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and Its Variants

This paper reviews specialized efficient optimization algorithms that have been
developed to solve convex relaxations of various optimization programs that can be
defined to solve robust PCA and related problems.

By SHIQIAN MA AND NECDET SERHAT AYBAT

ABSTRACT | Robust principal component analysis (RPCA) has
drawn significant attention in the last decade due to its success
in numerous application domains, ranging from bioinformatics,
statistics, and machine learning to image and video processing
in computer vision. RPCA and its variants such as sparse PCA
and stable PCA can be formulated as optimization problems
with exploitable special structures. Many specialized efficient
optimization methods have been proposed to solve robust
PCA and related problems. In this paper, we review exist-
ing optimization methods for solving convex and nonconvex
relaxations/variants of RPCA, discuss their advantages and
disadvantages, and elaborate on their convergence behaviors.
We also provide some insights for possible future research
directions including new algorithmic frameworks that might be
suitable for implementing on multiprocessor setting to handle
large-scale problems.
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L. INTRODUCTION

Principal component analysis (PCA) is a fundamental tool
in statistics and data science. It obtains a low-dimensional
expression for high-dimensional data in an ¢, sense. How-
ever, it is known that the classical PCA is sensitive to
gross errors. Robust PCA (RPCA) has been proposed to
remove the effect of sparse gross errors. For a given data
matrix M € R™*", RPCA seeks to decompose it into
two parts M = L°+ S° where L° is a low-rank matrix
and S° is a sparse matrix. That is, RPCA assumes that
M is a superposition of L° and S°. As a result, the gross
errors will be captured by the sparse matrix S° so that the
low-rank matrix L° can still approximate M well. RPCA
does not only provide a low-dimensional approximation
which is robust to outliers, but it also finds vast applica-
tions in a variety of real applications such as computer
vision [1], image alignment [2], subspace recovery [3],
clustering [4], and so on. Mathematically, the conditions
on the low-rank and sparse components (L°,S°) have
been investigated in [1] and [5]-[7], so that the inverse
problem of recovering unknown (L°, S°) given M is well
defined. One particular formulation of RPCA can be stated
as follows:
min

k(L S
, Juin_ rank(L) + pS]lo

st L+S5S=M (1)
where ||S||o is called the ¢y-norm' of S and counts the
number of nonzero entries of S, and p > 0 is a trade-

lTe-chnicai]y, it is not a norm because it is not homogeneous; but,
we still call it a norm following the convention.
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off parameter. It is known that (1) is NP-hard and thus
numerically intractable. Later, it was shown in [1], [5],
and [6] that under certain conditions, (1) is equivalent to
the following convex program with high probability:

, min L] + ISl

stL+S=M (2)

where ||L||. is called the nuclear norm of L and equal to
the sum of the singular values of L, and ||S||1 :=}_,, [Sij|
is called the #;-norm of S. The optimization problem
in (2) is called robust principal component pursuit (RPCP),
and it can be reformulated as a semidefinite program
(SDP) [8] and solved by an interior point method for SDPs.
However, RPCA problems arising in practice are usually of
very large scale, and interior point methods do not scale
well for these problems. More efficient algorithms that
solve (2) and its variants by exploiting the structure in
these problems were studied extensively in the literature.
One variant of (2) deals with an additional dense noise
component. In particular, when M contains also a dense
noise component N? such that |N°||r < o for some
noise level » > 0, i.e., M = L° + S8° + N°, instead of
RPCP formulation in (2), the following so-called stable PCP
(SPCP) problem is solved:

min

L min (L] + IS

st [L+S—M|p<o. (3

It is proved in [9] that, under certain conditions on M,
solving (3) gives a stable estimate of L° and S° with high
probability in the sense that ||[L — L°||% + ||S — S°|2 <
O(mno?) where (L, S) denotes the optimal solution to (3).
Since (3) satisfies the Slater’s condition, it is equivalent to
the following unconstrained problem for an appropriately
chosen parameter i > 0 depending on o:

min

£ R
L.SgRmxn Hells-+ 21+ 5 IL+S—M|z. (4)

Note that if M is only partially observed, that is, if we
only have observations on M;; for some indices (3, j) from
a subset Q, then (2)-(4) can be, respectively, reformu-
lated as

min  ||L|l. + plIS|l1 st Po(L+S—M)=0 (5)

L,ScRMmXn
i L]+ Fod tL|PolL+5—-—M < 6
pmin (L] +plSll st (| Pa(L + Mz <o ()
min__||L|l. + plSll: + £ Pa(L + S — M)} )
L,SER™MXn 2

where the operator P, : R™*" — R™*" is defined as
[Pa(M)];; = My, if (i,5) € Q, and [Po(M)];; = 0
otherwise. Most algorithms we discuss in this paper for
solving (2)-(4) can be used to solve (5)-(7) directly or
with very little modification. For brevity, we will only
describe algorithms for solving (2)—(4) in this paper.

For the sake of completeness, we here briefly describe
the results in [1] and [9]. Assume that given data matrix
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M e R™*™ is a superposition of the unknown component
matrices L°, S°, and N°, ie., M = L° + 5§° + N?, such
that L° is low-rank (r := rank(L") <« min{m,n}), S
is sparse (s := ||S°|lo < mn), and |N°|| < o for some
o > 0. Robust/stable PCA is an inverse problem with the
objective of recovering L° and S° from the data matrix M.
Clearly, if §° is low-rank and/or L° is sparse, the recovery
is hopeless. To avoid these pathological instances, Candés
et al. [1] and Zhou et al. [9] consider (L?, S?) pairs coming
from a particular class satisfying some incoherence and
randomness conditions. Suppose the singular value decom-
position (SVD) of L° is given by L° = 37, oiuiv; , where
U = [u1,...,ur] and V = [v1,...,v,] are formed by its
left- and right-singular vectors. The incoherence conditions
assume that there exists a parameter > 0 such that

max |U " e|® < dr/m, max|V e’ <dér/n  (8a)
T or
IOV |l <4/ — (8b)
T
where ||Z]|o := max;;|Zi;| and e; denotes the ith unit

vector. For S, it is assumed that the set of indices for
the nonzero entries is random and follows a uniform
distribution among all the subsets of cardinality s. Roughly
speaking, these conditions assure that the low-rank matrix
L? is not sparse, and the sparse matrix S° is not low-rank.
Under these assumptions it is shown in [1] that when
N° =0, i.e., o = 0, solving the convex program (2) with
p = 1/\/max{m,n} recovers the optimal solution of (1)
(L*,8%), with high probability and (L*,S™) = (L°,5°)
provided that L° is sufficiently low-rank and S° is
sufficiently sparse comparing to the matrix size; see,
also, [6]. These results extend to the case where M
is partially observed; indeed, Candésetal [1] show
that solving (5) recovers L° under similar conditions.
Moreover, in [9], Zhou et al. showed that under certain
conditions, solving the convex problem (3) again
with p = 1/\/max{m,n} generates a low-rank and
sparse decomposition (L*,S”) such that ||L* — L°||} +
|S* — 592 < Cmno? for some constant C > 0
(independent of m, n, and o) with high probability; note
when N = 0, the recovery is exact with high probability.
Recently, there have been works that further study
statistical guarantees of different RPCA models.
Zhang et al. [10] provide a refined analysis of RPCA
which allows the support of the sparse error matrix to
be generated with nonuniform sampling, i.e., entries
of the low-rank matrix are corrupted with different
probabilities, hence, one can model the scenario where
some entries are more prone to corruption than the others.
A nonconvex model of RPCA is studied in [11] and a
gradient descent (GD) method with proper initialization is
shown to be able to reduce the computational complexity
comparing with existing methods. Zhang and Yang [12]
consider a nonconvex optimization formulation with
manifold constraint for RPCA. Two algorithms for
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Table 1 Convergence Rates of Different Algorithms

Algorithm Problem  e-optimality measure  Convergence rate
Algorithms for Convex Models

PGM [16] [EY] objective value error O(1/k)

APGM [16] 4) objective value error O(1/k%)

TIALM [17] (2) — convergence, no rate given

ADMM [18] 2) —_ convergence, no rate given

ALM [19] (17 objective value error O(1/k)

FALM [19] (17) objective value error O(1/k?%)

ASALM [20] (19) — convergence unclear, no rate given

VASALM [20] (19) —_ COnvergence, no rale given

FSPG [21] 3 objective value error O(1/k)

ADMIP [22] [€)) objective value error O(1/k)

Quasi-Newton method (fastRPCA) [23]  (26) — convergence, no rale given

3-block ADMM [24] (28) —_ convergence, no rate given

Frank-Wolfe [25] (30) objective value error aO(1/k)

Algorithms for Nonconvex Model

GoDec [26] (33 — local convergence, no rate given

GreBsmo [27] (36) — convergence unclear, no rate given

Alternating Minimization (R2ZPCP) [28]  (35) — local convergence, no rate given

Gradient Descent (GD) [11] = (36) —_ linear convergence with proper initialization
and incoherence ption

Alternating Minimization [29] (37) —_ local convergence with proper initialization
and incoherence and RIP ption

Stochastic alg. [30] (39 —_ convergence if the iterates are always full rank matrices,
no rate given

LMafit [31] (44) — convergence if difference between two consecutive iterales
tends to zero, no rate given

Conditional Gradient [32] (48) perturbed KKT O(1/VE)

ADMM [32] (51) perturbed KKT O(1/vk)

Proximal BCD [32] (54) perturbed KKT O(1/vk)

tNote: Some of these algorithms solve different problems and the e-optimality measures are also different, so the convergence rates are not directly comparahle
with each other. [11] has no explicit optimization formulation but the objective is similar to (36). Morcover, global convergence is usually guaranteed for convex
solvers, but only local convergence is usually guaranteed for nonconvex solvers, unless cerlain very strong assumplions are made,

manifold optimization are proposed in [12], and it is
shown that they can reduce the dependence on the
condition number of the underlying low-rank matrix
theoretically. Netrapalli et al. [13] consider another
nonconvex formulation of RPCA and analyze the iteration
complexity of the proposed alternating projection method.

There are also recent survey papers [14], [15] that dis-
cuss algorithms for solving RPCA, but these papers mainly
focus on its convex relaxations. In this paper, we aim to
review existing algorithms for both convex and nonconvex
relaxations/variants of RPCA models and point out a few
possible future directions.

IoO. ALGORITHMS FOR CONVEX
RELAXATIONS/VARIANTS OF RPCA

The earliest first-order methods for solving the con-
vex RPCP problem are given in [16] and [17]. In
[16], Lin et al. proposed an accelerated proximal gradient
method (APGM) [33]-[35] for solving (4) in which each
iteration involves computing the proximal mappings of the
nuclear norm ||L||. and the ¢;-norm ||S||;. In particular,
the nonaccelerated proximal gradient method (PGM) for
solving (4) simply updates L and S as

GF = pu(LF+S8*— M)
Lk+1 4

: 1 :
argmin, [IL||+ + o= [IL — (L* = 7G®)[|%

. 1
S : = argming p||Slls + 5-|IS — (8" = 7G")|IF. )

Note that G* is the gradient of the quadratic penalty
function in (4) and + > 0 denotes a step size. The two
subproblems in (9) both admit easy closed-form optimal
solutions. Specifically, the solution of the L-subproblem
corresponds to the proximal mapping of the nuclear norm,
which is given by

AR P A )
where the matrix shrinkage operation is defined as
S,(Z) = U diag((e —v)+)V " (10)
where Z = Udiag(c)V' is the SVD of Z, and 2, =
max(0, z). The solution of the S-subproblem corresponds

to the proximal mapping of the ¢;-norm, which is given
by

where the vector shrinkage operation is defined as

[sv(Z)]:; = sign(Zi;) o max{0, | Z;| — v} (11)
where sign(a) denotes the sign of a, and o denotes the
Hadamard product.

APGM incorporates Nesterov’s acceleration technique
and updates the variables as follows starting with
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iy =tg=1
TRz phy M(Lk .
tr
% — gk 4 tp—1—1 (% — 551y

G* - = u(L* + 5 — M)

. 1 o X
LM = argming ||L]|. + 5= |IL — (E* —7GY)|I7

. 1 = —p
S : = argming p|S|l + 5| — (5% —7GM|IF
teer:= (14 /14 443)/2. (12)

Results in [33]-[35] show that the proximal gradi-
ent method (9) and the accelerated proximal gradient
method (12) find an e-optimal solution to (4) in terms of
objective value error in no more than O(1/¢) and O(1/+/e)
iterations, respectively.

When there is no noise, i.e., & = 0, the problem of
interest is (2). The drawback of the above approach for
solving the unconstrained version in (4) is that (4) is
equivalent to (2) only when ;, — +oc. Therefore, for any
fixed p > 0, there is always a residual term which does
not go to zero. To remedy this, the same group of authors
[17] considered the augmented Lagrangian method (ALM)
for solving (2). By associating a Lagrange multiplier A to
the linear equality constraint, the augmented Lagrangian
function of (2) can be written as

£a(L, 5;8) : = LIl + plISIls = (A, L + 5 — M)
+ BIL+5 - Ml

where 5 > 0 is a penalty parameter. A typical iteration of
ALM iterates as follows:

(Lol ghdLy s a.r%[g_in Cs(L, S; AF) (13a)

ARFL . AR gl g¥ o M), (13b)
Note that the first step in (13) requires to minimize the
augmented Lagrangian function with respect to L and
S simultaneously, which usually is computationally very
expensive and almost as hard as solving the original prob-
lem in (2). In [17], Lin et al. proposed both exact and
inexact versions of ALM, where the former one solves the
subproblems (almost) exactly and the latter one solves the
subproblems inexactly according to a particular subprob-
lem termination criterion. Both the exact ALM and inexact
ALM (IALM) employ some iterative algorithm for mini-
mizing the augmented Lagrangian function until certain
overall stopping criterion is met, which may require many
iterations and is thus time consuming. Around the same
time when [16], [17] appeared, the alternating direction
method of multipliers (ADMM) was revisited and found
very successful in solving signal processing and image
processing problems [36]-[39]. It was then found that
RPCP in (2) can be nicely solved by ADMM due to its
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special separable structure [18], [19]. The ADMM itera-
tions for solving (2) take the following form:

LF .= argming La(L, S%: A%)
S**1 . — argming £(L*, 5; AF)

APYL o AR gp bl oo gh bl Apy (14)
Comparing to ALM in (13), it is noted that ADMM splits
the subproblem in (13a) into two smaller subproblems
that correspond to computing proximal mappings of ||L]|-
and ||S]|1, respectively. The ADMM (14) is known as two-
block ADMM as there are two block variables I and S,
and hence two subproblems are solved in each iteration of
the algorithm. It is now widely known that the two-block
ADMM is a special case of the so-called Douglas—Rachford
operator splitting method [40]-[43] applied to the dual
problem, and the two-block ADMM for solving convex
problems globally converges for any penalty parameter
8 > 0 [44] and converges with a sublinear rate O(1/k)
(see, e.g., [45]-[47]).

The alternating linearization method (ALM) proposed
by Goldfarb et al. [19] is shown to be equivalent to a
symmetric version of ADMM (14) with either ||L||. or
||S]|1 replaced with some suitable smooth approximation.
For instance, given v > 0, define g, : R™*™ — R such
that

gv(S) = max

e
jmax {(5,2) - 21125 121, <p} (15)

and let g(S) = p||S|:. Clearly, g, — g uniformly as v, 0.
Moreover, g, is a differentiable convex function such that
Vg is Lipschitz continuous. Indeed, given S € R™*", let
Z,(S) be the maximizer for (15), which in closed form
can be written as Z,(S) = sign(S)omax{Z|S|, plmxn},
and Vg, (S) = Z,(9) is Lipschitz continuous with constant
C,, = <. Similarly, given p > 0, define f, : R™*" — R
such that

- i i
foll) = max {(@.w)-EIWiL: wi<1} a6
where ||-|| denotes the spectral norm, and let f(L) =

A||L||.. Cleatly, f, — f uniformly as x ™, 0. Moreover, f, is
a differentiable convex function such that V f,, is Lipschitz
continuous. Indeed, given L € R™*", let W, (L) be the
maximizer for (16), which in closed form can be written
as W, (L) = U diag(max{(o/u) — 1, 0})V", where L =
Udiag(e)V " is the singular value decomposition of L
with o € R%, denoting the vector of singular values;
moreover, V f,(S) = W,(L) is Lipschitz continuous with
constant Cy, = (1/p).

The alternating linearization method in [19] can be
applied to solve the following problem, which is a
smoothed version of (2):
st. L+ 5 =M.

min || L]l 4+ g.(S), (17)
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Denote the augmented Lagrangian function of (17) as
Ls(L,S;A), then the alternating linearization method
in [19] iterates as follows:

L¥ - = argmin; C3(L, S*; AF)
Aeths K% peptt g g% aF)
SR = argming Ls (Lk+1, S; AH%)

ABFL. _ABFE Rty gttt A a8)
Goldfarb et al. [19] proved that this method has a sublinear
convergence rate O(1/k). They also proposed an acceler-
ated version of (18) (FALM) in [19] by adopting Nesterov’s
acceleration technique, and proved that the accelerated
alternating linearization method has a better sublinear
convergence rate O(1/k?).
Based on the success of two-block ADMM for solving (2),
it is then very natural to apply ADMM to solve SPCP in (3).
To do so, one has to introduce a new variable N, and
rewrite (3) equivalently as
. L]l + oISl

st,L+S+N=M, |N|p<o. (19)
The ADMM for solving (19) iterates as follows updating

three block variables:

L*t : — argmin, £s(L, S*, N*; A¥)

S**1 . — argming L5(L*1, 5, N*: AF)

N*1 . — argminy Ca(L*TE, 8511 N: AF)
AFtha Rk gl gy ghtly B _ a4y o)
where the augmented Lagrangian function for (19) is
defined as

Ls(L,8,N;A)
: =|ILlls + plIS]ls + L(N | |N]lr < o)
— <A,L+S+N—M)+§||L+S+N—M|ii~

where 1(N | N) denotes the indicator function of the
set {N € N}, ie, 1(N | N) = 0if N € N and
1(N | N) = oo otherwise. Note that the three subproblems
in (20) all have closed-form solutions. In particular, the
L-subproblem corresponds to the proximal mapping of
||L]|+, the S-subproblem corresponds to proximal mapping
of ||S||1, and the N-subproblem corresponds to projection
onto the set {N | ||[N|r < o}. Similar idea was used
in [2] for robust image alignments. In practice, this three-
block ADMM usually works very well. However, it was
later discovered that the ADMM with more than two block
variables is not necessarily convergent in general [48].
Note that although (19) contains three block variables, it
can be viewed as a two-block problem, if we group S and N
as one (larger) block variable. One of the earliest methods

for solving SPCP in (3) and (19) is a three-block ADMM
algorithm, ASALM, proposed by Tao and Yuan [20], and
although it does not have any convergence guarantees, it
works well in practice; and slightly changing the update
rule in ASALM leads to VASALM, of which iterate sequence
converges to an optimal solution; but this comes at the
cost of degradation in practical convergence speed when
compared to ASALM. Indeed, VASALM [20] can be seen
as a linearized version of two-block ADMM to solve (3)
with a convergence guarantee without any convergence
rate result. To remedy the shortcoming associated with
the theoretical convergence of three-block ADMM, several
other alternatives based on two-block ADMM were pro-
posed [21], [22], [49].

Aybat et al. [21] proposed an accelerated proximal
gradient method, PSPG, for solving SPCP in (3). First,
(3) is reformulated with a partially smooth objective.
In particular, the nuclear norm is smoothed according
to (16)

min _ fu(L)+plSli st (L,S)ex 2D
L,SeRm*n
x={LS)| |IL+5-M|r <o} (22)

where p > 0 is a given smoothing parameter. An acceler-
ated proximal gradient method such as [33] and [34] can
be applied to solve (21), because it was shown in [21] that
the following subproblem is easy to solve:

minlSlh + gL LIF st(ZSex @)
where ¢ > 0 denotes a step size of the proximal
gradient step and L denotes some known matrix. This
operation requires one sorting which has O(mnlog(mn))
complexity.

For any e > 0, setting p = §2(¢e), PSPG proposed in [21]
can compute an e-optimal solution to (3) within O(1/e)
iterations, and its computational complexity per iteration
is comparable to the work per iteration required by ASALM
and VASALM, which is mainly determined by an SVD
computation. On the other hand, it is also important to
emphasize that PSPG iterate sequences do not converge to
an optimal solution to the SPCP problem in (3). In par-
ticular, since within PSPG the smoothing parameter p is
fixed, depending on the approximation parameter ¢ for
solving (21), further iterations after reaching an e-optimal
solution in @(1/¢) iterations do not necessarily improve
the solution quality.

In [22] and [49], the variable penalty ADMM algo-
rithm titled alternating direction method with increas-
ing penalty (ADMIP) is proposed to solve the following
equivalent formulation for (3) using the variable splitting
trick:

min L=1L. 29

) IL|l- +pllSlls st (L,S) €x,
L,L . SeRmxn
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The augmented Lagrangian function of (24) can be written
as

Ls(L,L,S;A) = ||L]- + PIES|I1—(A,ﬁ—L)JrgI!ﬁ—LI[?r-

Given a nondecreasing penalty parameter sequence
{8 }rez ., ADMIP updates the variables as follows:

L** : — argmin L4 (L, L*, 8% A%) (25a)
L
(L, 8% : — argmin £, (L, 1,5, A%)  (25b)
(L,S)Ex
ARl — AR _ gh(fR+L_ pRAL), (25¢)

The step in (25a) requires computing a soft thresholding
on the singular values of an m x n matrix and the step
in (25b) requires an operation given in (23).

Under mild conditions on the penalty parameter
sequence, Aybat and Iyengar show that the primal-
dual ADMIP iterate sequence converges to an optimal
primal-dual solution to the SPCP problem in (24); hence,
{(L*,5%)}rez, converges to an optimal solution to (3),
and when constant penalty parameter is used as a spe-
cial case, it can compute an e-optimal solution within
O(1/€) iterations, of which complexity is determined by
an SVD. In particular, one needs the penalty parameter
sequence {3"}rez , to be nondecreasing and to satisfy
> .(85)™' = 4o0. The main advantages of adopting an
increasing sequence of penalties are as follows.

1) The algorithm is robust in the sense that there is no
need to search for problem data-dependent 3* that
works well in practice.

2) The algorithm is likely to achieve primal feasibility
faster.

3) The complexity of initial (transient) iterations can be
controlled through controlling {/5*}. The main com-
putational bottleneck in ADMIP is the SVD compu-
tation in (25a). Since the optimal L* is of low-rank,
and L, — L7, eventually the SVD computations are
likely to be very efficient. However, since the initial
iterates in the transient phase of the algorithm may
have large rank, the complexity of the SVD in the
initial iterations can be quite large. To compute the
solution to the subproblem in (25a), one does not
need to compute singular values smaller than 1/3*;
hence, initializing ADMIP with a small 3° > 0 will
significantly decrease the complexity of initial itera-
tions through employing partial SVD computations,
e.g., Lanczos-based methods such as PROPACK [50].

In [22], Aybat and Iyengar compared ADMIP against
ASALM on both randomly generated synthetic problems
and surveillance video foreground extraction problems.
According to numerical results reported in [22], on the
synthetic problems ASALM requires about twice as many
iterations for convergence, while the total runtime for
ASALM is considerably larger.
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Aravkin et al. [23] proposed solving

miny(L,S) st ¢(AL,S)—M)<o  (26)
where 4 : R™*™ x R™*™ — R™*" is a linear operator,
¢ : R™*™ — R is a smooth convex loss function, and + can

be set to either one of the following functions:

Ysum(L, S) : = |IL|l, + oS|I,
Ymax(L, ) : = max{||L|, , pmax [|S][, }-

P, pmax > 0 are some given function parameters. Note
that setting ¢ = Ysum, ¢(.) = |lI%, and A(L,S) =
PqL + S in (26), one obtains the SPCP problem in (6).
This approach offers advantages over the original SPCP
formulation in terms of practical parameter selection.
The authors make a case that although setting p =
1/+/max{m,n} in (3) has theoretical justification as briefly
discussed in the Introduction, many practical problems
may violate the underlying assumptions in (8); in those
cases, one needs to tune p via cross validation, and select-
ing pmax iN ¥max might be easier than selecting p in
1sum. INnstead of solving (26) directly, a convex variational
framework, accelerated with a “quasi-Newton” method, is
proposed. In particular, Newton’s method is used to find a
root of the value function
min
,SeRmxn

st (L, S)<T

$(A(L,S) — M) — o

v(r): =
L

(27)

ie., given ¢ > 0 compute v~ = (o) such that
v(r™) = 0. According to results in [51], if the constraint
in (26) is tight at an optimal solution, then there exists
7" = 7(o) such that v(r") = 0 and the correspond-
ing optimal solution to (27) is also optimal to (26).
Within Newton’s method for root finding, to compute
the next iterate 7%+, one can compute the derivative of
the value function at the current iterate +* as follows:
v (1) = —0° (AT Vo(A(Ly, Si) — M)), where 1° denotes
the polar gauge to ¢ and (L, Sx) denotes the optimal
solution to (27) at = = 7. Aravkin et al. proposed a
projected “Quasi-Newton” method to solve (27). According
to numerical tests reported in [51], QN-max, the quasi-
Newton method running on (26) with ¥¥ = tmax and
#(.) = ||.||#, is competitive with the state-of-the-art codes:
ASAILM [20], PSPG [21], and ADMIP [22].

In a recent work [24], Lin et al. considered the penalty
formulation of the SPCP problem, which is equivalent to
solving (3) for certain noise level & > 0

min || L||. + p||S||1 + ul| N/
st L+S+N=M (28)
where p > 0 is the sparsity tradeoff parameter and p > 0 is
a suitable penalty parameter depending on the noise level
o > 0. The authors showed that the following three-block
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ADMM for solving (28) globally converges for any penalty
parameter 3 > 0:

L*tY: — argmin; £5(L, S*, N*; AF)
ot argming E,g(LHl,S,Nk;Ak)
N*t1: — argminy Ls(L*T?, 8%t N;AY)

Al aptiag gy e

where the augmented Lagrangian function is

Ls(L,S,N;A)
: = ILll+ + plISTl: + plI N1

~ (A L+S+N-M)+ DL 454N - M.

Note that the three subproblems in (29) are all easy
to solve. Specifically, the L-subproblem corresponds
to the proximal mapping of nuclear norm |L|., the
S-subproblem corresponds to the proximal mapping of
¢, norm, and the N-subproblem admits a very easy
analytical solution.

The Frank—Wolfe method (also known as the conditional
gradient method) [52] was revisited recently for solving
large-scale machine learning problems [53], [54]. RPCA
is a representative example that is suitable for the
Frank-Wolfe method. Note that algorithms discussed
above usually involve computing the proximal mapping
of the nuclear norm, which is given by an SVD in (10).
Computing full SVD for a large matrix in every iteration
can be very time consuming. In contrast, the Frank—-Wolfe
method deals with nuclear norm in a much simpler
manner, which only computes the largest singular value
of a matrix in each iteration. The Frank-Wolfe method
for solving RPCA was proposed by Mu et al. [25], who
considered the penalized variant of RPCA (4). However,
this problem cannot be directly solved by the Frank—-Wolfe
method, because the Frank-Wolfe method requires a
bounded constraint set. Therefore, the authors further
reformulated (4) to the following problem for properly
chosen constants Ar, As, Ur, and Us:

N |
min EHL + S — M||% + Artr + Asts

sit., | Llle <t < U, |8 <ts < Us. (30)

The Frank—Wolfe method iterates as follows:

GF:=L*+8 M
(df.df,) : =argming, ., ., (G", L)+ Arts
(dﬁ,dfs) D = argming g, <so<vg (Gk, S) + Asts
v =2/(k+2)
L= (1 =)L +4dg
= (1= ek o,
§51 := (1-9")8" ++"d5

et = (1 —4")ts + " ds,. 31

It was shown in [25] that the two minimization
subproblems in (31) are easy to solve. In particular, solving
the subproblem for (dr,d:,) requires only to compute
the largest singular value and its corresponding singular
vector of an m x n matrix. This is a big saving compared
with computing the full SVD as required for computing
the proximal mapping of the nuclear norm. As a result, the
Frank-Wolfe method has better per-iteration complexity
than the proximal gradient method and ADMM algorithms
discussed above, and thus may have better scalability for
very large-scale problems. On the other hand, as pointed
out in [25], one clear disadvantage of the Frank-Wolfe
method on (30) is that at every iteration only one entry of
the sparse component is updated. This leads to very slow
convergence in practice. Hence, Mu et al. [25] proposed
combining Frank-Wolfe iterations with an additional prox-
imal gradient step in S-block. In particular, they proposed
that after Frank-Wolfe iterate (Lyy1,Sk+1) iS computed,
an extra proximal gradient step is computed and S-block is
updated again. Moreover, the authors also showed that this
hybrid method obtained by combining Frank—-Wolfe and
proximal gradient steps enjoys a sublinear convergence
rate O(1/k) similar to the Frank-Wolfe method given
in (31).

As a special case of RPCA, one can consider that all
columns of the low-rank matrix L are identical. That
is, the given matrix M is a superposition of a special
rank-one matrix . and a sparse matrix S. This special
RPCA finds many interesting applications in practice such
as video processing [55], [56] and bioinformatics [57].
For instance, in the background extraction of surveillance
video, if the background is static, then the low-rank
matrix L that corresponds to the background should have
identical columns. As a result, the background and fore-
ground can be separated by solving the following convex
program:

min |5
st.[z,z,...,z]c E+ S =M (32)
where [z,z,...,z] denotes the m x n matrix with all

columns being z, and E denotes the m x n matrix with
all ones. Note that the optimal = of (32) corresponds to
the static background for all frames and S corresponds to
the moving foreground. The advantage of (32) is that it
does not involve nuclear norm. As a result, SVD can be
avoided when designing algorithms for solving it which
makes the resulting algorithms very efficient. Yang et al.
[58] adopted the similar idea and designed variants of the
ADMM algorithm for solving a more general model where
the sparsity function of S is allowed to be a nonconvex
function. Convergence of the proposed ADMM was proved
under the assumption of KL property [59], [60] being
satisfied. We will discuss these topics in more details in
the next section.
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Im. ALGORITHMS FOR NONCONVEX
RELAXATIONS/VARIANTS OF RPCA

In this section, we discuss nonconvex relaxations and
variants of RPCA given in (1) and algorithms for solv-
ing them. Some researchers aim to (approximately) solve
RPCA in (1) directly without convexifying the rank func-
tion and/or the fy-norm. In [26], Zhou and Tao considered
a variant of (1)

min |[L+S—M|% strank(L) <, |So<7e (33)
where 1. and 7, are given parameters to control the rank of
L and sparsity of S. The authors proposed the GoDec algo-
rithm which alternatingly minimizes the objective function
in one variable while fixing the other, which is a special
case of alternating projection method analyzed in [61]. In
particular, a naive version of GoDec algorithm iterates as
follows:

L*¥ - = argmin, ||L+ S* — M||% s.t. rank(L) <7,

S**t1 . — argming |[L*T' 4+ 5 — M||% st [|S]lo < 7.
(34)

The two subproblems correspond to two projections.
Although the projection for S is easy, the projection for
L requires computing a partial SVD, which may be time
consuming when the matrix size is large. The authors
proposed to use a low-rank approximation based on bilat-
eral random projections to approximate this projection
operation which can significantly speed up the compu-
tation. The authors showed that the iterate sequence
converges to a local minimum provided that the initial
point is close to some point in the intersection of the
two manifolds {L | rank(L) < =} and {5 | ||S]jo < 7=}
The convergence of GoDec follows from the results
in [61].

In [28], Hintermiiller and Wu considered a regularized
version of (33)

min ||L+ S — M2+ £)L)2
|, min L+ 5 - MG+ S 1L

st.  rank(L) <7, |S[lo <7Te (35)
where 7., 7. > 0 are given model parameters as in (33),
and 0 < p <« 1 is a given regularization parameter.
An inexact alternating minimization method (R2PCP) on
matrix manifolds is proposed to solve (35). The iterates
Ly+1 and Sy are computed as “inexact” solutions to sub-
problems miny, {||L + Sk — M|} +p||L|[} : rank(L) < v}
and mins{||Lx+1 + S — M|} : ||S|lo < 75}, respectively.
Provided that a limit point of the iterate sequence exists,
under some further restrictive technical assumptions, it is
shown that first-order necessary optimality conditions are
satisfied.

Note that the convex relaxation in (2) involves the
nuclear norm ||-||. in the objective. Algorithms dealing with
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the nuclear norm (like the ones discussed in Section II)
usually require to compute its proximal mapping, which
then require an SVD. This can be very time consuming
when the problem size is large, even when min{m, n} is
in the order of thousands. This has motivated researchers
to consider nonconvex relaxations of RPCA that avoid
SVD calculations. One way to achieve SVD-free meth-
ods is to factorize the low-rank matrix .  R™*"
as a product of two low-rank matrices, i.e., factorize
L = UV, where U € R™*", V € R*™", and r <
min{m,n} such that r is an upper bound on rank(L?).
This leads to many different nonconvex relaxations of
RPCA.

In [27], Zhou and Tao considered a regularized version
of (33)

2
min 1 ||S]], + HUVT +5-— MH
uv.,5 F

s.t. rank(U) =rank(V) < 7. (36)
where pi1 > 0 and 7. € Z; such that . > rank(L?).
The authors propose a three-block alternating minimiza-
tion algorithm, GreBsmo, for solving (36). The proposed
algorithm lacks theoretical convergence guarantees; but,
on the other hand, according to numerical results reported
in [27], GreBsmo performs considerably better than both
GoDec [26] and the inexact ALM method [17] (around
30-100 times faster than both) when applied to fore-
ground extraction problems.

A nonconvex model of RPCA, similar to the one in [27],
is studied in [11] and a GD method with proper initial-
ization is proposed to solve it. The algorithm proposed
in [11] has two phases and in both phases the objective
is to reduce the function Q(U,V, S) == |[UV T + § — M||%.
In the first phase, a sorting-based sparse estimator is used
to generate a rough initial estimate S; to the unknown
sparse target matrix S, and then Uy and Vj are generated
via an SVD of M — Sy such that UpVy' forms a rough
initial estimate to the unknown low-rank target matrix L°.
In the second phase, the algorithm alternatingly performs
two operations: taking gradient steps for U and V', and
computing a sparse estimator to adjust S. The sparse esti-
mator is to guarantee that the fraction of nonzero entries
in each column and row of S is bounded above so that the
nonzero entries are spread out in S. The authors showed
that the proposed two-phase algorithm recovers the target
decomposition and linear convergence is achieved with
proper initialization and step size, under the incoherence
assumptions similar to (8). For a more detailed description
of the assumptions and the results, see [11].

In [29], assuming that the data matrix M is observed
indirectly through compressive measurements, Gu et al
considered the following variant of RPCA:

min H(U,V,S) == |AUVT +8)— M|z st ||S]lo <
(37)



Ma and Aybat: Efficient Optimization Algorithms for Robust Principal Component Analysis and Its Variants

where A is a sensing matrix. The alternating minimization
algorithm proposed in [29] iterates as follows:

U*t! . = argmin, H(U,V*, S*)

Vet . — argmin, H(U*™,V,S%)

§*t1 . —argming H(U*, V*T9) st ||S]lo < 7s.
(38)

It is noted that the U and V subproblems in (38) cor-
respond to solving linear systems and the S-subproblem
admits an easily computable closed-form solution. The
authors showed that under incoherence assumption on L°
and A satisfying the restricted isometry property (RIP),
(38) converges globally. However, note that A = I does not
satisfy the RIP condition, and therefore the convergence
is not guaranteed for the RPCA problem in (1) for which
A = I. A similar idea was also investigated in [62],
assuming the RIP condition on the sensing matrix A, and
it thus does not apply to the RPCA problem either.

In [30], Feng et al. considered the scenario such that the
columns of the data matrix M are observed in an online
fashion. This is suitable for many real applications, e.g.,
in surveillance video background separation. To handle
this problem, the authors proposed a stochastic algorithm,
which solves a nonconvex variant of RPCA

w
min SOV +8 = Ml[E + (U1 + IVIE) + pall Sl

(39

where p; and ps are some weight parameters. The formula-
tion in (39) exploits the representation of the nuclear norm
established in [8]. In particular, for any given L € R™*"
such that rank(L) < r, ||L||. can be computed as follows:

1 1
Ll = {§||U||% +3lIVIE:UVT = L} ;

(40)

inf
UERm %7 VERnXT

From (40), we know that (4) is equivalent to

. 1
min SOV +8 — Mg + 5015+ V1) + oS-

(41)

As a result, (39) is a nonconvex reformulation of the
penalized variant of RPCA in (4). For a given matrix M =
[Mi,...,M,] € R™*", solving (39) is the same as the
following empirical risk minimization problem:

i Yot 2
g = D MU - U

(42)

where £(M;, U) is defined as

] 1
£(M;,U) : = miny,cgr,s,crm §||UV1: +8: — M;||3

+ ELIVAIlE + pall Sl @3)

The empirical risk minimization (42) favors stochastic GD
algorithm. Of course, every time to compute the gradient
of ¢(M;,U), another minimization problem in (43) needs
to be solved. Therefore, the algorithm proposed in [30]
is an alternating minimization method with a subprob-
lem for U/ being solved using stochastic GD. The authors
showed that the proposed method converges to the correct
low-dimensional subspace asymptotically under certain
assumptions.
The following nonconvex variant of RPCA was proposed
by Shen et al. in [31]:
. T
min [UV — M]:. (44)
This simple reformulation can be viewed as a nonconvex
reformulation of (2) but without any regularization terms
on U and V. In particular, (44) can be rewritten as

min ||S]i st S+UV' =M. (45)
Shen et al. [31] proposed an ADMM algorithm (named
LMafit) for solving (45). By associating a Lagrange mul-
tiplier A to the constraint, the augmented Lagrangian

function for (45) can be written as

Ls(U,V,S;A) : =|IS]1— (A, UVT + 85— M)
B
+ 5IlUVT + 85— Ml%

where 3 > 01is a penalty parameter. The nonconvex ADMM
for solving (45) iterates the updates as follows:

U . = argmin,, Cs(U,VF, 8%;AF)
VETL: — argmin, Lg(U*T,V, 8% AF)
S*tl. — argming La(U*M, VEY, 5;A%)

ARHL . AR gRtlyRtlT L gkHL_ ay o 46)
Note that all three subproblems in (46) are easy to solve. In
particular, the U and V -subproblems correspond to solving
linear systems, and the S-subproblem corresponds to the
soft-shrinkage operation of the #;-norm (11). However,
this nonconvex ADMM lacks convergence guarantees.

In [32], Jiang et al. studied some variants of the condi-
tional gradient method and ADMM for solving nonconvex
and nonsmooth optimization problems. Consider a general
nonconvex optimization problem

mzin flz)+r(z) st zeX 47)
where f is smooth and possibly nonconvex, r(z) is convex
and nonsmooth, and X is a convex compact set. Moreover,
f satisfies the so-called Hélder condition

f@) < f@)+Vf@) (-2 +3ly—=llf VeyeX

where p > 1 and v > 0. The definition of the e-stationary
solution given in [32] is as follows.
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Definition 1: = € X is called an e-stationary solution
(e = 0) for (47) if the following holds:

Vx(z) = ggf;{vf(x)T(y —z)+r(y) —r(x)} = —=

The authors commented that this definition is stronger
than the one used by Ghadimi et al. in [63]. Now we briefly
discuss how to apply the algorithms analyzed in [32] to
solve nonconvex RPCA variants. Consider the nonconvex
RPCA variant given in (39), then the generalized con-
ditional gradient method proposed in [32] can be cus-
tomized to solve (39). Since the generalized conditional
gradient method requires a compact constraint set, one can
equivalently reformulate (39) in the following form:

i FU,V,8) + p2||S|ix

1
st. max{||U]|r, [V]r} < ?IIMIF

IS < 5=l )
where f(U,V,S) = (1/2IUVT + 8§ — M|% +
(p1/2)(IU|I% + |IV|I#) denotes the smooth part of the
objective function. It is easy to see that Vf is Lipschitz
continuous. Let v > 0 denote the Lipschitz constant.

At the kth iteration of the generalized conditional gradi-
ent method [32], implemented on (48), one needs to solve
the following subproblem:

min (Vo f(U*,V*,8%),U) + (Vv f(U*, V", 5%),V)
+(Vsf(U*, V¥, 55),8) + p2|IS]h

]
st. max{[U, [Vilr} < —=[M]l»
Wle, 1V} < —

1
ISl < 5—=II1M]|%- 49)
p2
Suppose (U*,V*, §%) denotes the solution of (49), then
a typical iteration of the generalized conditional gradient
method is given as follows:

(Solve  (49) to obtain (U*, V*, §%)
AU*  =0F _U*
AVFE  =VF_vE
AS* =gk gF
AF = [AU*, AVF, AS¥|
{ o = argming o,y a((VF(U*,V*, s%),A%) (50
+HIAMF + (1 = @)p2ll[UF, VE, 54l
+ape||[U*, V¥, 5|11
Ul = (1 — ap)U* + U
VEHL = (1 — ag)VE + o VE
S = (1 — ag)S* + i SE.

3

Note that the generalized conditional gradient method
in [32] involves a line search step for computing «j as
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shown in (50), which can be efficiently computed. It is
shown in [32] that the generalized conditional gradient
method in (50) can compute an e-stationary solution
of (48) in O(1/<?) iterations.

Jiang et al. [32] also proposed some ADMM variants that
can solve various nonconvex RPCA formulations, and the
authors provided a convergence rate analysis to compute
an e-stationary solution. The definition of e-stationarity
employed to analyze the ADMM algorithm is given in Def-
inition 2. We here discuss the ADMM-g algorithm in [32]
which can solve the following RPCA variant:

-
min 2L — UV [k + 201 + [VIE)
+ pallSlls + pall NI

stL+S4+N=M. (51)

This is a nonsmooth and nonconvex problem with five
block variables L, S, N, U, and V, and it can be viewed
as a variant of (39) with linear constraints. Treating NV as
the last block variable, a typical iteration of ADMM-g for
solving (51) iterates as follows:

L**! . = argmin; L£«(L,U*,V*, 8" N*;A%)
Ut = argmin,, Ly (L, U, V¥, 8%, N*; AF)
Vvt — argming, Coe (L5, ULV, 8%, N*: AF)
§** . = argming L (L*T, U, V! 5 N5 A%)
NFEHL . Nk _ nvNﬁ(LkH, Uk+1,Vk+l‘ Sk+1,N; Ak)
ARTL. AR ﬁ(Lk+1 4+ gkt N M) (52)

where n > 0 is a step size and the augmented Lagrangian
function £ is defined as

L(L,U,V,S,N;A)
1 £1
=3I =UVTE +FZUNE +IVIF) + p2Sll
+ p3|INI[F — (A,L+ S + N — M)
+ §||L+S+N—Mu§

and £ denotes £ plus a proximal term. For example, £ . is
defined as

Lon(L,U*, V¥, 8% N*A%)
= L(L,U*, V¥, 8%, N5 A%) + 2L — L8|

where H denotes a prespecified positive-definite matrix
which needs to satisfy certain conditions to guarantee the
convergence of the method as stated in (52). It is noted
that the last block variable NV is treated specially. It is not
updated by minimizing the augmented Lagrangian func-
tion, but by taking a gradient step on it. The results in [32]
indicate that ADMM-g (52) finds an e-stationary solution
for (51) in no more than O(1/€%) iterations. Since (51)
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is a constrained problem, the definition of its e-stationary
solution is different from the one in Definition 1. Here we
briefly discuss how it is defined for constrained problems
in [32]. We consider the following constrained nonsmooth
and nonconvex problem:

=

min f(z1,...,Tp) + Zf_l ri{zi)
p—1

s.L. Zi:l Aizg -+ Ip = b

eX, i=1,...,p—1 (53)
where z; € R™, f is differentiable and possibly non-
convex, each r; is possibly nonsmooth and nonconvex,
and each A; is a convex set. Note again that the last
block variable x, is treated differently, which is needed in
the analysis of convergence rate. The e-stationary solution

to (53) is defined as follows.

Definition 2: (z1,...,z;) € X1 X --- x Ap_1 x R"? is
called an e-stationary solution to (53), if there exists A\~
such that the following holds for any (z1,...,1p) € &1 %
s Moy X R™2:

(zi —27) (9} +Vif(z3, ..., z3) —AJA") > —¢
i=1

‘1I;—1:I;) — A7 <e

37 ":p_l
IVaf(zi,. .
p—1 * *

137 Aust + 25— bl <e

where g7 is a general subgradient of r; at point =;. This
set of inequalities can be viewed as a perturbed KKT
system.

It is also interesting to note that (51) is equivalent to the
following unconstrained problem, and thus can be solved
by block coordinate descent method (BCD):

.1
min =M —§ — N — UV |k + E-(01F + IVIF)

+ p2||Sl1 + psl| N7 (54)

Most existing BCD-type algorithms for solving noncon-
vex problems lack convergence rate analysis. In [32],
Jiang et al. proposed a proximal BCD method that can find
an e-stationary solution in O(1/¢2) iterations. Denoting the
objective function in (54) as F(U,V, S,N), the proximal
BCD given in [32] for solving (54) updates the variables as
follows:
U*! : = argmin,, F(U,V*, S* N*) + %HU — U,
V*tL: — argmin, F(U**!,V, 8%, N*) + %HV =W
S**: = argming F(U**, V¥, 5, N*) + %IIS — S|
N**!: = argminy F(U*T, vV, s N H% IN—NII%
(55)

where H denotes a prespecified positive-definite matrix.

IV. PRELIMINARY NUMERICAL
EXPERIMENTS

In this section, we provide some elementary numer-
ical results of different algorithms for solving RPCA.
We selected eight different solvers, five for solving convex
problems: TALM [17], ADM [18], ADMIP [22], fastRPCA-
max [23], and fastRPCA-sum [23], and three for solv-
ing nonconvex problems: LMafit [31], R2PCP [28], and
GD [11]. We tested their performance on some standard
synthetic data used in many RPCA papers. The synthetic
data were generated in the following manner.

1) L° = UV such that U € R™"and V ¢ R™™"
for r = cyn and e, € {0.05,0.1}. Moreover, Us; ~
N(0,1) and V;; ~ N(0, 1) for all 7, j are independent
standard Gaussian variables.

2) @ < {(s,7) : 1 £ 1,7 £ n} was chosen uniformly
at random such that its cardinality Q| = c,n? and
cp € {0.05,0.1}.

3) S ~ U[—/8r/x,+\/8r/x| for all (i,j) € Q are
independent uniform random variables.

4) Nf; ~ gN(0,1) for all 4, j are independent Gaussian
variables, where for a given signal-to-noise ratio
(SNR) of M, g is computed from

_ E[|L° + 5°|[%]
sNR(a) = 101ogs, (L 21
erm + e g—; )

=10 Iogm ( 92

and SNR(M) € {50 dB, 100 dB}.

5) The data matrix M = L° + §° + N°.

Note that the nonzero entries of the sparse component
and the entries of the low-rank component have approx-
imately the same magnitude in expectation. Indeed, for
n > 1, LY =~ +/rN(0,1); hence, E[L;] = /2r/x for
all 1,57 and E[S5] = \/m for (i,7) € Q. We cre-
ated ten random problems of size n € {500, 1500}, i.e.,
M € R™™, for each of the two choices of SNR(M),
cr and ep, using the procedure described above. We
plot the figures showing the averaged relative errors of
the iterates over ten runs versus CPU times (in sec-
onds) in Fig. 1, where the relative error of (L,S) is
defined as

L —L°||r
Error(L, S) == I ||L°|[p|i

IS — 52l
15°Tx

For all the eight algorithms, we used their default stopping
criteria and default parameters setting if the output is of
good quality; otherwise, we tuned some parameters so
that the algorithm becomes competitive for our experi-
mental setting. It is worth emphasizing that fastRPCA-
sum and fastRPCA-max solve (27) with v = %sum and
1 = tmax, respectively; and pmax, the tradeoff parameter
for Ymax, is set to ||L°|./||S?]1, i.e., this model needs
an oracle that provides an ideal separation to tune the
parameter.
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Fig. 1.

Comparison of different algorithms. The first row shows the comparison results for n=500, SNR = 50 dB, and (cr,cp)=(0.05,0.05),

(0.05,0.1), (0.1,0.05), (0.1,0.1), respectively, from left to right. The second row corresponds to n=500, SNR = 100 dB; the third row
corresponds to n=1500, SNR = 50 dB; and the fourth row corresponds to n=1500, SNR = 100 dB. All are with (cr.cp) set the same as the first
row from left to right. We remark again that these comparison results only reflect the performance of the algorithms under the current

setting of parameters, stopping criteria, initial points, input data, and so on. For other settings and data, the performance can be very

different. See Remark 4.1.

Remark 4.1 We remark that comparing different
algorithms for solving RPCA is not an easy task for the
following reasons. i) The algorithms are designed for
solving related but different formulations. For example,
IALM solves (2) and LMafit solves (45), so it is difficult
to compare which algorithm is better. ii) The performance
of all the algorithms depends on the parameter settings,
initial points, and data structures. For example, from Fig. 1
we see that LMafit consistently outperforms fastRPCA-sum.
However, this is only based on the data and parameters we
tested. For other data sets, initial points, and parameter
settings, fastRPCA-sum may be better than LMafit.

V.FUTURE DIRECTIONS

Although (2) is a convex problem with nice statistical
properties, ||-||. causes problem for large-scale instances
as standard algorithms for (2) cannot easily exploit mul-
ticore or multiserver computing environments as (2) is not
amenable to distributed optimization. Some future work
in this direction is related to the nonconvex formulation
which uses an equivalent representation of |-|. by
Recht et al. [8] as given in (40). For instance, given some
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v > 0, consider g, : R™™ — R defined in (15). Given
a data matrix M € R™*", using g., we can formulate a
smooth nonconvex optimization problem

1 1
i U, (U, VY 2= |UI% + = ||V
. T U, V) =50l + 5 IVIF

+ pg, (UVT —M)  (56)
where p > 0 and Zy > r > rank(L°) are given para-
meters. Here, one can use the PALM algorithm [64] to
generate a sequence that converges to a critical point of
¥, which is a KL function; also see [32] and [65] for some
other related work on nonconvex optimization.

Note that instead of solving the smooth approxima-
tion given in (56), it is preferable to solve the following
nonconvex formulation, which is equivalent to (2):

5 1 2 , 1 2 T
e BB U+ IVIE+p| UV — M|, 57)
To the best of authors’ knowledge, there do not exist

efficient methods with strong convergence guarantees to
solve (57).
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Note that the third term in (57) is a composite function
of the form g(h(-)) where g is a nonsmooth convex function
such that g is Lipschitz continuous, and 4 is a differentiable
function such that its Jacobian A’ is Lipschitz. Thus, one
possible direction is to design the trust region algorithm
for (57); see [66, Sec. 7.7]. As an alternative to the trust
region algorithm, one might also consider the augmented
Lagrangian (AL) method. It is known that for constrained
nonconvex problems, provided that the second-order KKT
conditions hold, the AL will have a saddle point for the
penalty parameter chosen sufficiently large; therefore, the
duality gap encountered in Lagrangian formulations does
not pose a problem for augmented Lagrangian-based meth-
ods, thus, AL methods might prove useful to establish
convergence to local minima when initialized sufficiently
close to the local minimum [66], [67].

Due to the close relationship between low-rank matrix
completion and RPCA, some algorithms for solving low-
rank matrix completion problems can possibly be extended
to solve variants of RPCA. New methods based on manifold
optimization have been recently studied for solving low-
rank matrix completion problems; see, e.g., [68]-[72].
It is noted that all these works consider a matrix com-
pletion variant/reformulation which is a manifold opti-
mization problem with a smooth objective function. For
example, assume that the matrix M is observed par-
tially, i.e., only entries that in a subset 2 are observed,
the low-rank matrix completion model considered
in [70] is

; 1
min

2
= Y (v y—My) + 50V
U€G(m.r),VERTXT 2 > CH(UV )y —Mi)*+ 5 UV

(i.5)EQ
(58)

where G(m,r) denotes Grassmann manifold, C;; denotes
some weighting parameter, and x > 0 is a penalty parame-
ter. It is noted that (58) is a manifold optimization problem
with a smooth objective function. Many existing algorithms
can be used to solve a manifold optimization problem with
a smooth objective, for example, the Riemannian gradient
method [73], the Riemannian trust region method [70],
the Riemannian conjugate gradient method [72], and
SO on.

However, it is more challenging to design algorithms for
manifold optimization reformulations of RPCA variants.
The reason is that RPCA variants always involve non-
smooth terms in the objective. In fact, all RPCA variants we
discussed so far involve ||S||; in the objective. As a result,
any manifold optimization reformulation of RPCA variants
will involve the nonsmooth ¢; term ||S||: as well, unless
one can bear with smoothing it, which can potentally
degrade the sparsity of S. Algorithms for solving the man-
ifold optimization problem with a nonsmooth objective
function have been very limited, and most of them lack
convergence guarantees. Nonetheless, some of these algo-
rithms can still be adopted to solve manifold optimization

reformulations of RPCA variants, although their efficiency
in practice needs further investigations. For instance,
Hintermiiller and Wu [28] and Podosinnikova et al. [74]
propose optimization methods on matrix manifolds. In
particular, in [74], Podosinnikova et al. proposed a new
RPCA model by minimizing the trimmed reconstruction
error, which reduces to minimizing a nonsmooth function
over the Stiefel manifold. The method lacks theoretical
convergence guarantees such as convergence to a criti-
cal point. That said, Podosinnikova et al. [74] numerically
demonstrate that their method exhibits good empirical
recovery and it is competitive against other nonconvex for-
mulations and convex optimization-based methods. One
simple manifold optimization reformulation of RPCA is
given as follows:

min

UV — Mlx
VeSS (m,r), VERnXT

(39)

where S;(m,r) denotes Stiefel manifold. The advantages
of (59) are as follows: i) it does not involve the nuclear
norm and thus avoids SVD; and ii) the sizes of I/ and V
are m x r and n x r, respectively, which are much smaller
than the size of M when r < min(m,n). One may also
note that (59) differs from (44) only with the Stiefel man-
ifold constraint. The drawback of (44) is that its optimal
solution (U*, V™) is not unique, because (U*W,V*W ™)
is also optimal for any invertible matrix W < R"*". This
drawback is fixed nicely in (59). There are several ways to
solve (59). For example, one can reformulate (59) as the
following one and then apply ADMM to solve it:

min [|S|}

st., S+ UV =M, U e Si(m,r). (60)

The ADMM iterates the updates as follows:

Ut! : = argmin,, L5(U,V*, 8% A%), st, UeSi(m,r)
VETL . — argmin, Ca(U*TL, V, 85 A%)
S*L - — argming Ca(U*,VFT, 5:A%)

AL AR gRtiyRRT  ghtl g (61)

where the augmented Lagrangian function is defined as
Ls(U,V,8;A): =||S|ls — (UVT +5 — M)
B T 2
— §||UV +S—M|F.

The U-subproblem in (61) is a smooth manifold optimiza-
tion problem and can be solved by existing methods [73].
This method should be very efficient, but the main issue is
under what kind of conditions it is guaranteed to converge.

Zhang et al. studied some ADMM variants for
Riemannian manifold optimization in [75], which can
be used to solve manifold optimization reformulations of
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some RPCA variants. We here briefly discuss this work. We
consider the following RPCA variant, which minimizes a
nonsmooth function over Stiefel manifold:
1 2 B 2
min L — UV} + oISl + SINIE
stL+S+N=M

U € 8(m,r) (62)

where p > 0 and g > 0 are tradeoff parameters. One of the
ADMM variants for solving (62) proposed in [75] iterates
the updates as follows:

L¥ o — argming £p6(L; 0%, V", 5", N% A",

s.t., U € S¢(m,7)
Ut . — argming £, (L¥T, U, Vv, 8%, N*;A¥)
v — arpming £ (L*, UM, V, S, N* AF)
S — arpming B (E° O, WL G N AR
N*H = NE g L(LR UM R gREL N ARy
AR+

s = A* — gLrt 4 g L NFHL ) (63)

where > 0 is a step size, the augmented Lagrangian
function £ is defined as

L(L,U,V,S,N:A)
s =1L = UV I + el
+EINIF - (A, L+5+N - M)
X+ §|]L +S+N-—M|%

and £ denotes £ plus a proximal term. For example, £, « is
defined as

Loe(L,U*, VE, 5% N*;AF)
: 1 .
t=L(L,U"VE, S5, N5 AR + 5 |IL — L¥|

where H denotes a prespecified positive-definite matrix
which needs to satisfy certain conditions to guarantee the
convergence of (63). Zhang et al. showed in [75] that the
algorithm described in (63) finds an e-stationary solution
to (62) in no more than O(1/€%) iterations under certain
conditions on 3, n, and H.
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