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Multi-agent constrained optimization of a strongly convex function over
time-varying directed networks

Erfan Yazdandoost Hamedani' and Necdet Serhat Aybat!

Abstract— We consider cooperative multi-agent consensus
optimization problems over undirected and directed time-
varying communication networks, where only local communica-
tions are allowed. The objective is to minimize the sum of agent-
specific possibly non-smooth composite convex functions over
agent-specific private conic constraint sets; hence, the optimal
consensus decision should lie in the intersection of these private
sets. Assuming the sum function is strongly convex, we provide
convergence rates in sub-optimality, infeasibility and consensus
violation; examine the effect of underlying network topology on
the convergence rates of the proposed decentralized algorithm.

I. INTRODUCTION

Decentralized optimization over communication networks
is an essential tool for solving various engineering prob-
lems: 1) distributed parameter estimation in wireless sensor
networks [1], [2]; ii) multi-agent cooperative control and
coordination in multirobot networks [3], [4]; iii) distributed
spectrum sensing in cognitive radio networks [5], [6]; iv) pro-
cessing distributed big-data in (online) machine learning [7],
[8]1, [9], [10], [11]; v) power control problem in cellular
networks [12], to name a few. In these examples, the network
size can be prohibitively large for centralized optimization,
which requires a fusion center that collects the physically
distributed data and runs a centralized optimization method.
This process has expensive communication overhead, re-
quires large enough memory to store and process the data,
and also may violate data privacy in case agents are not
willing to share their data even though they are collaborative
agents [13], [14]. Furthermore, in the aforementioned ap-
plications, the communication network can be time-varying,
i.e., communication links can be on/off over time due to
failures or the links may exist among agents depending on
their inter-distances, and agents may need to communicate
through a directed network, i.e., communication links can be

unidirectional.

In this paper, from a broader perspective, we aim to study
constrained distributed optimization of a strongly convex
function over time-varying (un)directed communication net-
works G = (N, &?) for t > 0; in particular, from an appli-
cation perspective, we are motivated to design an efficient
decentralized solution method for constrained LASSO (C-
LASSO) problems [15] with distributed data. C-LASSO,
with the generic form

min{A|jz, +[[Cz — d|}2 : Az < b},
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is an important class of problems in statistics, which in-
cludes fused LASSO, constrained regression, and generalized
LASSO problems as its special cases [16], [15], [17] to name
a few.

We provide our theoretical results for a more general
setting that subsumes C-LASSO as a special case. In the
rest, we assume that i) each node 7 € N has a local conic
convex constraint set ;, for which projections are not easy to
compute, and a local convex objective function ¢; (possibly
non-smooth) such that ). _,- ;(x) is strongly convex, and
ii) nodes are willing to collaborate, without sharing their
private data defining x; and ¢;, to compute an optimal
consensus decision minimizing the sum of local functions
and satisfying all local constraints; moreover, iii) nodes are
only allowed to communicate with the neighboring nodes
over the links in the network.

Although we assume that ),/ @;(x) is strongly convex,
it is possible that none of the local functions {¢;};cn are
strongly convex. This kind of structure arises in LASSO
problems; in particular, let ; : R™ — R such that ¢;(z) =
Mlzll, + |Cix — di||3 for C; € R™*" and d; € R™
for i € N. Note that while ¢; is merely convex for all
i € N, Y ,cn i) is strongly convex when m; < n
for i € N and rank(C) = n < Y.\ m;=m where
C = [Ciliex€ R™*". Therefore, it is important to note
that in the centralized formulation of this problem, the
objective min, ) ;-\ i(x) is strongly convex; however, in
the decentralized formulation, this is not the case where we
minimize ) ;- @;i(z;) while imposing consensus among
local variables {z; };c . In the numerical section, we consid-
ered a distributed C-LASSO problem under a similar strong
convexity setting.

Many of the real-life application problems discussed above
fit into the conic constrained decentralized optimization
framework discussed in this paper. With this motivation,
we propose a distributed primal-dual algorithm, DPDA-
TV, for time-varying communication networks. DPDA-TV is
based on a primal-dual algorithm (PDA) recently proposed
in [18] for convex-concave saddle-point problems of the
form: minyey maxyecy L£(x,y) £ ®(x) + (Tx,y) — h(y),
where X', are vector spaces, ®(x) £ p(x) + f(x) is a
strongly convex function such that p and h are possibly non-
smooth convex functions, f is convex and has a Lipschitz
continuous gradient defined on dom p with constant L,
and T is a linear map. In [18], it is shown that for any
(x,y) € X x Y, the ergodic average sequence {X*,¥"}1>0
generated by PDA satisfies £(X*,y) — L(x,¥%) < O(1/k?)
for appropriately chosen primal-dual step-size sequences.
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Although, PDA is not a distributed algorithm for decentral-
ized consensus optimization, in this paper, we show how to
design one based on PDA for solving constrained consensus
optimization over (un)directed time-varying networks with
O(1/k?) rate guarantee — even when all ;s are not strongly
convex.

Problem Description. Let {G'};cg, denote a time-
varying graph of N computing nodes. More precisely, for
all t > 0, the graph has the form G* = (N, £?), where N £
{1,..., N} is the set of nodes and &' C N x N is the set of
(un)directed edges at time t. Suppose that each node i € A/
has a private (local) cost function ¢; : R™ — R U {400}
such that

pi(x) £ pi(z) + fi(=), ¢))

where p; : R" — RU{+00} is a possibly non-smooth convex
function, and f; : R™ — R is a smooth convex function. We
assume f; is differentiable on an open set containing dom p;
with a Lipschitz continuous gradient V f;, of which Lipschitz
constant is L;; and the prox map of p;,

prox, (z) £ arggﬂn {pi(y) +35lly— xIIQ} ., @
ye n

is efficiently computable for i € A, where |.|| denotes the
Euclidean norm. Consider the following problem:

r* € argmin @(x) = Z i) (3)
eeRr ieEN
S.t. Al.’I} —b; € ’CZ‘, Vi e ./\/,
where A, € R™*" b, € R™ and K; C R™ is

a closed, convex cone. Suppose that projections onto K;
can be computed efficiently, while the projection onto the
preimage x; éAi_l(lCi + b;) is assumed to be impractical,
e.g., when KC; is the positive semidefinite cone, projection to
the preimage y; requires solving an SDP.

Assumption 1.1: The duality gap for (3) is zero, and a

primal-dual solution to (3) exists.
A sufficient condition is the existence of a Slater point,

i.e., there exists Z € relint(dom @) such that A;z — b; €
int(KC;) for i € N/, where dom ¢ = Nj;cnr dom ;.

Definition /: A differentiable function f : R" — R
is strongly convex with modulus p > 0 if the following
inequality holds

f@) > f(@) +(Vf(@),2 —T) + g |z —z|°> Ve, €R™

L

Assumption 1.2: Suppose f(z) £ 3", fi(x) is strongly
convex with modulus z > 0; and each f; is strongly convex
with modulus p; > 0 for i € N.

Remark /.1: Define p £ min;en{p;} > 0. Clearly ji >
> ien Mi is always true, and it is possible that y; = 0 for
all ¢ € N but still i > 0; moreover, i > 0 implies that z*
is the unique optimal solution to (3).

Previous Work. Here we briefly review some recent
work on distributed consensus optimization for solving
mingern{@(r) : = € NienXi} over a network of com-
puting agents NV, where ¢(z) = >, \ @i(z). Although the
unconstrained consensus optimization, i.e., x; = R", is well

studied for static or time-varying networks — see [19], [20]
and the references therein, the constrained case is still an
area of active research, e.g., [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28]. Our focus in this paper is on the case
where ¢ is strongly convex such that each ¢; = p; + f; is
composite convex, and x; has the form A; YK + b;) for
i€ N.

There are many papers investigating unconstrained min-
imization of a strongly convex, smooth objective function
f(x) £ > ,cp fi(x) in the multi-agent setting, e.g., [29],
[30], [31], [32], [33], [34] considered static communication
networks G = (N, &) while [35], [36] studied the time-
varying networks. In [31], an exact first-order algorithm
(EXTRA) is proposed to to minimize f over an undirected
static network; later in [32], combining EXTRA with the
push-sum protocol, its variant EXTRA-push is proposed that
can handle communication over directed networks that are
strongly connected and static — both methods are gradi-
ent based with constant step-size. When f is smooth and
strongly convex with modulus zi > 0 while each f; need
not to be strongly convex, it is shown that EXTRA has
linear convergence, provided that the step-size o > 0,
constant among all the nodes, is sufficiently small, i.e.,
a = O(jii/L2,,). Convergence of EXTRA-push, without
providing any rate, has been shown under boundedness
assumption on the iterate sequence. Similar to EXTRA-
push, DEXTRA proposed in [33] also employs the push-sum
protocol to minimize strongly convex f over static directed
networks. Assuming that V f; is bounded over R™ fori € N,
which implies boundedness of the iterate sequence, it is
shown in [33] that the iterate sequence converges linearly
when the constant step-size «, fixed for all i € AV, is chosen
carefully belonging to a non-trivial interval. In a follow up
paper [34], Xi and Khan proposed Accelerated Distributed
Directed Optimization (ADD-OPT) where they improved on
the nontrivial step-size condition of DEXTRA and showed
that the iterates converge linearly when the constant step-size
« is chosen sufficiently small — assuming that the directed
network topology is static and each f; is strongly convex with
Lipschitz continuous gradients. Nedi¢ and Olshevsky [35]
proposed a stochastic (sub)gradient-push for a more general
setting of minimizing (possibly) nonsmooth strongly convex
f over a time-varying directed network when the stochastic
error in subgradient samples has zero mean and bounded
standard deviation. When p; > 0 for all ¢ € A, choosing
a diminishing step-size sequence, they were able to show
O(log(k)/k) rate result provided that the iterate sequence
stays bounded — the boundedness assumption on the iter-
ate sequence can be removed by assuming that functions
are smooth, having Lipschitz continuous gradients. In [36],
Nedi¢ et al. proposed distributed inexact gradient meth-
ods: DIGing and Push-DIGing for time-varying, undirected
and directed networks, respectively. The iterate sequence is
shown to converge linearly provided that the constant step-
size «, fixed for all i« € N, is chosen sufficiently small
when each f; is strongly convex with Lipschitz continuous
gradient.
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For constrained consensus optimization, other than few
exceptions, e.g., [23], [24], [25], [26], [27], [28], the existing
methods require that each node compute a projection on the
local set x; in addition to consensus and (sub)gradient steps,
e.g., [21], [22]. Moreover, among those few exceptions, only
[25], [26], [27], [28] can handle agent-specific constraints
without assuming global knowledge of the constraints by all
agents. However, no rate results in terms of suboptimality,
local infeasibility, and consensus violation exist for the
primal-dual distributed methods in [25], [26], [27] when
implemented for the agent-specific conic constraint sets x; =
{z : Az — b; € K;} studied in this paper. In [25], the
authors considered the problem of minimizing a composition
of a global network function (smooth) with the sum of
local objective functions (smooth), ie., F(D_,cp fi(x)),
subject to local compact sets and inequality constraints on
the summation of agent specific constrained functions, i.e.,
Y ien 9i(®) <0, over a time-varying directed network. The
authors proposed a consensus-based distributed primal-dual
perturbation (PDP) algorithm using a diminishing step-size
sequence, and showed that the primal-dual iterate sequence
converges to a global optimal primal-dual solution, without
providing a rate result. The proposed PDP method can
also handle non-smooth constraints with similar convergence
guarantees. In a recent work [26], a distributed algorithm
on time-varying directed networks for solving saddle-point
problems subject to consensus constraints is proposed. The
algorithm can also solve consensus optimization problems
with inequality constraints that can be written as summation
of local convex functions of local and global variables. It
is shown that using a carefully selected decreasing step-size
sequence, the ergodic average of primal-dual sequence con-
verges with O(1/v/k) rate in terms of saddle-point evalua-
tion error; however, when applied to constrained optimization
problems, no rate in terms of either suboptimality or infeasi-
bility is provided. A closely related paper to ours is [27],
where a proximal dual consensus ADMM method, PDC-
ADMM, is proposed by Chang to solve min,{)_, ¢;(x;) :
Yoien Ciwg = d, x; € x; i € N} over both static and
time-varying undirected networks, requiring only proximal-
gradient steps, where @; = p; + f; is composite convex,
xi = {x; : Ajz; > b, x; € S;} and S; is a convex compact
set. It is shown that both for static and time-varying cases,
PCD-ADMM have O(1/k) ergodic convergence rate in the
mean without requiring projection onto x; for suboptimality
and infeasibility when each f; is strongly convex and dif-
ferentiable with a Lipschitz continuous gradient for i € V.
More recently, in [28], Aybat and Yazdandoost Hamedani
proposed a distributed primal-dual method to solve (3) over
time-varying networks when ¢; = p; + f; is composite
convex. Assuming f; is smooth, convergence of the primal-
dual iterate sequence is shown, and O(1/k) ergodic rate is
given for suboptimality and infeasibility. In this paper, we
aim to improve on this rate by further assuming ), ¢; is
strongly convex to achieve O(1/k?) ergodic rate.

Although our focus is on the convex setting, it is worth
emphasizing that distributed constrained non-convex consen-

sus optimization is another area of active research, e.g., [37],
[38], [39]. In these papers, the objective is to minimize the
sum of agent specific smooth non-convex functions subject
to a globally known closed convex set over a time-varying
communication network. Under certain assumptions, it is
shown that agents’ iterates converge to a stationary point.

Contribution. To the best of our knowledge, only a
handful of methods, e.g., [25], [26], [27], [28] can handle
consensus problems, similar to (3), with agent-specific local
constraint sets {x; }scns without requiring each agent i € N/
to project onto ;. However, no rate results in terms of subop-
timality, local infeasibility, and consensus violation exist for
the distributed methods in [25], [26], [27] when implemented
for conic sets {x;}ien studied in this paper; moreover,
none of these four methods exploits the strong convexity
of the sum function » = >, . ¢;. We believe DPDA-
TV proposed in this paper is one of the first decentralized
algorithms to solve (3) with O(1/k?) ergodic rate on both
sub-optimality and infeasibility. More precisely, we show that
when ¢ is strongly convex and each (; is composite convex
with smooth f; for i € N, our proposed method reduces
the suboptimality and infeasibility with O(1/k?) rate as k,
the number primal-dual iterations, increases, and it requires
O(klog(k)) local communications for all k iterations in
total. To the best of our knowledge, this is the best rate
result for our setting. It is worth noting that, our results
imply that DPDA-TV can compute a point in the intersection
of closed convex sets with O(1/k) rate for the solution
eIror ) ;s fo —x* H — in a decentralized way over time-
varying directed communication networks, which is faster
than O(1/V/k) rate of Dykstra’s algorithm — see [40].

Notation. Throughout ||.| denotes either the Euclidean
norm or the spectral norm, and (0, w) = 0Tw for ,w €
R™. Given a convex set S, let os(.) denote its support
function, ie., 0s(f) £ sup,cgs (0, w), and let Ps(w) =
argmin{|jv —w|| : v € S} denote the projection onto S.
For a closed convex set S, we define the distance function
as ds(w) £ ||Ps(w) — wl|. Given a convex cone K € R™,
let K* denote its dual cone, i.e., K* = {6 € R™ : (6, w) >
0 Vw € K}, and K° £ —K* denote the polar cone of
KC. Note that for a given cone K € R™, ox(6) = 0 for
0 € K° and equal to +o00 if § ¢ K°. Given a convex function
g : R® - RU {400}, its convex conjugate is defined as
g*(w) £ supgepn (w,0) — g(0). ® denotes the Kronecker
product, 1,, € R™ is the vector all ones, and I,, is the n xn
identity matrix. 7, (S7) denotes the cone of symmetric
positive (semi)definite matrices. For @) >~ 0, i.e., @ € ST,
@-norm is defined as ||z||, £ /27T Qz. Finally, TI denotes
the Cartesian product.

II. METHODOLOGY

In this section we develop a distributed primal-dual al-
gorithm for solving (3) when the communication network
topology is time-varying. We will adopt the following defi-
nition and assumption for the time-varying network model.

Definition 2: Given ¢ > 0, for an undirected graph Gt =
(N,E, let Nt 2 {j e N = (i,5) € E or (j,i) € £}
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denote the set of neighboring nodes of i € AV, and dt £ |N}|
represent the degree of node i € N at time t; for a directed
graph Gt = (N, EY), let N}"™ 2 {j e N': (j,4) € E}U{i}
and N, 2 {j € N (i,5) € €'} U {i} denote the in-
neighbors and out-neighbors of node 7 at time ¢, respectively;
and dt £ |NV;"°"| be the out-degree of node i.

Assumption 2.1: Suppose that {G'},cr, is a collection of
either all directed or all undirected graphs. When G* is an
undirected graph, node i € A can send and receive data to
and from j € N at time ¢ only if j € NV}, ie., (i,j) € £

r (4,7) € E'; on the other hand, when G' is a directed
graph, node ¢ € N can receive data from j € A only if
jeN™ ie., (j,i) € £, and can send data to j € N only
if j € ;"M e, (i,7) € £
We assume a compact domain, i.e., let A;
r— 2| and A & maxenA; < oo
Let By = {z € R* : |z < 2A} and
B & icayBy C X 2 MienR*; and let C £ CN B
be a set of bounded consensus decisions, where C is the
consensus cone defined as:

Ce{xecX: JTcR"st.a;=2 VieN}) (@)

L

maXg, o, €dom @;

Definition 3: Suppose X £ ILicyR™ and X > x £

[i]ienr; let o : X — RU{oo} such that p(x) = p(x)+ f(x)
where p(x) £ icn pi(wi) and f(x) = 3icn fi(w).
Given a > 0, define ¢, (x) = p(x) + fo(x) where f,(x) =
f(x) + 52 (x).
Recall that when p > 0, according to Assumption 1.2,
Jf(x) = >,cn fi(w;) is strongly convex on X with modulus
f. On the other hand, as emphasized in the introduction,
although f(z) = >, fi(z) is strongly convex with
modulus z > 0, it is possible that f may be merely convex
with g = 0, which implies that f is strongly convex only on
C; in the next lemma, we show that by suitably regularizing
f, one can obtain a strongly convex function on X even
when p = 0.

Lemma 2.1: Consider f(x) = > ;. fi(v;) under As-
sumption 1.2 and suppose u = 0. Given o > 0, let
fa(x) £ f(x) + $d2(x). Then f, is strongly convex with

modulus /i, = WWQI to \/(ﬁ/lj\g 7a)2 +4L2 > 0 for

%U\/\EQ, where L = ZFT’“'H
Proof: For proof, see the online technical report [41].
|
Remark 2./: Using Lemma 2.1, one can design acceler-
ated algorithms for time-varying network topologies — hence,
in a way, it generalizes Proposition 3.6. of [31] where a
similar result is obtained using a regularizer defined by some
mixing matrices dependent on the static topology of the

network.

any o >

Let 2* be the unique solution to (3), x* £ 1®z* satisfies
dc(x*) = 0; hence, de(x) > 0 for x € X implies that

min{ps(x): Ajz; —b; € Ky, 1 € N} 3)

xeC

is equivalent to (3) for any o > 0. Next, consider the
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following reformulation of (5) as a saddle point problem:

= pa(x) + (A, x) —e(N)

+ Z(Qi,Aiwi — b)) —ox
ieN

where 8 = [0;]icar and X € R"WI. Therefore, for any
given a« > 0, one can compute a primal-dual optimal
solution to (3) through computing a saddle-point to (6). In
the rest, we first consider a naive implementation of a PDA
in [18] to solve (6), which does not result in a decentralized
method; thus, we subsequently discuss how to fix it to
design a distributed algorithm that works over time-varying
communication networks.

Let Y 2 MeyR™ xR™, Y 3y = [@'AT]T such
that & = [0;]iexyr € R™ and A € R™, where m =
> ienmi and mo £ n|N|. Let h : Y — R U {oo} such
that h(y) £ o5(A) + X ,cp 0k (0i) + (b, 0;). Define the
block-diagonal matrix A £ diag([A;]ien’) € R™*™0 and

= [AT I,,,]7. Given parameters v* >0, k¥ > 0 for
i€ N,let Dop 2 1, Do £ diag([+¢ Iml]z@\/) and

a Dk 0
anﬂk = |: 0 D,y

tion Dy(y,y) = 3 [ly — y||D ek for each k£ > 0. Hence,
with ¢, h and T deﬁned as above, given the initial iterates
x% and y¥ = [00 A0" |7, the PDA iterations of Algorithm 4

min max L(x,y)

+(64), (6)

} Finally, define the Bregman func-

in [18], applied to minye x maxyey @q(x)+(I'x,y)—h(y),
take the following form for £ > 0:
05t argminox, (0;) — (Ai(zf + 0" (@l —281) — by, 6:)
_oF2
+ ot 16; — 671", ieN, (7a)
AR argmin oz(A) — (xF 4+ (x" =%, A)
A
1 k2
+ 27k||)\ AT (7b)
X" argmin p(x) + (Vfa(x"), x) + (Ax — b, 8°11)
k1 1 k2
T A 4o xR, (7¢)
where x~1 = x0 — a possible choice for a« > 0 and the

positive parameter sequences {7v*}1, {7¥}x, {kF}x for i €
N is given in Remark 2.2 and Figure 1.

For k£ > 0, using extended Moreau decomposition for
proximal operators, A**Lin (7b) can be computed as
AL prokaoé()\k +oARxE 4 R (xF — xF1)) =
* (wk — Pz(wh)), where w* £ %Ak—l—x’f—i-nk(xk—xk_l)
for k£ > 0. Moreover, Vf, for the x-step in (7c) can be
computed as

Vfa(x*) = Vf(x*) + aPeo (x*)
= Vf(xk) + oz(xk — Pc(xk)). 8)
For any x = [z;]ien € X, Psz(x) and Pc(x) can be

computed as Pz ( ) = Pr(Pc(x)), and Pe(x) = 1 ® p(x),
where p(x) £ L Sien o Ps(x) = [P, (rlic and
Pp, (z;) = z; min{1, 2 o ”} for i e V.

Although O-step of the PDA implementation in (7) can
be computed locally at each node, computing x-step and



A-step require communication among the nodes to eval-
uate Ps(w”) and Pe(x*). Indeed, evaluating the average
operator p(.) is not a simple operation in a decentralized
computational setting which only allows for communication
among the neighbors. In order to overcome this issue, we
will approximate the average operator p(.) using multi-
communication rounds, and analyze the resulting iterations
as an inexact primal-dual algorithm. We define a commu-
nication round at time t as an operation over G' such that
every node simultaneously sends and receives data to and
from its neighboring nodes according to Assumption 2.1
— the details of this operation will be discussed shortly.
We assume that communication among neighbors occurs
instantaneously, and nodes operate synchronously; and we
further assume that for each PDA iteration £ > 0, there
exists an approximate averaging operator R*(-) which can be
computed in a decentralized fashion and approximate Pc(-)
with decreasing approximation error as k, the number of
PDA iterations, increases. This inexact version of PDA using
approximate averaging operator R*(-) and running on time-
varying communication network {G'};cr, will be called
DPDA-TV, of which details is discussed next.

Assumption 2.2: Given a time-varying network {G'};cr
such that G = (N &) for ¢ > 0. Suppose that there
is a global clock known to all 7 € N. Assume that the
local operations requiring to compute Ilx, as in (7a), and
prox, and Vf; as in (7c) can be completed between
two ticks of the clock for all ¢ € N and &k > 0; and
every time the clock ticks a communication round with
instantaneous messaging between neighboring nodes takes
place subject to Assumption 2.1. Suppose that for each
k > 0 there exists R*(-) = [R¥(-)];en such that RE()
can be computed with local information available to node
i € N, and decentralized computation of R¥ requires gy
communication rounds. Furthermore, we assume that there
exist ' > 0 and 8 € (0, 1) such that for all k¥ > 0,

IR*(w) — Pe(w)|| < N T |[wl,
Now we briefly talk about such operators. Let V! €
RWIXINT be a matrix encoding the topology of Gt = (N, £%)
in some way for ¢ € Z, . We define Wts £ Viyt—1  ys+l
for any t,s € Z4 such that ¢ > s + 1. For directed time-
varying graph G', set V' € RIWVIXIWI a5 follows: for each
ieN,

YweR™. (9)

Vi=

. . t,in, t . . t,in
i = g it jeN™ V=0 if jgN~"
J

(10)
Let ti € Z4 be the total number of communication rounds
done before the k-th iteration of DPDA-TV, and let q;, € Z
be the number of communication rounds to be performed
within the k-th iteration while evaluating R*. For x € X,
define

R¥(x) £ diag(W' 915 ) " (Wi @I, ) x (11)

to approximate P¢(-). Note that R¥(-) can be computed in a
distributed fashion requiring g, communication rounds — R¥
is nothing but the push-sum protocol [42]. Assuming that the

digraph sequence {G'};cz . is uniformly strongly connected
(M-strongly connected), it follows from [42], [43] that RF
satisfies Assumption 2.2. When {G'},cz, is undirected, then
choosing {V'};cz, according to Metropolis weights, one
can show that under certain conditions,

RE(x) & (Whtate @ T, )x (12)

satisfies Assumption 2.2, e.g., see [44]. B

Note that for Rk( ) & Ps(RF(-)), we have RF(w) € B,
and |R*(w)—Pz(w)|| < N 8% ||w|| for w € R™° due to
non-expansivity Of Pi. Consider the k-th iteration of PDA as
shown in (7). Instead of computing AFHLand xF11 as shown
in (7b) and (7¢), which require computing Pc, we propose
replacing (7b) and (7c) with similar update rules that use the
inexact averaging operator R* to approximate Pc. Hence,
we obtain an inexact variant of (7) replacing (7b) and (7c)

with
P URRIPEPN (wk — Ps (Rk(wk))) , (13a)
where w* = AP 4 xF o (xF — xF1), and
xFF Prox x, (xk — TkSk), (13b)
where s¥ = Vf(x*) + ATOF! 4 M o (xF — RF(xF)).

Thus, PDA given in (7) can be computed inexactly, and
in a decentralized way for any time-varying connectivity
network {G'},cz,, via the node-specific computations as
in the distributed primal-dual algorithm displayed in Fig. 1
below. Indeed, the iterate sequence {x*, A*, 8%}, gener-
ated by DPDA-TV displayed in Fig. 1 is the same sequence
generated by the recursion in (7a), (13a), and (13b).

Algorithm DPDA-TV ( x°,0° «, i, 61, 02, {qr} )

Initialization: x ! < x° A’ « 0, 61,62 >0,
0 m’ (w7 0’0,
0 5 0 0_s .
Y (-ﬁ, /ﬁ'/l(—’yﬁ ZGN
Step k: (k > 0)
Lpf e af (el —2fh), ieN
2. 9k+1 — P}CO (Qk + Ki-c (Azp]f - bl)), ieEN
3. wF kl/ +pF, dieN
4N e ot (wh = P (RE(WY))), ieN
5.5F « Vi) +AT 07T + Xt +a(af —RE(xY)), i e N
6.x <—pI‘OXk (xf—rksf), ieN
Tt e o B e T e ()
k+1 k+1 k+1_ 81
8. AR o /17 KT 4 AT ieN

Fig. 1: Distributed Primal Dual Algorithm for Time-Varying
{G'}i>0 (DPDA-TV)

Remark 2.2: If 4 > 0, then we set o = 0 and choose p1 =
w; otherwise, when p = 0, it follows from Lemma 2.1 that
for any o > %\N |L?, f, is strongly convex with modulus
Lo > 0; hence, we set u = p, for some o > %|./\/\E2.

Next, we quantify the suboptimality and infeasibility of
the DPDA-TV iterate sequence.
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Theorem 2.2: Suppose Assumptlons 1.1, 1.2, 2.1 and 2.2
hold. Startmg from A =0, 6" = o0, and an arbitrary

x0, let {x*,8" A*},5¢ be the iterate sequence generated
by Algorithm DPDA-TV, displayed in Fig. 1, using q; >
(5 + c)logy5(k + 1) communication rounds for the k-th

iteration for k > 0. Then {x*}>( converges to x* = 1®x*
such that x* is the optimal solution to (3). Moreover, the
following bounds hold for all K > 1:

)+ > 1671l die, (Asx —bn}

iEN

maX{w(iK)—w( ), de(x
A(K) 1
SNk T (%)

K *2
X —X

~K
T 0 _ i
< e 2 AME) = 0(53),
/) = O,
I N Zk 1 ’y X)
O(Zk:1 5(119_1;{4)’ hence, sup ¢y, AK) <

and the parameters satisfy max{N K>
where Ny = Zszl vF1/40, %

and A(K) =

0.

Proof: For proof see the online technical report [41].

|

Remark 2.3: Note that, at the K-th iteration, the

suboptimality, infeasibility and consensus violation are

O (%( A(K))

N in the ergodic sense, and the distance of

iterates to x* is O ( T AK )) where A(K) denotes the er-
ror accumulations due to average approximation. Moreover,
A(K) can be bounded above for all K > 1 as A(K) <
4y Zszl pa-1k* for some C; > 0; therefore, for any
¢ > 0, choosing {qy }rez, as stated in Theorem 2.2 ensures
that 21?;1 Bl—1k* < 1 4 % Moreover, for any ¢ > 0,
setting g, = (5 + ¢)log1 (k + 1) for k > 0 implies that the

B
total number of communication rounds right before the K -th
iteration is equal to tx = Z?:_Ol @ < (b+c)Klogi (K).
B

ITI. NUMERICAL EXPERIMENT

In this section, we illustrate the practical performance
of DPDA-TV when the network is either undirected or
directed for solving synthetic C-LASSO problems. We first
test the effect of network topology on the performance of
DPDA-TV, and then we compare DPDA-TV with another
distributed primal-dual algorithm, DPDA-D, proposed in [28]
for solving (3) — it is shown in [28] that DPDA-D converge
with O(1/K) ergodic rate when @ is merely convex. That
said, when ¢ is strongly convex with modulus > 0 as
assumed in this paper, using the fact that p(x%) — (p(x*g
4 ||>’<K — x| it immediately follows that H)‘(K —x*||

O(1/K).

We c0n51der an isotonic C-LASSO problem over time-

varying network {G'};>0. Given some A\ > 0, this prob-

lem can be formulated in a centralized form as z* =

argmin, p» {% |Cx —d|> + Az]l, : Az <0}, where
the matrix C = [Cjlienr € R™VIX" 4 = [d;]ienr € RV,
and A € R"~1%" TIn fact, the matrix A captures the isotonic
feature of the unknown target vector 2%, and can be written
explicitly as, A(¢,¢) = 1 and A((,£ + 1) = -1, for
1 < ¢ < n — 1, otherwise zero. Each agent i has access

IN IV

to C;, d;, and A; hence, by making local copies of x, the
decentralized formulation can be expressed as

A
Cix; — d; illq s
min 2ZH z; — di? +|N|Z\Im Iy

x=[z;] :
Az; <0 ieN ieN

(14)

where C is the consensus set - see (4).

In the rest, we set n = 20, m = n + 2, A = 0.05 and
K, = —Ri_l for i € N. Moreover, for each i € N, we
generate C; € R™*™ as follows: after mn entries, i.i.d. with
standard Gaussian distribution, are sampled, the condition
number of C; is normalized by sampling the singular values
from [1, 3] uniformly at random. We generate the first 5 and
the last 5 components of z# by sampling from [—10, 0] and
[0, 10] uniformly at random in ascending order, respectively,
and the other middle 10 components are set to zero; hence,
[z#]; < [%#]j41 for j = 1,...,n — 1. Finally, we set d; =
Ci(:v# + ¢€;), where ¢; € R™ is a random vector with i.i.d.
components following Gaussian distribution with zero mean
and standard deviation of 1073,

Generating initial undirected network: Gy = (N, &)
is generated as a random small-world network. Given |N|
and the desired number of edges |£y|, we choose |V edges
creating a random cycle over nodes, and then the remaining
|E0| — |N| edges are selected uniformly at random.

Generating time-varying undirected network: Given
V| and the desired number of edges |Ey| for the initial
graph, we generate a random small-world Gy = (N, &)
as described above. Given M € Z,, and p € (0,1), for
each k € Z,, we generate G = (N, EY), the communi-
cation network at time ¢t € {(k — 1)M,..., kM — 2} by
sampling [p|&o|] edges of Gy uniformly at random and we
set EFM-1 = g5\ Ut (k—1)M E'. In all experiments, we set
M = 5, p = 0.8 and the number of communications per
iteration is set to g = 101In(k + 1).

A. Effect of Network Topology on DPDA-TV

In this section, we test the performance of DPDA-TV on
undirected communication networks. To illustrate the effect
of network topology, we consider four scenarios in which
the number of nodes |[N| € {10, 40} and the average
number of edges per node (|€|/|NV]) is either ~ 1.5 or

~ 4.5. For each scenario, we plot both the relative error,
i.e., MaX;cnr H ie.,
max;en d, (Axk) = max;en ||(AZF) || versus iteration
number k. All the plots show the average statistics over all
25 randomly generated replications.

DPDA-TV on time-varying undirected networks: We
first generated initial undirected small-world networks Gy =
(N, &) as described for (N1, [E]) € {(10,15), (10,45),
(40,60), (40,180)}. Next, we generated {G'};>1 as de-
scribed above by setting M = 5 and p = 0.8. For each
consensus round ¢ > 1, V' is formed according to Metropolis
weights, i.e., for each i € N, V; = 1/(max{d;,d;} + 1)
if j e NLVE=1-3"n VZ], and V; = 0 otherwise —
see (12) for our choice of R".

For DPDA-TV, displayed in Fig. 1, we chose &
d2 = 1, which lead to the initial step-sizes as 70 =

1
27
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0

0 = and &° In Fig. 2, we plot

. _1
Limax+17 2] A7
max;en ||zF — 2*|| /||2*|| and max;en || (AZF) || statistics
for DPDA-TV versus iteration number k. Note that compared
to average edge density, the network size has more influence
on the convergence rate, i.e., the smaller the network faster
the convergence is. On the other hand, for fixed size network,

as expected, higher the density faster the convergence is.

10° . i
e — N =10, & =15 : —— N =10, |&] = 15
. =N =10, |6 = 45 . =N =10, |6 = 45
PRET] P N [N = 40, |&| = 80 10 b e | = 40, |&,] = 60
L] z |— V| =40, |e =180 f — | o | = IV =40, |&] = 180
~ +
fﬂo’z 4 %10" \
\ \ R
2 — ‘;
L L ? i
- ;
g 107N E
E ,

500 1000 1500 200 0 500 1000 1500 2000
k : iteration counter k : iteration counter

Fig. 2: Effect of network topology on the convergence rate of DPDA-TV

B. Comparison against DPDA-D [28]

We also compared DPDA-TV against DPDA-D,
in terms of the relative error and infeasibility of the
ergodic iterate sequence, i.e., max;en ||ZF — || /|2 ||
and max;en |[(AZF)4|. We further report the the
relative error of the actual iterate sequence, i.e.,
max;en ||2¥ — 2*|| /l2*|. In this section we fix the
number of nodes to |[V| = 10 and the average edge density
to |€|/|IN] = 4.5 — we observed the same convergence
behavior for other networks with different density and size.

Time-varying undirected network: We generated the
network sequence {G'};cz, and chose the parameters as in
the previous section. Moreover, the constant step-sizes of
DPDA-D are set to the initial steps-sizes of DPDA-TV. As
it can be seen in Fig. 3, DPDA-TV has faster convergence
compared to DPDA-D, confirming the theoretical guarantees:
O(1/k*) DPDA-TV versus O(1/k) for DPDA-D.

,
. 10 . -
J—DPDAD. (|2 — <|l/lIxll f . ) ——DPDAD
|~ —-DPDATV. ||8* — x*||/|]x"| : ——-DPDA-TV
F T — DPDA-TV: ||x* — x*||/||x"|| L — T T ; oo
I x
5 o
=
oot 8 40
G N =
g (BN = &
£ = =z X
% 10° b wio?
3 \ - g
10 e ] 10° f rrrrrrrrr r\qa
10l 10l
500 1000 1500 200 0 500 1000 1500 2000

k : iteration counter k : iteration counter

Fig. 3: DPDA-TV vs DPDA-D over undirected time-varying network

Time-varying directed network: In this scenario, we
generated time-varying communication networks similar to
[36]. Let G4 = (N,&;) be the directed graph shown in
Fig. 5 where it has || = 12 nodes and |&;| = 12 directed
edges. We set Gy = G4, and we generate {G'};>1 as in the
undirected case above using the parameters M =5 and p =

0.8; hence, {gt}tez , 1s M-strongly-connected. Moreover,
communication weight matrices V¢ are formed according to
rule (10). We chose the initial step-sizes for DPDA-TV as in
the time-varying undirected case, and the constant step-sizes
of DPDA-D is set to the initial steps-sizes of DPDA-TV. In
Fig. 4 we compare DPDA-TV against DPDA-D. We observe
that over time-varying directed networks DPDA-TV again
outperforms DPDA-D for both statistics.

oo ——DPDAD: | — x|/
|-~ DPDATV. || — x||/Ix"]| v
10" DPDA-TY: |[2* — x*||/||x"]| 1
=
‘°- i Zn
R

=2 [y

107 H 10
£ :
g 5 =
=z N 1 = N
=
© 103Lv N O TU ) S S
[ ke i ElY } 7 gl
12 i g :

10 T 10° e R —

10° d 10* i

0 500 1000 1500 200 0 500 1000 1500 2000

k : iteration counter k : iteration counter

Fig. 4: DPDA-TV vs DPDA-D over directed time-varying network.

Fig. 5: G4 = (N, &) directed strongly connected graph

IV. CONCLUSIONS

We proposed a primal-dual algorithm DPDA-TV for solv-
ing cooperative multi-agent consensus optimization over
time-varying (un)directed communication networks, where
only local communications are allowed. The objective is
to minimize the sum of agent-specific composite convex
functions subject to local conic constraints. We proved
that when the sum of local objective functions is strongly
convex, while each function can be merely convex, DPDA-
TV iterate sequence converges with O(1/k?) ergodic rate in
terms of suboptimality, infeasibility and consensus violation,
requiring a total of O(klog(k)) local communications in all
k DPDA-TV iterations. To the best of our knowledge, this
is the best rate result for our setting.
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