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21 ABSTRACT: Ocean metaproteomics is an emerging field enabling
22 discoveries about marine microbial communities and their impact on global
23 biogeochemical processes. Recent ocean metaproteomic studies have provided
24 insight into microbial nutrient transport, colimitation of carbon fixation, the
25 metabolism of microbial biofilms, and dynamics of carbon flux in marine
26 ecosystems. Future methodological developments could provide new
27 capabilities such as characterizing long-term ecosystem changes, biogeochem-
28 ical reaction rates, and in situ stoichiometries. Yet challenges remain for ocean
29 metaproteomics due to the great biological diversity that produces highly
30 complex mass spectra, as well as the difficulty in obtaining and working with
31 environmental samples. This review summarizes the progress and challenges
32 facing ocean metaproteomic scientists and proposes best practices for data
33 sharing of ocean metaproteomic data sets, including the data types and
34 metadata needed to enable intercomparisons of protein distributions and
35 annotations that could foster global ocean metaproteomic capabilities.
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37 ■ INTRODUCTION

38 The measurement of many proteins within environmental
39 microbial communities, known as metaproteomics, is of
40 increasing interest to oceanographers and protein scientists.
41 The capacity to directly examine a multitude of functional
42 attributes of microbial communities and their linkages to both
43 ecology and biogeochemistry was once aspirational, but now
44 appears achievable with recent improvements in genomic
45 sequencing and mass spectrometry technology. Emerging
46 metaproteomic methodologies, in concert with other tradi-

47tional and new approaches, could be particularly powerful in
48the study of how complex environmental systems operate, as
49well as how they respond to environmental changes.
50Since the development of mass spectrometry based
51proteomic technologies, there has been an increasing number
52of metaproteomic or community-based analyses (Table S1),
53 t1including those of marine/ocean biota (Table 1). Metapro-
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54 teomics of complex environmental samples such as seawater,
55 sediments, sinking particles, and biofilms have great potential
56 for revealing insight into biogeochemical cycling and microbial
57 response to environmental change in marine systems. For
58 example, recent ocean metaproteomic studies have provided
59 new insights into microbial nutrient transport,1,2 colimitation
60 of carbon fixation processes,3 biogeochemical processes within
61 oxygen minimum zones,4 the composition of microbial
62 biofilms,5 dynamics of carbon flux in marine ecosystems,6−8

63 and seasonal shifts in microbial metabolic diversity.9 Future
64 methodological developments should lead to new capabilities
65 such as characterizing large scale ecosystem changes,

66estimating biogeochemical reaction rates from enzyme
67concentrations and conducting in situ stoichiometric measure-
68ments. In the short time since the emergence of these
69metaproteomic methods, they have been applied to environ-
70ments around the world: including coastal and open ocean
71pelagic environments from the Atlantic and Pacific Oceans,
72and even to the rapidly changing polar environments of the
73Arctic and Antarctic regions. Diverse biological communities
74have been sampled including free-living microbial and algal
75communities (including microbiomes), sinking particles,
76marine sediments, and even biofilms attached to human built
77environments.1−3,5,7,8,10−15 Also critical to the development
78and deployment of metaproteomic approaches in natural
79environments are controlled laboratory experiments on
80cultivated microbes from the environment,10,11,16−23 which
81can enable the identification and verification of protein
82biomarkers that characterize environmental processes.

83■ CONFRONTING CHALLENGES IN
84METAPROTEOMIC RESEARCH
85Despite this progress, key challenges remain in the application
86of proteomic methods in environmental contexts.24 These
87challenges can be organized into four broad categories: (1)
88environmental sample acquisition and protein extraction, (2)
89chromatographic separation and mass spectrometry analysis,
90(3) informatic data processing, and (4) data archiving and
91 f1sharing (Figure 1). A defining feature that affects all of these
92categories is that the ocean and other natural environments
93contain a multitude of organisms that are not easily separated,
94and hence are typically studied together in this “meta”

Table 1. Examples of Ocean Metaproteomic Studies

North Atlantic Ocean, Bermuda Atlantic
Time Series Station

Sowell et al., 2008; Bridoux et
al., 2015; Saito et al., 2017

Ocean scale metaproteomics in the Atlantic
Ocean

Morris et al., 2010; Bergauer
et al., 2018

Antarctic Peninsula, Southern Ocean Williams et al., 2012
Bering Sea Algae Moore et al., 2012, 2014
Targeted metaproteomics of Central Pacific
Ocean

Saito et al., 2014; Saito et al.,
2015

Marine biofilms, shiphull environments Leary et al., 2014
Metaproteomics of the Saniitch Inlet
Oxygen Minimum Zone, Coastal Pacific
Ocean

Hawley et al., 2014

Metaproteomics of aquatic estuary microbial
communities

Colatriano et al., 2015

Marine sediments Moore et al., 2012, 2012, 2014
Phaeocystis and diatom blooms in the Ross
Sea of Antarctica

Bertrand et al., 2013; Bender
et al., 2018

Figure 1. Analysis of proteins within natural environments presents unique challenges that can be improved upon to allow this new type data to
inform ecosystem function and change. These challenges span sample collection and extraction, mass spectrometry analysis, informatic approaches,
and data management and dissemination.
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95 community context. For example, in a typical ocean seawater
96 sample, the microbial diversity includes prominent taxa from
97 each of the three major domains of life as well as from viruses.
98 This natural biological diversity manifests itself in a
99 tremendous chemical complexity for proteomics analysis,
100 where proteins from many organisms are digested into
101 peptides and analyzed together, resulting in peptides that
102 have the potential to be shared across multiple species or
103 ecotypes, or whose sequences are not within available DNA
104 databases. New generations of fast scanning high resolution
105 mass spectrometry instrumentation, such as orbitrap and time-
106 of-flight instruments, now allow deep interrogation of these
107 complex samples and the many low abundance or chimeric
108 peaks within them, thereby improving and elevating the
109 confidence of identification. However, shared chemical
110 similarities across this biologically diverse environment creates
111 a number of challenges throughout the metaproteomic
112 workflow. In this document we identify and describe the
113 status of these challenges in order to enable researchers from
114 environmental fields and beyond to focus efforts on resolving
115 them. In addition, we propose a set of best practices for current
116 and future data sharing for ocean metaproteomic data sets in
117 order for researchers to make maximal use of current and
118 incoming data sets. This effort is necessary to enable

119interoperability and accessibility as this exciting new data
120type becomes more widely adopted and to allow critical
121temporal comparisons as the field evolves.

122Sample Acquisition from Natural Environments and
123Protein Extraction

124The study of natural marine communities presents significant
125challenges in sample collection far beyond that involved in
126laboratory-based studies. First, accessing the vast oceans that
127cover 70% of the Earth’s surface can require expeditions on
128research vessels to reach remote oceanic locations. Second, in
129seawater environments microbes are often 3−4 orders of
130magnitude more dilute than model organism laboratory
131cultures. For example, marine microbial populations can
132range from 1000 to 100 000 cells per milliliter in seawater
133compared to model microorganism cultures, such as
134Escherichia coli that exceed a billion cells per milliliter. This
135dilute cellular abundance in freshwater and marine environ-
136ments requires filtration of tens to hundreds of liters of
137seawater by combining multiple sampling bottles or using
138specialized in situ underwater pumping systems to yield useful
139 f2quantities of protein for mass spectrometry analyses (Figure
140 f22a). Similarly, collection of sinking particles and sedimentary
141samples can require specialized sediment traps and coring

Figure 2. (a) Collection of ocean metaproteomic samples by in situ underwater McLane pump sampler as deployed in Terra Nova Bay of the Ross
Sea in Antarctica aboard the icebreaker R/V Palmer to capture the microbial and algal communities as well as larger sinking particles by filtration of
several hundreds of liters. (b) Example vertical distributions of three microbial proteins in the Equatorial Pacific Ocean using targeted
metaproteomics that are biomarkers of nitrogen (N), phosphorus (P), iron (Fe) nutrient stress, and nickel (Ni) biogeochemical cycling (data from
Saito et al., 2014, https://www.bco-dmo.org/dataset/646115). Proteins shown include the nitrogen PII regulator protein from Prochlorococcus
(sequence VNSVIDAIAEAAK), the sulfolipid biosynthesis protein from Prochlorococcus (NEAVENDLIVDNK), UDP sulfolipid biosynthesis
protein from multiple taxa (FDYDGDYGTVLNR), the IdiA iron transporter from Prochlorococcus (SPYNQSLVANQIVNK), and the nickel
superoxide dismutase enzyme from Prochlorococcus and Synechococcus (VAAEAVLSMTK). Taxonomic assignments determined using
METATRYP.14
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142 devices. There is considerable room for improvement in
143 engineering of sample collection as well as methodological
144 verification of sample handling processes, due to the combined
145 challenges posed by large geographical and depth space to be
146 sampled and the need to concentrate dilute biological material
147 without altering the proteomic signal within those samples.
148 Preservation of proteins at ambient temperatures appears to be
149 possible for some marine microbes using high salt RNA
150 preservatives, allowing in situ environmental samplers to be
151 designed and built, and time series to be taken. For example, a
152 commercially available RNA preservative was shown to
153 preserve proteins within cyanobacteria biomass at room
154 temperature for a month with no reduction in the number of
155 protein identifications, although periplasmic and extracellular
156 protein alkaline phosphatase was observed to be variable,
157 implying loss during filtration.25 This study of dissolved
158 proteins and their role in biogeochemical cycling is also of
159 interest but will likely require separate sampling procedures to
160 concentrate them from seawater. There are new robotic
161 autonomous underwater vehicles (AUVs) being developed that
162 are specifically designed for proteomic sampling in natural
163 environments. For example, the Clio AUV incorporates recent
164 developments in in situ pumping systems26 to collect a suite of
165 discrete protein and other biogeochemical samples by vertically
166 moving and holding position at 16 depths over 6 km of a
167 vertical ocean water column. Integrated over typical ocean
168 expeditions, improvements in sampling efficiency allowed by
169 AUVs such as Clio will enable greatly increased sampling
170 depth resolution and geographic coverage of the vast ocean
171 basins.27

172 When laboratory and environmental scientists interact,
173 confusion can arise from differing definitions/expectations of
174 biological replication. The scientific approach and objectives of
175 environmental sampling are distinct from laboratory experi-
176 ments. There are clear differences between laboratory
177 experiments that can be easily replicated and sampling the
178 constantly changing natural environment. The challenge in
179 sample acquisition in marine metaproteomics described above
180 can preclude the collection of replicates; for example,
181 commonly used in situ pumps are tethered to a single wire
182 and deployed at predetermined depths and take several hours
183 to filter large volumes. Since the ocean is a fluid environment, a
184 second sampling deployment would collect a slightly different
185 water mass in space or time, depending on if the sampler was
186 placed adjacent on the vertical hydrowire or as a successive
187 sampling deployment after completion of the first sampling. As
188 a result, real variations (albeit small) in biological communities
189 and chemical properties could be captured in attempts at
190 sampling replication, and true biological duplicates are
191 aspirational, if not impossible. In place of replication,
192 oceanographers often look for “oceanographic consistency”
193 in trends across vertical depth structure (or horizontal
194 structure in the case of ocean basin sections) as a useful
195 means to validate results.28 Single samples have demonstrated
196 this oceanographic consistency in capturing large scale
197 oceanographic and metabolic processes across chemical and
198 biological gradients.2,3,29

199 The comprehensive extraction of proteinaceous material
200 from biomass is another challenge in metaproteomic studies.
201 Environmental samples can be extraordinarily complex due to
202 being composites of significant biological diversity, as well as
203 having additional biogenic and nonbiogenic materials within
204 them. Moreover, the biological composition of metaproteomic

205samples can be largely unknown prior to extraction. Hence, the
206ability to tailor and optimize extraction protocols to the
207environmental sample type presents unique difficulties. In
208water column environments, depending on the environment
209and collection strategy, an environmental microbial sample will
210contain dozens of major biological species and hundreds to
211thousands of trace species.30,31 Sediment and sinking particle
212samples contain not only a mixture of organisms, but partially
213degraded peptides created by a phalanx of microbial proteases
214produced by heterotrophic bacteria consuming those particles.
215There are also numerous complex symbiotic communities such
216as corals, hydrothermal vent tube worms, and other symbiotic
217systems where the proteins of the microbial assemblage will be
218present within the extensive proteome of a eukaryotic host.
219Studies have examined the recovery efficiency of different
220extraction buffers on sedimentary and microbial biomass.25,32

221Moreover, the presence of biogenic soft and hard parts,
222including mucilage, calcium carbonate, and siliceous compo-
223nents, as well as mineral phases, can complicate chemical
224separation of proteins and impair protein extraction efficiencies
225and require development of matrix-specific extraction proto-
226cols.6,12,17,22,33

227Mass Spectrometry Analyses

228To date, the mass spectrometry measurement component of
229metaproteomics has utilized three types of approaches: data-
230dependent acquisition (DDA) for discovery proteomics,10,34,35

231data-independent acquisition (DIA2,36), and targeted meta-
232proteomics for quantitative analysis using multiple or parallel
233reaction monitoring approaches (MRM/PRM3,11,14).
234Briefly, these approaches differ in how they select ions for
235fragmentation: DDA approaches continually select abundant
236features within ms1 spectra for further ms2 fragmentation
237analysis (isolating the most abundant peaks within each parent
238ms1 spectra for fragmentation, with various user parameters
239such as excluding recently fragmented precursors for a short
240period),37 while DIA methods conduct ms2 fragmentation on
241small sequential mass windows across the entire mass range of
242interest,38 thereby potentially fragmenting spectra of all ions,
243assuming sufficient intensity. In contrast, targeted methods
244focus their fragmentation analyses only on precursor ions
245found on the target list, thereby increasing sensitivity by
246focusing mass spectrometry time on target ions.39−41 DDA
247approaches continue to be most prevalent in metaproteomics,
248but targeted and DIA approaches are increasingly being
249explored for their ability to provide absolute and relative
250quantitation, respectively. An example DDA workflow is shown
251 f3in Figure 3, and examples of vertical profiles of targeted
252peptides from MRM/PRM experiments are shown in Figure
2532b.
254While these proteomic methods have become common in
255proteomic analyses on single organisms, the complexity of
256metaproteome samples presents challenges for each method
257with regard to both the chromatographic separation and mass
258spectrometry components. For comparison, the complexity of
259ocean seawater metaproteome samples appears to be
260significantly greater than the human proteome, despite the
261latter typically being considered to be one of the more complex
262 f4proteome sample types. This is illustrated in Figure 4a where a
263three-dimensional (3D) visualization of the mass spectra
264acquired from a surface sample in the central Pacific Ocean is
265shown (filtered by 0.2−3.0 μm size fraction range), and in
266Figure 4b−c with spectra from a small mass range examined at
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267 equivalent chromatographic elution times (575−578 m/z ms1

268 window and 140−141 min) revealing more observable mass
269 peaks events in an ocean sample (Figure 4c) when compared
270 to a human cell line (HeLa) sample (Figure 4b). These
271 observations of metaproteome complexity were also quantita-
272 tively confirmed across entire samples by analysis of ms1 peak
273 within triplicate HeLa injections and five metaproteome

f5 274 samples from the Pacific Ocean at varying depths in Figure
f5 275 5. These HeLa-ocean comparisons used identical chromato-

276 graphic and mass spectrometry settings and were run within 1
277 week of each other using the same nanospray column, with 0.5
278 μg of HeLa analyzed per injection, while 1.0 μg ocean sample
279 was analyzed per sample injection. In this example, the number
280 of peaks was higher in the metaproteomes compared to HeLa
281 (Figure 5a−c), while the total ion current (TIC) was
282 considerably lower across all metaproteome samples (Figure
283 5a−b,d), implying more peaks of lower intensity in the
284 metaproteome samples. This high complexity of metaproteo-
285 mics samples presents significant challenges to current
286 chromatographic and mass spectrometry workflows. For
287 example, real-time feature identification (peak picking)
288 software on mass spectrometers has not been optimized to
289 process chimeric peak features that appear to be ubiquitous in
290 metaproteomic samples, where chimeric features are peaks so
291 close in mass to other peaks preventing a successful charge
292 state estimate that is needed to trigger ms2 fragmentation in
293 bottom up DDA experiments. Moreover, the low abundance of
294 many ions in metaproteomic samples (as observed in Figure

2954c) poses an additional challenge, where the numerous low
296abundance peaks among more abundant ones remain
297uncharacterized due to physical limits on the number of ions
298entering the mass spectrometer at any time, a problem that can
299challenge both DDA and DIA methods.
300Metaproteomic approaches have made progress in address-
301ing the challenges of this sample complexity. For example,
302chromatographic approaches have been improved by applying
303two-dimensional chromatography10,34 or gas phase fractiona-
304tion2,7,36,43 to distribute the sample complexity for mass
305spectrometry analysis across subsamples or temporal chroma-
306tographic separation as a means to obtain deeper metapro-
307teomes. Moreover, DIA approaches have been utilized to
308address the crowded and complex nature of ion chromato-
309grams that are specific to metaproteomics,2,36 although
310bioinformatic pipelines for mixed community DIA data sets
311are still being developed. Finally, the application of targeted
312methods offers improved sensitivity and absolute quantitation
313of biomarkers for environmental stress by targeting represen-
314tative peptides.3,11,14

315Future collaboration with hardware and software developers
316could also greatly improve metaproteomic research efforts. For
317example, effort could be expended to capture greater
318information about the numerous low intensity ions that are
319missed by real-time and postprocessing algorithms due to
320several factors including insufficient ions trapped for high-
321quality ms2 fragmentation spectra, ions being chimeric with
322other nearby peaks, and lack of charge state assignments.
323Recent efforts in improving detection of chimeric peaks may be
324useful in this regard when applied to metaproteomic
325applications.44

326Finally, there is an important need for intercomparison and
327intercalibration efforts with regard to protein extraction
328efficiency and mass spectrometry accuracy and precision.
329Chemical oceanographers have a legacy of successful
330intercalibration efforts that have enabled global scale studies
331of ocean chemistry, such as the recent GEOTRACES (an
332international study of the marine biogeochemical cycles of
333trace elements and their isotopes) trace elements and isotope
334global section program.45 For ocean metaproteomics, uniform
335preparation of large batches of intercalibration samples may be
336challenging given that samples can vary in biological
337composition and sampling methodologies, and likely multiple
338smaller initial intercomparison studies might first be needed.
339Alternatively, simpler “synthetic” metaproteome samples could
340be created by mixing of laboratory microbial isolates that could
341be made in large batches and distributed, although these may
342not reproduce the depth of biological diversity nor a realistic
343environmental chemical matrix. Intercalibrations could be
344applied to the two current major approaches to ocean
345metaproteomic mass spectrometry analysis: global discovery
346data sets and targeted metaproteomics, with studies providing
347metagenomic databases and isotopically labeled peptide
348standard materials to facilitate analyses, respectively. Moreover,
349intercalibration exercises could be conducted on consensus
350standard sample sets of some example biological communities
351initially, such as seawater microbial communities that are well-
352characterized with respect to metagenomic data, although
353eventually many types of biological materials could be selected
354for intercalibration (sediments, biofilms, etc.). Finally, future
355additional types of metaproteomic analyses could be added for
356intercomparison such as data independent analysis and post-

Figure 3. An example environmental metaproteomic workflow where
environmental samples are collected and extracted (gray), discovery
proteomics are conducted (green), and peptide targets from selected
proteins of interest can be assayed using isotopically labeled peptide
standards whose taxonomic assignment can be queried against
databases of genomes and metagenomes (yellow). The results can
provide relative and absolute abundance measurements of the protein
from the microbial and algal community, including functional and
taxonomic information (blue).
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357 translational modifications within metaproteomic environ-
358 mental samples.

359 Metaproteomic Data Analysis

360 Data analysis of mass spectra from metaproteomics experi-
361 ments presents many challenges compared to single organism
362 proteomics. In particular, each metaproteome mass spectral
363 data set can contain tremendous biological diversity whose
364 composition is often largely unknown. Furthermore, estab-
365 lished proteomic workflows that conduct peptide-to-spectrum
366 matching (PSM) by comparing peptide precursor and
367 fragment ion masses to corresponding predicted masses
368 using genomic reference databases were never designed to
369 handle the inherent complexity and multiple biological entities
370 within metaproteomic data sets, and hence approaches thus far
371 have been improvised adaptations. The expanse of unknown
372 biological diversity often results in metaproteomic protein
373 database searches that are typically large and of redundant
374 nature. This has an effect on database selection, data-search
375 algorithm utilized, subsequent FDR statistics,46,47 and protein
376 inference.48,49 Additionally, metaproteomics shares the chal-
377 lenge of functional and taxonomic assignments with meta-

378genomics, relying on a comparative approach with model
379organisms, resulting in many proteins of unknown function or
380taxon. Finally, metaproteomic workflows typically involve the
381integration of multiple software tools, making documentation
382and reproducibility difficult as tools evolve. Despite these
383challenges, multiple approaches have been developed over the
384last 13 years (Table S1). The analytical workflows that have
385been developed to date are mainly comprised of (a) database
386generation, (b) database search, and (c) taxonomy and
387functional analysis.
388Database Type (Genome, Metagenome, Metatran-
389scriptome, Custom). In order for PSM algorithms to assign
390peptide sequences to spectra from MS experiments, the
391observed tandem mass spectra are cross-correlated and scored
392against theoretical spectra generated in silico from the
393provided protein sequences. The collection of protein
394sequences is generated from available genomic, metagenomic,
395or metatranscriptomic sequence information and commonly
396referred to as the genomic or protein database. High scoring
397peptide spectral matches (PSMs) are then reported with their
398corresponding protein sequence and annotation from the
399original database. Importantly for metaproteomics, the

Figure 4. (a) Three-dimensional representation (axes of retention time (min), m/z, and intensity) of complex spectra associated with an
environmental ocean sample from the Equatorial Pacific from the METZYME expedition (200 m depth, produced in MzMine242). Comparison of
a 3 m/z ms1 mass window (575−578 m/z, 140−141 min) from (b) human proteome spectra (HeLa cell line) and (c) ocean metaproteome (120 m
depth) provides an example of the high complexity of environmental samples due to the biological diversity.
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400 peptides and proteins reported are dependent on the
401 coherence of the original genomic sequence information
402 relative to the organism(s) present in the sample. More
403 often than not in metaproteomics, each sample’s composition
404 of biological diversity is unknown or its characterization is
405 limited by the depth of DNA sequencing and final assembly. As
406 a result, if a peptide sequence is not in the database, the
407 peptide will not be identified nor will its contribution to a
408 protein identification be included in the experiment.
409 Furthermore, quality of gene prediction algorithms can affect
410 protein detection: if protein-encoding genes are missed during
411 the initial gene prediction phase, then they will not be included
412 in the protein search database. While gene prediction from
413 prokaryotic genomes is relatively straightforward, it becomes
414 challenging for more complex microbial eukaryotic genomes,
415 owing to the complexity and diversity of eukaryotic gene
416 structure (e.g., predicting introns and exons). However,
417 eukaryotic gene prediction algorithms are continually advanc-
418 ing, and indeed proteomics plays a large role in the accurate
419 identification of protein encoding regions of eukaryotic
420 genomes through proteogenomic efforts.50−52 Additionally,
421 the incomplete nature of peptide fragmentation yields high
422 variability in final peptide interpretations, making database
423 choice and construction pivotal.53 Finally, the occurrence of
424 similar but not identical protein sequences (homologues) in
425 closely related organisms adds significant complexity to
426 metaproteomic search databases.

427There are three main approaches for creating metaproteomic
428databases: (1) sequence and assemble a metagenome, (2)
429assemble a database from the public environmental genomic
430repositories, and (3) create a pseudo-metagenome by including
431desired taxonomic classes or species. The composition of the
432protein search database used to search the mass spectra from a
433metaproteomic sample has a profound effect on biological
434conclusions.54 Timmins-Schiffman et al. recommended a best
435practice for environmental proteomics of corresponding site
436and time specific metagenomes in order to generate accurate
437proteomic databases to assign peptide sequences and protein
438annotations.3,4,10,55,56 While this avenue represents the ideal
439scenario, at some point sufficient metagenomic coverage of
440specific environments should allow decoupling between
441genomic and proteomic analyses as a large inventory accrues
442of deeply sequenced data sets from diverse environments.57

443However, as evolution is a dynamic process, resequencing of
444these environments will be required to capture continued
445community adaptation to changing environments and evolu-
446tionary forces which are already evident in repeated marine
447sequencing efforts over seasonal time scales.58

448There are a variety of publicly available metagenomics data
449sets that marine metaproteomics researchers have used, for
450example, the J.C. Venter Institute’s Global Ocean Sampling
451(GOS) database.1,59−61 In addition, there are environmental
452metagenomics databases available at major repositories and
453portals such as EBI, JGI, and iMicrobe (https://www.ebi.ac.
454uk/metagenomics, https://img.jgi.doe.gov, http://www.

Figure 5. Peak analysis of human cell line and ocean metaproteome samples by identical chromatographic and mass spectrometry conditions. (a−
b) Number of peaks identified replicates (top rows) and the total ion current (TIC, bottom rows) of the sample in Hela (Panel A, replicates Hela-
A, Hela-B, and Hela-C) and an ocean metaproteome sample (Panel B, depth 40, 60, 120, 150, and 250 m, Metzyme Expedition Station 3). Samples
were run during the same week on the same nanospray column (see methods) with similar amounts of protein injected (0.5 μg for Hela per
injection, 1 μg for ocean metaproteome). (c) Total number of peaks by sample type showed a higher number peaks in ocean metaproteome
samples, while (d) TIC by sample showed much lower summed peak intensity within the metaproteome samples, consistent with the 575−578 m/z
window shown in Figure 4.
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455 imicrobe.us). For eukaryotic phytoplankton and protists,
456 genomic, transcriptomic, and metagenomic resources are
457 considerably more scarce, though recent availability of the
458 Marine Microbial Eukaryote Transcriptome Sequencing
459 Project (MMETSP) has begun to address this challenge.62

460 The application of large databases (either public or
461 metagenomics) still suffers from limitations with respect to
462 sensitivity of identifications. One approach to alleviating this
463 problem applied a “metapeptide database” from shotgun
464 metagenomics sequencing and demonstrated a significant
465 increase in the number of identifications presumably due to
466 a more accurate and compact database as compared to an
467 assembled predicted metaproteome and NCBInr.63

468 Finally, the selection and compilation use of individual
469 microbial genomes for a metaproteomic database can also be
470 useful in metaproteome analysis. Given that many of the major
471 microbial taxa in the oceans were discovered in recent decades
472 and in many cases there are few laboratory isolates and
473 accompanying genomes, there is significant need to amend
474 large public databases with new representative microbial
475 genomes.64−66 In contrast to metagenomic data sets, these
476 genomes of cultivated isolates also provide clarity with regard
477 to taxonomic attribution that can be obfuscated by limitations
478 of metagenomics assembly and annotation. Increasing
479 availability of single cell genomic data (single amplified
480 genome; SAGs) can also contribute significantly to databases
481 for metaproteomic analysis. Notably however, the SAG
482 technology does not produce complete genomic sequences
483 (unclosed genomes), and hence care must be taken when
484 trying to interpret the absence of a protein using metagenomics
485 or SAG databases to avoid false negatives. For eukaryotic
486 metaproteome analysis, transcriptome data can also serve as a
487 useful source of sequence for the protein database generation
488 since full genomic information of marine eukaryotes is
489 relatively rare and the DNA architecture is more complex
490 due to the prevalence of noncoding intron regions intertwined
491 with the protein-coding exons. A recent study from the Ross
492 Sea of Antarctica found that for a diverse bloom community
493 with abundant eukaryotic phytoplankton, a combined database
494 of transcriptomes from cultured isolates and field metatran-
495 scriptome provided a richer metaproteome result than either
496 database alone.10

497 Search Engine. In common DDA proteomic workflows,
498 the search engine that conducts the PSM analysis is central to
499 protein discovery and identification. Application of these PSM
500 algorithms (e.g., SEQUEST, X!Tandem)67−69 have been
501 successfully applied to metaproteomic analyses, despite the
502 fact that they were never designed to deal with the complexity
503 of metaproteomic data sets. Search algorithms are chosen
504 based on the following factors such as the ability to search large
505 databases, speed, and the ability to generate outputs that are
506 compatible with downstream processing steps such as peptide
507 or PSM output with robust FDR threshold calculations. Most
508 of the suggested database generation strategies generate large
509 databases, which in turn affect the sensitivity of identifications.
510 Multiple strategies have been suggested to increase peptide
511 identifications. This includes the two-step method for
512 searching large databases;70−74 and a cascaded search
513 method.75 Muth et al. have recommended using a database
514 sectioning approach so that searches against subsets of a large
515 database may increase the number of identifications.53 They
516 have also suggested using multiple search algorithms in order
517 to increase the percentage of peptide spectral matches in a data

518set. For example, SearchGUI/PeptideShaker,76 which uses at
519least eight open-source search algorithms, can facilitate this
520multipronged approach and can be used to search against large
521databases.53 Irrespective of the choice of search algorithms, the
522goal is to generate outputs with maximal coverage of mass
523spectra that are compatible with the next steps of taxonomic
524analysis, functional analysis, and subsequent targeted valida-
525tion.
526Despite these initial successes, it is apparent that these
527workflows and algorithms could be improved upon to confront
528significant challenges of spectral complexity, metaproteomic
529protein inference, and taxonomic attribution within environ-
530mental samples. Specifically, the presence of numerous low
531abundance peak features, discerning chimeric peaks (Figure 2),
532and assignment of corresponding peptide charge states are
533difficult for current PSM algorithms and likely result in
534significant underestimation of peptide identifications within
535metaproteomic spectra. Application of de novo search
536algorithms and spectral libraries could also improve identi-
537fication of peptides from metaproteomics samples.77

538Taxonomic and Functional Annotation. Metaproteo-
539mics has a distinct utility in determining the protein functional
540expression by a microbial community.74 However, the
541functional interpretation of a metaproteomics data set is
542inherently reliant upon the underlying annotation of the
543protein search database, including the prediction of protein-
544encoding genes from genomic data and the subsequent
545functional annotation of the predicted proteins. While much
546of the taxonomic and functional attribution of metaproteomic
547results can leverage metagenomic annotation pipelines, there
548are aspects that are unique to metaproteomics. In particular,
549the basal unit of proteomic identification is generally the
550tryptic peptide (due to the effectiveness of trypsin in
551proteolytic digestions), resulting in amino acid sequence
552coverage without overlaps, except in cases of missed cleavages.
553Due to the presence of unknown biological diversity, it is
554possible to have tryptic peptides that are shared within or
555across species. As a result, the greatest confidence in
556metaproteomic discovery occurs on the peptide level, and
557creates a need in metaproteomic research for investigation of
558sequence taxonomy on the peptide level. This is also an issue
559since inference of specific taxonomy tends to be more difficult
560than function in typical sequence analysis (e.g., BLAST), due
561to the sharing of biochemical capabilities by many organisms.
562Two web-based applications are available for this, Unipept and
563Metatryp, that search DNA sequence data for the presence of
564user entered tryptic peptide sequences and estimate the lowest
565common ancestor (LCA; kingdom, phylum, genus or species)
566for each peptide query14,78,79 (Figure 2b). The applications are
567distinct in the DNA sequence databases they search, with
568Unipept searching the UniProt genomic database as well as
569providing cross-referenced EC numbers and GO terms,80 while
570Metatryp allows use of custom genomic data and metagenomic
571data (including single amplified genomes and metagenome
572assembled genomes) with a focus on marine environments
573(http://metatryp.whoi.edu).14 The choice of database can
574affect results; for example, currently Unipept maps 51% of the
575peptides from the Morris et al. South Atlantic data set2 to
576sequences within Uniprot, implying that genomic data
577availability still hinders interpretation of ocean metaproteomic
578data sets (https://unipept.ugent.be/mpa). There are addi-
579tional bioinformatic tools for taxonomic analyses that may be
580useful for metaproteomic research such as MEGAN76
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581 microbiome software that computes taxonomic profile by
582 assigning PSMs from a metaproteomics experiment to an
583 appropriate taxonomic unit within the NCBI taxonomy. In
584 addition, the recently developed MetaProteomeAnalyzer that
585 uses outputs from SearchGUI/PeptideShaker81 has taxonomic
586 analysis capability.
587 Connecting protein functions with metaproteomic data sets
588 is a key goal that can be accomplished in variety of ways.
589 BLAST analyses of the metagenomics contigs being used for
590 PSMs provide high-quality searches by using longer sequences,
591 but require availability of well-annotated metagenomics
592 databases. Additional software is available for downstream
593 metaproteomic functional analysis including peptide-level
594 MetaGomics82 or Unipept,83 protein-level (for example,
595 MEGAN84), protein orthologs (for example, EggNOG
596 mapper85 or metaprotein/protein-group level (for example,
597 MetaProteomeAnalyzer). Each of these methods uses distinct
598 annotation databases, such as UniProt (for example software
599 tools such as MetaGomics, Unipept or MetaProteomeAna-
600 lyzer53) or NCBInr (MEGAN) or EggNOG database
601 (EggNOG mapper) to assign functional categories. Functional
602 analysis tools generate functional ontologies such as Gene
603 Ontology (GO; for example, MetaGOmics, MEGAN, Unipept
604 and EggNOG mapper), KEGG orthology groups (for example,
605 EggNOG mapper, MEGAN and MetaProteomeAnalyzer), EC
606 numbers (for example, Unipept and MetaProteomeAnalyzer),
607 and EggNOG orthologous groups (EggNOG mapper) are
608 used for deciphering the functional state of a microbiome.
609 While these annotation approaches described above are
610 useful, it is worth acknowledging that there is a continuing
611 challenge in interpretation of metaproteomics data that is
612 inherited from metagenomic research regarding the process of
613 annotating protein function from gene sequence data. The vast
614 majority of protein annotations are assigned not from direct
615 experimental evidence, but rather from sequence similarity to a
616 previously annotated protein or protein family in a metabolic/
617 ortholog database (e.g., KEGG, COG, METACYC, PFAM).
618 This leads to several issues. The first is that annotation transfer
619 based upon sequence similarity has resulted in the propagation
620 of misannotations in large genomic databases over time, with
621 the most common form of misannotation resulting from “over
622 annotation”annotation of a gene to a deeper level of
623 functional characterization than the supporting evidence
624 provides.86 Even minor errors or discrepancies in annotation
625 transfer can result in massive error propagation.87 Common
626 irregularities in gene annotation can cause serious issues for the
627 metaproteomics researcher who is reliant upon these
628 annotations to give biological context to proteomic data.
629 Some of these annotation irregularities include gene
630 annotations in which one gene name is assigned very different
631 functional descriptions, instances where the gene name for a
632 particular function has changed over time, or cases where only
633 one function of a multifunctional enzyme is provided.87

634 Similarly, novel functions can be discovered for previously
635 unannotated hypothetical proteins.16,88 These issues can be
636 compounded if a custom search database comprised of
637 genomes annotated by different means is used for peptide
638 and protein identification, as is common in oceanographic
639 studies. Moreover, as genomic data are updated with improved
640 annotation information, an ability to pass this new information
641 onto deposited processed metaproteomic results will be
642 needed, and could be accomplished with versioning of
643 deposited data sets.

644A barrier to managing the spread of misannotations is that
645for some databases, such as GenBank NR, there are currently
646no means for the community to submit additional manually
647curated annotations and corrections. Fortunately, newer
648techniques for genome annotation which rely on methods
649beyond simple pairwise sequence similaritymost notably, the
650use of machine learning based algorithmsoutperform the
651former pairwise similarity and BLAST based annotation
652transfer methods.89 Protein functional prediction from
653sequence data is a growing field itself, and will likely benefit
654from coupling powerful predictive algorithms with high-quality
655systems data to provide deeper, more accurate, and more
656meaningful characterizations.
657Another common issue is where only a single function is
658reported for a protein family that is comprised of proteins of
659divergent function. For example, in Colatriano et al.,56

660numerous proteins are assigned to the DMSO reductase
661enzyme superfamily, which is comprised of a number of
662functionally distinct proteins including nitrate reductases
663involved in anaerobic respiration as well as nitrite oxidor-
664eductase involved in dissimilatory nitrite reduction. Only
665through fine-scale phylogenetic analysis of the identified
666proteins could the true function as nitrite reductases be
667determined. However, in many cases, the relationship between
668phylogeny and function within protein families is unknown. In
669metaproteomics, this is especially problematic for transporter
670proteins which are often abundant in metaproteomics data sets
671and are attractive since they may be used to infer substrate
672utilization patterns that are directly relevant to global
673biogeochemical cycles. However, transport function is often
674poorly conserved with these families, and hence sequence
675analysis is no substitution for the critical biochemical and
676genetic studies capable of characterizing protein function
677directly.16,90 In conclusion, there are significant challenges and
678room for improvement in the assignment of annotation
679information to metaproteomic data sets, and cooperation
680with genomics researchers and organizations, as well as
681incorporating an ability to reanalyze data sets and submit
682updated versions will be important components of future
683metaproteomic data management.

684Challenges in Ocean Metaproteomic Data Sharing

685There is potentially great value in sharing raw and processed
686environmental metaproteomics data within ocean sciences and
687beyond. As with most ‘omics sciences, each data set contains
688far more information than the data-generator’s laboratory can
689interpret. Proof that a gene is synthesized into protein form, as
690well as its variation in spatial or temporal distribution, can
691provide valuable biological and chemical information about the
692environment. Yet due to the complexity and newness of this
693data type, there are challenges unique to metaproteomics in
694reporting and disseminating this information. In a workshop in
6952017, we discussed these challenges, and organized the
696following information in an attempt to provide a first set of
697best practices to Ocean Metaproteomics Data Sharing.
698Interoperability between ocean metaproteomic observations
699and their related environmental data requires that the
700relationships between these data are explicitly known. Defining
701these relationships helps to communicate proper use when
702integrating disparate data within a shared domain.91 While
703defining these relationships helps humans properly integrate
704data, software and tools need something more. In the past, this
705meant developing software to a specific set of data types that
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706 forced data to follow certain conventions for variables names
707 and structure. Yet current standards for integrating data on the
708 web enable software to infer how disparate data can be
709 integrated when they are described using semantic web
710 schemas and rulesets. In doing so, these disparate data do
711 not need to be transformed to conform to the software.
712 Instead, the data are described using semantic web
713 technologies for proper integration. The semantic web
714 provides a framework for classification of data and its
715 relationships in what are called ontologies, or vocabularies.
716 These ontologies are logical groupings of terms and the axioms
717 that define the how data from that domain are to be described.
718 These terms can define cardinality rules or other logical
719 expressions that enable humans and machines to make
720 inferences over the data. Instead of transforming the original
721 data to force it to conform to software, software can be written
722 to conform to an ontology. As a result, this leaves the data
723 intact and moves the work of integrating data to describing
724 how it maps to the ontology.92

725 ■ CONNECTIONS TO KEY ENVIRONMENTAL
726 METADATA AND DATA
727 Environmental research requires unique metadata to provide
728 context for comparisons across space and time. These
729 metadata include numerous attributes associated with sampling
730 from the oceans or other natural environments that are most
731 often not included in the data model in biomedically focused
732 proteomics repositories. For example, there is geospatial and
733 environmental contextual information that is critical to
734 interpreting results such as latitude and longitude, depth, and
735 sampling environment (e.g., pelagic water column or benthic
736 sedimentary location). For the pelagic environments, there is
737 critical methodological information regarding sample collec-
738 tion parameters including filtration pore size range(s) or
739 sediment trap deployment conditions for sinking particles. For
740 benthic environments, key sedimentary environmental details,
741 organism (coral, whale, plankton, zooplankton, etc.), or human
742 built environments (ship hull surface) need to be described. In
743 addition, local time of sampling can be important to detect
744 short-term (diurnal) changes or long-term (seasonal or
745 environmental change) processes. In addition to these
746 metadata, there is also important contextual information
747 derived from co-occurring chemical, biological, or physical
748 measurements, such as temperature, macronutrient and
749 micronutrient abundances, salinity, light intensity, and bio-
750 logical diversity, to name a few parameters. Carefully defining
751 the data and metadata model will also facilitate connections to
752 environmental data management holdings such as those at the
753 Biological and Chemical Data Management Office for Ocean
754 Science in the US (www.bco-dmo.org), and various national
755 data repositories will facilitate access to this contextual

t2 756 information. Table 2 provides a list of recommended metadata
757 for best practices of ocean metaproteomic samples data
758 management to be provided at the time of deposition.
759 Making connections between metaomics data sets and
760 environmental data is a widely sought goal that is difficult to
761 achieve. Enabling interoperability between ocean metaproteo-
762 mic observations and their related environmental data requires
763 that the relationships between these data are explicitly known.
764 Defining these relationships helps to communicate proper use
765 when integrating disparate data within a shared domain.91

766 While defining these relationships helps humans properly
767 integrate data, software and tools need something more. In the

768past, this meant developing a certain piece of software to a
769specific set of data types. Yet current technologies, such as the
770semantic web, enable software to understand how data can be
771integrated through well-defined schemas and rulesets. Using
772ontologies, a semantic web technology, data, and their
773necessary relationships can be described in ways that machines
774can enforce cardinality constraints and make inferences that
775are helpful for ensuring a proper integration.92

776Due to this fundamental importance of metadata associated
777with metaproteomics results, deposition of raw data into
778existing proteomic repositories designed primarily for labo-
779ratory studies (e.g., Pride, Massive, and Chorus) could create
780challenges for researchers in locating and manipulating
781collections of environmental data sets.93 While these raw
782data repositories are already valuable in hosting environmental
783proteomic data, the proper data management of large amounts
784of metadata can be viewed as a burden beyond what those
785entities are funded to provide, as has been observed in
786metagenomics data management spheres. As a result,
787intermediary environmental metaproteomics portals that host

Table 2. Recommended Metadata for Best Practices in
Ocean Metaproteomics Data Sharing

reporting metric notes/units
when

available

Project Metadata

expedition identifier

lead PI, contact info,
ORCID identifier

Co PI, contact info,
ORCID identifier

√

Contextual Metadata

latitude degrees N

longitude degrees W

sampling depth

habitat type Pelagic, benthic, reef, ship-hull, host-
associated, other

temperature degrees Celsius √
salinity √
chlorophyll-a
concentration

√

oxygen
concentration

√

other analytes
measured

links to environmental data repositories √

Sample Acquisition Metadata

sampling method filtration, sediment trap, coring, other

volume of water
sample represents

liters √

filter type membrane (PC, PS), glass fiber, quartz,
other

√

filter size micron pore size √
prefilter(s) used if applicable: micron pore size, filter

type
√

Sample Extraction Methods see Table S2

Mass Spectrometry Methods see Table S2

Data Analysis Methods see Table S2

Metaproteomics Data
Analysis Metadata

database used for
PSM or targeted
method
development

metagenomic, metatranscriptomic,
genomic sequences used; link to
sequence repository

taxonomy analysis
method

software/algorithm used

functional analysis
method

software/algorithm used
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788 processed data sets and full metadata archives can serve a
789 valuable function as a link to raw data repositories and
790 cocollected or colocated environmental data sets. Hopefully
791 either raw data repositories will work with environmental
792 communities in collecting environmental metadata as well as
793 cooperating to enable web-based connections between raw
794 data repositories and processed data portals. In order to foster
795 a high level of data sharing, reanalysis, and intercomparison, it
796 is important for data generators to preserve a number of data
797 facets and metadata, at the time of publication and archiving.

798 ■ DATA TYPES USEFUL FOR METAPROTEOMIC
799 DATA SHARING
800 In addition to the unique and critical metadata and
801 environmental data that need to be provided, the metapro-
802 teomic data sets also require several distinct types of raw and

t3 803 processed data (see Table 3) in order to allow reproducibility
804 and to enable a deep interrogation of their attributes in
805 environmental data portals such as the future Ocean Protein
806 Portal. Within processed data sets these include protein
807 identifications with associated functional and taxonomic
808 information (if known), full amino acid sequences, correspond-
809 ing peptide sequences of discovered peptides, quantitative
810 information for both proteins and peptides (e.g., spectral
811 counts, precursor or fragment intensities), and associated
812 statistical threshold used for generating these data (e.g., protein
813 and peptide FDRs). For raw data, these include the raw mass
814 spectrometry files converted to a platform-independent format
815 as well as the sequence databases used to generate them. An
816 important distinction from model organism studies is the
817 fundamental importance of the peptide-level data to
818 metaproteomics: the ability to have access to detailed
819 peptide-level information with corresponding geospatial and
820 temporal information will be critical to enabling users to
821 directly interrogate the peptides that were actually measured in
822 the oceans, as opposed to relying on protein inference that may
823 be incorrect due to insufficient metagenomic coverage.

824 ■ QUANTIFICATION: UNITS, INTERCALIBRATION,
825 INTEROPERABILITY, AND NORMALIZATION
826 The ability to make comparisons of results across global scales
827 of time and space in the oceans is a key appeal for embarking
828 on ocean metaproteomic research science. Indeed, the ability
829 of proteins to record the functional attributes of each
830 population of marine microbes could allow a “personalized
831 medicine” of the oceans,27 where long-term metaproteomic
832 records would track changes in environmental stresses
833 experienced by major taxa, and their resultant influence on

834global biogeochemical cycles and implications for sustain-
835ability. In ocean sciences, the few long-term time series
836available allow studies of the impacts of global change on the
837oceans. However, achieving the ambitious goal of integrating
838metaproteome studies into global change science will require a
839sufficient level of confidence regarding the accuracy and
840precision of analyses to allow detection of changes between
841samples sets. Metaproteomic data sets have reported
842quantitative results in a variety of units thus far, including
843total or normalized spectral counts, precursor intensities, or
844calibrated absolute concentrations (fmol L−1 seawater).
845Because the biological “matrix” of an environmental location
846can change with time, there is a particular value in absolute
847measurements that record peptide and protein abundances in
848SI units per liter that can be unequivocally compared across
849time. As a result, focusing on attributes that enable
850interoperability between samples, even as technologies
851(including chromatography, mass spectrometry, and infor-
852matics) and reference databases improve, is an important
853aspect of ocean metaproteomic data sharing. Efforts to
854harmonize across analytical platforms to improve intercompar-
855ability may be possible even in relative measurements
856(nonabsolute) through the calibration of signal intensity
857using a common reference material.94 As described earlier,
858efforts toward intercalibration of targeted metaproteomic
859analyses, as well as intercomparison of global relative
860abundance studies are critical to validating current measure-
861ments and enabling future comparisons. Similarly, allowing
862versioning of data sets will enable reanalysis of and
863reinterpretation of historical data sets that can then be used
864for temporal comparisons as both reference metagenomic
865databases and PSM algorithms improve.
866Another consideration in the use of metaproteomic data is
867the choice of whether to normalize protein data to another
868protein or parameter. This choice may reflect scientific culture
869to some degree: in biological spheres normalization is routine
870in order to provide organismal or ecological context, while in
871chemical oceanography normalization is rarer due to an
872appreciation for the importance of relaying absolute quantities
873of molecules or elements per volume of seawater and the
874fundamental interoperability of absolute units. Notably,
875normalization approaches developed for single-organism
876proteomics are not always applicable or appropriate for
877metaproteomics. For example, assumptions of a constant
878background proteome (in terms of uniformity of biological
879organism(s) present) are not valid in many environments
880depending on spatial or temporal scales being studied.
881Moreover, the influence of differences in species abundance

Table 3. Key Datatypes Needed for Ocean Metaproteomic Data Sharing

data type attributes

raw mass spectra files open data format, parameters, corresponding environmental and mass spectrometry metadata (see Tables 2 and S2)
protein identifications MS/MS sample name

sequence identifier (e.g., metagenome locus or genome ORF)
product name, taxon, taxon ID, KEGG, E.C., PFam
quantitative value(s) (spectral count)

peptide identifications MS/MS sample name, sequence identifier (e.g., metagenome locus or genome ORF), peptide sequence, peptide start index, peptide stop
index, precursor mass, retention time, statistical score of peptide, quantitative value (spectral count, MS1 peak area, fragment ion peak
areas from SRM/MRM/PRM analyses, calibrated SI unit concentrations)

FASTA of amino acid
sequences of all
identified proteins

full sequence of DNA or RNA used for peptide-to-spectrum mapping

corresponding sequence identifier (e.g., metagenome locus or genome ORF)
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882 across samples should be considered when considering
883 normalization of metaproteomic data sets;95 for example,
884 when biological community composition changes across the
885 sampling regime normalization to a particular organism may
886 not be appropriate. While there have been advances in data
887 processing approaches that address aspects of this issue,82

888 significant challenges remain.

889 ■ PEPTIDE LEVEL REPORTING
890 Most publication guidelines for proteomics experiments
891 recommend at least two peptides be identified to confidently
892 report the identification of a specific protein. In the case of
893 metaproteomics, however, it is understood that SNPs, amino
894 acid variations, and substitutions associated with natural
895 biological diversity within species or strain-level populations
896 are common. As a result, it is possible to generate numerous
897 high-quality PSMs in metaproteomics that are “one-hit-
898 wonders”, likely due to a combination of challenges described
899 above, including limitations associated with the application of
900 mass spectrometry and PSM algorithms to highly complex
901 samples, availability of a suitable database due to limited
902 metagenomic coverage and quality, as well as the inherent
903 biological diversity of a given protein (and its host organism)
904 present in each nonclonal population found in the natural
905 environment. In most cases, the natural biological diversity
906 within species or strain-level populations is of great interest. It
907 is not uncommon for peptide sequences (typically tryptic
908 peptides) to be shared between closely related organisms. In
909 marine microbiology, it is becoming common for multiple
910 strains from a single species to have their genomes sequenced
911 and physiology studied. These strains are described as being
912 ecotypes that inhabit distinct environmental niches and can
913 have overlapping distributions allowing co-occurrence within
914 individual environmental samples.96 As a result, the assignment
915 of multiple high-quality PSMs to a single protein sequence
916 derived from a single isolate genome sequence is not as
917 straightforward as with clonal populations of model laboratory
918 organisms. If multiple ecotypes are present with slight
919 variations in peptide sequence, the assignment of peptides to
920 protein sequences could need reconsideration. Indeed, this
921 subject intersects with the larger question regarding the
922 appropriate definition of microbial species itself. Nevertheless,
923 it has been demonstrated that this complexity can be taken
924 advantage of in order to design targeted metaproteomic
925 workflows that can interpret peptide biomarker abundances on
926 a large ocean biome scale and that multiple peptide biomarkers
927 provide consistent results.3

928 As a result, the two-peptide rule may not be appropriate for
929 metaproteomics. There is precedence for not using the two-
930 peptide rule in splice variant analysis and detection of post-
931 translationally modified amino acid sites. With the subsequent
932 arrival of high resolution mass spectrometry and stringent
933 FDR-based analyses, high-quality PSM that do not map to a
934 single protein sequence can have considerable value, and their
935 inability to have multiple peptides mapping to a protein are
936 likely related to numerous other challenges associated with
937 metaproteomic diversity and dynamic range as described
938 above, rather than necessarily being false positive identifica-
939 tions. The ability to report multiple peptides to a specific
940 protein and its resultant percent peptide coverage itself
941 becomes associated with uncertainty if there are multiple
942 species with similar but not identical protein sequences. The
943 adoption of identification of protein families may become a

944useful approach in metaproteomics where detection of
945peptides with small variation in sequence diversity can
946aggregate to a high confidence detection of a protein family
947belonging to multiple ecotypes of a species, or a defined higher
948taxonomic level particularly when interested in the bio-
949geochemical impact of an enzyme.
950Because of these challenges, targeted metaproteomic and
951informatics efforts have focused on the tryptic peptide level,
952using suites of tryptic peptide biomarkers as proxies for
953proteins and processes of interest. Informatic tools such as
954Unipept and Metatryp focus on tryptic peptides by conducting
955analysis of shared tryptic peptides between different genomes
956or metagenomes in order to maximize taxonomic interpreta-
957tion of peptide identification. While the consensus on what
958should be considered the best practice for a high-quality
959peptide identification is beyond the scope of this review, it is
960clear that combining high-resolution mass spectrometry
961capabilities, low false discovery rate, observance of peptides
962in multiple spectra, visual inspection when possible, and other
963factors can contribute to high-quality peptide identifications.

964■ ENCOURAGING PROPER DATA USE
965As metaproteomics is a relatively young data type, there is
966potential for misunderstanding or misuse of results leading to
967incorrect interpretations. These could have an inadvertent
968detrimental effect of resulting in lost time chasing false leads or
969loss of confidence in metaproteomic methods.97 When used by
970expert data generators, this risk is lessened due to a thorough
971understanding of the limitations and methodology behind the
972data. However, in the effort to share metaproteomic results
973with a broader community of nonexpert users, there is
974considerable risk that researchers will incorrectly attempt to
975merge data units inappropriately and/or apply inappropriate
976data transformations that could result in incorrect interpreta-
977tion. For example, spectral counts are a popular quantitative
978unit in proteomics that is powerful in assessing changes in each
979individual protein’s relative abundance across a range of
980samples. However, efforts to compare abundances between
981different proteins using relative abundance measurements such
982as these should be minimized or replaced by calibrated
983targeted measurements due to the variable influence of protein
984size (and resultant number of tryptic peptides) and the
985ionization efficiency of those peptides on each protein’s
986spectral count amplitude range. Nonexpert users may be
987tempted to conduct meta-analyses of spectral count results that
988could lead to faulty conclusions. As a result, efforts to educate
989and encourage dialogue among data generators and nonexpert
990users are important in fostering proper use of shared data sets.
991Providing effective means for attribution of effort for those
992involved in data generation is also important. Ideally, this could
993include inviting the generator of a data set of interest to
994collaborate and be a coauthor in studies. In addition,
995acknowledging the use of a data set by citing original data
996release manuscripts and DOI identifiers assigned to the data
997set will be important in enabling data use to have metrics. The
998attribution component is important in the sustainability of data
999sharing projects, as this will incentivize the use of data sharing
1000portals and repositories by generators. If data generators feel
1001they are not being properly attributed, they may be reluctant to
1002share data and/or may seek more obscure avenues for meeting
1003data sharing requirements. Learning about data use policy
1004experience of prior metagenomics and large ocean programs
1005such as GEOTRACES will be valuable in this regard.
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1006 ■ CONCLUSIONS

1007 Metaproteomics data sets have the potential to become a
1008 valuable data type to the ocean science community in that they
1009 represent a metabolic record of the status of the key microbial
1010 components within specific geographic environments through
1011 time. With significant regional and global ecosystem changes
1012 now occurring,98 having access to detailed metabolic records
1013 through proteomic analyses of key environments could be
1014 particularly useful in providing an understanding of anthro-
1015 pogenic impacts on natural ecosystems. Given that marine
1016 ecosystems are important to human society in a variety of
1017 ways, including maintaining Earth’s habitability through
1018 microbial biogeochemical cycling, economic activities such as
1019 fisheries and aquaculture, and strategic and security importance
1020 to naval operations, the development and sharing of marine
1021 metaproteomic data sets will likely contribute to the long-term
1022 goal of developing a sustainable human society. This creates a
1023 distinct set of use cases for environmental proteomic data sets
1024 compared to those of laboratory cultivated organism or clinical
1025 proteomes, where planetary scale geospatial and temporal
1026 information are critically important metadata, and correspond-
1027 ing environmental data are fundamental to contextualizing
1028 environmental metaproteomic results. Moreover, the amount
1029 of research funding going into biomedical proteomic research
1030 vastly outweighs comparable resources in the ocean environ-
1031 ment, making scarce ocean data sets of considerable value.
1032 These underlying differences in data usage and investment
1033 between environmental and biomedical proteomic data sets
1034 demonstrate a need for distinct data sharing strategies, and we
1035 have proposed some best practices with regard to metadata
1036 needs for ocean metaproteome data sharing, as well as
1037 summarized challenges associated with conducting metapro-
1038 teomic research in hopes of inspiring innovation and
1039 collaboration.

1040 ■ EXPERIMENTAL METHODS

1041 While the data presented in this review manuscript were largely
1042 previously published,3 some novel interpretations of the data
1043 have been included to demonstrate the complexity of
1044 metaproteome samples. The methods for these comparisons
1045 are briefly described below. A human cell line (HeLa) and
1046 ocean metaproteome samples (METZYME KM1128, Station 5
1047 0°N 158°W 40, 60, 120, 150, and 200 m depth, 0.2 μm filter
1048 pore size, prefiltered with 3.0 μm pore size) were analyzed
1049 under identical chromatographic and mass spectrometry
1050 conditions to provide examples of sample complexity run
1051 within 5 days of each other. Protein extraction for
1052 metaproteomics was conducted using SDS detergent and
1053 tube gel purification as previously described.3 Protein extracts
1054 were analyzed by liquid chromatography−mass spectrometry
1055 (LC−MS) (Michrom Advance HPLC coupled to a Thermo
1056 Scientific Fusion Orbitrap mass spectrometer with a Thermo
1057 Flex source). A total of 0.5 μg (HeLa) or 1 μg (ocean) of each
1058 sample (measured before trypsin digestion) was concentrated
1059 onto a trap column (0.2 × 10 mm ID, 5 μm particle size, 120 Å
1060 pore size, C18 Reprosil-Gold, Dr. Maisch GmbH) and rinsed
1061 with 100 μL of 0.1% formic acid, 2% acetonitrile (ACN),
1062 97.9% water before gradient elution through a reverse phase
1063 C18 nanospray column (0.1 × 400 mm ID, 3 μm particle size,
1064 120 Å pore size, C18 Reprosil-Gold, Dr. Maisch GmbH) at a
1065 flow rate of 300 nL/min. The chromatography consisted of a
1066 nonlinear 200 min gradient from 5% to 95% buffer B, where A

1067was 0.1% formic acid in water and B was 0.1% formic acid in
1068ACN (all solvents were Fisher Optima grade). The mass
1069spectrometer was set to perform MS scans on the Orbitrap
1070(240 000 resolution at 200 m/z) with a scan range of 380 m/z
1071to 1580 m/z. MS/MS was performed on the ion trap using
1072data-dependent settings (top speed, dynamic exclusion 15 s,
1073excluding unassigned and singly charged ions, precursor mass
1074tolerance of ±3 ppm, with a maximum injection time of 150
1075ms).
1076Quantitive Peak Comparisons

1077Comparisons of the relative complexity of ocean metaproteo-
1078mic samples (METZYME expedition, Station 3, depths 40, 60,
1079120, 150, and 250 m) with a human cell line sample run in
1080triplicate was conducted. A total of 0.5 μg of Hela was injected
1081per replicate, while 1 μg of ocean metaproteomic sample was
1082injected per sample, as described above. Precursor peak data
1083were extracted from raw files using ProteoWizard’s MSCon-
1084vertGUI to text file using the vendor (Thermo) peak picking
1085algorithm, and applying two filters: the peak picking algorithm
1086(set for MS Levels 1 only) followed by MS level filter MS level
10871 only. The number of precursor peaks per MS1, total ion
1088count (TIC), and chromatographic time information were
1089then extracted from the output files using a custom Python
1090script, summed, and visualized (Figure 5).
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