
Submodular Maximization with Nearly-optimal
Approximation and Adaptivity in Nearly-linear Time

Alina Ene∗ Huy L. Nguyễn†

Abstract
In this paper, we study the tradeoff between the approxima-
tion guarantee and adaptivity for the problem of maximiz-
ing a monotone submodular function subject to a cardinality
constraint. The adaptivity of an algorithm is the number of
sequential rounds of queries it makes to the evaluation or-
acle of the function, where in every round the algorithm is
allowed to make polynomially-many parallel queries. Adap-
tivity is an important consideration in settings where the
objective function is estimated using samples and in applica-
tions where adaptivity is the main running time bottleneck.
Previous algorithms achieving a nearly-optimal 1 − 1/e − ϵ

approximation require Ω(n) rounds of adaptivity. In this
work, we give the first algorithm that achieves a 1 − 1/e − ϵ

approximation using O(ln n/ϵ2) rounds of adaptivity. The
number of function evaluations and additional running time
of the algorithm are O(n poly(log n, 1/ϵ)).

1 Introduction
The general problem of maximizing a monotone sub-
modular function subject to a size constraint captures
many problems of interest both in theory and in prac-
tice, including sensor placement, clustering, and influ-
ence maximization in social networks. This problem
has received considerable attention over the past few
decades. The classical work of Nemhauser, Wolsey, and
Fischer [NWF78] showed that a very natural Greedy
algorithm achieves a 1 − 1/e approximation for the
problem, and this approximation is known to be opti-
mal [Fei98, Von09, DV12]. The ensuing decades have led
to the development of powerful algorithmic frameworks
as well as new applications in areas such as machine
learning and data mining.

The Greedy algorithm and its variants play a cen-
tral role in these developments: Greedy algorithms are
natural and simple to use and they achieve the best

∗Department of Computer Science, Boston University,
aene@bu.edu. Supported in part by NSF CAREER award
1750333 and NSF CCF award 1718342.

†College of Computer and Information Science, Northeastern
University, hlnguyen@cs.princeton.edu. Supported in part by
NSF CAREER award 1750716.

known approximation guarantees in many settings of
interest. The main drawback of Greedy algorithms is
that they are inherently sequential and their decisions
are intrinsically adaptive.

A recent line of work has focused on addressing
the first drawback of Greedy algorithms, and it has led
to the development of distributed algorithms for sub-
modular maximization problems in parallel models of
computation such as MapReduce [KMVV13, MKSK13,
MZ15, BENW15, MKBK15, BENW16, EMZ17]. The
main focus of these works is on parallelizing sequential
algorithms such as Greedy and its variants in order to
achieve tradeoffs between the approximation guarantee
and resources such as the number of rounds of MapRe-
duce computation and the total amount of communi-
cation. In particular, Barbosa et al. [BENW16] show
that it is possible to achieve a nearly-optimal 1−1/e−ϵ
approximation using O(1/ϵ) MapReduce rounds. The
algorithms developed in these works run a Greedy algo-
rithm on each of the machines, and thus they are just
as adaptive as the sequential algorithms.

Very recently, Balkanski and Singer [BS18] initiated
the study of the following question: can we design algo-
rithms for submodular maximization that are less adap-
tive? The adaptivity of an algorithm is the number of se-
quential rounds of queries it makes to the evaluation or-
acle of the function, where in every round the algorithm
is allowed to make polynomially-many parallel queries:

Definition 1. ([BS18]) Given an oracle f , an algo-
rithm is r-adaptive if every query q to the oracle f
occurs at a round i ∈ [r] such that q is independent of
the answers f(q′) to all other queries q′ at round i.

Adaptivity is an important consideration in settings
where the objective function is estimated using sam-
ples and in applications where adaptivity is the main
running time bottleneck. In applications of submodu-
lar maximization such as influence maximization and
experimental design, queries are experiments that take
time and can benefit greatly from parallel execution. In
the broader context of optimization and computation,
a lot of effort has been devoted to studying the trade-

Copyright c⃝ 2019 by SIAM
Unauthorized reproduction of this article is prohibited

off of adaptivity and other resources. For example, in
property testing, adaptivity has been shown to be cru-
cial with huge gaps in query complexity between non-
adaptive and adaptive algorithms and more generally
algorithms with different number of adaptive rounds
[RS06, CG17]. In compressed sensing, adaptive algo-
rithms can have exponentially fewer measurements than
non-adaptive ones (see e.g. [IPW11]). We refer the
reader to [BS18] for a more detailed discussion of ap-
plications of submodular maximization and the impor-
tance of adaptivity in their contexts as well as the study
of adaptivity in various areas.

Balkanski and Singer give an algorithm
that achieves a 1/3 − ϵ approximation using
O(log n/ϵ2) rounds of adaptivity, and they show
that Ω(log n/ log log n) rounds of adaptivity are needed
in order to obtain a 1/ log n approximation.

Thus there are now two incomparable algorithms
for submodular maximization: the classical Greedy with
optimal 1−1/e approximation but O(k) adaptivity and
the algorithm of [BS18] with O(log n/ϵ2) adaptivity but
1/3− ϵ approximation. One cannot help but ask

Is there an inherent tradeoff between adaptivity and
approximation?

In this work, we obtain an algorithm that is
the best of both worlds with nearly optimal approx-
imation 1 − 1/e − ϵ and O(log n/ϵ2) adaptivity and
O(n poly(log n, 1/ϵ)) total number of queries and ad-
ditional running time.

Theorem 1.1. For the problem of maximizing a mono-
tone submodular function subject to a cardinality con-
straint and any ϵ > 0, there exists an O(log n/ϵ2)-
adaptive randomized algorithm which obtains a 1−1/e−
ϵ approximation with high probability. The number of
function evaluations and additional running time of the
algorithm are O(n poly(log n, 1/ϵ)).

Comparison to [BS18]. Let us briefly highlight
some of the differences between our work and that of
[BS18] (see also Section 1.1). The algorithm of [BS18] is
based on the single threshold Greedy algorithm, whereas
our algorithm is based on the standard Greedy algo-
rithm that achieves the optimal approximation guaran-
tee in the sequential setting. The number of rounds of
adaptivity that we obtain matches that of [BS18], and
it is optimal up to lower order terms. Another impor-
tant point of departure in our algorithm and its analysis
is in the running time and function evaluations in each
round of adaptivity: we sample only a poly-logarithmic
number of random sets, and we evaluate the marginal
gains only on these random sets, whereas the algorithm

of [BS18] uses a polynomial number of random sets and
it evaluates the marginal gains with respect to all of
these random sets. This allows us to obtain an over-
all nearly-linear running time and function evaluations,
which matches up to logarithmic factors the best run-
ning time that we can achieve in the sequential setting.
The low number of queries as well as their structure
make it possible to obtain improved running times for
applications such as the ones discussed above.

1.1 Our techniques The starting point of our algo-
rithm is the standard Greedy algorithm that achieves
the optimal 1−1/e approximation in the sequential set-
ting. The Greedy algorithm construct the solution se-
quentially over k iterations, where each iteration adds
the element with maximum marginal gain on top of
the current solution. An important observation about
the standard analysis of Greedy is that the only prop-
erty that we use about the element selected in each it-
eration is that its gain f(S ∪ {e}) − f(S) is at least
1
k (f(OPT) − f(S)). Following [BS18], to achieve a low
adaptivity, we want to add not just a single element but
a much larger set of elements in each round of adaptiv-
ity. In contrast to [BS18], which based their approach
on the single threshold Greedy algorithm, we draw in-
spiration from the standard Greedy algorithm and its
analysis. Thus we aim to add a large set R in each
iteration whose density (ratio of gain to size) nearly
matches the density of the optimal solution, i.e., we have
f(R∪S)−f(S)

|R| ≥ (1−O(ϵ)) f(OPT)−f(S)
k .

Perhaps surprisingly, we show that we can imple-
ment this strategy using O(ln n) rounds of adaptivity,
which matches up to lower order terms the hardness re-
sult of [BS18]. The algorithm leverages the following
dichotomy inspired by the work of [BS18] and the ear-
lier work on sample and prune of [KMVV13]. Suppose
that we choose the set R by sampling suitably many
elements uniformly at random. If the expected den-
sity of the random set is almost as high as the target
density of f(OPT)−f(S)

k , then we can add the random
set to our solution and gain as much as Greedy. On the
other hand, if the density is low, we are guaranteed that
a constant fraction of the elements have low expected
marginal gain. Using this insight, we make progress
by filtering the elements with low marginal gain. Since
each filtering step removes a constant fraction of the el-
ements, we ensure that we have only O(ln n) rounds of
adaptivity. At the same time, we are able to argue that
the filtering steps preserve most of the value of OPT,
which is essential for obtaining the nearly-optimal ap-
proximation guarantee.

We also ensure that the overall running time and
function evaluations of our algorithm is nearly-linear.

Copyright c⃝ 2019 by SIAM
Unauthorized reproduction of this article is prohibited

This requires new insights and a different analysis from
that of [BS18]. In each adaptive round, the algorithm
needs to estimate the expected gain of a random set and
the expected marginal gain of each element by sampling
sufficiently many random sets. The analysis of [BS18]
relies on having accurate estimates for the marginal
gain of each element. Since some of the marginal
gains can be very small (even among the elements of
the optimal solution, most marginal gains might be
as small as 1

k · f(OPT)), it is necessary to sample a
polynomial number of random sets to ensure that every
gain is estimated accurately enough. We take a very
different approach that allows us to sample only a poly-
logarithmic number of random sets.

A key difficulty is to ensure that the filtering does
not remove too much value from OPT. The crucial
insight here is the following. Evaluating the marginal
gain over a common set (random or otherwise) can
significantly decrease the marginal gains of elements,
but the aggregate value decreases by at most the value
of the common set itself. Since we only filter when the
random set has small value, even though some elements
in OPT appear to have very small marginal gain with
respect to the random set and they get filtered, the
overall decrease in value can be charged to the random
set and therefore it is low.

Independent work. Finally, we note two independent
results with the same approximation and number of
rounds of adaptivity [BRS18, FMZ18]. The algorithm
of [BRS18] is similar to ours. The main difference
between the two algorithms is in the number of random
sets used in each round of adaptivity. Our algorithm
uses a poly-logarithmic number of random sets and has
an overall nearly-linear running time. In contrast, the
algorithm of [BRS18] follows the approach of [BS18]
and uses a polynomial number of random sets and
an analysis based on estimating the marginal values.
As discussed above, we use a different analysis to
handle the much smaller number of random sets. The
algorithm of [FMZ18] makes a linear number of queries
in expectation.

1.2 Preliminaries and notation Let f : 2V → R≥0
be a set function on a ground set V of size n = |V |. The
function is submodular if f(A) + f(B) ≥ f(A ∩ B) +
f(A∪B) for all subsets A, B. The function is monotone
if f(A) ≤ f(B) for all subsets A, B satisfying A ⊆ B.

We consider the problem of maximizing a monotone
submodular function subject to a cardinality constraint:
find S∗ ∈ arg maxS⊆V : |S|≤k f(S).

For any two sets A and B, we use the notation
f(A|B) to denote the marginal gain of A on top of B,
i.e., f(A|B) = f(A∪B)− f(B). For an element e ∈ V ,

we use f(e|B) as a shorthand for f({e}|B).
We will use the following Chernoff inequality, which

follows from the standard Chernoff bound (see, e.g.,
[DP09]).

Theorem 1.2. ([DP09]) Let X1, . . . , Xn be mutually
independent and identically distributed random vari-
ables with Xi ∈ [0, 1]. Let X = 1

n

∑︁n
i=1 Xi. Suppose

that E[X] ≤ µH . Then, for every 0 < ϵ < 1, we have

Pr[X > (1 + ϵ)µH] ≤ exp
(︃
−ϵ2

3 nµH

)︃
.

2 Submodular Maximization Algorithm

Algorithm 1 The input is a submodular function
f : 2V → R≥0 that is monotone and non-negative, a
cardinality constraint k, and an error parameter ϵ.

1: For a set U ⊆ V and an integer ℓ ≤ |U |, we let
U(U, ℓ) be the uniform distribution over subsets of
U of cardinality ℓ

2: M is an approximate optimal solution value: M ≤
f(OPT) ≤ (1 + ϵ)M

3: m = O((ln n)2/ϵ4), ℓ = ϵ2k/(100 ln n)
4: S = ∅
5: while f(S) ≤ (1− 1/e−O(ϵ))M do
6: U1 = V \ S ◃ Unfiltered elements
7: t = 0
8: Old = f(S)
9: while f(S)−Old < ϵM/100 do

10: t← t + 1
11: Let R1, . . . , Rm be independent samples from
U(Ut, ℓ)

12: Let Rmax = arg maxR∈{R1,...,Rm} f(R|S)
13: if f(Rmax|S) ≥ (1− 10ϵ) ℓ

k (M −Old) then
14: S ← S ∪Rmax

15: Ut+1 = Ut \Rmax

16: else
17: Let {Ri,j : 1 ≤ i ≤ Θ(ln n/ϵ), 1 ≤ j ≤ m}

be independent samples from U(Ut, ℓ)
18: Let vi,e = 1

m

∑︁m
j=1 f(e|S ∪Ri,j)

19: Let avgi = 1
m

∑︁m
j=1 f(Ri,j |S)

20: Let i be s.t. avgi ≤ (1 − 8ϵ) ℓ
k (M − Old)

and
∑︁

e∈Ut
vi,e ≤ |Ut|(1− 8ϵ) M−Old

k
21: If there is no such i, declare failure and

terminate
22: U−

t = {e ∈ Ut : vi,e < (1− 7ϵ) M−Old
k }

23: Ut+1 = Ut \ U−
t

24: end if
25: end while
26: end while
27: return S

Copyright c⃝ 2019 by SIAM
Unauthorized reproduction of this article is prohibited

The algorithm is given in Algorithm 1. We assume
that the algorithm has access to a value M such that
M ≤ f(OPT) ≤ (1 + ϵ)M . An n-approximation to
f(OPT) is M0 = maxe∈V f({e}). Given this value, we
can try 2ϵ−1 ln n guesses for M : M0, (1 + ϵ)M0, (1 +
ϵ)2M0, . . . in parallel and return the best solution from
all the guesses.

The algorithm builds the solution over 1/ϵ phases,
where each phase increases the solution value by
Ω(ϵf(OPT)); a phase corresponds to a single iteration
of the while loop on line 5. In each iteration of a phase
(an iteration of the while loop on line 9), we aim to
find a set with density (1 − O(ϵ)) f(OPT)−Old

k and size
Θ
(︂

ϵ2

ln n

)︂
· k, where Old is the value f(S) of the solution

at the beginning of the phase. If the expected density
of a random set is at least the target density then, by
sampling enough random sets, we can guarantee that
with high probability we find a good set to add to our
solution (see Lemma 2.2). On the other hand, if the ex-
pected density of a random set is below the target, then
we can show that an ϵ fraction of the elements have ex-
pected marginal gain at most 1 + O(ϵ) times the target
density (see Lemma 2.1). Thus, by sampling enough
random sets, we can guarantee that with high probabil-
ity we filter an ϵ fraction of the elements on line 22.

Another key issue is determining how many random
sets we need to sample. Since we are filtering based
on marginal gains, it is tempting to proceed by ensur-
ing that each marginal gain is estimated to sufficient
accuracy. Unfortunately, this requires sampling poly-
nomially many random sets. To obtain a fast running
time, we take a different approach that uses only a poly-
logarithmic number of random sets. Since each random
set has many elements, we can show using a Chernoff
bound argument that our estimate of the expected value
ER[f(R|S)] of the random set is correct with high prob-
ability (see Lemma 2.2). When the expected value of
the random set is small, it holds deterministically that
the average of the expected marginal gains of the ele-
ments is small (see Claim 1). This fact together with a
straightforward application of Markov’s inequality and
the Chernoff inequality gives us that with high proba-
bility the algorithm executes the filtering step on line 22
(see Lemma 2.2). This ensures that, when the expected
value of the random set is low, we filter many elements
with high probability. We also need to argue that we do
not filter too much of the value of OPT. Here we cannot
rely on the marginal values being estimated accurately
and we need a different analysis. A crucial insight is
that we can analyze the loss on aggregate. A key idea
is to track the value f((OPT ∩ Ut) ∪ S) of the optimal
solution OPT ∩ Ut that has survived the filtering steps

so far. Instead of relying on having accurate marginal
gains, we use a deterministic analysis to bound the loss
in the value f((OPT ∩ Ut) ∪ S) in a filtering round:
since we are evaluating the marginal gains on common
sets that have low value, even though some elements
of OPT appear to have very small marginal gain with
respect to these sets and they get filtered, the overall
decrease in value is at most the value of the random
sets themselves (see Claim 3).

2.1 The analysis of Algorithm 1 We divide the
execution of the algorithm into phases corresponding to
the iterations of the outer while loop. We will show
that the number of phases is bounded by O(1/ϵ) and
the number of iterations of the inner while loop in
each phase is O(ln n/ϵ). Therefore, the total number
of rounds of adaptivity is O(ln n/ϵ2).

Consider an iteration of the inner while loop (line 9).
We show that if ER∼U(U,ℓ)[f(R|S)] ≥ (1 − 9ϵ) ℓ

k (M −
Old) then with high probability, the algorithm executes
line 14 (see Lemma 2.1). On the other hand, if
ER∼U(U,ℓ)[f(R|S)] < (1 − 9ϵ) ℓ

k (M − Old) then, with
high probability, the elements filtered on line 22 account
for at least an ϵ fraction of all elements in U (see
Lemma 2.2).

Lemma 2.1. Consider an iteration t with
ER∼U(Ut,ℓ)[f(R|S)] ≥ ℓ

k (1− 9ϵ)(M −Old). With proba-
bility 1−1/n2, we have f(Rmax|S) ≥ ℓ

k (1−9ϵ)(M−Old)
and the algorithm executes line 14.

Proof. Using Markov’s inequality, we will show that a
given random set has a high value with probability at
least Ω(ϵ3/ ln n). Since we are independently sampling
m = Θ(ln2 n/ϵ4) sets, at least one of the sets has a high
value with high probability.

Note that, for a random set R ∼ U(Ut, ℓ), we have
0 ≤ f(R|S) ≤ f(OPT) ≤ (1 + ϵ)M : the first inequality
follows by monotonicity, and the second inequality
follows from the fact that f(R|S) ≤ f(R) ≤ f(OPT),
since R is feasible. Since (1 + ϵ)M − f(R|S) is a
non-negative random variable, it follows from Markov’s
inequality that

Pr
R∼U(Ut,ℓ)

[︂
(1 + ϵ)M − f(R|S) >

(1 + ϵ)M − ℓ

k
(1− 10ϵ)(M −Old)

]︂
≤

ER∼U(Ut,ℓ) [(1 + ϵ)M − f(R|S)]
(1 + ϵ)M − ℓ

k (1− 10ϵ)(M −Old)

≤
(1 + ϵ)M − ℓ

k (1− 9ϵ)(M −Old)
(1 + ϵ)M − ℓ

k (1− 10ϵ)(M −Old)

Copyright c⃝ 2019 by SIAM
Unauthorized reproduction of this article is prohibited

= 1−
ℓ
k ϵ(M −Old)

(1 + ϵ)M − ℓ
k (1− 10ϵ)(M −Old)

= 1−Θ
(︃

ϵ3

ln n

)︃
The second inequality is our assumption, and the last
equality follows from the fact that ℓ/k = Θ(ϵ2/ ln n) and
(1/e + O(ϵ))M ≤M −Old ≤M .

Therefore, with probability at least Ω(ϵ3/ ln n),
we have f(R|S) ≥ ℓ

k (1 − 10ϵ)(M − Old). Since we
independently sample m = Θ((ln n)2/ϵ4) sets, with
probability at least 1 − 1/n2, we find a set Rmax such
that f(Rmax|S) ≥ ℓ

k (1− 10ϵ)(M −Old).

We now consider the case when the expected value
of the random set is below the target and show that,
with high probability, the algorithm filters many ele-
ments on line 22.

Lemma 2.2. Consider an iteration t in which
ER∼U(Ut,ℓ)[f(R|S)] ≤ (1 − 9ϵ) ℓ

k (M − Old) and
the algorithm executes line 16. With probability at
least 1 − 1/n3, the algorithm does not fail on line 21.
Additionally, if the algorithm does not fail then
|U−

t | ≥ ϵ|Ut|.

Proof. We first give an overview of the proof. In
Claim 1, we show that the expected density ER[f(R|S)]

|R| of
the random set is at least the average expected marginal
gain 1

|Ut|
∑︁

e∈Ut
ER[f(e|S ∪ R)] of the elements. Note

that this is a claim about expected values and thus
it holds deterministically. Using a Chernoff inequality
(Theorem 1.2), we show that, with high probability, we
correctly determine that the expected value ER[f(R|S)]
of the random set is below the target. Additionally,
we show that, with high probability, the algorithm suc-
ceeds to determine that the average marginal gain of the
elements is low: by Claim 1 and Markov’s inequality,
a single random set succeeds with constant probabil-
ity; since we independently sample poly-logarithmically
many random sets, we obtain high probability overall.
Thus, with high probability, the algorithm executes the
filtering step on line 22 and a straightforward averag-
ing argument shows that it filters an ϵ fraction of the
elements.

Claim 1. We have

E
R∼U(Ut,ℓ)

[f(R|S)] ≥ ℓ · 1
|Ut|

∑︂
e∈Ut

E[f(e|S ∪R)].

Proof. Consider a random set R. Order the elements
of R arbitrarily as e1, e2, . . . , eℓ and let R0 = ∅ and
Ri = {e1, . . . , ei}.

f(R|S) = f(S ∪R)− f(S)

=
ℓ∑︂

i=1
(f(S ∪Ri)− f(S ∪Ri−1))

=
ℓ∑︂

i=1
f(ei|S ∪Ri−1)

≥
ℓ∑︂

i=1
f(ei|S ∪ (R \ {ei}))

where the last inequality follows from submodularity.
Therefore we have

E
R∼U(Ut,ℓ)

[f(R|S)]

≥ E

[︄∑︂
e∈R

f(e|S ∪ (R \ {e}))
]︄

=
∑︂

e

Pr[e ∈ R] · E[f(e|S ∪ (R \ {e}))|e ∈ R]

=
∑︂

e

ℓ

|Ut|
· E[f(e|S ∪ (R \ {e}))|e ∈ R]

Let us now show that, for every e, we have

E
R∼U(Ut,ℓ)

[f(e|S ∪ (R \ {e}))|e ∈ R]

≥ E
R∼U(Ut,ℓ)

[f(e|S ∪ (R \ {e}))|e /∈ R]

To this end, note that we may assume that R ∼
U(Ut, ℓ) is generated by choosing a permutation π of Ut

uniformly at random and letting R = {eπ1 , eπ2 , . . . , eπℓ
}

be the first ℓ elements in this permutation. We have

E
R∼U(Ut,ℓ)

[f(e|S ∪ (R \ {e}))|e ∈ R]

= E
R′∼U(Ut\{e},ℓ−1)

[f(e|S ∪R′)]

= E
R∼U(Ut,ℓ)

[f(e|S ∪ (R \ {e, eπ1})|e /∈ R]

≥ E
R∼U(Ut,ℓ)

[f(e|S ∪ (R \ {e})|e /∈ R]

In the first equality, we have used that, if R ∼ U(Ut, ℓ)
and e ∈ R, then R \ {e} has the distribution U(Ut \
{e}, ℓ − 1). In the second equality, we have used that,
if R ∼ U(Ut, ℓ) and e /∈ R, then R \ {e, eπ1} has the
distribution U(Ut \{e}, ℓ−1), since eπ1 is an element of
R. The inequality follows by submodularity.

Therefore

E
R∼U(Ut,ℓ)

[f(e|S ∪ (R \ {e}))]

= E[f(e|S ∪ (R \ {e}))|e ∈ R] Pr[e ∈ R]
+ E[f(e|S ∪ (R \ {e}))|e /∈ R] Pr[e /∈ R]
≤ E[f(e|S ∪ (R \ {e}))|e ∈ R](Pr[e ∈ R] + Pr[e /∈ R])

Copyright c⃝ 2019 by SIAM
Unauthorized reproduction of this article is prohibited

= E[f(e|S ∪ (R \ {e})|e ∈ R]

By combining the inequalities above and using
submodularity, we obtain

E
R∼U(Ut,ℓ)

[f(R|S)]

≥
∑︂

e

ℓ

|Ut|
· E[f(e|S ∪ (R \ {e}))]

≥
∑︂

e

ℓ

|Ut|
· E[f(e|S ∪R)]

Let us now show that, with probability 1 − 1/n3,
there is a batch of random sets {Ri,j : j ∈ [m]} with the
properties stated on line 20.

Fix a batch i. Using Theorem 1.2, we can upper
bound the probability of the event that avgi > (1 −
8ϵ) ℓ

k (M − Old) as follows. For each j ∈ [m], let
Xj = 1

(1+ϵ)M f(Ri,j |S) ∈ [0, 1]. Let X = 1
m

∑︁m
j=1 Xj .

By our assumption, we have

E
R∼U(Ut,ℓ)

[Xj] ≤ 1
(1 + ϵ)M (1− 9ϵ) ℓ

k
(M −Old).

Let µH = 1
(1+ϵ)M (1− 9ϵ) ℓ

k (M −Old). By Theorem 1.2,

Pr[X > (1 + ϵ)µH] ≤ exp
(︃
−ϵ2

3 mµH

)︃
≤ 1

n3 ,

where the second inequality follows by substituting m
and µH , and using the fact that (M −Old)/M = Θ(1).

We now upper bound the probability of the event
that

∑︁
e∈Ut

vi,e > |Ut|(1 − 8ϵ) M−Old
k . By Markov’s

inequality, with probability at least ϵ, we have

1
m

m∑︂
j=1

(︄∑︂
e

f(e|S ∪Ri,j)
)︄

≤ 1
1− ϵ

E
R∼U(Ut,ℓ)

[︄∑︂
e

f(e|S ∪R)
]︄

≤ 1
1− ϵ

|Ut|
ℓ

E
R∼U(Ut,ℓ)

[f(R|S)]

≤ 1
1− ϵ

|Ut|
ℓ

ℓ

k
(1− 9ϵ)(M −Old)

≤ |Ut|(1− 8ϵ)M −Old

k

In the second inequality, we have used Claim 1.
Therefore each batch i satisfies both conditions of

line 20 with probability at least ϵ − 1/n3. Since the
batches are independent, it follows that the probability
that the algorithm fails on line 21 is at most (1 − ϵ +
1/n3)Θ(ln n/ϵ) ≤ 1/n3.

Let us now condition on the event that the algo-
rithm does not fail. Consider the set U−

t filtered on
line 22. We have

|Ut \ U−
t |(1− 7ϵ)M −Old

k

≤
∑︂
e∈Ut

vi,e

≤ |Ut|(1− 8ϵ)M −Old

k
,

and thus |U−
t | ≥ ϵ|Ut|.

We now show that the number of phases is O(1/ϵ)
and the number of iterations in each phase is O(ln n/ϵ).
The former simply follows from the fact that each phase
increases the value of the solution by Ω(ϵf(OPT)). Most
of the work is to show that the filtering steps do not
remove too much of the optimal solution. A subtle
but crucial choice is to track the value of the optimal
solution OPT ∩ Ut that has survived the filtering steps
so far. In Claim 3, we analyze how much this value
decreases in each filtering iteration and show that this
decrease can be charged to the value of the random
sets, which have low value. Claim 3 then allows us to
show that we cannot keep filtering without eventually
finding a good set to add on line 14: since each filtering
iteration removes an ϵ fraction of the elements, after
O(ln n/ϵ) filtering iterations the ground set becomes
empty; on the other hand, Claim 3 shows that O(ln n/ϵ)
filtering iterations is not enough to remove all of the
value of OPT, since f(OPT ∩ Ut|S) is strictly positive
(see Claim 4).

Lemma 2.3. Consider a phase of the algorithm. The
phase increases f(S) by Ω(ϵM). Additionally, with
probability at least 1 − 1/n2, the phase has O(ln n/ϵ)
iterations.

Proof. The lower bound on the increase follows from
the terminating condition for the phase. Thus it only
remains to bound the number of iterations. We refer to
each iteration as a gain iteration if line 13 is executed,
and as a filtering iteration if line 16 is executed. We
show that the number of gain iterations is O(ln n/ϵ)
with probability 1, and the number of filter iterations is
O(ln n/ϵ) with probability at least 1− 1/n2.

Claim 2. The number of gain iterations is at most
6 ln n/ϵ.

Proof. Each gain iteration increases f(S) by ℓ
k (1 −

10ϵ)(M − Old). Since M − Old ≥ M/3 and the phase
ends when f(S)−Old becomes ϵM/100, the number of
gain iterations is at most 6 ln n/ϵ.

Copyright c⃝ 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Let us now consider the filtering iterations. Let
T be the minimum of 2 ln n/ϵ + 1 and the number of
filtering iterations of the phase. By Lemma 2.2, the
probability that none of the first T filtering iterations
fails is at least 1−T/n3 ≥ 1−1/n2. In the following, we
condition on the event that none of the first T filtering
iterations fails.

We can show the following invariant.

Claim 3. Consider an iteration t and suppose that the
number of filtering iterations so far is at most T . At the
beginning of iteration t, we have

f((OPT ∩ Ut) ∪ S)

≥M − (t− 1)ℓ
k

(M −Old)

− |OPT \ (Ut ∪ S)|
k

(1− 7ϵ)(M −Old).

Proof. We will prove the invariant by induction on t.
The invariant is true at the beginning of iteration 1 since
f((OPT ∩ U1) ∪ S) ≥ f(OPT) ≥M .

Consider iteration t > 1 and suppose the invariant
holds at the beginning of iteration t. We will show
that the invariant continues to hold at the beginning
of iteration t + 1.

Suppose that iteration t is a gain iteration. The
algorithms adds the random set Rmax to S on line 14
and we have

f((OPT∩(Ut\Rmax))∪S∪Rmax) ≥ f((OPT∩Ut)∪S),

since (OPT∩ (Ut \Rmax))∪S∪Rmax ⊇ (OPT∩Ut)∪S
and f is monotone. Thus the invariant continues to hold
at the beginning of iteration t + 1.

Therefore we may assume that iteration t is a
filtering iteration. Recall that we are conditioning on
the event that the algorithm does not fail in the first T
filtering iterations, and thus iteration t executes line 22.
Let i be the index satisfying the conditions on line 20.
We have

f(OPT ∩ Ut+1|S)

≥ 1
m

m∑︂
j=1

f(OPT ∩ Ut+1|S ∪Ri,j)

≥ 1
m

m∑︂
j=1

(︄
f(OPT ∩ Ut|S ∪Ri,j)

−
∑︂

e∈OPT∩U−
t

f(e|S ∪Ri,j)
)︄

≥ f(OPT ∩ Ut|S)− 1
m

m∑︂
j=1

f(Ri,j |S)

− |OPT ∩ U−
t |(1− 7ϵ) 1

k
(M −Old)

≥ f(OPT ∩ Ut|S)− ℓ

k
(M −Old)

− |OPT ∩ U−
t |(1− 7ϵ) 1

k
(M −Old)

The first and second inequalities follow by submodular-
ity. In the third inequality, we have used monotonicity
to bound f((OPT∩Ut)∪S∪Ri,j) ≥ f((OPT∩Ut)∪S),
and we have used that vi,e ≤ (1 − 7ϵ) 1

k (M − Old) for
all e ∈ U−

t . In the fourth inequality, we have used that
avgi ≤ ℓ

k (1− 8ϵ)(M −Old).
It follows that the invariant continues to hold at the

beginning of iteration t + 1.

Claim 4. The number of filtering iterations is at most
2 ln n/ϵ.

Proof. Recall that we are conditioning on the event
that the first T filtering iterations do not fail. Suppose
for contradiction that the number of filtering iterations
reaches 2 ln n/ϵ + 1, and let t be the iteration when
this happens. By Lemma 2.2, each filtering iteration
removes an ϵ fraction of U and thus Ut = ∅. By Claim 2,
the number of gain iterations is at most 6 ln n/ϵ and
thus t ≤ 8 ln n/ϵ + 1. By Claim 3, at the beginning of
iteration t, we have

f((OPT ∩ Ut) ∪ S)− f(S)

≥M − (t− 1)ℓ
k

(M −Old)

− |OPT \ (Ut ∪ S)|
k

(1− 7ϵ)(M −Old)− f(S)

≥M − 8ϵ

100(M −Old)− (1− 7ϵ)(M −Old)− f(S)

=
(︃

7ϵ− 8ϵ

100

)︃
(M −Old)− (f(S)−Old)

≥
(︃

7ϵ− 8ϵ

100

)︃
· 1

3M − ϵ

100M

> 0

In the second inequality, we used that |OPT\(St∪S)| ≤
k. In the third inequality, we used that M − Old ≥
(1/e + O(ϵ))M ≥ 1/3M . In the last inequality, we used
the fact that f(S)−Old < ϵM/100, since the phase has
not ended.

It follows that Ut is non-empty, which is a contra-
diction. Therefore the number of filtering phases is at
most 2 ln n/ϵ.

Lemma 2.4. With probability 1 − 1/n, the algorithm
uses O(ln n/ϵ2) rounds of queries.

Copyright c⃝ 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Proof. The lemma follows from Lemma 2.3. Each phase
increases f(S) by Ω(ϵM) and the algorithm stops when
f(S) ≥ (1− 1/e−O(ϵ))M . Thus, the number of phases
is O(1/ϵ). With probability 1 − 1

ϵn2 ≥ 1 − 1
n , every

phase uses O(ln n/ϵ) rounds of queries. Therefore, with
probability 1−1/n, the total number of rounds of queries
is O(ln n/ϵ2).

Finally, we argue that the algorithm returns a feasi-
ble solution and achieves a 1−1/e−O(ϵ) approximation
ratio.

Lemma 2.5. The algorithm returns a feasible solution
and achieves a 1− 1/e−O(ϵ) approximation.

Proof. Consider iteration j of a phase where the algo-
rithm executes line 14. We have

f(S ∪Rmax)− f(S)
≥ |Rmax|(1− 10ϵ)(M −Old)/k

≥ |Rmax|(1− 11ϵ)(M − f(S))/k

Using the inequality above, we can show by induction
that

M − f(S) ≤ exp
(︃
− (1− 11ϵ)|S|

k

)︃
M.

Initially, S = ∅ and the inequality holds. Consider an
iteration where the inequality holds at the beginning of
the iteration. We have

M − f(S ∪Rmax)

≤ (M − f(S))
(︃

1− |Rmax|(1− 11ϵ)
k

)︃
≤M exp

(︃
− (1− 11ϵ)|S|

k

)︃
exp

(︃
− (1− 11ϵ)|Rmax|

k

)︃
= M exp

(︃
− (1− 11ϵ)|S ∪Rmax|

k

)︃
This completes the induction.

By the induction, in the first iteration where f(S) ≥
(1−exp(−(1−12ϵ)))M we must have |S| ≤ (1−ϵ)k+ℓ <
k. Thus, the final solution satisfies the constraint
|S| ≤ k and has value f(S) ≥ (1− exp(−(1− 12ϵ)))M .

References

[BENW15] Rafael D.P. Barbosa, Alina Ene, Huy L.
Nguyen, and Justin Ward. The power of randomiza-
tion: Distributed submodular maximization on mas-
sive datasets. In International Conference on Machine
Learning (ICML), pages 1236–1244, 2015.

[BENW16] Rafael da Ponte Barbosa, Alina Ene, Huy L
Nguyen, and Justin Ward. A new framework for dis-
tributed submodular maximization. In IEEE Foun-
dations of Computer Science (FOCS), pages 645–654,
2016.

[BRS18] Eric Balkanski, Aviad Rubinstein, and Yaron
Singer. An exponential speedup in parallel running
time for submodular maximization without loss in ap-
proximation. CoRR, abs/1804.06355, 2018.

[BS18] Eric Balkanski and Yaron Singer. The adaptive
complexity of maximizing a submodular function. In
ACM Symposium on Theory of Computing (STOC),
pages 1138–1151, 2018.

[CG17] Clément L. Canonne and Tom Gur. An adaptiv-
ity hierarchy theorem for property testing. CoRR,
abs/1702.05678, 2017.

[DP09] Devdatt P Dubhashi and Alessandro Panconesi.
Concentration of measure for the analysis of random-
ized algorithms. Cambridge University Press, 2009.

[DV12] Shahar Dobzinski and Jan Vondrák. From query
complexity to computational complexity. In ACM
Symposium on Theory of Computing (STOC), pages
1107–1116, 2012.

[EMZ17] Alessandro Epasto, Vahab Mirrokni, and Morteza
Zadimoghaddam. Bicriteria distributed submodular
maximization in a few rounds. In PACM Sympo-
sium on Parallelism in Algorithms and Architectures
(SPAA), pages 25–33, 2017.

[Fei98] Uriel Feige. A threshold of ln n for approximating
set cover. Journal of the ACM, 45:634–652, 1998.

[FMZ18] Matthew Fahrbach, Vahab Mirrokni, and Morteza
Zadimoghaddam. Submodular maximization with op-
timal approximation, adaptivity and query complexity.
CoRR, abs/1807.07889, 2018.

[IPW11] Piotr Indyk, Eric Price, and David P Woodruff.
On the power of adaptivity in sparse recovery. In
Foundations of Computer Science (FOCS), 2011 IEEE
52nd Annual Symposium on, pages 285–294. IEEE,
2011.

[KMVV13] Ravi Kumar, Benjamin Moseley, Sergei Vassil-
vitskii, and Andrea Vattani. Fast greedy algorithms in
mapreduce and streaming. In PACM Symposium on
Parallelism in Algorithms and Architectures (SPAA),
pages 1–10, 2013.

[MKBK15] Baharan Mirzasoleiman, Amin Karbasi, Ash-
winkumar Badanidiyuru, and Andreas Krause. Dis-
tributed submodular cover: Succinctly summarizing
massive data. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 2881–2889, 2015.

[MKSK13] Baharan Mirzasoleiman, Amin Karbasi, Rik
Sarkar, and Andreas Krause. Distributed submodu-
lar maximization: Identifying representative elements
in massive data. In Advances in Neural Information
Processing Systems (NIPS), pages 2049–2057, 2013.

[MZ15] Vahab Mirrokni and Morteza Zadimoghaddam.
Randomized composable core-sets for distributed sub-
modular maximization. In ACM Symposium on Theory
of Computing (STOC), pages 153–162, 2015.

Copyright c⃝ 2019 by SIAM
Unauthorized reproduction of this article is prohibited

[NWF78] G L Nemhauser, L A Wolsey, and M L Fisher.
An analysis of approximations for maximizing sub-
modular set functions—i. Mathematical Programming,
14(1):265–294, 1978.

[RS06] Sofya Raskhodnikova and Adam D. Smith. A note
on adaptivity in testing properties of bounded de-
gree graphs. Electronic Colloquium on Computational
Complexity (ECCC), 13(089), 2006.

[Von09] Jan Vondrák. Symmetry and approximability of
submodular maximization problems. In IEEE Foun-
dations of Computer Science (FOCS), pages 651–670,
2009.

Copyright c⃝ 2019 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Our techniques
	Preliminaries and notation

	Submodular Maximization Algorithm
	The analysis of Algorithm 1

