potential variable as:

utt + ∆
2u + f(u) = p0 + tr[ψ] inΩ× (0, T),

u(0) = u0; ut(0) = u1,

u = ∂νu = 0 on ∂Ω× (0, T),

(∂t +U∂x)φ = ψ in R3+ × (0, T),

(∂t +U∂x)ψ = ∆φ in R3+ × (0, T),

∂νφ = −(∂t +U∂x)u onΩ× (0, T),

(∂t +U∂x)φ = 0 on R2\Ω× (0, T),

(0.5.2)

with the given initial data (u0, u1, φ0, ψ0). We make use of the flow acceleration multiplier (∂t + U∂x)φ ≡ ψ for the

subsonic flow, taken with (KJC). Thus for the flow dynamics, instead of (φ;φt) we again have the state variables (φ;ψ)

(as in the supersonic panel case) which then leads to a non dissipative energy balance.

Our result is formulated under the following regularity condition (to be discussed later).

Condition 1 (Flow Trace Regularity). Assume that φ(x, t) satisfies (0.2.4) and the Kutta-Joukowsky condition (KJC),

and ∂ttr[φ], ∂xtr[φ] ∈ L2(0, T ;H−1/2−ε(R2)) ∀ T > 0. In addition, ψ = φt +Uφx satisfies the estimate∫T
0

‖tr[ψ](t)‖2H−1/2−ε(R2)dt ≤ CT
(
Efl(0) +

∫T
0

‖∂νφ(t)‖2Ωdt
)

(0.5.3)

We note that the regularity required by Condition 1 is exactly the one that will make energy relation meaningful. To

wit: ux(t) ∈ H10(Ω) and tr[ψ] ∈ L2(0, T ;H−θ), θ > 1/2 defines the correct duality pairing in the tangential direction

on R2. It is also at this point where we use the fact that u satisfies u = 0 on ∂Ω . Thus simply supported and clamped

boundary conditions imposed on the structure fully cooperate with this regularity. The principal result of [74] (see also

[35]) reads as follows:

Theorem 0.5.1. With reference to the model (0.5.2), with 0 ≤ U < 1: Assuming the trace regularity Condition 1 holds

for the aeroelastic potential ψ = (φt+Uφx), there exists a unique finite energy solution which exists on any [0, T ]. This

is to say, for any T > 0, (φ,φt, u, ut) ∈ C(0, T ; Y) for all initial data (φ0, φ1, u0, u1) ∈ Y. This solution depends

continuously on the initial data.

The proof of Theorem 0.5.1 follows the technology developed for the supersonic case in [34] and is given in [74]. In

view of Theorem 0.5.1 the final conclusion on generation of nonlinear semigroup is pending upon verification of the flow

regularity Condition. While the complete solution to this question is still unavailable, and pending further progress in the

theory of finite Riesz transforms, we can provide positive answer in the case when Ω is one dimensional. In fact, this

positive assertion also follows a-posteriori from direct calculations given in [4], and based on the analysis of finite Hilbert

transforms. The arguments given [74] are independent and more general, with potential adaptability to multidimensional

cases. The corresponding result is formulated below.
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Theorem 0.5.2. Assume Ω = (−1, 1) (suppressing the span variable y). Then the flow trace regularity in Condition 1

holds for φ. In this case the semiflow defined by (0.5.2) taken with (KJC) generates a continuous semigroup.

Remark 0.5.3. As discussed above, the generation of semigroups for an arbitrary three dimensional flow is subjected to

the validity of the trace Condition 1. While it is believed that this property should be generically true, at the present stage

this appears to be an open question in the analysis of singular integrals and depends critically on the geometry of Ω in

two dimensions.

Remark 0.5.4. We note that the regularity of the aeroelastic potential required by Condition 1 in one dimension, follows

from the analysis in [5, 6], where the author proves that aeroelastic potential ψ ∈ L2(0, T, Lq(Ω)) for q < 4/3 . Since

for p > 4 there exists ε > 0 such that

H1/2+ε(Ω) ⊂ Lp(Ω), p > 4, dim Ω ≤ 2,

and one then obtains that Lq(Ω) ⊂ H−1/2−ε(Ω) with q < 4/3.

Remark 0.5.5. The loss of 1/2 derivative in the characteristic region was already observed and used in the analysis of

regularity of the aeroelastic potential for the Neumann problem with supersonic velocities U [34]. However, in the case

of (KJC) there is an additional loss, due to the necessity of inverting finite Hilbert transform which forces to work with

Lp theory for p < 2. This is due to the fact that finite Hilbert transform is invertible on Lp, p < 2, rather than p = 2.

0.6 AXIAL FLOW

In the case of axial flow, mentioned in Remark 0.5.1, a beam or plate is clamped on the leading edge and free elsewhere

is described. To provide a clear picture of the dynamics, consider the figure at the beginning of Section ?? with the

over-body flow occurring in the y-direction, as opposed to being in the direction of the plate’s chord—x-direction. This

axial configuration, owing to LCO response to low flow velocities [5], is that which has been considered from the point

of view of energy harvesting. This would be accomplished by configuring an axially oriented flap on land or air vehicles

with a piezo device which could generate current as it flutters [52]. From [90] the appropriate structural equations of

motion here correspond to those of a thin pipe conveying fluid, and many aspects of such dynamics mirror those we

are investigating [81, 90]. Expressions for the kinetic and potential energy of the beam and plate are given in [89, 91].

Note that structural nonlinearities occur in both the inertia (kinetic energy) and stiffness (potential energy) terms for the

structural equations of motion.

The recent theoretical and experimental work of Tang and Dowell [89, 91] has been encouraging. In this work a new

nonlinear structural model has been used based upon the inextensibility assumption and the comparison between theory

and experiment for the LCO response has been much improved over earlier results [90]. The study of a linear aerodynamic

model, combined with the new nonlinear structural model, is worthy of more rigorous mathematical attention.

In the case of axial flow, mentioned in Remark 0.5.1, a beam or plate is clamped on the leading edge and free

elsewhere, with the flow directed along the longer axis of the structure. To provide a clear picture of the dynamics,

consider the figure below (0.5.1) with the over-body flow occurring in the y-direction. This axial configuration, owing to

LCO response to low flow velocities [5], is that which has been considered from the point of view of piezoelectric energy

harvesting [52] (as well as snoring and sleep apnea [61]). In this case, it is typical to reduce the structural dynamics to

that of a beam. The key point in modeling is that such a beam has a predominant nonlinear effect due to an inextensibility

constraint, rather than a typical von Karman type extensible theory [51, 91].

From [90] the appropriate structural equations of motion here correspond to those of a thin pipe conveying fluid,

and many aspects of such dynamics mirror those we have discussed above [90]. Expressions for the kinetic and potential

energy of the beam and plate are given in [51]. Structural nonlinearities will occur in both the inertia (kinetic energy)

and stiffness (potential energy) terms for the structural equations of motion. The recent theoretical and experimental

[89, 91] has validated the modeling done based upon the inextensibility assumption and the comparison between theory

and experiment for the limit cycle response has been much improved over earlier results [90]. The study of a linear

aerodynamic model, combined with the new nonlinear structural model, is worthy of more rigorous mathematical

attention.

Below, we will discuss three approaches to structural modeling in this axial flow scenario, of increasing complexity.
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The most important distinction to make in a cantilever model is the handling of the extensibility property [51, 66, 86]. In

the case of extensible beams, transverse deflection necessarily leads to local stretching, which is the principal contributor

for the elastic restoring force; the very recent engineering literature indicates that dominant nonlinear effects should

instead be inextensible [51, 79, 86, 91].

The property of inextensibility is characterized as local arc length preservation throughout deflection (with u

out-of-plane, and w in-plane, Lagrangian deflections of the beam):

1 ≡
[
(1 +wx)

2 + u2x
]1/2 linearized to 0 ≡ wx + (1/2)[ux]

2. (0.6.1)

This linearization is referred to as the inextensibility constraint. Note that if in-plane u dynamics are prohibited at x = L,

then the model must be extensible. elasticity [66], a quadratic strain-displacement law is invoked. The coefficient α > 0

is required to be positive in (0.6.2). The terms D1, D2 > 0 are elastic coefficients related by D2 = αD1, though they

are often considered independent. We exclude damping terms for now.

wtt −D1
[
wx +

1
2
(ux)

2
]
x
= 0; (1 − α∂2x)utt +D2∂

4
xu −D1

[
ux(wx +

1
2
u2x)
]
x
= p(x, t)

u(t = 0) = u0; ut(t = 0) = u1; w(t = 0) = w0; wt(t = 0) = w1

w(0) = 0; D1
[
wx(L) +

1
2
u2x(L)

]
= 0; u(0) = ux(0) = 0; D2uxx(L) = 0;

−α∂xutt(L) +D2∂
3
xu(L) = 0.

(0.6.2)

As above, one can arrive at a scalar equation by assuming in-plane accelerations are negligible, i.e., wtt ≈ 0. Integrating

the w equation over the beam, and imposing that w(L) is “small"—a contentious assumption—we obtain the toy model

studied in [60]: 
(1 − α∂2x)utt +D∂

4
xu + (b − ||ux||

2)uxx = p(x, t)

u(t = 0) = u0; ut(t = 0) = u1; u(0) = ux(0) = 0

∂2xu(L) = 0; − α∂xutt(L) +D∂
3
xu(L) + (b − ||ux||

2)ux(L) = 0.

(0.6.3)

Above, we have permitted all values α ≥ 0, a point discussed in [60]; b ∈ R represents equilibrium in-plane tension

or compression. This models appears to be a standard nonlinear beam equation of Krieger type, with a nonstandard

(nonlinear) boundary condition. The physical meaning of this boundary condition is vague, but such models have been

previously studied (see [60] and references therein). From the point of view here, the analysis of this model is preliminary

to that of the more sophisticated (0.6.2) and (0.6.4).

In contrast to the extensible theory above, one may invoke the inextensibility condition (0.6.1) at the variational

level to derive the nonlinear potential and kinetic energies for u and w [51, 79, 86]. Doing so and invoking Hamilton’s

principle, one obtains “new" equations of motion for cantilever large deflections:

utt −D∂x
[
(uxx)

2ux
]
+D∂xx

[
uxx
(
1 + (ux)

2
)]

+ ∂x
[
ux

∫L
x

wtt(ξ)dξ
]
= p(x, t); (0.6.4)

w(x) = −
1

2

∫x
0

[ux(ξ)]
2dξ. (0.6.5)

Unlike (0.6.3), one recovers the standard clamped-free boundary conditions for u. Since u and w are related through the

constraint, we may express the dynamics entirely in u via

∂x

[
ux

∫L
x

wtt(ξ)dξ
]
= (0.6.6)

− ux
[ ∫x
0

(
(uξt)

2 + uξttuξ
)
dξ
]
+ uxx

∫L
x

[ ∫ξ2
0

(
(uξt)

2)uξttuξ
)
dξ1

]
dξ2. (0.6.7)

Enforcing inextensibility contributes both nonlinear inertial and stiffness terms not present in the equations of extensible

elasticity. Additionally, the inertial terms are nonlocal and prevent the dynamics from being written as a traditional second

order evolution in (u,w).

In the very recent manuscript [60], the free boundary condition (for a beam) is explored in the context of energy

harvesting. A piston-theoretic cantilever model is investigated from the point of view described above. A key distinction
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is uncovered in the presence of a free boundary condition: rotational inertia is indispensable for von Karman type

nonlinearities. With α > 0, compact global attractors are constructed for f = fB (albeit in 1-D), and extensive numerical

simulations are performed. Virtually no mathematical analyses have been performed (in this aeroelastic context) with the

structural models (0.6.2) and (0.6.4).

We conclude by noting a key representative model in the case of axial flow, omitting initial conditions, in the linear

flow-cantilever configuration, implementing the KJC at the free end:


utt +D∂

4
xu = [(∂t +U∂x)φ]

∣∣
(0,L)

in (0, L)

u = ux = 0 in {0}× (0, T)

uxx(L) = 0; uxxx(L) = 0



(∂t +U∂x)
2φ = ∆x,zφ in R2+

∂zφ =

(∂t +U∂x)u on (0, L)

0 (−∞, 0]
(φt +Uφx) = 0 on [L,∞)

These dynamics can be addressed by the theory described in this treatment, though in the nonlinear, post-flutter regime

there are many modeling problems, which do not necessarily translate mathematically in this description: viscous effects,

non-zero vorticity, large deflections of the flow-structure interface, etc.
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ABSTRACT: This paper addresses the problem of stability in terms of two measures for impulsive systems on time

scales. By establishing a new comparison result, it establishes stability criteria in terms of two measures. As an

application, nonlinear impulsive control problems of continuous and discrete chaotic systems are discussed, respectively.

Some less conservative impulsive stabilization conditions are obtained where both nonuniform and uniform impulsive

intervals are considered. Some examples are provided to illustrate the effectiveness of the obtained results and the

proposed impulsive control schemes.

Index terms—

Stability in terms of two measures, Impulsive systems, Time scales, Impulsive control, Continuous and discrete

chaotic systems

0.1 Introduction

As special classes of hybrid dynamical systems, impulsive differential equations and systems on time scales have been

studied extensively over the past three decades [1-12]. The theory of impulsive differential equations provides a general

framework for mathematical modeling of many important dynamic process. For example, it serves as an adequate

mathematical tool to study evolution processes that are subjected to abrupt changes in their states [1,2]. On the other hand,

the theory on time scales, initialed by Stefan Hilger in his PhD thesis [6] in 1988, has provided a unified framework to

study continuous and discrete dynamic systems simultaneously. Due to its two main features of unification and extension,

this theory has tremendous potential for application in control theory [7-9], economics [10], geometric analysis [11],

neural networks [12,13] and so on. For example, it can model the insect populations that are continuous in season and

die out in winter, while their eggs are dormant, and then hatch in a new season [4].

Recently, various work has been done on the stability problem of dynamic systems on time scales [14-17]. The study

of stability problem of impulsive systems on time scales was initialed by Lakshmikantham in [18], but the corresponding

results of this problem are not much. In [19-21], the authors have considered the stability of impulsive systems on time

scales by using comparison method and Lyapunov functions. In [22,23], the φ0-stability of impulsive systems on time

scales have been investigated. Most of the existed results are based on the assumption that all the impulsive instants are

right-dense points (which will be introduced in section 3), which means that the corresponding results can not be used

to the discrete impulsive systems. To the best of our knowledge, the stability properties in terms of two measures for

nonlinear impulsive systems on time scales have not been investigated by comparison method.

Motivated by the above discussion, in this paper, we consider the stability in terms of two measures for nonlinear

impulsive systems on time scales. We firstly establish a new comparison theorem about (uniform, uniform asymptotic)

stability in terms of two measures for impulsive systems on time scales with impulses at fixed time. These results are used

to design impulsive controllers for continuous and discrete chaotic systems. We hope to emphasize that, in our results,

both uniform and nonuniform impulsive intervals are used, and nonlinear impulsive control schemes are obtained, which

are less conservative than the results in [24-26]. Moreover, since there are many other time scales than just the set of real

numbers or the set of integers, our results are more general.

The rest of this paper is organized as follows. In Section 2, we introduce some basic knowledge of dynamic systems

on time scales. In section 3, we formulate the problem and present several definitions of stability in terms of two measures.

In Section 4, a new comparison result is constructed which plays an important role in this paper, then several comparison

theorems and (h0, h)-stability criteria are established, which are used to analyze the asymptotic stability of a class of

nonlinear impulsive systems on time scales. These results are applied to obtain sufficient conditions for impulsively
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stabilization of continuous and discrete chaotic systems in Section 5 and Section 6, respectively. For illustration of our

results, four examples are shown in Section 7.

0.2 Preliminaries

In this section, we introduce some notations and definitions for later use.

Let R be the set of real numbers, Z the set of integers, Z+ = {0, 1, 2, ...}, N = {1, 2, ...}, and R+ = [0,∞), Rn the

n-dimensional Euclidean space, Rn×m the set of all real matrices. The superscripts ‘T’ stands for the transpose of a

matrix; E ∈ Rn×n is an identity matrix. For A ∈ Rn×n, let ||A|| denotes the norm of A by Euclidean norm, i.e.,

||A|| =
√
λmax(ATA), where λmax(P) denotes the largest eigenvalue of a symmetric matrix P.

Let T be an arbitrary nonempty closed subset of R. We assume that T is a topological space with relative topology

induced from R. Then, T is called a time scale.

Definition 0.2.1. The mappings σ, θ : T→ T defined as

σ(t) = inf{s ∈ T : s > t}

θ(t) = sup{s ∈ T : s < t}

are called forward and backward jump operators, respectively.

A nonmaximal element t ∈ T is called right-scattered (rs) if σ(t) > t and right-dense (rd) if σ(t) = t. A

nonminimal element t ∈ T is called left-scattered (ls) if θ(t) < t and left-dense (ld) if θ(t) = t. If T has a ls maximum

m, then we define Tk = T \ {m}, otherwise, Tk = T.

Definition 0.2.2. The graininess function :T→ R+ is defined by (t) = σ(t) − t.

Definition 0.2.3. For y : T → R and t ∈ Tk, we define the delta derivative y∆(t) of y(t), to be the number (when it

exists) with the property that for any ε > 0, there is a neigborhood U of t (i.e., U = (t − δ, t + δ)
⋂

T for some δ > 0)

such that

|y(σ(t)) − y(s) − y∆(t)(σ(t) − s)| ≤ ε|σ(t) − s|, for all s ∈ U.

If a, b ∈ T, we then define the interval [a, b] in T by [a, b] := {t ∈ T : a ≤ t ≤ b}. Open intervals and half-open

intervals etc. are defined accordingly.

Definition 0.2.4. For x : T→ R and t ∈ Tk, we define the upper right-hand Dini delta derivative of x(t) by

D+x∆(t) =


x(σ(t))−x(t)

(t) , σ(t) > t

lim sups→t+ x(s)−x(t)
s−t

, σ(t) = t,

A function f : T → R is rd-continuous provided it is continuous at rd points in T and its left-side limits exist at ld

points in T. The set of rd-continuous functions f : T → R will be denoted by Crd = Crd(T,R). If f is continuous at

each rd point and each ld point, f is said to be continuous function on T.

Definition 0.2.5. Let f ∈ Crd. A function g : T→ R is called the antiderivative of f on T if it is differentiable on T and

satisfies g(t) = f(t) for all t ∈ T. In this case, we define∫ t
a

f(s)s = g(t) − g(a), a, t ∈ T.

We say that a function p : T → R is regressive if 1 + (t)p(t) 6= 0 for all t ∈ T holds. The set of all regressive

and rd-continuous functions f : T → R is denoted in this paper by CrdR = CrdR(T,R), and the set of all positively

regressive elements of CrdR is denoted by CrdR+ = CrdR+(T,R) = {p ∈ CrdR : 1 + (t)p(t) > 0 for all t ∈ T}.
Definition 0.2.6. If p ∈ CrdR, then we define the exponential function on time scales T by

ep(t, s) = exp
( ∫ t
s

ξ(×)
(p(×))×

)
, for t, s ∈ T
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where the cylinder transformation

ξh(z) =


Log(1+hz)

h
, h 6= 0

z, h = 0,

where Log is the principal logrithm function.

It is known that x(t) = ep(t, t0) is the unique solution of the initial value problem x(t) = p(t)x(t), x(t0) = 1.

Remark 0.2.1. Let α ∈ CrdR be constant. If T = Z, then eα(t, t0) = (1 + α)t−t0 for all t ∈ T. If T = R, then

eα(t, t0) = e
α(t−t0) for all t ∈ T.

0.3 Problem Formulation

Consider the following impulsive system on time scale
x(t) = f(t, x), t ∈ T, t 6= tk,

x(t) = Ik(x(t)), t = tk, k = 1, 2, ...

x(t+0 ) = x0

(0.3.1)

where

a) T is a time scale with t0 ≥ 0 as its minimum element and no maximal element.

b) {tk} ∈ T, t0 < t1 < t2 < ... < tk < ... and limk→∞ tk =∞.

c) x ∈ Rn and x(tk) = x(t+k ) − x(t
−
k ). If tk is rd point, x(t+k ) denotes the right limit of x at tk; if tk is rs

point, x(t+k ) denotes the state of x at tk with the impulse. If tk is ld point, x(t−k ) denotes the left limit of x at tk with

x(t−k ) = x(tk) if tk is rd point. Here, we assume that x(t−k ) = x(tk).

d) f : T × Rn → Rn is continuous in (tk−1, tk] × Rn for k = 1, 2, ..., f(t, 0) = 0 and for each x ∈ Rn,

k = 1, 2, ..., lim(t,y)→(t+
k
,x) f(t, y) = f(t

+
k , x);

e) Ik : Rn → Rn and Ik(0) = 0.

Let x(t) = x(t; t0, x0) denote the solution of system (0.3.1) satisfying initial condition x(t+0 ) = x0. Obviously,

system (0.3.1) admits the trivial solution. Moreover, f is assumed to satisfy necessary assumptions so that the following

initial value problems: x = f(t, x), t ∈ [t0, t1],

x(t0) = x0

and x = f(t, x), t ∈ (tk−1, tk],

x(t+k ) = xk−1(tk) + Ik−1(xk−1(tk))

have unique solutions x0(t), t ∈ [t0, t1], and xk(t), t ∈ (tk−1, tk], respectively (e.g., see [3] for existence and uniqueness

results for dynamical systems on time scales.). Thus, if we define

x(t; t0, x0) =



x0(t), t ∈ [t0, t1]

x1(t), t ∈ (t1, t2]

...
...

xk(t), t ∈ (tk, tk+1]

...
...

then it is easy to see that x(t; t0, x0) is the unique solution of (0.3.1) for t ∈ T.

Let us list the classes of functions and definitions for convenience.
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PC = {δ : T→ R+, continuous on (tk−1, tk] and limt→t+
k
δ(t) = δ(t+k ) exists};

K = {δ ∈ C(R+,R+), strictly increasing and δ(0) = 0};

PCK = {δ : T× R+ → R+, δ(·, u) ∈ PC for each u ∈ R+ and δ(t, ·) ∈ K for each t ∈ T};

Γ = {h : T×Rn → R+, h(·, x) ∈ PC for each x ∈ Rn, h(t, ·) ∈ C(Rn,R+) for each t ∈ T and infh(t, x) = 0};

ν0 = {V : T× Rn → R+, continuous on (tk−1, tk]× Rn and lim(t,y)→(tk,x), t>tk V(t, y) = v(t
+
k , x) exists}.

For V ∈ ν0, (t, x) ∈ (tk−1, tk] × Rn, we define the upper right-hand Dini delta derivative of V(t, x) relative to

(0.3.1) as follows:

D+V (t, x) =


V(σ(t),x(σ(t)))−V(t,x(t))

(t) , σ(t) > t

lim sups→t+ V(s,x(t)+(s−t)f(t,x(t)))−V(t,x(t))
s−t

, σ(t) = t

Definition 0.3.1. Let h0, h ∈ Γ . Then we say that

(i) h0 is finer than h if there exists a constant ρ > 0 and a function ϕ ∈ K such that h0(t, x) < ρ implies

h(t, x) ≤ ϕ(h0(t, x));

(ii) h0 is weakly finer than h if there exists a constant ρ > 0 and a function ϕ ∈ PCK such that h0(t, x) < ρ

implies h(t, x) ≤ ϕ(t, h0(t, x)).
Definition 0.3.2. Let V ∈ ν0 and h0, h ∈ Γ . Then V(t, x) is said to be

(i) h-positive definite if there exist a ρ > 0 and a function b ∈ K such that h(t, x) < ρ implies b(h(t, x)) ≤
V(t, x);

(ii) h0-decrescent if there exist a ρ > 0 and a function a ∈ K such that h0(t, x) < ρ implies V(t, x) ≤ a(h0(t, x));

(iii) h0-weakly decrescent if there exist a ρ > 0 and a function a ∈ PCK such that h0(t, x) < ρ implies V(t, x) ≤
a(t, h0(t, x)).

Definition 0.3.3. The impulsive differential system (0.3.1) is said to be

(S1) (ho, h)-stable, if for each ε > 0, t0 ∈ T, there exists a δ = δ(t0, ε) > 0 such that h0(t0, x0) < δ implies

h(t, x(t)) < ε, t ≥ t0 for any solution x(t) = x(t; t0, x0) of (0.3.1);

(S2) (h0, h)-uniformly stable if the δ in (S1) is independent of t0;

(S3) (ho, h)-attractive, if for each ε > 0, t0 ∈ T, there exist two positive constant δ = δ(t0, ε) and T = T(t0, ε)

such that h0(t0, x0) < δ implies h(t, x(t)) < ε, t ≥ t0 + T ;

(S4) (h0, h)-uniformly attractive if (S3) holds with δ and T being independent of t0;

(S5) (h0, h)-asymptotic stable if (S1) and (S3) hold simultaneously;

(S6) (h0, h)-uniformly asymptotic stable if (S2) and (S4) hold together;

(S7) (h0, h)-unstable if (S1) fails to hold.

0.4 (h0, h)-Stability Criteria
In this section, we shall present several stability criteria about (h0, h)-stability of impulsive systems on time scales by

comparison method.

Firstly, we need the following comparison result which will be useful in our investigation.

Theorem 0.4.1. Assume that

(i) V ∈ ν0, K : R+ → (0,∞) and satisfy the following inequalities:
K(σ(t))D+V (t, x) + V(t, x)D+K(t) ≤ g(t, K(t)V(t, x)), t 6= tk

K(t+k )V(t
+
k , x(tk) + Ik(x(tk))) ≤

′
k (K(tk)V(tk, x(tk))), k ∈ N,

K(t0)V(t0, x0) ≤ u0

(0.4.1)

where g : T×R+ → R, continuous on (tk−1, tk]×R+, k = 1, 2, ..., lim(t,v)→(tk,u) t>tk g(t, v) = g(t
+
k , u) exists and

′
k : R+ → R+, nondecreasing;
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(ii) g(t, u)(t) + u is nondecreasing in u for each t ∈ T;

(iii) r(t) = r(t; t0, u0) is the maximal solution of the following scalar impulsive differential equation
u(t) = g(t, u), t ∈ T, t 6= tk,

u(t+k ) =
′
k (u(tk)), k ∈ N,

u(t+0 ) = u0

(0.4.2)

existing on T for t ≥ t0.

Then we have

K(t)V(t, x(t)) ≤ r(t), t ∈ T, t ≥ t0.

Remark 0.4.1. We give two remarks about Theorem 0.4.1.

(1) In case T = R+, the above theorem reduces to the Lemma in [28]. In case T = Z, the above theorem reduces to the

corresponding discrete result which, as far as we know, is brand new.

(2) If K(t) ≡ 1, Theorem 0.4.1 reduces to the Lemma in [21]. Furthermore, if ψk(x) = x for k = 1, 2, ... in Theorem

0.4.1, the corresponding result can be found in [3].

We are now in the position to establish some comparison theorems for (h0, h)-stability of impulsive differential

system (0.3.1). Let

S(h, ρ) = {(t, x) ∈ T× Rn : h(t, x) < ρ}.

Theorem 0.4.2. Assume that

(i) h0, h ∈ Γ and h0 is finer that h;

(ii) V ∈ ν0, V(t, x) is h-positive definite on S(h, ρ), locally Lipschtiz in x for each t ∈ T which is rd, K(t)V(t, x)

is h0-decrescent, and

K(σ(t))D+V (t, x) + V(t, x)D+K(t) ≤ g(t, K(t)V(t, x)), t 6= tk, (t, x) ∈ S(h, ρ)

where g(t, u), K(t) are the same as described in Theorem 0.4.1 and in addition g(t, 0) ≡ 0, K(t) ≥ m > 0 (here, m is

a constant);

(iii) K(t+k )V(t
+
k , xk + Ik(xk)) ≤

′
k (K(tk)V(tk, xk)), (tk, xk) ∈ S(h, ρ), where xk = x(tk), and ′k : R+ → R+ is

nondecreasing, k ∈ N;

(iv) g(t, u)(t) + u is nondecreasing in u for each t ∈ T;

(v) there exists a ρ1, 0 < ρ1 < ρ, such that h(t, x(t)) < ρ1 implies h(σ(t), x(σ(t))) < ρ;

(vi) there exists a ρ0, 0 < ρ0 < ρ1, such that h(tk, xk) < ρ0 implies that h(t+k , xk + Ik(xk)) < ρ1.

Then, the stability properties of the trivial solution of system (0.4.2) imply the corresponding (h0, h)-stability properties

of system (0.3.1)

Remark 0.4.2.

(1) If K(t) ≡ 1, the continuous version of Theorem 4.2 can be found in [33].

(2) If K(t) ≡ 1 and h(t, x) = h0(t, x) = ||x||, then Theorem 0.4.2 reduces to Theorem 3.1 in [20] with ρ =∞.

(3) If K(t) ≡ 1, T = R+ and h(t, x) = h0(t, x) = ||x||, then Theorem 0.4.2 reduces to Theorem 1 in [28].

In Theorem 0.4.2, stronger requirement on KV has been assumed to unify all the stability criteria in one theorem.

Therefore, to obtain only nonuniform stability criteria, we could weaken the assumption about KV , h, and h0 of Theorem

0.4.2, as in the following result. We omit the details of the proof which is analogous to the proof of Theorem 0.4.2.

Theorem 0.4.3. Assume that conditions (i)-(vi) of Theorem 0.4.2 hold with the following change:

(i∗) h0 is weakly finer than h;

(ii∗) K(t)V(t, x) is h0-weakly decrescent.

Then the uniform and nonuniform stability properties of the trivial solution of (0.4.2) imply the corresponding nonuniform

(h0, h)-stability properties of system (0.3.1).

In Theorem 0.4.2 and 0.4.3, the comparison system (0.4.2) may have special forms. In case when g(t, u) ≡ 0 and

ψk(r) = dkr, k ∈ N, we have the following (h0, h)−stability results.
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Corollary 0.4.1. Assume that

(i) h0, h ∈ Γ and h0 is finer than h;

(ii) V ∈ ν0, V(t, x) is h-positive definite on S(h, ρ), locally Lipschtiz in x for each t ∈ T which is rd, K(t)V(t, x)

is h0-decrescent, and

K(σ(t))D+V (t, x) + V(t, x)D+K(t) ≤ 0, t 6= tk, (t, x) ∈ S(h, ρ),

where g(t, u), K(t) are the same as described in Theorem 0.4.1 and in addition g(t, 0) ≡ 0, K(t) ≥ m > 0 (here, m is

a constant);

(iii) K(t+k )V(t
+
k , xk + Ik(xk)) − K(tk)V(tk, xk) ≤ dkK(tk)V(tk, xk), (tk, xk) ∈ S(h, ρ), where dk ≥ 0 and∑∞

i=1 di <∞ for k ∈ N;

(iv) there exists a ρ1, 0 < ρ1 < ρ, such that h(t, x(t)) < ρ1 implies h(σ(t), x(σ(t))) < ρ;

(v) there exists a ρ0, 0 < ρ0 < ρ1, such that h(tk, xk) < ρ0 implies that h(t+k , xk + Ik(xk)) < ρ1.

Then, system (0.3.1) is (h0, h)-uniformly stable.

Proof: Consider the following comparison system
u(t) = 0, t ∈ T, t 6= tk,

u(t+k ) = (1 + dk)u(tk), k ∈ N,

u(t+0 ) = u0

(0.4.3)

Then, for t ∈ (tk, tk+1], we have

u(t) =

k∏
i=1

(1 + di)u0 < Mu0 (0.4.4)

whereM =
∏∞
i=1(1 + di) <∞, since

∑∞
i=1 di <∞.

For any ε > 0, we choose δ = ε
M

. Then, form (0.4.4), we know that |u0| < δ implies |u(t)| < ε, i.e., u = 0 of

system (0.4.3) is uniformly stable. Hence, it follows from Theorem 4.2 that system (0.3.1) is (h0, h)−uniformly stable

and the proof is complete.

Corollary 0.4.2. Assume that conditions (i)-(v) of Corollary 0.4.1 hold with the following change:

(i∗)h0 is weakly finer than h;

(ii∗) K(t)V(t, x) is h0-weakly decrescent.

Then, system (0.3.1) is (h0, h)-stable.

Remark 0.4.3. If K(t) ≡ 1, dk = 0 for k = 1, 2, ... and T = R+ in Corollary 4.1 and 4.2, then we can obtain Theorem

3.1 in [34].

In case when g(t, u) = p(t)u(t), and ′k(r) = dkr, k ∈ N, then we have the following (h0, h)-asymptotic stability

result.

Corollary 0.4.3. System (0.3.1) is (h0, h)-asymptotically stable if the conditions of Theorem 0.4.3 and the following

conditions hold:

(i) p ∈ Crd(T,R+).

(ii) supk∈N{d2k−1ep(t2k, t2k−1)} = ξ <∞, where dk > 0, k ∈ N.

(iii) There exists a constant γ > 1 such that

γd2k−1d2kep(t2k+1, t2k−1) ≤ 1, k ∈ N.

Proof: Consider the following comparison system
ω(t) = p(t)ω(t), t 6= tk

ω(t+k ) = dkω(tk), t = tk, k ∈ N,

ω(t+0 ) = ω0

(0.4.5)
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It can be seen that the solution of system (0.4.5) is

ω(t, t0, ω0) = ω0
∏

t0<tk<t

dkep(t, t0)

We shall show that

ω(t, t0, ω0) ≤ max{1, ξ}ω0ep(t1, t0) (0.4.6)

To do this, there are three cases to consider.

Case 1. If t ∈ [t0, t1], then

ω(t, t0, ω0) = ω0ep(t, t0) ≤ ω0ep(t1, t0) ≤ max{1, ξ}ω0ep(t1, t0)

Case 2. If t ∈ (t2k−1, t2k] and k > 0, then by condition (ii) and (iii),

ω(t, t0, ω0) = ω0

2k−1∏
i=1

diep(t, t1)ep(t1, t0)

≤ ω0

2k−1∏
i=1

diep(t2k, t1)ep(t1, t0)

= ω0ep(t1, t0) · d1d2ep(t3, t1) · ... · d2k−3d2k−2ep(t2k−1, t2k−3)
×d2k−1ep(t2k, t2k−1)

≤ ξω0
1

γk−1
ep(t1, t0)

≤ max{1, ξ}ω0ep(t1, t0)

Case 3. If t ∈ (t2k, t2k+1] and k > 0, then by condition (iii),

ω(t, t0, ω0) = ω0

2k∏
i=1

diep(t, t1)ep(t1, t0)

≤ ω0

2k∏
i=1

diep(t2k+1, t1)ep(t1, t0)

= ω0ep(t1, t0) · d1d2ep(t3, t1) · ... · d2k−1d2kep(t2k+1, t2k−1)
≤ ω0

1

γk
ep(t1, t0)

≤ max{1, ξ}ω0ep(t1, t0)

Therefor (0.4.6) holds.

For a given ε > 0 we can choose δ = ε
2max{1,ξ}ep(t1,t0)

such that 0 ≤ ω0 < δ impliesω0(t, t0, ω0) ≤ ε/2 < ε.

Hence the trivial solution of system (0.4.5) is stable.

Note that t→∞ as k→∞. From Case 2. and Case 3., we have

lim
t→∞ω(t, t0, ω0) = 0.

Hence we proved that the trivial solution of system (0.4.5) is asymptotically stable. Followed from Theorem 0.4.3 we

know that system (0.3.1) is (h0, h)-asymptotically stable.

The next theorem is a generalization of Corollary 0.4.3.

Corollary 0.4.4. System (0.3.1) is (h0, h)-asymptotically stable if the conditions of Theorem 0.4.3 and the following

conditions hold:

(i) p ∈ Crd(T,R+).

(ii) There exists a constant γ > 1 and some i(i ≥ 2) such that the following conditions hold

γ

i−1∏
j=0

dik−jep(tik+1, tik−(i−1)) ≤ 1,
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and 

supk∈N{dik−(i−1)ep(tik−(i−2), tik−(i−1))} = ξ1 <∞
supk∈N{dik−(i−1)dik−(i−2)ep(tik−(i−3), tik−(i−1))} = ξ2 <∞
... ...

supk∈N{
∏i−1
j=1 dik−jep(tik, tik−(i−1))} = ξi−1 <∞

where dk > 0, k ∈ N.

It is obvious that Corollary 0.4.3 is a special case of Corollary 0.4.4 when i = 2.

Next, we shall apply the previous results to investigate asymptotic stable property of a special case of system (0.3.1).

Consider the impulsive system of the form
x(t) = Ax + φ(t, x), t ∈ T, t 6= tk,

x(t) = Ik(x(t)), t = tk, k ∈ N,

x(t+0 ) = x0

(0.4.7)

where A ∈ Rn, φ ∈ ν0, and the following assumptions are satisfied.

(A1) There exists a positive scalar L such that

||φ(t, x)|| ≤ L||x||, for any t ∈ T, x ∈ Rn.

(A2)There exist constants lk > 0, k = 1, 2, ... such that

||x + Ik(x)|| ≤ lk||x||, x ∈ Rn.

Theorem 0.4.4. Suppose that assumptions (A1) and (A2) hold and there exists a constant γ > 1 such that, for k ∈ N,

sup
k∈N

{l22k−1eq(t2k, t2k−1)} = ξ <∞, (0.4.8)

and

γl22k−1l
2
2keq(t2k+1, t2k−1) ≤ 1, (0.4.9)

where

q = α + 2L
√
α0 + (t)(L2 − 1) ≥ 0,

and

α0 = sup
t∈T

{λmax(E + AT )T (E + AT )},

α = sup
t∈T

{λmax(A
T +A + ATA + E)}.

Then the trivial solution of system (0.4.7) is asymptotically stable.

Proof: Let the Lyapunov function be in the form of

V(t, x) = xTx.

Choose h0(t, x) = h(t, x) = ||x|| and K(t) ≡ 1, then condition (i) and (v) of Theorem 0.4.2 are satisfied. For t 6= tk, we
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have

D+V (t, x) = (xT )xσ + xTx

= (xT )(x + x) + xTx (where xσ = x + x)

= [Ax + φ(t, x)]T {x + [Ax + φ(t, x)]} + xT [Ax + φ(t, x)]

= xT (AT +A + ATA)x + 2xT (E + AT )φ(t, x)

= xT (AT +A + ATA + E)x + 2xT (E + AT )φ(t, x)

≤ [α + 2L
√
α0 + (t)(L2 − 1)]V(x)

= qV(x). (0.4.10)

Hence, condition (ii) of Theorem 0.4.2 is satisfied with g(t, u) = qu. Then g(t, u)(t) + u = (q + 1)u is nondecreasing

in u for each t ∈ T, which implies that condition (iv) of Theorem 0.4.2 is satisfied.

In addition, when t = tk, k ∈ N, we have

V(t+k , x(t
+
k )) = xT (t+k )x(t

+
k )

= [x(tk) + Ik(x(tk))]
T [x(tk) + Ik(x(tk))]

= ||x(tk) + Ik(x(tk))||
2

≤ l2k||x(tk)||
2

= l2kV(tk, x(tk)). (0.4.11)

Thus, condition (iii) of Theorem 0.4.2 is also satisfied with ′k(ω) = l2kω.

Based on Theorem 0.4.2, the asymptotic stability of system (0.4.7) is implied by that of the following comparison

system 
ω(t) = qω(t), t 6= tk

ω(t+k ) = l
2
kω(tk), k ∈ N,

ω(t+0 ) = ω0 ≤ 0

(0.4.12)

It can be seen that (0.4.8) and (0.4.9) implies that condition (ii) and (iii) of Corollary 0.4.3 are satisfied. Therefore, all

conditions of Corollary 0.4.3 are satisfied, and the trivial solution of system (0.4.7) is asymptotically stable.

By Corollary 0.4.4, we extend Theorem 0.4.4 to a more general theorem.

Theorem 0.4.5. Assume that assumptions (A1) and (A2) hold and there exists a constant γ > 1 and some i(i ≥ 2) such

that the following conditions hold

γ

i−1∏
j=0

l2ik−jeq(tik+1, tik−(i−1)) ≤ 1, k ∈ N,

and 

supk∈N{l
2
ik−(i−1)eq(tik−(i−2), tik−(i−1))} = ξ1 <∞

supk∈N{l
2
ik−(i−1)l

2
ik−(i−2)eq(tik−(i−3), tik−(i−1))} = ξ2 <∞

... ...

supk∈N{
∏i−1
j=1 l

2
ik−jeq(tik, tik−(i−1))} = ξi−1 <∞

Then the origin of system (0.4.7) is asymptotically stable.

0.5 Impulsive Control of Continuous Chaotic Systems
In this section, we study the impulsive control problem of the following class of continuous chaotic systems by applying

theories presented in the previous section:

ẋ(t) = Ax(t) + φ(x(t)) (0.5.1)
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where x ∈ Rn is the state vector, A is an n × n constant matrix, and φ : Rn → Rn is a continuous nonlinear function,

φ(0) = 0, and ||φ(x)|| ≤ L||x||, where L > 0 is a constant.

The impulsive control system of (0.5.1) is given byẋ = Ax + φ(x), t 6= tkx(t) = Ik(x(t)), t = tk, k ∈ N,
(0.5.2)

where x(tk) = x(t+k ) − x(t
−
k ), x(t

+
k ) = limt→tk+ x(t), x(t−k ) = limt→tk− x(t) = x(t), Ik : Rn → Rn, Ik(0) = 0, for

k ∈ N, and the impulsive sequence {tk} satisfy

0 < t1 < t2 < ... < tk < tk+1 < ...; tk →∞ as k→∞.
We have the following theorems which guarantee the impulsive control system (0.5.2) be asymptotically stable at

the origin.

Theorem 0.5.1. Let α be the largest eigenvalue of AT + A. Then the origin of system (0.5.2) is asymptotically stable if

the following conditions hold:

(i) There exist constants lk > 0, k ∈ N, such that

||x + Ik(x)|| ≤ lk||x||, x ∈ Rn (0.5.3)

(ii) There exists a constant γ > 1 such that

ln(γl22k−1l
2
2k) + (α + 2L)(t2k+1 − t2k−1) ≤ 0, k ∈ N, (0.5.4)

and supk∈N{l
2
2k−1e

(α+2L)(t2k−t2k−1)} = ξ <∞.

Proof: Letting T = R, it can be seen that system (0.5.2) is a special case of system (0.4.7) with (t) ≡ 0. Then, we have

α0 = 1, α = λmax{A
T +A} and q = α + 2L.

By Remark 0.2.1 and (0.5.4), we obtain

γl22k−1l
2
2ke

(α+2L)(t2k+1−t2k−1) = γl22k−1l
2
2keq(t2k+1, t2k−1) ≤ 1

and

l22k−1e
(α+2L)(t2k−t2k−1) = l22k−1eq(t2k, t2k−1) = ln ξ ≤∞

which implies that condition (0.4.8) and (0.4.9) of Theorem 0.4.4 is satisfied. Coupled with condition (i), we know that

all the conditions of Theorem 0.4.4 are satisfied. Hence, the impulsive control system (0.5.2) is asymptotically stable at

the origin.

Theorem 0.5.2. Let α be the largest eigenvalue of AT + A. Then the origin of system (0.5.2) is asymptotically stable if

the following conditions hold:

(i) There exist constants lk ≥ 0, k ∈ N, such that

||x + Ik(x)|| ≤ lk||x||, x ∈ Rn (0.5.5)

(ii) There exists a constant γ > 1 and some i(i ≥ 2) such that the following conditions hold

ln(γ
i−1∏
j=0

l2ik−j) + (α + 2L)(tik+1 − tik−(i−1)) ≤ 0, k ∈ N,

and 

supk∈N{l
2
ik−(i−1)e

(α+2l))(tik−(i−2)−tik−(i−1))} = ξ1 <∞
supk∈N{l

2
ik−(i−1)l

2
ik−(i−2)e

(α+2l))(tik−(i−3)−tik−(i−1))} = ξ2 <∞
... ...

supk∈N{
∏i−1
j=1 l

2
ik−je

(α+2l))(tik−tik−(i−1))} = ξi−1 <∞
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Then the origin of system (0.5.2) is asymptotically stable.

The proof is similar to that of Theorem 0.5.1 and is thus omitted.

For convenience, we may choose a uniform impulsive controller such as Ik(x) = I(x)(k ∈ N) and uniform

impulsive intervals. In this case, the conditions of Theorem 0.5.1 become much simpler.

Corollary 0.5.1. Assume t2k+1 − t2k−1 = × > 0, Ik = I(k ∈ N) and ||x + I(x)|| ≤ l||x||, where l ≥ 0 is a constant. If

there exists a constant γ > 1 such that

ln(γl4) + (α + 2L)× ≤ 0, (0.5.6)

then the origin of system (0.5.2) is asymptotically stable.

Remark 0.5.1. By Theorem 0.5.1, we can design a nonlinear impulsive controller to stabilize the continuous chaotic

system (0.5.1). In the special case of Ik(x) = Bkx(k ∈ N), where Bk is a n × n constant matrix, inequalities (0.5.5)

are always hold. It means that we can also use Theorem 0.5.1 to design linear impulsive controller which has been

considered in [24,25,29]. Hence, our results are more general and comprehensive.

Remark 0.5.2. From condition (ii) of Theorem 0.5.1, we need only to choose the odd impulsive sequence {t2k−1}

instead of the whole impulsive sequence {tk} which has been discussed in [24,29]. In Section 7, we shall give numerical

simulations to show this remark.

Remark 0.5.3. From Corollary 0.5.1, the estimate of upper bound on uniform impulsive interval × of impulsive system

(0.5.2) is obtained as follows:

0 < × ≤
− ln

(
γl4
)

α + 2L
.

Similarly, in the case of uniform impulsive controller and uniform impulsive interval, we have the following

corollary.

Corollary 0.5.2. Assume tik+1 − tik−(i−1) = × > 0, Ik = I(k = 1, 2, ...) and ||x + I(x)|| ≤ l||x||, where l ≥ 0 is a

constant. If there exists a constant γ > 1 such that

ln(γl2i) + (α + 2L)× ≤ 0, (0.5.7)

then the origin of system (0.5.2) is asymptotically stable.

0.6 Impulsive Control of Discrete Chaotic Systems

In this section, we study the impulsive control problem of the following class of discrete chaotic systems by applying

theories presented in section 4:

x(n + 1) = Āx(n) + φ(x(n)) (0.6.1)

where x ∈ Rm is the state vector, Ā is an m ×m constant matrix, and φ : Rm → Rm, φ(0) = 0, and ||φ(x)|| ≤ L||x||,
where L > 0 is a constant.

The impulsive control system of (0.6.1) is given byx(n + 1) = Āx(n) + φ(x(n)), n 6= nk

x(n) = Ik(x(n)), n = nk
(0.6.2)

where x(nk) = x(n+
k )−x(nk). x(n

+
k ) and x(nk) denote the state x at nk without and with impulse, respectively, which

are also considered in [30,31]. Ik : Rm → Rm, Ik(0) = 0, for k = 1, 2, ..., and the impulsive sequence {nk} ⊂ N satisfy

1 < n1 < n2 < ... < nk < nk+1 < ...; nk →∞ as k→∞.
We have the following theorems which guarantee the impulsive control system (0.6.2) be asymptotically stable at

the origin.

Theorem 0.6.1. Let α be the largest eigenvalue of ĀT Ā. Then the origin of system (0.6.2) is asymptotically stable if the

following conditions hold:
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(i) There exist constants lk ≥ 0(k ∈ N) such that

||x + Ik(x)|| ≤ lk||x||, x ∈ Rn (0.6.3)

(ii) There exists a constant γ > 1 such that

ln(γl22k−1l
2
2k) + 2(t2k+1 − t2k−1) ln(

√
α + L) ≤ 0, k ∈ N, (0.6.4)

and supk∈N{ln(l
2
2k−1) + 2(t2k − t2k−1) ln(

√
α + L)} = ξ <∞.

Proof: Let T = Z+ and A = Ā − E, then we have

x(n) = x(n + 1) − x(n)

= Āx(n) + φ(x(n)) − x(n)

= (Ā − E)x(n) + φ(x(n))

= Ax(n) + φ(x(n))

which implies that system (0.6.2) can be rewritten in the form of (0.4.7).

When T = N, we get (n) ≡ 1, then

α = α0 = λmax{(E +A)(E +AT )},

q = α + 2L
√
α0 + L

2 − 1 = (
√
α + L)2 − 1.

By Remark 0.2.1 and (0.6.4), we obtain

γl22k−1l
2
2k

(√
α + L

)2(t2k+1−t2k−1) = γl22k−1l
2
2k(1 + q)

t2k+1−t2k−1

= γl22k−1l
2
2keq(t2k+1, t2k−1)

≤ 1 (0.6.5)

and

l22k−1
(√
α + L

)2(t2k+1−t2k−1) = l22keq(t2k+1, t2k−1) = ln ξ ≤∞
then the condition (0.4.8) and (0.4.9) of Theorem 0.4.4 is satisfied. Coupled with condition (i), we know that all the

conditions of Theorem 0.4.4 are satisfied. Hence, the impulsive control system (0.6.2) is asymptotically stable at the

origin.

Theorem 0.6.2. Let α be the largest eigenvalue of ĀT Ā. Then the origin of system (0.6.2) is asymptotically stable if the

following conditions hold:

(i) There exist constants lk ≥ 0(k ∈ N) such that

||x + Ik(x)|| ≤ lk||x||, x ∈ Rn (0.6.6)

(ii) There exists a constant γ > 1 and some i(i ≥ 2) such that the following conditions hold

ln

γ i−1∏
j=0

l2ik−j

 + 2
(
tik+1 − tik−(i−1)

)
ln
(√
α + L

)
≤ 0, k ∈ N,

and 

supk∈N{ln l
2
ik−(i−1) + 2(tik−(i−2) − tik−(i−1)) ln(

√
α + L))} = ξ1 <∞

supk∈N{ln
(
l2ik−(i−1)l

2
ik−(i−2)

)
+ 2(tik−(i−3) − tik−(i−1)) ln(

√
α + L))} = ξ2 <∞

... ...

supk∈N{ln
(∏i−1

j=1 l
2
ik−j

)
+ 2(tik − tik−(i−1)) ln(

√
α + L))} = ξi−1 <∞

Then the origin of system (0.6.2) is asymptotically stable.

Similar to the discussion in previous section, we obtain the following two corollaries.
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Corollary 0.6.1. Assume t2k+1 − t2k−1 = × > 0, Ik = I(k ∈ N) and ||x + I(x)|| ≤ l||x||, where l ≥ 0 is a constant. If

there exists a constant γ > 1 such that

ln(γl4) + 2× ln(
√
α + L) ≤ 0, (0.6.7)

then the origin of system (0.6.2) is asymptotically stable.

Remark 0.6.1. Form corollary 0.6.1, we get the estimate of the upper bound of impulsive sampling interval as follows:

0 < × ≤
[

− ln(γl4)
2 ln(
√
α + L)

]
,

where [χ] denotes the largest integer less than χ (χ ∈ R+).

Corollary 0.6.2. Assume tik+1 − tik−(i−1) = × > 0, Ik = I(k ∈ N) and ||x+ I(x)|| ≤ l||x||, where l ≥ 0 is a constant.

If there exists a constant γ > 1 such that

ln(γl2i) + 2× ln(
√
α + L) ≤ 0, (0.6.8)

then the origin of system (0.6.2) is asymptotically stable.

0.7 Numerical Examples

In this section, four examples are presented to evaluate the results obtained in previous sections.

Example 0.7.1. Consider the following system [21]

x1 = −(e−t + 1)x1 −
x1x

2
2

1+x2
2

, t 6= tk

x2 = −(e−t + 1)x2 −
x21x2

1+x2
1

, t 6= tk

x1 =
1

2
x1, t = tk

x2 =
1

2
x2, t = tk

(0.7.1)

on time scale T with µ(t) ≤ 1
9

.

Let V(t, x) = x21 + x
2
2 and K(t) = e−t + 1, then we get

V (t, x) = x1x1 + x
σ
1x1 + x2x2 + x

σ
2x2

= x1x1 + (x1 + µx
δ
1)x1 + x2x2 + (x2 + µx

δ
2)x2

= 2x1x1 + 2x2x2 + µ[(x1)
2 + (x2)

2]

where xσi = xi(σ(t)), i = 1, 2.

As discussed in [21], we have the following estimates

V (t, x) ≤ −2(e−t + 1)V(t, x) + 9µ(t)V(t, x) ≤ (−2e−t − 1)V(t, x).

When t is rd, then we have σ(t) = t and

D+K(t)V(t, x) + K(σ(t))D+V (t, x) ≤ −e−tV(t, x) + (e−t + 1)(−2e−t − 1)V(t, x)

≤ (−2e−t − 1)V(t, x) ≤ −K(t)V(t, x)

When t is rs, then we have σ(t) > t and

D+K(t)V(t, x) + K(σ(t))D+V (t, x) ≤ e−σ(t) − e−t

µ(t)
V(t, x) + (e−σ(t) + 1)(−2e−t − 1)V(t, x)

≤ (−2e−t − 1)V(t, x) ≤ −K(t)V(t, x)

Thus,

D+K(t)V(t, x) + K(σ(t))D+V (t, x) ≤ −K(t)V(t, x), t 6= tk, k ∈ N.
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Next, we consider comparison system as follows:
u = −u, t 6= tk

u(t+k ) =
1
2
u(tk), t = tk, k ∈ N,

u(t0) = u0.

(0.7.2)

It is easy to see that u(t) is decreasing on T, t ≥ t0, and

u(t) ≤ 1

2k
u(t0), t ∈ (tk, tk−1].

Therefore, the trivial solution of (0.7.2) is uniformly asymptotically stable.

If h0(t, x) = 2(x21 + x
2
2), and h(t, x) = 2|x1x2|, then all the conditions of Theorem 0.4.2 are satisfied. Hence,

system (0.7.1) is (h0, h)-uniformly asymptotically stable.

Example 0.7.2. Consider the following impulsive systems on time scale T



x1 = ax1 +
√

| sin x22|, t 6= tk

x2 = ax2 +
√

| sin x21|, t 6= tk

x1 = bx2 − x1, t = tk

x2 = bx1 − x2, t = tk

x1(0) = x10

x2(0) = x20

(0.7.3)

where a = 0.5, b = 0.195, and

T =

( ∞⋃
i=0

[3i, 3i + 1]

)⋃ ∞⋃
j=0

{3j + 2}

 ,
tk =

3

2
k + 2, k = 1, 2, ....

We claim that the trivial solution of system (0.7.3) is asymptotically stable.

First, we rewrite system (0.7.3) in the following form
x = Ax + φ(x), t 6= tk

x = Ik(x), t = tk

x(0) = x0

where

x =

[
x1

x2

]
, A =

[
a 0

0 a

]
, φ(x) =

[ √
| sin x22|√
| sin x21|

]
, Ik(x) =

[
bx2 − x1

bx1 − x2

]
.

It is easy to see that α = λmax{A
T +A} = 1.

Next, we make the following estimation

||φ(x)|| =
√

| sin x22| + | sin x21| ≤
√
x21 + x

2
2 = ||x||

then we can set constant L = 1.

Apparently, we have ||x + Ik(x)|| = |b| · ||x||, then lk can be chosen as lk = |b|.

By Remark 0.2.1 and the properties of the given time scale T, we have

l22k−1eq(t2k, t2k−1) = b
2
(
(
√
α + L)2 + eα+2L

)
≈ 0.965 <∞, k ∈ N,
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Figure 1: State trajectories of impulsive system (0.7.3) on time scale T.

and

γl22k−1l
2
2keq(t2k+1, t2k−1) = γl

4
2ke

2
q(t2k+1, t2k) = γb

4
(
(
√
α + L)2 + eα+2L

)2
= 0.94 ≤ 1

where γ = 1.01. Thus, all the conditions of Theorem 0.4.4 are satisfied which means that system (0.7.3) is asymptotically

stable. Fig.1 shows the simulation results with initial value [x10, x20]
T = [0.2, 1]T .

Example 0.7.3. Consider the following continuous chaotic system [29]
ẋ1 = a(x2 − x1) + x2x3

ẋ2 = cx1 − x2 − x1x3

ẋ3 = x1x2 − bx3

(0.7.4)

where the parameters a = 35, b = 8/3, c = 20 with the initial condition [x1(0), x2(0), x3(0)]
T = [3, 4, 5]T which ensure

the existence of chaotic attractor shown in Fig.2.
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Figure 2: Chaotic attractor of continuous chaotic system (0.7.4).

System (0.7.4) can be rewritten as

ẋ = Ax + φ(x)

where

x =

 x1

x2

x3

 , A =

 −a a 0

c −1 0

0 0 −b

 , φ(x) =

 x2x3

−x1x3

x1x2

 ,
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then

AT +A =

 −2a a + c 0

a + c −2 0

0 0 −2b

 =

 −70 60 0

60 −2 0

0 0 − 16
3


The eigenvalues of this matrix are -104.9634, -5.3333 and 32.9638. Thus α = λmax{A

T +A} = 32.9638.

Next we have the following estimation

||φ(x)|| =
(
x22x

2
3 + x

2
1x
2
3 + x

2
1x
2
2

) 1
2

=

[
(x21 + x

2
2)x

2
3 +

1

2
x41 +

1

2
x42

] 1
2

≤
√

(x21 + x
2
2)(x

2
1 + x

2
2 + x

2
3)

≤ max
t∈R+

{

√
x21 + x

2
2}||x||

From the chaotic attractor of system (0.7.4), we find −30 ≤ x1 ≤ 38 and −20 ≤ x2 ≤ 25, which lead to

maxt∈R+ {
√
x21 + x

2
2} ≤ 45.4863. Hence, the constant L can be chosen to be L = 45.4863.

We design a nonlinear impulsive control function as follows

Ik(x) =


e−1
√
1
2
(x22 + x

2
3) − x1

e−1
√
1
2
(x21 + x

2
3) − x2

e−1
√
1
2
(x21 + x

2
2) − x3

 , k ∈ N. (0.7.5)

It is easy to see that lk = l = e−1. Letting γ = 1.1, the estimate bound of stable region is given by

0 < × ≤ − lnγ − 4 ln l
α + L

≈ 0.0498,

where × = t2k+1 − t2k−1(k ∈ N), i.e., if 0 < × ≤ 0.0498, chaotic system (0.7.4) can be asymptotically stabilized by

the nonlinear impulsive controller (0.7.5). Without loss of generality, we choose × = 0.04 in this example.
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Figure 3: Stable results with uniform interval tk+1 − tk = 0.02.
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Figure 4: Stable results with × = 0.04 and t2k − t2k−1 = 0.03.

The numerical simulation results with uniform interval tk+1 − tk = 1
2
× (k ∈ N) are shown in Fig.3.

By Remark 0.5.1 and Corollary 0.5.1, we only need to choose odd impulsive sequence {t2k−1}, and with different

choices of the even impulsive sequence {t2k}, chaotic system (0.7.4) can also be stabilized by impulsive controller (0.7.5).

Then, we have the following two numerical simulations: Fig.4 shows the state trajectory of system (0.7.4) under the

nonlinear impulsive control with t2k− t2k−1 = 3
4
× (k ∈ N); Fig.5 shows the results with t2k− t2k−1 = 1

4
× (k ∈ N).

Remark 0.7.1. We have investigate the problem of stabilization of continuous chaotic system (0.7.4) via nonlinear

impulsive control. If we choose the impulsive controller as Ik(x) = Bkx, then our results reduce to the stability criteria

in [29]. Simulation results show that our designed nonlinear impulsive controller are highly effective for asymptotically

stabilizing the continuous chaotic system (0.7.4).

Example 0.7.4. Consider the following discrete chaotic system [32]x1(n + 1) = 1.9x1(n) − x
3
1(n) + x2(n)

x2(n + 1) = 0.5x1(n)
(0.7.6)

The initial value is given as [x1(0), x2(0)]T = [0.6, 0.3]T . Chaotic attractor of system (0.7.6) is shown in Fig.6.

System (0.7.6) can be rewritten as

x(n + 1) = Āx(n) + φ(x(n))

where

x =

[
x1

x2

]
, Ā =

[
1.9 1

0.5 0

]
, φ(x) =

[
−x31

0

]
.

It is easy to see that α = λmax{Ā
T Ā} = 3.6780.

Next we have the following estimation

||φ(x)|| =
√
x61 ≤

√
x41(x

2
1 + x

2
2) ≤ max

n∈Z+
{x21}||x||

By Fig.6, we find that −1.7 ≤ x1 ≤ 1.7 which implies that maxn∈Z+ {x21} ≤ 2.89. Hence, the constant L can be chosen
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Figure 5: Stable results with × = 0.04 and t2k − t2k−1 = 0.01.

to be L = 2.89.

We design a nonlinear impulsive control function as follows

Ik(x) =

[
a sin x2 − x1
a sin x1 − x2

]
, k ∈ N, (0.7.7)

where we choose a = 0.04.

Since

||x + Ik(x)|| =

√
a2(sin2 x1 + sin2 x2) ≤ |a|

√
x21 + x

2
2 = |a| · ||x||,

then we choose lk = l = a. By Remark 0.6.1, the estimate of the bound of stable region is given by

0 < 2δ = × ≤
[
− lnγ − 4 ln l
2 ln
√
α + L

]
= [4.0976] = 4,

where δ = tk+1 − tk(k ∈ N) and γ = 1.01.

In the following simulation, we choose δ = 2, then all the conditions of Corollary 0.6.1 are satisfied, i.e. the

impulsive controlled discrete chaotic system is asymptotically stable. Stable results are shown in Fig.7.
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Figure 6: Chaotic attractor of discrete chaotic system (0.7.6).
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Figure 7: Stable results with uniform interval nk − nk−1 = 2.
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ABSTRACT: The purpose of this paper is to introduce some strong convergence theorems for the problem of finding a

common zero of a finite family of monotone operators and also, we give some similar methods for the problem of finding

a common fixed point of a finite family of nonexpansive mappings in Hilbert spaces by shrinking projection method.

0.1 INTRODUCTION

Numerous problems in mathematics and physical sciences can be recast in terms of the problem finding a zero for

monotone operator. For instance, when the maximal monotone operator is the subdifferential of a proper, lower

semicontinuous and convex function, it gives an approximation to the solutions of a minimization problem for the convex

function.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We use the symbols⇀ and→ to denote the

weak convergence and strong convergence, respectively.

We consider the following problem: Finding an element x ∈ H such that for all i = 1, 2, ..., N,

0 ∈ Ai(x). (0.1.1)

where Ai : D(Ai) ⊂ H −→ 2H are monotone operators. We denote the set of solution of this problem by S, that is

S := {x ∈ H : 0 ∈ Ai(x), ∀i = 1, 2, ..., N}.

One of the classical methods for solving equation 0 ∈ A(x) with A is a maximal monotone operator in Hilbert

space H, is the proximal point algorithm. The proximal point algorithm generates, for any starting point x0 = x ∈ H, a

sequence {xn} by the rule

xn+1 = J
A
rn(xn), (0.1.2)

for all n ∈ N, where {rn} is a sequence of positive real numbers and

JArn = (I + rnA)
−1

is the resolvent ofA. Some of them dealt with the weak convergence of the sequence {xn} generated by (0.1.2) and others

proved strong convergence theorems by imposing assumptions on A.

Note that, algorithm (0.1.2), can be rewritten as

xn+1 − xn + rnA(xn+1) 3 0, (0.1.3)

for all n ∈ N, This algorithm was first introduced by Martinet [14]. If ψ : H→ R∪ {∞} is proper lower semicontinuous

convex function, the algorithm reduces to

xn+1 = argminy∈H

{
ψ(y) +

1

2c
‖xn − y‖2

}
,
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for all n ∈ N.Moreover, Rockafellar [16] has given a more practical method which is an inexact variant of the method:

xn + en 3 xn+1 + cnAxn+1, (0.1.4)

for all n ∈ N, where {en} is regarded as an error sequence and {cn} is a sequence of positive regularization parameters.

Note that the algorithm (0.1.4) can be rewritten as

xn+1 = J
A
rn(xn + en), (0.1.5)

for all n ∈ N. This method is called inexact proximal point algorithm. It was shown in Rockafellar [16] that if en → 0

quickly enough such that
∑∞
n=1 ‖en‖ <∞, then xn ⇀ z ∈ H with 0 ∈ Az.

Further, Rockafellar [16] posed an open question of whether the sequence generated by (0.1.2) converges strongly

or not. In 1991, Güler [6] gave an example showing that Rockafellar’s proximal point algorithm does not converges

strongly. An example of the authors Bauschke, Matoušková and Reich [1] also showed that the proximal algorithm only

converges weakly but not in norm.

In 2000, Solodov and Svaiter [18] proposed the following algorithm: Choose any x0 ∈ H and σ ∈ [0, 1). At

iteration n, having xn, choose µn > 0 and find (yn, vn) an inexact solution of

0 ∈ A(x) + µn(x − xn),

with tolerance σ. Define

Cn = {z ∈ H : 〈z − yn, vn〉 ≤ 0}

and

Qn = {z ∈ H : 〈z − xn, x0 − xn〉 ≤ 0}.

Take

xn+1 = PCn∩Qnx0.

They prove that if the sequence of the regularization parameters µn is bounded from above, then {xn} converges strongly

to x∗ ∈ A−10.

To find a fixed point of a nonexpansive mapping T on the closed and convex subset C of H, that is, find an element

p ∈ F(T) = {x ∈ C : Tx = x}, motivated by result of Solodov and Svaiter, in 2008, Takahashi et al. [15] introduced the

following iterative algorithm: 

C0 = C, x0 ∈ C,

yn = αnxn + (1 − αn)Txn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},

xn+1 = PCn+1x0, n ≥ 0,

(0.1.6)

and they proved that the sequence {xn} converges strongly to PF(T)x0, where {αn} ⊂ [0, a), with a ∈ [0, 1). Moreover,

they also gave a similar iterative sequence to find zero of a maximal monotone in the following form:

C0 = C, x0 ∈ C,

yn = αnxn + (1 − αn)J
A
rnxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},

xn+1 = PCn+1x0, n ≥ 0.

(0.1.7)

They showed that if {αn} ⊂ [0, a), with a ∈ [0, 1) and rn →∞, then the sequence {xn} generated by (0.1.7) converges

strongly to PA−10x0.

Further, some generalized hybrid projection methods have been introduced for families of relatively or weak

relatively nonexpansive mappings (see, [3, 8, 19, 21, 22]), or equilibrium problems and fixed point problems (see,

[2, 4, 9, 11, 13, 17, 20]).
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Recently, Kim et al. [12] introduced a new method which is a combination of proximal point algorithm, viscosity

approximation method and alternating resolvent method to find a common zero of two accretive operators in Banach

spaces.

In this paper, base on iterative methods (0.1.6) and (0.1.7) of Takahashi et al. [15], we introduce some new iterative

methods to find a common zero of a finite family of monotone operators and a common fixed point of a finite family of

nonexpansive mappings in a real Hilbert space (cf.[10]).

0.2 PRELIMINARIES

Let C be a nonempty, closed and convex subset of a real Hilbert space H. We know that for each x ∈ H, there is unique

PCx ∈ C such that

‖x − PCx‖ = inf
u∈C
‖x − u‖, (0.2.1)

and the mapping PC : H −→ C define by (0.2.1) is called metric projection from H onto C. Moreover, we have

〈x − PCx, y − PCx〉 ≤ 0, (0.2.2)

for all x ∈ H, y ∈ C. Recall that, a mapping T : C −→ C is said to be nonexpansive mapping if

‖Tx − Ty‖ ≤ ‖x − y‖,

for all x, y ∈ C. We denote the set of fixed point of T by F(T), i.e. F(T) = {x ∈ C : Tx = x}.

For an operator A : H −→ 2H, we define its domain, range and graph as follows:

D(A) = {x ∈ H : Ax 6= ∅},

R(A) = ∪{Az : z ∈ D(A)},

and

G(A) = {(x, y) ∈ H×H : x ∈ D(A), y ∈ Ax},

respectively. The inverse A−1 of A is defined by

x ∈ A−1y, if and only if y ∈ Ax.

The operator A is said to be monotone if, for each x, y ∈ D(A), we have

〈u − v, x − y〉 ≥ 0

for all u ∈ Ax and v ∈ Ay. We denote by I the identity operator on H. A monotone operator A is said to be maximal

monotone if there is no proper monotone extension of A or R(I+ λA) = H for all λ > 0. If A is monotone, then we can

define, for each λ > 0, a nonexpansive s ingle-valued mapping JAλ : R(I + λA) −→ D(A) by

JAλ = (I + λA)−1,

it is called the resolvent of A. A monotone operator A is said to satisfy the range condition if

D(A) ⊂ R(I + λA)

for all λ > 0, where D(A) denotes the closure of the domain of A. We know that for a monotone operator A which

satisfies the range condition, A−10 = F(JAλ ) for all λ > 0.

Remark 0.2.1. If A is a maximal monotone, then A satisfies the range condition.

The following lemmas will be needed in the sequel for the proof of main results in this paper.
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Lemma 0.2.1. [7] Let H be a real Hilbert space. Then for all x, y ∈ H and t ∈ [0, 1], we have

‖(1 − t)x + ty‖2 = (1 − t)‖x‖2 + t‖y‖2 − t(1 − t)‖x − y‖2.

Lemma 0.2.2. Let H be a real Hilbert space and let C be a nonempty, closed and convex subset of H. Then, for all

x ∈ H and y ∈ C, we have

‖x − PCx‖2 + ‖y − PCx‖2 ≤ ‖x − y‖2,

where PC is the metric projection of H onto C.

Proof: We have

‖x − y‖2 = ‖(x − PCx) − (y − PCy)‖2

= ‖x − PCx‖2 + ‖y − PCx‖2 − 2〈x − PCx, y − PCy〉.

From (0.2.2), we get the proof of this lemma.

Lemma 0.2.3. [5] Let A : D(A) −→ 2H be a monotone operator. For r ≥ s > 0, we have

‖x − JAs x‖ ≤ 2‖x − JAr x‖,

for all x ∈ R(I + rA) ∩ R(I + sA).

0.3 MAIN RESULTS

First, we define the following iterative sequences for finding a common zero of a finite family of monotone operators in

a Hilbert space:

Let H be a real Hilbert space. Let C be a nonempty closed and convex subset of H. Let Ai : D(Ai) ⊂ H −→ 2H,

i = 1, 2, ..., N, be monotone operators with

S :=

N⋂
i=1

A−1
i 0 6= ∅

and D(Ai) ⊂ C ⊂ ∩r>0R(I + rAi) for all i = 1, 2, ..., N. Let {βin} and {rin}, i = 1, 2, ..., N be sequences of positive

real numbers such that {βin} ⊂ (α, β), with α, β ∈ (0, 1) and

min
1≤i≤N

{
inf
n
{rin}

}
≥ r > 0.

Then, we define the sequence {xn} generated by x0 ∈ C and

C0 = C,

y0n = xn,

yin = βiny
i−1
n + (1 − βin)Ji,ny

i−1
n , Ji,n = J

Ai
rin
, i = 1, 2, ..., N

Cn+1 = {z ∈ Cn : ‖yNn − z‖ ≤ ‖xn − z‖},

xn+1 = PCn+1x0, n ≥ 0,

(0.3.1)

Lemma 0.3.1. In (3.1), we know that for all n ≥ 0, S ⊂ Cn.

Proof: We show the result by induction on n. Obviously, S ⊂ C0 = C. Suppose that S ⊂ Cn for some n ≥ 0. Then, for
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u ∈ S ⊂ Cn, we have

‖yNn − u‖ = ‖βNn yN−1
n + (1 − βNn )JN,ny

N−1
n − u‖

≤ βNn ‖yN−1
n − u‖ + (1 − βNn )‖JN,nyN−1

n − u‖

≤ βNn ‖yN−1
n − u‖ + (1 − βNn )‖yN−1

n − u‖

= ‖yN−1
n − u‖

...

≤ ‖y0n − u‖

= ‖xn − u‖.

This implies that u ∈ Cn+1. Hence we have S ⊂ Cn for all n ≥ 0.

Lemma 0.3.2. In (3.1), we know that Cn is closed and convex for each n ≥ 0. And also, this implies that {xn} is

well-defined.

Proof: It is clear that C0 = C is closed and convex. Suppose that Cn is a closed and convex subset of C. From the

inequality ‖yNn − z‖ ≤ ‖xn − z‖, we obtain

〈xn − yNn , z〉 ≤
1

2

(
‖xn‖2 − ‖yNn ‖2

)
.

Therefore,

Cn+1 = Cn
⋂{

z ∈ H : 〈xn − yNn , z〉 ≤
1

2
(‖xn‖2 − ‖yNn ‖2)

}
,

which implies that Cn+1 is closed and convex. Thus, Cn is closed and convex subset of C for each n ≥ 0. This implies

that {xn} is well-defined.

Lemma 0.3.3. In (3.1), the sequence {xn} is bounded and there exists the finite limit limn→∞ ‖xn − x0‖.

Proof: Since S is closed and convex, there exists the metric projection PS such that x∗ = PSx0 ∈ S. Since S ⊂ Cn from

Lemma 3.1, x∗ ∈ Cn. Thus, from xn = PCnx0, we have

‖xn − x0‖ ≤ ‖x0 − x∗‖, (0.3.2)

this implies that {xn} is bounded. Next, we have Cn+1 ⊂ Cn from the definition of Cn. So, xn+1 = PCn+1x0 ∈ Cn+1 ⊂
Cn. Now taking into account xn = PCnx0 ∈ Cn and using Lemma 0.2.2, we get

‖xn − x0‖2 ≤ ‖xn+1 − x0‖2 − ‖xn+1 − xn‖2 ≤ ‖xn+1 − x0‖2.

This implies that {‖xn − x0‖} is nondecreasing. And by the boundedness of {xn}, the limit of {‖xn − x0‖} exists.

Now we are in a position to prove the problem to find a common zero of a finite family of monotone operators in

Hilbert spaces with suitable conditions:

Theorem 0.3.4. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let Ai : D(Ai) ⊂ H −→ 2H

be monotone operators with

S :=

N⋂
i=1

A−1
i 0 6= ∅

and D(Ai) ⊂ C ⊂ ∩r>0R(I + rAi) for all i = 1, 2, ..., N. Let {βin} and {rin}, i = 1, 2, ..., N be sequences of positive

real numbers such that {βin} ⊂ (α, β), with α, β ∈ (0, 1) and mini=1,2,...,N{infn{rin}} ≥ r > 0. Then the sequence {xn}

generated by (3.1) converges strongly to PSx0. Proof: In order to prove the theorem, we divide three steps.

Step 1. First, the sequence {xn} converges strongly to some point p ∈ C. Indeed, for all m ≥ n, we have Cm ⊂ Cn.

Thus, xm ∈ Cn. By Lemma 0.2.2, we have

‖xm − xn‖2 ≤ ‖xm − x0‖2 − ‖xn − x0‖2 → 0,
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asm,n→∞. So, {xn} is Cauchy sequence. Since C is closed subset of H, there exists a p ∈ C such that limn→∞ xn =

p.

Step 2. Next, we prove that limn→∞ ‖xn − yNn ‖ = 0. From Step 1, we have

‖xn+1 − xn‖ ≤ ‖xn+1 − p‖ + ‖xn − p‖→ 0,

which implies that ‖xn+1 − xn‖→ 0 as n→∞. By xn+1 ∈ Cn+1, we obtain that

‖xn+1 − yNn ‖ ≤ ‖xn+1 − xn‖→ 0.

So, ‖xn+1 − yNn ‖→ 0, as n→∞. From the following estimate

‖xn − yNn ‖ ≤ ‖xn+1 − yNn ‖ + ‖xn+1 − xn‖,

we get limn→∞ ‖xn − yNn ‖ = 0.

Step 3. Next, we prove that ‖xn − Ji,nxn‖ → 0 and ‖xn − J
Ai
r xn‖ → 0 for all i = 1, 2, ..., N, as n → ∞. Since, for

x∗ = PSx0,

‖xn − x∗‖ ≤ ‖xn − yNn ‖ + ‖yNn − x∗‖

≤ ‖xn − yNn ‖ + ‖yN−1
n − x∗‖

...

≤ ‖xn − yNn ‖ + ‖y0n − x∗‖

and so, the both sides of the above inequality go to ‖p − x∗‖, as n→∞, it implies that

lim
n→∞ ‖yi−1n − x∗‖ = ‖p − x∗‖, (0.3.3)

for all i = 1, 2, ..., N. From Lemma 0.2.1, we have

‖yin − x∗‖2 = βin‖yi−1n − x∗‖2 + (1 − βin)‖Ji,nyi−1n − x∗‖2

− 2βin(1 − β
i
n)‖yi−1n − Ji,ny

i−1
n ‖2

≤ βin‖yi−1n − x∗‖2 + (1 − βin)‖yi−1n − x∗‖2

− 2βin(1 − β
i
n)‖yi−1n − Ji,ny

i−1
n ‖2

= ‖yi−1n − x∗‖2 − 2βin(1 − βin)‖yi−1n − Ji,ny
i−1
n ‖2,

this implies that

2α(1 − β)‖yi−1n − Ji,ny
i−1
n ‖2 ≤ ‖yi−1n − x∗‖2 − ‖yin − x∗‖2 → 0,

as n→∞ for all i = 1, 2, ..., N. Hence,

‖yi−1n − Ji,ny
i−1
n ‖→ 0, (0.3.4)

for all i = 1, 2, ..., N.

Hence, for the case i = 1, we have ‖xn − J1,nxn‖ = ‖y0n − J1,ny
0
n‖→ 0. In the case i = 2, also we have

‖xn − J2,nxn‖ ≤ ‖xn − y1n‖ + ‖y1n − J2,ny
1
n‖ + ‖J2,ny1n − J2,nxn‖

≤ 2‖xn − y1n‖ + ‖y1n − J2,ny
1
n‖

≤ 2‖y0n − J1,ny
0
n‖ + ‖y1n − J2,ny

1
n‖→ 0,

it implies that ‖xn − J2,nxn‖ → 0. Similarly, we obtain that ‖xn − Ji,nxn‖ → 0 for all i = 3, 4, ..., N. Consequently,

we have ‖xn − Ji,nxn‖→ 0 for all i = 1, 2, ..., N.
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On the other hand, from Lemma 0.2.3, we have

‖xn − JAir xn‖ ≤ 2‖xn − Ji,nxn‖.

So, ‖xn − J
Ai
r xn‖→ 0 for all i = 1, 2, ..., N.

Step 4. Finally, we prove that p = x∗ = PSx0. Since, from Step 1, xn → p, letting n→∞ in above inequality, then we

get

p ∈
N⋂
i=1

F(JAir ) = S.

In (0.3.2), letting n→∞, we get

‖x0 − p‖ ≤ ‖x0 − x∗‖,

and by the uniqueness of x∗, we obtain that p = x∗. This completes the proof.

Remark 0.3.1. Every maximal monotone operators in a Hilbert space has the range condition, so Theorem 0.3.4 holds

still without range condition.

Remark 0.3.2. If N = 1, we can choose the sequence {βn} ⊂ [0, a), with a ∈ [0, 1). So, we have the following

corollary.

Corollary 0.3.5. Let C be a nonempty closed and convex subset of a real Hilbert space H. Let A : D(A) ⊂ H −→ 2H

be a monotone operator such that

S := A−10 6= ∅

and D(A) ⊂ C ⊂ ∩r>0R(I + rA). Let {βn} and {rn} be sequences of positive real numbers such that {βn} ⊂ [0, a),

with a ∈ [0, 1) and infn{rn} ≥ r > 0. Then the sequence {xn} generated by x0 ∈ C and

C0 = C,

yn = βnxn + (1 − βn)J
A
rnxn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},

xn+1 = PCn+1x0, n ≥ 0,

(0.3.5)

converges strongly to PSx0.

Remark 0.3.3. The Corollary 0.3.5 is more general than the result of Takahashi et al. in [15] (see, Theorem 4.5).

Next, we give strong convergence theorems to find a common fixed point of nonexpansive mapping. By the careful

analysis of the proof of Theorem 0.3.4, we can obtain the following results for the problem of finding a common fixed

point of a finite family of nonexpasive mappings. Because its proof is much simpler than that of Theorem 0.3.4, we omit

the proof.

Theorem 0.3.6. Let C be a nonempty closed and convex subset of areal Hilbert space H. Let Ti : C −→ C, i =

1, 2, ..., N, be nonexpansive mappings from C into itself with

F :=

N⋂
i=1

F(Ti) 6= ∅.

Let {βin} be sequences of positive real numbers such that {βin} ⊂ (α, β) with α, β ∈ (0, 1) for all i = 1, 2, ..., N. Then
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the sequence {xn} generated by x0 ∈ C and

C0 = C,

y0n = xn,

yin = βiny
i−1
n + (1 − βin)Tiy

i−1
n , i = 1, 2, ..., N

Cn+1 = {z ∈ Cn : ‖yNn − z‖ ≤ ‖xn − z‖},

xn+1 = PCn+1x0, n ≥ 0,

(0.3.6)

converges strongly to PFx0.

Corollary 0.3.7 (Theorem 4.1, in [15]). Let C be a nonempty closed and convex subset of a real Hilbert space H. Let

T : C −→ C be a nonexpansive mapping from C into itself with F(T) 6= ∅. Let {βn} be a sequence of positive real

numbers such that {βn} ⊂ [0, a), with a ∈ [0, 1). Then the sequence {xn} generated by x0 ∈ C and

C0 = C,

yn = βnxn + (1 − βn)Txn,

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖},

xn+1 = PCn+1x0, n ≥ 0,

(0.3.7)

converges strongly to PF(T)x0.

Remark 0.3.4. The Theorem 0.3.6 is more general than the result of Takahashi et al. in [15] (see, Theorem 4.1).

Acknowledgments: This work was supported by the Basic Science Research Program through the National Research

Foundation(NRF) Grant funded by Ministry of Education of the republic of Korea(2015R1D1A1A09058177).

REFERENCES
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