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ABSTRACT
We consider cooperative multi-agent consensus optimization
problems over an undirected network of agents, where only
local communications are allowed. The objective is to mini-
mize the sum of agent-specific convex functions over agent-
specific private conic constraint sets. We provide convergence
rates in sub-optimality, infeasibility and consensus violation
when the sum function is strongly convex; examine the effect
of underlying network topology on the convergence rates of
the proposed decentralized algorithm.

Index Terms— multi-agent distributed optimization,
consensus, constrained optimization, convergence rate

1. INTRODUCTION

Decentralized optimization over communication networks
has various applications: i) distributed parameter estimation
in wireless sensor networks [1, 2]; ii) multi-agent coopera-
tive control and coordination in multirobot networks [3, 4];
iii) distributed spectrum sensing in cognitive radio net-
works [5, 6]; iv) processing distributed big-data in (online)
machine learning [7, 8, 9, 10]; v) power control problem in
cellular networks [11], to name a few application areas. In
many of these applications, the network size is usually pro-
hibitively large for centralized optimization, which requires
a fusion center that collects the physically distributed data
and runs a centralized optimization method. This process has
expensive communication overhead, requires large enough
memory to store the data, and also may violate data privacy
in case agents are not willing to share their data even though
they are collaborative agents [12, 13].

In this paper, from a broader perspective, we aim to
study constrained distributed optimization of a strongly
convex function over static communication network G =
(N , E); in particular, from an application perspective, we
are motivated to design an efficient decentralized solution
method for constrained LASSO (C-LASSO) problems [14]
with distributed data. C-LASSO, having the generic form
minx{λ ‖x‖1 + ‖Cx− d‖22 : Ax ≤ b}, is an important
class of statistical problems, which includes fused LASSO,
constrained regression, and generalized LASSO problems as
its special cases [15, 14, 16] to name a few. In the rest, we
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provide our results for a more general, constrained decentral-
ized optimization setting. We assume that i) each node i ∈ N
has a local conic convex constraint set χi, for which projec-
tions are not easy to compute, and a local convex objective
function ϕi (possibly non-smooth) such that

∑
i∈N ϕi(x)

is strongly convex, and ii) nodes are willing to collaborate,
without sharing their private data defining χi and ϕi, to com-
pute an optimal consensus decision minimizing the sum of
local functions and satisfying all local constraints; moreover,
iii) nodes are only allowed to communicate with the neigh-
boring nodes over G. In our set up, we also consider the case
where each local function ϕi is convex but not necessarily
strongly convex for all i ∈ N . This kind of structure arises
in LASSO problems; in particular, let ϕi : Rn → R such
that ϕi(x) = λ ‖x‖1 + ‖Cix− di‖22 for Ci ∈ Rmi×n and
di ∈ Rmi for i ∈ N . Note that while ϕi is merely convex for
all i ∈ N ,

∑
i∈N ϕi(x) is strongly convex when mi < n for

i ∈ N and rank(C) = n ≤
∑
i∈N mi where C = [Ci]i∈N .

Therefore, it is important to note that in the centralized for-
mulation of this problem minx

∑
i∈N ϕi(x) the objective is

strongly convex; however, in the decentralized formulation,
this is not the case where we minimize

∑
i∈N ϕi(xi) while

imposing consensus among local variables {xi}i∈N . In the
numerical section, we considered a distributed C-LASSO
problem under a similar strong convexity setting.

Many of the real-life application problems discussed
above are special cases of this generic conic constrained de-
centralized optimization framework. With the motivation of
designing an efficient decentralized solution method for the
distributed conic constrained problem over a static commu-
nication network G as we briefly discussed above, we pro-
pose a distributed primal-dual algorithm (DPDA). DPDA is
based on the primal-dual algorithm (PDA), recently proposed
in [17] for convex-concave saddle-point problems of the
form: minx∈X maxy∈Y L(x,y) , Φ(x) + 〈Tx,y〉 − h(y),

where X ,Y are vector spaces, Φ(x) , ρ(x) + g(x) is a
strongly convex function with modulus µ > 0 such that ρ and
h are possibly non-smooth convex functions, g is convex and
has a Lipschitz continuous gradient defined on dom ρ with
constant L, and T is a linear map. In [17], it is shown for PDA
that for any (x,y) ∈ X × Y , the ergodic average sequence
{x̄k, ȳk}k≥0 satisfies L(x̄k,y) − L(x, ȳk) = O(1/k2) for
appropriately chosen primal-dual step-sizes.
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PDA is not a distributed algorithm for decentralized con-
sensus optimization, and in this paper we show how to design
one based on PDA for solving constrained consensus opti-
mization over G withO(1/k2) rate guarantee – even when all
ϕi’s are not strongly convex.

Problem Definition. Let G = (N , E) denote a con-
nected undirected graph of N computing nodes, where
N , {1, . . . , N} and E ⊆ N × N denotes the set of edges
– without loss of generality assume that (i, j) ∈ E implies
i < j. Suppose nodes i and j can exchange information
only if (i, j) ∈ E , and each node i ∈ N has a private (lo-
cal) cost function ϕi : Rn → R ∪ {+∞} such that ϕi(x) ,
ρi(x)+fi(x),where ρi : Rn → R∪{+∞} is a possibly non-
smooth convex function, and fi : Rn → R is a smooth convex
function. We assume that fi is differentiable on an open set
containing dom ρi with a Lipschitz continuous gradient
∇fi, of which Lipschitz constant is Li; and the prox map
of ρi, proxρi(x) , argminy∈Rn

{
ρi(y) + 1

2 ‖y − x‖
2
2

}
,

is efficiently computable for i ∈ N . Let Ni , {j ∈ N :
(i, j) ∈ E or (j, i) ∈ E} denote the set of neighboring nodes
of i ∈ N , and di , |Ni| is the degree of node i ∈ N . Let
ϕ̄(x) ,

∑
i∈N ϕi(x) and consider the following problem

x∗ ∈ argmin
x∈Rn

ϕ̄(x) s.t. Aix− bi ∈ Ki, i ∈ N , (1)

where Ai ∈ Rmi×n, bi ∈ Rmi and Ki ⊆ Rmi is a closed,
convex cone for i ∈ N . Suppose that projections onto Ki
can be computed efficiently, while the projection onto the
preimage χi , A−1

i (Ki + bi) is assumed to be impractical,
e.g., when Ki is the positive semidefinite cone, projection to
preimage requires solving an SDP.

Assumption 1.1. The duality gap for (1) is zero, and a
primal-dual solution to (1) exists.

A sufficient condition is the existence of a Slater point,
i.e., there exists x̄ ∈ relint(dom ϕ̄) such that Aix̄ − bi ∈
int(Ki) for i ∈ N , where dom ϕ̄ = ∩i∈N domϕi.

Definition 1. A differentiable function f : Rn → R is
strongly convex with modulus µ > 0 if the following holds:

f(x) ≥ f(x̄) + 〈∇f(x̄), x− x̄〉+
µ

2
‖x− x̄‖2 , ∀x, x̄ ∈ Rn.

Assumption 1.2. Each fi is strongly convex with modulus
µi ≥ 0 for i ∈ N , f̄(x) ,

∑
i∈N fi(x) is strongly convex

with modulus µ̄ > 0, and define
¯
µ , mini∈N {µi}.

Remark. Note that while µ̄ ≥
∑
i∈N µi, it is possible

that µi = 0 for all i ∈ N but still µ̄ > 0; moreover, µ̄ > 0
implies that x∗ is the unique optimal solution to (1).

Contribution. To the best of our knowledge, only a hand-
ful of methods, e.g., [18, 19, 20] can handle constrained con-
sensus problems similar to (1) without requiring each agent
i ∈ N to project onto χi. However, no rate results in terms
of suboptimality, local infeasibility, and consensus violation

exist for the primal-dual distributed methods in [19, 20] when
implemented for the agent-specific conic constraint sets χi
studied in this paper; moreover, none of these three methods
exploits the strong convexity of the sum ϕ̄ =

∑
i∈N ϕi. We

believe that DPDA proposed in this paper is one of the first
decentralized algorithms to solve (1) with O(1/k2) ergodic
rate guarantee on both sub-optimality and infeasibility.

Notation. Throughout ‖.‖ denotes either the Euclidean
norm or the spectral norm. Given a convex set S , let σS(.)
denote its support function, i.e., σS(θ) , supw∈S 〈θ, w〉.
For a closed convex set S , we define the distance function
as dS(w) , ‖PS(w)− w‖. Given a convex cone K ∈ Rm,
let K∗ denote its dual cone, i.e., K∗ , {θ ∈ Rm : 〈θ, w〉 ≥
0 ∀w ∈ K}, and K◦ , −K∗ denotes the polar cone of K.
Note that for a given cone K ∈ Rm, σK(θ) = 0 for θ ∈ K◦
and equal to +∞ if θ 6∈ K◦. ⊗ denotes the Kronecker prod-
uct, and In is the n× n identity matrix. Sn+ denotes the cone
of symmetric positive semidefinite matrices. For Q � 0, i.e.,
Q ∈ Sn+, we define ‖z‖Q ,

√
z>Qz and λ+

min(Q) denotes
smallest positive eigenvalue of Q.

2. METHODOLOGY

Let xi ∈ Rn denote the local decision vector of node i ∈ N .
By taking advantage of the fact that G is connected, we can
reformulate (1) as the following distributed consensus opti-
mization problem:

min
xi∈Rn, i∈N

{∑
i∈N

ϕi(xi) |
xi = xj : λij , ∀(i, j) ∈ E ,
Aixi − bi ∈ Ki : θi, ∀i ∈ N

}
, (2)

where λij ∈ Rn and θi ∈ Rmi are the corresponding dual
variables. Let x = [xi]i∈N ∈ Rn|N |. The consensus con-
straints xi = xj for (i, j) ∈ E can be formulated as Mx = 0,
whereM ∈ Rn|E|×n|N | is a block matrix such thatM = H⊗
In where H is the oriented edge-node incidence matrix, i.e.,
the entryH(i,j),l, corresponding to edge (i, j) ∈ E and l ∈ N ,
is equal to 1 if l = i, −1 if l = j, and 0 otherwise. Note that
MTM = HTH ⊗ In = Ω ⊗ In, where Ω ∈ R|N |×|N| de-
notes the graph Laplacian of G, i.e., Ωii = di, Ωij = −1 if
(i, j) ∈ E or (j, i) ∈ E , and equal to 0 otherwise.

Since x∗ is the unique solution to (1) and since x∗ , 1⊗
x∗ satisfies (Ω ⊗ In)x∗ = 0, one can reformulate (1) as a
saddle point problem. Indeed, for any α ≥ 0, one can solve
(1) through solving

min
x

max
y
L(x,y) ,

α

2
‖x‖2Ω⊗In

+ 〈λ,Mx〉

+
∑
i∈N

(
ϕi(xi) + 〈θi, Aixi − bi〉 − σKi(θi)

)
. (3)

Next, given α ≥ 0, we consider the direct implementation of
PDA [17] to solve (3) for appropriately chosen algorithm pa-
rameters such as primal-dual step sizes and a componentwise
separable Bregman distance function on X .

Definition 2. Let X , Πi∈NRn and X 3 x = [xi]i∈N ;
Y , Πi∈NRmi × Rm0 , Y 3 y = [θ>λ>]> and θ =
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[θi]i∈N ∈ Rm, wherem ,
∑
i∈N mi. Let Φ : X → R∪{∞}

such that Φ(x) = ρ(x) + g(x) where ρ(x) ,
∑
i∈N ρi(xi),

g(x) , f(x)+ α
2 ‖x‖

2
Ω⊗In and f(x) ,

∑
i∈N fi(xi), and let

h : Y → R∪{∞} such that h(y) ,
∑
i∈N σKi(θi)+〈bi, θi〉.

Define the block-diagonal matrix A , diag([Ai]i∈N ) ∈
Rm×n|N | and T = [A> M>]>.

Given some positive parameters γk, τk > 0, κki > 0 for
i ∈ N – we shortly discuss how to select them, and given Φ,
h and T as in Definition 2, and the initial iterates x0 and y0 =

[θ0>λ0>]>, the PDA iterations take the following form:

θk+1
i ← argmin

θi

σKi(θi)− 〈Ai(x
k
i + ηk(xki − xk−1

i ))− bi, θi〉

+
1

2κki
‖θi − θki ‖2, i ∈ N , (4a)

λk+1 ← argmin
λ
−〈M(xk + ηk(xk − xk−1)),λ〉+

1

2γk
‖λ− λk‖2

= λk + γkM(xk + ηk(xk − xk−1)), (4b)

xk+1 ← argmin
x

〈
M>λk+1 + α(Ω⊗ In)xk,x

〉
(4c)

+
∑
i∈N

ρi(xi) + 〈∇fi(xki ) +A>i θ
k+1
i , xi〉+

1

2τk
‖xi − xki ‖2.

Since Ki is a cone, proxκki σKi (·) = PK◦i (·); hence, θk+1
i =

PK◦i
(
θki +κki

(
Ai(x

k
i +ηk(xki −x

k−1
i ))−bi

))
for i ∈ N . Us-

ing recursion in (4b), we can write λk as a partial summation
of primal iterates {x`}k−1

`=0 , i.e., λk = λ0 +
∑k−1
`=0 γ

`M(x`+
η`(x` − x`−1)). Let λ0 ← 0, and define {sk}k≥0 such that
s0 = 0 and sk+1 = sk +γk(xk + ηk(xk−xk−1)) for k ≥ 0;
hence, λk = Msk for k ≥ 0. Using M>M = Ω ⊗ In, we
obtain 〈x,M>λk+1〉 = 〈x, (Ω ⊗ In)sk+1〉 =

∑
i∈N 〈xi,∑

j∈Ni(s
k+1
i − sk+1

j )〉. Thus, PDA iterations given in (4) for
the static graph G can be computed in a decentralized way, via
the node-specific computations as in distributed primal dual
algorithm (DPDA) displayed in Fig. 1 below.

Definition 3. A weighted Laplacian matrixW ∈ S|N |+ is such
that Wij = Wji < 0 for (i, j) ∈ E , Wij = Wji = 0 for
(i, j) /∈ E , and Wii = −

∑
j∈N Wij for i ∈ N .

Remark. When
¯
µ > 0, according to Assumption 1.2,

f(x) =
∑
i∈N fi(xi) is strongly convex with modulus

¯
µ. That said, as emphasized in the introduction, although
f̄(x) =

∑
i∈N fi(x) is strongly convex with modulus µ̄ > 0,

it is possible that f may not when
¯
µ = 0.

Inspired from Proposition 3.6. in [21], we prove the follow-
ing Lemma with a slight difference in choosing parameter,
showing that by suitably regularizing f , one can obtain a
strongly convex function when

¯
µ = 0.

Lemma 2.1. Consider f(x) =
∑
i∈N fi(xi) under As-

sumption 1.2 and suppose
¯
µ = 0. Given α > 0, let

fα(x) , f(x) + α r(x), where r(x) , 1
2 ‖x‖

2
W⊗In . Then

Algorithm DPDA ( x0,θ0, α, δ1, δ2, µ )

Initialization: x−1 ← x0, s0 ← 0,
δ1, δ2 > 0, µ ∈ (0, max{

¯
µ, µα}]

τ0 ← mini∈N
1

Li+δ2+2diα
, τ̃0 ← ( 1

τ0
− µ)−1,

η0 ← 0, γ0 ← mini∈N
δ2

2di+δ1
, κ0

i ← γ0 δ1
‖Ai‖2

i ∈ N
Step k: (k ≥ 0), ∀i ∈ N
1. qki ← xki + ηk(xki − xk−1

i ),

2. θk+1
i ← PK◦i

(
θki + κki

(
Aiq

k
i − bi

))
,

3. sk+1
i ← ski + γkqki ,

4. xk+1
i ← proxτkρi

(
xki − τk

(
∇fi(xki ) +A>i θ

k+1
i +∑

j∈Ni(s
k+1
i − sk+1

j ) + α
∑
j∈Ni(x

k
i − xkj )

))
,

5. ηk+1 ← 1√
1+µτ̃k

, τ̃k+1 ← ηk+1τ̃k,

6. τk+1 ← ( 1
τ̃k+1 + µ)−1

7. γk+1 ← γk/ηk+1, κk+1
i ← γk+1 δ1

‖Ai‖2

Fig. 1: Distributed Primal Dual Algorithm (DPDA)

fα is strongly convex with modulus µα , µ̄/|N | +αλ2

2 −√(
µ̄/|N | −αλ2

2

)2

+ 4L̄2 > 0 for any for α > 4|N |
λ2µ̄

L̄2,

where L̄ =
√∑

i∈N L
2
i

|N | and λ2 = λ+
min(W ).

Proof. Let x∗ = 1|N | ⊗ x∗, where x∗ is the unique opti-
mal solution to (1), and according to Assumption 1.2, f̄ is
strongly convex with modulus µ̄ > 0. Fix some arbitrary
α > 4

λ2µ̄

∑
i∈N L

2
i and x ∈ Rn|N |. Then, using Null(W ) =

Span{1}, any x ∈ Rn|N | can be decomposed into u ∈
Span{1} and v ∈ Span{1}⊥ where x = u+v and ‖x‖2 =

‖u‖2 + ‖v‖2. From definition of fα we have that,
〈∇fα(x)−∇fα(x∗), x− x∗〉 =

〈∇f(x)−∇f(x∗), x− x∗〉+ α ‖x− x∗‖2W⊗In
. (5)

Let L̄ ,
√∑

i∈N L
2
i

N , where N , |N |. The inner product on
the rhs of (5) can be bounded by using convexity, Lipschitz
differentiability, and strong convexity of f as follows:

〈∇f(x)−∇f(x∗), x− x∗〉 ≥
µ̄

N
‖x∗ − x‖2 − 2L̄ ‖x∗ − u‖ ‖v‖ . (6)

From (5), (6) and the fact that ‖x− x∗‖2W⊗In = ‖v‖2W⊗In ≥
λ2 ‖v‖2, we get

〈∇fα(x)−∇fα(x∗), x− x∗〉 ≥
µ̄

N
‖x∗ − x‖2 − 2L̄ ‖x∗ − u‖ ‖v‖+ αλ2 ‖v‖2 . (7)

Next, fix ω > 0. We consider two cases:
(i) ‖v‖ ≤ ω ‖u− x∗‖; hence, from (7),

〈∇fα(x)−∇fα(x∗), x− x∗〉

≥
( µ̄
N
− 2ωL̄

)
‖u− x∗‖2 + αλ2 ‖v‖2

≥ min
{ µ̄
N
− 2ωL̄, αλ2

}
‖x− x∗‖2 , (8)
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and (ii): ‖v‖ ≥ ω ‖u− x∗‖; hence,

〈∇fα(x)−∇fα(x∗), x− x∗〉

≥ µ̄

N
‖u− x∗‖2 +

(
αλ2 −

2L̄

ω

)
‖v‖2

≥ min

{
µ̄

N
, αλ2 −

2L̄

ω

}
‖x− x∗‖2 . (9)

Combining (8) and (9) we conclude that,

〈∇fα(x)−∇fα(x∗), x− x∗〉

≥ min

{
µ̄

N
− 2L̄ω, αλ2 −

2L̄

ω

}
‖x− x∗‖2 . (10)

Since ω ≥ 0 is arbitrary, fα is strongly convex with modulus
µα = maxω≥0 min

{
µ̄
N − 2L̄ω, αλ2 − 2L̄

ω

}
. Note µα is at-

tained for ωα ≥ 0 such that µ̄
N − 2L̄ωα = αλ2 − 2L̄

ωα
, which

implies that ωα = 1
2

(
µ̄/N −αλ2

2L̄
+
√

µ̄/N −αλ2

2L̄
+ 4
)

. More-

over, µα = µ̄
N − 2L̄ωα is the value given in the statement of

the lemma, and we have µ̄
N > µα > 0 for any α > 4N

λ2µ̄
L̄2. It

is worth mentioning that µα is a concave increasing function
of α over R++, and supα>0 µα = limα↗∞ µα = µ̄

N .

Remark 2.1. When
¯
µ > 0, i.e., all fi’s are strongly con-

vex, the parameter α can be set to zero; hence, g(x) = f(x)
is strongly convex with modulus µg =

¯
µ. Otherwise, when

¯
µ = 0, α should be chosen according to Lemma 2.1; hence,
g(x) = fα(x) is strongly convex with modulus µg = µα.
The condition α > 4

µ̄λ+
min(W )

∑
i∈N L

2
i is similar to the one

in [21], where α should be greater than |N |L2
max

2µ̄λ+
min(W )

for some

W ∈ S|N |+ which is a parameter for their algorithm satisfying
certain conditions and Lmax = maxi∈N Li.

Next, we quantify the suboptimality and infeasibility of
the DPDA iterate sequence.

Theorem 2.2. Suppose Assumption 1.1 holds. Let {xk,θk}k≥0

be the sequence generated by Algorithm DPDA, displayed in
Fig. 1, initialized from an arbitrary x0 and θ0 = 0. Then
{xk}k≥0 converges to x∗ = 1⊗x∗ such that x∗ is the optimal
solution to (1); moreover, the following error bounds,∥∥∥M x̄K

∥∥∥+
∑
i∈N

‖θ∗i ‖ dKi(Aix̄
K
i − bi) ≤ Θ0/NK ,

|Φ(x̄K)− ϕ(x∗)| ≤ Θ0/NK ,
∥∥∥xK − x∗

∥∥∥2

≤ τ̃K

γK
2γ0Θ0,

hold for all K ≥ 1, where x̄K = N−1
K

∑K
k=1 γ

k−1xk, NK =∑K
k=1 γ

k−1 = O(K2), and Θ0 ,
∑
i∈N

[
1

2τ0 ‖x0
i − x∗‖2 +

2
κ0
i
‖θ∗i ‖2

]
+ 1

2γ0 . Moreover, τ̃K/γK = O(1/K2).

Proof. Due to its technical nature and lack of space, the proof
is included in the online technical report [22].

Remark 2.2. Note that the result in Theorem 2.2 can be ex-
tended to weighted graphs by replacing the Laplacian matrix
Ω in g, with the weighted Laplacian W , and also replacing
consensus constraint Mx = 0 in (2) with (W ⊗ In)x = 0.

3. NUMERICAL SECTION
In this section we illustrate the performance of DPDA by
implementing on constrained LASSO problem and compare
it with distributed primal-dual algorithm DPDA-S in [18]
which is proposed for solving (1) with O(1/K) ergodic con-
vergence rate when ϕ̄ is merely convex. We consider an
isotonic constrained LASSO problem over network G(N , E),
which can be formulated in a centralized form as minx∈Rn{

1
2 ‖Cx− d‖

2
+ λ ‖x‖1 : Ax ≤ 0

}
where the matrix

C = [Ci]i∈N ∈ Rm|N |×n, d = [di]i∈N ∈ Rm|N |, and
A ∈ Rn−1×n. In fact, matrix A captures the isotonic feature
of vector x, and can be written explicitly as, A(`, `) = 1 and
A(`, `+ 1) = −1, for 1 ≤ ` ≤ n− 1, otherwise it is zero. By
making local copies of x, the decentralized formulation can
be expressed as

min
Mx=0,

Axi≤0 i∈N

1

2

∑
i∈N

‖Cixi − di‖2 +
λ

|N |
∑
i∈N

‖xi‖1 . (11)

Graph G = (N , E) is generated as a random small-world
network. Given |N | and the desired number of edges |E|, we
choose |N | edges creating a random cycle over nodes, and
then the remaining |E| − |N | edges are selected uniformly at
random. We set n = 20, m = n + 2, and λ = 0.05. For
any i ∈ N , we set Ki = −Rn−1

+ , and entries of Ci are sam-
pled from standard Gaussian distribution and the condition
number of Ci is normalized by sampling the singular values
from U [1, 3]. We let di = Ci(x

∗ + εi), where the first 5
and the last 5 components of x∗ are generated by choosing
from U [−10, 0] and U [0, 10] in ascending order, respectively,
and other 10 components are set to zero, and components of
εi ∈ Rn are i.i.d with Gaussian distribution having zero mean
and standard deviation of 10−3. We tested our method on
problem (11), by setting δ1 = dmax and δ2 = 2Lmax which
lead to initial step-sizes γ0 = 2

3
Lmax

dmax
, τ0 = 1

3Lmax
, and κ0 =

2
3
Lmax

‖A‖2 . Moreover, we compared our method with DPDA-S
by setting its constant step-sizes to DPDA’s initial steps-sizes,
in terms of relative error

(
maxi∈N

∥∥x̄ki − x∗∥∥ / ‖x∗‖), and
infeasibilty

(
maxi∈N dKi(Ax̄

k
i )
)
. As it can be seen in Fig. 2,

our method converges faster than DPDA-S in both statistics.
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