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ABSTRACT
We consider cooperative multi-agent consensus optimization
problems over an undirected network of agents, where only
local communications are allowed. The objective is to mini-
mize the sum of agent-specific convex functions over agent-
specific private conic constraint sets. We provide convergence
rates in sub-optimality, infeasibility and consensus violation
when the sum function is strongly convex; examine the effect
of underlying network topology on the convergence rates of
the proposed decentralized algorithm.

Index Terms— multi-agent distributed optimization,
consensus, constrained optimization, convergence rate

1. INTRODUCTION

Decentralized optimization over communication networks
has various applications: i) distributed parameter estimation
in wireless sensor networks [1, 2]; ii) multi-agent coopera-
tive control and coordination in multirobot networks [3, 4];
iii) distributed spectrum sensing in cognitive radio net-
works [5, 6]; iv) processing distributed big-data in (online)
machine learning [7, 8, 9, 10]; v) power control problem in
cellular networks [11], to name a few application areas. In
many of these applications, the network size is usually pro-
hibitively large for centralized optimization, which requires
a fusion center that collects the physically distributed data
and runs a centralized optimization method. This process has
expensive communication overhead, requires large enough
memory to store the data, and also may violate data privacy
in case agents are not willing to share their data even though
they are collaborative agents [12, 13].

In this paper, from a broader perspective, we aim to
study constrained distributed optimization of a strongly
convex function over static communication network G =
(N, E); in particular, from an application perspective, we
are motivated to design an efficient decentralized solution
method for constrained LASSO (C-LASSO) problems [14]
with distributed data. C-LASSO, having the generic form
min, {A||z]|, + |[Cz —d||3 : Az < b}, is an important
class of statistical problems, which includes fused LASSO,
constrained regression, and generalized LASSO problems as
its special cases [15, 14, 16] to name a few. In the rest, we
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provide our results for a more general, constrained decentral-
ized optimization setting. We assume that i) each node : € N/
has a local conic convex constraint set ;, for which projec-
tions are not easy to compute, and a local convex objective
function ¢; (possibly non-smooth) such that » . - ;(x)
is strongly convex, and ii) nodes are willing to collaborate,
without sharing their private data defining x; and ;, to com-
pute an optimal consensus decision minimizing the sum of
local functions and satisfying all local constraints; moreover,
iii) nodes are only allowed to communicate with the neigh-
boring nodes over G. In our set up, we also consider the case
where each local function ¢; is convex but not necessarily
strongly convex for all 4+ € N. This kind of structure arises
in LASSO problems; in particular, let ¢; : R® — R such
that ;(xz) = M|z, + [|Ciz — dz||§ for C; € R™*™ and
d; € R™i for i € N. Note that while ¢; is merely convex for
alli € N, 3, wi(x) is strongly convex when m; < n for
i € N and rank(C) =n < 37, m; where C' = [Cilien
Therefore, it is important to note that in the centralized for-
mulation of this problem min, ), \, ¢i(x) the objective is
strongly convex; however, in the decentralized formulation,
this is not the case where we minimize ),/ @i(x;) while
imposing consensus among local variables {z;};car. In the
numerical section, we considered a distributed C-LASSO
problem under a similar strong convexity setting.

Many of the real-life application problems discussed
above are special cases of this generic conic constrained de-
centralized optimization framework. With the motivation of
designing an efficient decentralized solution method for the
distributed conic constrained problem over a static commu-
nication network G as we briefly discussed above, we pro-
pose a distributed primal-dual algorithm (DPDA). DPDA is
based on the primal-dual algorithm (PDA), recently proposed
in [17] for convex-concave saddle-point problems of the
form: mingex maxyey L£(x,y) 2 ®(x) + (Tx,y) — h(y),
where X', are vector spaces, ®(x) £ p(x) + g(x) is a
strongly convex function with modulus y > 0 such that p and
h are possibly non-smooth convex functions, g is convex and
has a Lipschitz continuous gradient defined on dom p with
constant L, and T is a linear map. In [17], it is shown for PDA
that for any (x,y) € X x Y, the ergodic average sequence
{x*, ¥*} >0 satisfies £(x*,y) — L(x,¥") = O(1/k?) for
appropriately chosen primal-dual step-sizes.
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PDA is not a distributed algorithm for decentralized con-
sensus optimization, and in this paper we show how to design
one based on PDA for solving constrained consensus opti-
mization over G with O(1/k?) rate guarantee — even when all
(;’s are not strongly convex.

Problem Definition. Let G = (N, &) denote a con-
nected undirected graph of N computing nodes, where
N 2 {1,...,N}and £ C N x N\ denotes the set of edges
— without loss of generality assume that (i,7) € & implies
i < j. Suppose nodes ¢ and j can exchange information
only if (¢,7) € &, and each node ¢ € N has a private (lo-
cal) cost function ¢; : R™ — R U {400} such that o;(z) =
pi(x)+ fi(x), where p; : R™ — RU{+o0} is a possibly non-
smooth convex function, and f; : R™ — R is a smooth convex
function. We assume that f; is differentiable on an open set
containing dom p; with a Lipschitz continuous gradient
V fi, of which Lipschitz constant is L;; and the prox map

of pr. prox,, (x) £ argmin,ce. {pi(y) + 4y~ =12}
is efficiently computable for i € N. Let N; = {j € N :
(i,7) € Eor (j,4) € £} denote the set of neighboring nodes
of i € N, and d; £ |N;]| is the degree of node i € N. Let
@(z) £ 3, ¢i(z) and consider the following problem

st. Aix—b, €Ky, ieN, €))

x* € argmin @(x)
T ER™

where A; € R™i*" b, € R™i and IC; C R™ is a closed,
convex cone for i € AN. Suppose that projections onto K;
can be computed efficiently, while the projection onto the
preimage x; = A;l(lCi + b;) is assumed to be impractical,
e.g., when KC; is the positive semidefinite cone, projection to
preimage requires solving an SDP.

Assumption 1.1. The duality gap for (1) is zero, and a
primal-dual solution to (1) exists.

A sufficient condition is the existence of a Slater point,
i.e., there exists € relint(dom @) such that A;z — b; €
int(KC;) fori € N, where dom ¢ = N;cpr dom ;.

Definition 1. A differentiable function f : R™ — R is
strongly convex with modulus 11 > 0 if the following holds:

J@) > f@ +(VI@,2 &) + L lle —2°, Va,zeR"

Assumption 1.2. Each f; is strongly convex with modulus
p; > 0fori € N, f(z) £ 3. fix) is strongly convex
with modulus i > 0, and define p = min;en{ 1 }.

Remark. Note that while i > >, 1, it is possible
that u; = 0 for all ¢ € A but still 7 > 0; moreover, i > 0
implies that z* is the unique optimal solution to (1).

Contribution. To the best of our knowledge, only a hand-
ful of methods, e.g., [18, 19, 20] can handle constrained con-
sensus problems similar to (1) without requiring each agent
i € N to project onto x,;. However, no rate results in terms
of suboptimality, local infeasibility, and consensus violation
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exist for the primal-dual distributed methods in [19, 20] when
implemented for the agent-specific conic constraint sets x;
studied in this paper; moreover, none of these three methods
exploits the strong convexity of the sum @ = > .\, ;. We
believe that DPDA proposed in this paper is one of the first
decentralized algorithms to solve (1) with O(1/k?) ergodic
rate guarantee on both sub-optimality and infeasibility.
Notation. Throughout ||.|| denotes either the Euclidean
norm or the spectral norm. Given a convex set S, let os(.)
denote its support function, i.e., o5(f) = sup,cs (0, w).
For a closed convex set S, we define the distance function
as ds(w) = |Ps(w) — wl||. Given a convex cone K € R™,
let C* denote its dual cone, i.e., K* 2 {§ € R™ : (0, w) >
0 Yw € K}, and K° £ _C* denotes the polar cone of /C.
Note that for a given cone K € R™, gx(0) = 0 for § € K°
and equal to +o0 if 0 ¢ K°. ® denotes the Kronecker prod-
uct, and L, is the n x n identity matrix. S} denotes the cone
of symmetric positive semidefinite matrices. For Q) >~ 0, i.e.,

Q € S%, we define 2], £ /2" Qz and \f,; (Q) denotes
smallest positive eigenvalue of Q).

2. METHODOLOGY

Let z; € R™ denote the local decision vector of node 7 € N.
By taking advantage of the fact that G is connected, we can
reformulate (1) as the following distributed consensus opti-
mization problem:

@

cmin { > i)
ieEN

where )\;; € R" and 0; € R™¢ are the corresponding dual
variables. Let x = [z;];ear € R™™I. The consensus con-
straints z; = x; for (¢, j) € € can be formulated as Mx = 0,
where M € R™€1%7IV1 i a block matrix such that M = H®
I,, where H is the oriented edge-node incidence matrix, i.e.,
the entry H(; ;) ;, corresponding to edge (i, j) € £andl € N,
isequal to 1if [ =4, —1if l = 7, and 0 otherwise. Note that
M™ =H H®I, = Q®I,, where & € RVIXIVI de-
notes the graph Laplacian of G, i.e., Q;; = d;, Q;; = —1if
(i,7) € € or (j,4) € &, and equal to 0 otherwise.

Since z* is the unique solution to (1) and since x* = 1 ®
x* satisfies (2 ® I,,)x* = 0, one can reformulate (1) as a
saddle point problem. Indeed, for any o > 0, one can solve
(1) through solving

T; =Xj: >\ij7 V(Z,]) S 5,
Az — b e K - 0;, Vi e N

minmax £(x,y) £ 7 [xlfer, + (A Mx)

2

iEN

(SDZ(-T'L) + (0, Asxz; — b;) — ok, (91)) 3)
Next, given a > 0, we consider the direct implementation of
PDA [17] to solve (3) for appropriately chosen algorithm pa-
rameters such as primal-dual step sizes and a componentwise
separable Bregman distance function on X'.

Definition 2. Let X £ ILcyR™ and X > x = [z]ien:
Y 2 ILeyR™ xR™, Y 5y = [0'X']T and 0 =



[0i)icn € R™, wherem £ 3", m;. Let ® : X — RU{oo}
such that ®(x) = p(x) + g(x) where p(x) £ 3.\ pi(zi),
900) £ F()+8 [xr, and f() 2 Syen fi(ee), andler
h:Y — RU{oo} such that h(y) £ 3, .\ o, (0:)+ (bi, 0;).
Define the block-diagonal matrix A = diag([A;]ien) €
R™ "Nl and T = [AT MT]T.

Given some positive parameters v*, 7% > 0, k¥ > 0 for
i € N — we shortly discuss how to select them, and given @,
h and T as in Definition 2, and the initial iterates x° and y0 =

[BOT)\OT]T, the PDA iterations take the following form:

e (Aot 0" (@f i) -

«—argminox, (0;) —
05

b, 0;)

1 k2 s

. _ 1
N argmin — (e 7" (). N) g A X

M argmin <MT)\I“+1 +a(Q®1I,)x", x> (4c)
+ > pilws) + (Vilah) + AT 07 i) + Q—k\la:i — i )%

ieEN
Since K; is a cone, prox,,. () = P (-); hence, oEtt =
Prce (Qf + Kk (Al(xf +nk (zk—zh1Y) —bi)> fori € N. Us-
ing recursion in (4b), we can write Aasa partial summation
of primal iterates {x‘}}—/,i.e., A" = )\O—i—zl 0 LM (% +

n'(x’ —x1)). Let A’ « 0, and deﬁne {s }k>0 such that
sO:Oandsk“—s +F(xF 4k (xP 1)) for k > 0;

hence, A = Ms* for k > 0. Using MTM =Q®I,, we
obtain (x, MTAM) = (x, (Q®L,)s"1) = 3, (xi,
e, (sk+1 si*1)). Thus, PDA iterations given in (4) for

the static graph G can be computed in a decentralized way, via
the node-specific computations as in distributed primal dual
algorithm (DPDA) displayed in Fig. 1 below.

Definition 3. A weighted Laplacian matrix W € SLJ_\” is such
that Wij = Wji < 0 for (Z,j) € €, Wij = Wji = 0 for
(1,7) € & and Wiy = =37\ Wij fori € N.

Remark. When p > 0, according to Assumption 1.2,
f(x) > ien fi(wi) is strongly convex with modulus
p. That said, as emphasized in the introduction, although
f(@) =X, fiz) is strongly convex with modulus i > 0,
it is possible that f may not when p = 0.

Inspired from Proposition 3.6. in [21], we prove the follow-
ing Lemma with a slight difference in choosing parameter,
showing that by suitably regularizing f, one can obtain a
strongly convex function when p = 0.

Lemma 2.1. Consider f(x) > ien filwi) under As-
sumption 1.2 and suppose . = 0. Given o > 0, let

fa(x) 2 f(X) + a r(x), where r(x) £ %||x||%,v®1n. Then
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Algorithm DPDA (x°,0°, o, 61,62, ;1)
Initialization: x ! « x°, s® « 0,
01,02 >0, pe€ (0, max{u, fa}]
TO — minie/\[ m, ’7'0 — (T% — /.L)_l,
n° <0, % « min;epn 72(151517 kY 707“2;”2 ieN
Stepk (k >O) Vie N
L. ¢f « aF +nf(af —xk b,
265 ¢ P (91- + RF (Augt — bi)),
3. sf“ — sf + 'ykqf,
4. bl Prox, i, (x -7 (sz( ATt 4
Z]GN (i = 5§+1) + ocEjENi(mi) - xf)))7
k1 1 ~k+1 ~
5.7 7@’ T e/ A
6. 7"

Yz + 1)
7. 7’““ R T4 AR

—1

Fig. 1: Distributed Primal Dual Algorithm (DPDA)

fao is strongly convex with modulus o = M -

, 2 _
\/(W) +4L2 > 0 for any for o >

where L = Z’fj\]}fl L and Ao = \F

Proof. Let x* = 1)z ® z*, where z* is the unique opti-
mal solution to (1), and according to Assumption 1.2, f is
strongly convex with modulus zi > 0. Fix some arbitrary
a> %ﬁ > ien L2 and x € R™V1 Then, using Null(W) =
Span{1}, any x € R"?I can be decomposed into u €
Span{1}and v € Span{1}* where x = u+vand [|x||* =
||| + ||v||*. From definition of f, we have that,
(Vfal%) = Vfalx), x—x") =
(Vf(x) = Vf(x

Let L 2 E% where N £ |N|. The inner product on

the rhs of (5) can be bounded by using convexity, Lipschitz
differentiability, and strong convexity of f as follows:

4N 72
Ao fi L

w).

min (

) x=x) tallx =X e, - )

(VF(x) ~ V(x), x—x7) >
Ex =) —2L|x" —ul vl ®)
From (5), (6) and the fact that ||x — x*||?,V®In = ||v||€V®In >
Ao [[V]1%, we get
(Vfa(x) = Vfalx), x—x") >
£l = 2L x* — wllv]| + ez V]2 D

Next, fix w > 0. We consider two cases:
@) |Ivll € wlju— x*||; hence, from (7),

<Vfa(x) t Vfa(X*)z X = x*>
> (R 90l u— x| + s v

me{% — 2w, a)\z} Ix —x*||?, ®)



and (ii): ||v|| > w|ju — x*||; hence,

(V%) = Vfalx"), x - x7)
> H s+ (e = 22 v

Zmin{ﬁ[,o&\z—*}l\ <P

Combining (8) and (9) we conclude that,
(Vfa(x) = Vfa(x
. /]/ H QE * 12
>min¢ = —2Lw, ads — — ¢ ||lx —x"||”. (10)
N w

*)7 X = X*>

Since w > 0 is arbitrary, f, is strongly convex with modulus
—2Lw, aly — } Note ua is at-

tained for w, > 0 such that £ N —2Lw, = alg — —, which

implies that w, = %(WNiO"\Q + 14/ “/N _O"\z + 4) More-

over, fio = & — 2Lw, is the value given in the statement of
the lemma, and we have & > p1o > 0 for any o > 5 L2 It
is worth mentioning that p,, is a concave increasing functlon

of aover R4, and sup, g pte = limg roo fta = % O

Lo = MaX,>p Mmin {

Remark 2.1. When o > 0, i.e, all f;’s are strongly con-
vex, the parameter o can be set to zero; hence, g(x) = f(x)
is strongly convex with modulus 1y = p. Otherwise, when
w = 0, a should be chosen according to Lemma 2.1; hence,

g(x) = fu(x) is strongly convex with modulus 1, = [i4.
The condition o > ,)\%(W) > ien L2 is similar to the one
e

max

2T (W)

min

in [21], where o should be greater than for some

W e SW' which is a parameter for their algorithm satisfying
certain conditions and Ly, = max;cn L;.

Next, we quantify the suboptimality and infeasibility of
the DPDA iterate sequence.

Theorem 2.2. Suppose Assumption 1.1 holds. Let {x*, Ok}kzo
be the sequence generated by Algorithm DPDA, displayed in
Fig. 1, initialized from an arbitrary x° and 8° = 0. Then
{x*} >0 converges tox* = 1®@x* such that z* is the optimal
solution to (1); moreover, the following error bounds,

|||+ > 107 i, (AiE — bi) < ©0/Nic,
iEN

2 ~K
(=) ()| < /N, [x x| < T 2rve,

hold for all K > 1, where ¥ = lel Zle yFIxk Ng =

K — *
S AR = O(K?), and 09 £ S e [ ks ) — a2 +
%,HG:‘HZ + ﬁ Moreover, 75 |vK = O(1/K?).

Proof. Due to its technical nature and lack of space, the proof
is included in the online technical report [22]. O
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Remark 2.2. Note that the result in Theorem 2.2 can be ex-
tended to weighted graphs by replacing the Laplacian matrix
Q in g, with the weighted Laplacian W, and also replacing
consensus constraint Mx = 0 in (2) with (W @ I,,)x = 0.

3. NUMERICAL SECTION

In this section we illustrate the performance of DPDA by
implementing on constrained LASSO problem and compare
it with distributed primal-dual algorithm DPDA-S in [18]
which is proposed for solving (1) with O(1/K) ergodic con-
vergence rate when ¢ is merely convex. We consider an
isotonic constrained LASSO problem over network G(N/, £),
which can be formulated in a centralized form as min,cgn
{|Cx - d* + A |E4IR Az < 0} where the matrix
C = [Ciliexn € R™WI 4 = [d}icy € R™N], and
A € R"1%7_In fact, matrix A captures the isotonic feature
of vector x, and can be written explicitly as, A(¢,¢) = 1 and
A4, 0+1) =—1,for1 < ¢ <n-—1,otherwise it is zero. By
making local copies of z, the decentralized formulation can
be expressed as

i 5 3G — i + W| > il an
Az;<0 i€N zeN ieN
Graph G = (N, ) is generated as a random small-world

network. Given || and the desired number of edges |€], we
choose |\ edges creating a random cycle over nodes, and
then the remaining |€| — |A| edges are selected uniformly at
random. We set n = 20, m = n + 2, and A\ = 0.05. For
any i € N, we set K; = —R’jfl, and entries of C; are sam-
pled from standard Gaussian distribution and the condition
number of C; is normalized by sampling the singular values
from U[1,3]. We let d; = C;(z* + ¢;), where the first 5
and the last 5 components of z* are generated by choosing
from U[—10, 0] and U0, 10] in ascending order, respectively,
and other 10 components are set to zero, and components of
€; € R™ are i.i.d with Gaussian distribution having zero mean
and standard deviation of 1073. We tested our method on
problem (11), by setting d; = dpax and do = 2L, Which

: 0 _ 2Lmax 0 _ _ 1 0 _
lead to initial step-sizes v° = ST = 3p—, and K’ =
%ﬁzﬁ’g Moreover, we compared our method with DPDA-S

by setting its constant step-sizes to DPDA’s initial steps-sizes,
in terms of relative error (max;en ||ZF — 2*|| /[|=*]|), and
infeasibilty (max;cn dic, (AZF)). As it can be seen in Fig. 2,
our method converges faster than DPDA-S in both statistics.

10° 10

—DPDA-S ——DPDA-S
-—-DPDA -—-DPDA

3

3

3

maxien |7 — 2| /l|2"]|
maxey ||(AzZ)- |

3
f

3

10
0 500 1000 1500 2000 0 500 1000 1500 2000

k: iteration counter k: iteration counter

Fig. 2: Comparison of DPDA and DPDA-S
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