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ABSTRACT: Ocean metaproteomics is an emerging field enabling

discoveries about marine microbial communities and their impact on global [F¥iF
Collection

biogeochemical processes. Recent ocean metaproteomic studies have provided
insight into microbial nutrient transport, colimitation of carbon fixation, the [y
metabolism of microbial biofilms, and dynamics of carbon flux in marine
ecosystems. Future methodological developments could provide new
capabilities such as characterizing long-term ecosystem changes, biogeochem-
ical reaction rates, and in situ stoichiometries. Yet challenges remain for ocean
metaproteomics due to the great biological diversity that produces highly
complex mass spectra, as well as the difficulty in obtaining and working with
environmental samples. This review summarizes the progress and challenges
facing ocean metaproteomic scientists and proposes best practices for data
sharing of ocean metaproteomic data sets, including the data types and
metadata needed to enable intercomparisons of protein distributions and
annotations that could foster global ocean metaproteomic capabilities.

Dissemination

KEYWORDS: Metaproteomics, ocean, biogeochemistry, data sharing, best practices

B INTRODUCTION tional and new approaches, could be particularly powerful in

The measurement of many proteins within environmental
microbial communities, known as metaproteomics, is of

the study of how complex environmental systems operate, as
well as how they respond to environmental changes.
Since the development of mass spectrometry based

increasing interest to oceanographers and protein scientists.

The capacity to directly examine a multitude of functional proteomic technologies, there has been an increasing number
attributes of microbial communities and their linkages to both of metaproteomic or community-based analyses (Table S1),
ecology and biogeochemistry was once aspirational, but now including those of marine/ocean biota (Table 1). Metapro-
appears achievable with recent improvements in genomic

sequencing and mass spectrometry technology. Emerging Received: September 26, 2018

metaproteomic methodologies, in concert with other tradi- Published: January 31, 2019
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Table 1. Examples of Ocean Metaproteomic Studies

North Atlantic Ocean, Bermuda Atlantic
Time Series Station

Ocean scale metaproteomics in the Atlantic
Ocean

Antarctic Peninsula, Southern Ocean
Bering Sea Algae

Targeted metaproteomics of Central Pacific
Ocean

Marine biofilms, shiphull environments

Metaproteomics of the Saniitch Inlet

Sowell et al., 2008; Bridoux et
al,, 2015; Saito et al.,, 2017

Morris et al,, 2010; Bergauer
et al.,, 2018

Williams et al., 2012
Moore et al, 2012, 2014

Saito et al., 2014; Saito et al,,
2015

Leary et al,, 2014
Hawley et al,, 2014

Oxygen Minimum Zone, Coastal Pacific
Ocean

Metaproteomics of aquatic estuary microbial ~Colatriano et al., 2015

communities
Marine sediments Moore et al,, 2012, 2012, 2014

Bertrand et al,, 2013; Bender
et al.,, 2018

Phaeocystis and diatom blooms in the Ross
Sea of Antarctica

teomics of complex environmental samples such as seawater,
sediments, sinking particles, and biofilms have great potential
for revealing insight into biogeochemical cycling and microbial
response to environmental change in marine systems. For
example, recent ocean metaproteomic studies have provided
new insights into microbial nutrient transport,”* colimitation
of carbon fixation processes,” biogeochemical processes within
oxygen minimum zones,’ the composition of microbial
biofilms,” dynamics of carbon flux in marine ecosystems,®”*
and seasonal shifts in microbial metabolic diversity.” Future
methodological developments should lead to new capabilities
such as characterizing large scale ecosystem changes,

estimating biogeochemical reaction rates from enzyme
concentrations and conducting in situ stoichiometric measure-
ments. In the short time since the emergence of these
metaproteomic methods, they have been applied to environ-
ments around the world: including coastal and open ocean
pelagic environments from the Atlantic and Pacific Oceans,
and even to the rapidly changing polar environments of the
Arctic and Antarctic regions. Diverse biological communities
have been sampled including free-living microbial and algal
communities (including microbiomes), sinking particles,
marine sediments, and even biofilms attached to human built
environments.'>7%1%715 Also critical to the development
and deployment of metaproteomic approaches in natural
environments are controlled laboratory experiments on
cultivated microbes from the environment,'”'"*">* which
can enable the identification and verification of protein
biomarkers that characterize environmental processes.

B CONFRONTING CHALLENGES IN
METAPROTEOMIC RESEARCH

Despite this progress, key challenges remain in the application
of proteomic methods in environmental contexts.”* These
challenges can be organized into four broad categories: (1)
environmental sample acquisition and protein extraction, (2)
chromatographic separation and mass spectrometry analysis,
(3) informatic data processing, and (4) data archiving and
sharing (Figure 1). A defining feature that affects all of these
categories is that the ocean and other natural environments
contain a multitude of organisms that are not easily separated,
and hence are typically studied together in this “meta”

CHALLENGES IN METAPBOTEOMICS

« Access to the oceans/environment
+Dilute/small sample sizes

«Diversity: 1000s of organisms present
«Sample fractionation (filtration)

Sample
Collection

« Optimization of extraction (from filters or sediments)

«High-Resolution LC-MS
«Large dynamic range
« Tremendous sample complexity

Analysis

«Protein Quantitation with varying organism “matrix”

Results &
Interpretation

«Biologically diverse datasets

«Protein inference

«Peptide variance (diversity, SNPs, PTMs)

« Assigning taxonomic attributions

« Assigning functional attributions
«Metadata to environments
«Connections to environmental data

«Cross dataset comparisons
(diversity, time, and space)
« Educating non-expert users

Dissemination

DEPTH{m]

«Metadata unique to environmental samples

«Use of metagenomes and metatranscriptomes
«Missing genomes for uncultured microbes

Proteome Reconstruction

Figure 1. Analysis of proteins within natural environments presents unique challenges that can be improved upon to allow this new type data to
inform ecosystem function and change. These challenges span sample collection and extraction, mass spectrometry analysis, informatic approaches,

and data management and dissemination.
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(b)
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Figure 2. (a) Collection of ocean metaproteomic samples by in situ underwater McLane pump sampler as deployed in Terra Nova Bay of the Ross
Sea in Antarctica aboard the icebreaker R/V Palmer to capture the microbial and algal communities as well as larger sinking particles by filtration of
several hundreds of liters. (b) Example vertical distributions of three microbial proteins in the Equatorial Pacific Ocean using targeted
metaproteomics that are biomarkers of nitrogen (N), phosphorus (P), iron (Fe) nutrient stress, and nickel (Ni) biogeochemical cycling (data from
Saito et al,, 2014, https://www.bco-dmo.org/dataset/646115). Proteins shown include the nitrogen PII regulator protein from Prochlorococcus
(sequence VNSVIDAIAEAAK), the sulfolipid biosynthesis protein from Prochlorococcus (NEAVENDLIVDNK), UDP sulfolipid biosynthesis
protein from multiple taxa (FDYDGDYGTVLNR), the IdiA iron transporter from Prochlorococcus (SPYNQSLVANQIVNK), and the nickel
superoxide dismutase enzyme from Prochlorococcus and Synechococcus (VAAEAVLSMTK). Taxonomic assignments determined using

METATRYP."

community context. For example, in a typical ocean seawater
sample, the microbial diversity includes prominent taxa from
each of the three major domains of life as well as from viruses.
This natural biological diversity manifests itself in a
tremendous chemical complexity for proteomics analysis,
where proteins from many organisms are digested into
peptides and analyzed together, resulting in peptides that
have the potential to be shared across multiple species or
ecotypes, or whose sequences are not within available DNA
databases. New generations of fast scanning high resolution
mass spectrometry instrumentation, such as orbitrap and time-
of-flight instruments, now allow deep interrogation of these
complex samples and the many low abundance or chimeric
peaks within them, thereby improving and elevating the
confidence of identification. However, shared chemical
similarities across this biologically diverse environment creates
a number of challenges throughout the metaproteomic
workflow. In this document we identify and describe the
status of these challenges in order to enable researchers from
environmental fields and beyond to focus efforts on resolving
them. In addition, we propose a set of best practices for current
and future data sharing for ocean metaproteomic data sets in
order for researchers to make maximal use of current and
incoming data sets. This effort is necessary to enable

interoperability and accessibility as this exciting new data
type becomes more widely adopted and to allow critical
temporal comparisons as the field evolves.

Sample Acquisition from Natural Environments and
Protein Extraction

The study of natural marine communities presents significant
challenges in sample collection far beyond that involved in
laboratory-based studies. First, accessing the vast oceans that
cover 70% of the Earth’s surface can require expeditions on
research vessels to reach remote oceanic locations. Second, in
seawater environments microbes are often 3—4 orders of
magnitude more dilute than model organism laboratory
cultures. For example, marine microbial populations can
range from 1000 to 100000 cells per milliliter in seawater
compared to model microorganism cultures, such as
Escherichia coli that exceed a billion cells per milliliter. This
dilute cellular abundance in freshwater and marine environ-
ments requires filtration of tens to hundreds of liters of
seawater by combining multiple sampling bottles or using
specialized in situ underwater pumping systems to yield useful
quantities of protein for mass spectrometry analyses (Figure
2a). Similarly, collection of sinking particles and sedimentary
samples can require specialized sediment traps and coring

DOI: 10.1021/acs.jproteome.8b00761
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142 devices. There is considerable room for improvement in
143 engineering of sample collection as well as methodological
144 verification of sample handling processes, due to the combined
145 challenges posed by large geographical and depth space to be
146 sampled and the need to concentrate dilute biological material
147 without altering the proteomic signal within those samples.
148 Preservation of proteins at ambient temperatures appears to be
149 possible for some marine microbes using high salt RNA
150 preservatives, allowing in situ environmental samplers to be
151 designed and built, and time series to be taken. For example, a
152 commercially available RNA preservative was shown to
153 preserve proteins within cyanobacteria biomass at room
154 temperature for a month with no reduction in the number of
155 protein identifications, although periplasmic and extracellular
156 protein alkaline phosphatase was observed to be variable,
157 implying loss during filtration.”® This study of dissolved
158 proteins and their role in biogeochemical cycling is also of
159 interest but will likely require separate sampling procedures to
160 concentrate them from seawater. There are new robotic
161 autonomous underwater vehicles (AUVs) being developed that
162 are specifically designed for proteomic sampling in natural
163 environments. For example, the Clio AUV incorporates recent
164 developments in in situ pumping systems>® to collect a suite of
165 discrete protein and other biogeochemical samples by vertically
166 moving and holding position at 16 depths over 6 km of a
167 vertical ocean water column. Integrated over typical ocean
168 expeditions, improvements in sampling efficiency allowed by
169 AUVs such as Clio will enable greatly increased sampling
170 depth resolution and geographic coverage of the vast ocean
171 basins.”’

172 When laboratory and environmental scientists interact,
173 confusion can arise from differing definitions/expectations of
174 biological replication. The scientific approach and objectives of
175 environmental sampling are distinct from laboratory experi-
176 ments. There are clear differences between laboratory
177 experiments that can be easily replicated and sampling the
178 constantly changing natural environment. The challenge in
179 sample acquisition in marine metaproteomics described above
180 can preclude the collection of replicates; for example,
181 commonly used in situ pumps are tethered to a single wire
182 and deployed at predetermined depths and take several hours
183 to filter large volumes. Since the ocean is a fluid environment, a
184 second sampling deployment would collect a slightly different
185 water mass in space or time, depending on if the sampler was
186 placed adjacent on the vertical hydrowire or as a successive
187 sampling deployment after completion of the first sampling. As
188 a result, real variations (albeit small) in biological communities
189 and chemical properties could be captured in attempts at
190 sampling replication, and true biological duplicates are
191 aspirational, if not impossible. In place of replication,
192 oceanographers often look for “oceanographic consistency”
193 in trends across vertical depth structure (or horizontal
194 structure in the case of ocean basin sections) as a useful
195 means to validate results.”® Single samples have demonstrated
196 this oceanographic consistency in capturing large scale
197 oceanographic and metabolic processes across chemical and
198 biological gradients.”**’

199 The comprehensive extraction of proteinaceous material
200 from biomass is another challenge in metaproteomic studies.
201 Environmental samples can be extraordinarily complex due to
202 being composites of significant biological diversity, as well as
203 having additional biogenic and nonbiogenic materials within
204 them. Moreover, the biological composition of metaproteomic

—

—

—

—

~

—

samples can be largely unknown prior to extraction. Hence, the 20s
ability to tailor and optimize extraction protocols to the 206
environmental sample type presents unique difficulties. In 207
water column environments, depending on the environment 208
and collection strategy, an environmental microbial sample will 209
contain dozens of major biological species and hundreds to 210
thousands of trace species.’”>" Sediment and sinking particle 211
samples contain not only a mixture of organisms, but partially 212
degraded peptides created by a phalanx of microbial proteases 213
produced by heterotrophic bacteria consuming those particles. 214
There are also numerous complex symbiotic communities such 215
as corals, hydrothermal vent tube worms, and other symbiotic 216
systems where the proteins of the microbial assemblage will be 217
present within the extensive proteome of a eukaryotic host. 218
Studies have examined the recovery efficiency of different 219
extraction buffers on sedimentary and microbial biomass.”**> 220
Moreover, the presence of biogenic soft and hard parts, 221
including mucilage, calcium carbonate, and siliceous compo- 222
nents, as well as mineral phases, can complicate chemical 223
separation of proteins and impair protein extraction efficiencies 224

and require development of matrix-specific extraction proto- 225
cols, 61217,22,33

Mass Spectrometry Analyses 227

To date, the mass spectrometry measurement component of 228
metaproteomics has utilized three types of approaches: data- 229
dependent acquisition (DDA) for discovery proteomics,"”*** 230
data-independent acquisition (DIA**®), and targeted meta- 231
proteomics for quantitative analysis using multiple or parallel 232
reaction monitoring approaches (MRM/ PRM>' ). 233
Briefly, these approaches differ in how they select ions for 234
fragmentation: DDA approaches continually select abundant 235
features within ms' spectra for further ms® fragmentation 236
analysis (isolating the most abundant peaks within each parent 237
ms' spectra for fragmentation, with various user parameters 238
such as excluding recently fragmented precursors for a short 239
period),”” while DIA methods conduct ms? fragmentation on 240
small sequential mass windows across the entire mass range of 241
interest,”” thereby potentially fragmenting spectra of all ions, 242
assuming sufficient intensity. In contrast, targeted methods 243
focus their fragmentation analyses only on precursor ions 244
found on the target list, thereby increasing sensitivity by 24s
focusing mass spectrometry time on target ions.**~*' DDA 246
approaches continue to be most prevalent in metaproteomics, 247
but targeted and DIA approaches are increasingly being 248
explored for their ability to provide absolute and relative 249
quantitation, respectively. An example DDA workflow is shown 250
in Figure 3, and examples of vertical profiles of targeted 2518
peptides from MRM/PRM experiments are shown in Figure 252
2b. 253
While these proteomic methods have become common in 254
proteomic analyses on single organisms, the complexity of 255
metaproteome samples presents challenges for each method 256
with regard to both the chromatographic separation and mass 257
spectrometry components. For comparison, the complexity of 238
ocean seawater metaproteome samples appears to be 259
significantly greater than the human proteome, despite the 260
latter typically being considered to be one of the more complex 261
proteome sample types. This is illustrated in Figure 4a where a 262 4
three-dimensional (3D) visualization of the mass spectra 263
acquired from a surface sample in the central Pacific Ocean is 264
shown (filtered by 0.2—3.0 ym size fraction range), and in 265
Figure 4b—c with spectra from a small mass range examined at 266
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Digestion to peptides
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Taxonomic Analysis
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MetaGOmics, MEGAN)
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|

| Data Dependent MS Analysis

| Peptide to Spectrum Matching |~\‘

Protein Inference:
Assignment of Peptide to Proteins

y

Results: Results:
Protein ID Peptide Concentration (fmol/L)
Taxon Peptide Taxonomy / LCA
Function Inferred Protein Concentration
KEGG Stoichiometry
EXCS
Pfam

Relative Abundance Units:
Spectral Counts,
Precursor intensity,
Fragment ion intensity

Figure 3. An example environmental metaproteomic workflow where
environmental samples are collected and extracted (gray), discovery
proteomics are conducted (green), and peptide targets from selected
proteins of interest can be assayed using isotopically labeled peptide
standards whose taxonomic assignment can be queried against
databases of genomes and metagenomes (yellow). The results can
provide relative and absolute abundance measurements of the protein
from the microbial and algal community, including functional and
taxonomic information (blue).

267 equivalent chromatographic elution times (575—578 m/z ms'
268 window and 140—141 min) revealing more observable mass
260 peaks events in an ocean sample (Figure 4c) when compared
270 to a human cell line (HeLa) sample (Figure 4b). These
271 observations of metaproteome complexity were also quantita-
272 tively confirmed across entire samples by analysis of ms' peak
273 within triplicate HeLa injections and five metaproteome
274 samples from the Pacific Ocean at varying depths in Figure
275 5. These HeLa-ocean comparisons used identical chromato-
276 graphic and mass spectrometry settings and were run within 1
277 week of each other using the same nanospray column, with 0.5
278 ug of HeLa analyzed per injection, while 1.0 pg ocean sample
279 was analyzed per sample injection. In this example, the number
280 of peaks was higher in the metaproteomes compared to HeLa
281 (Figure Sa—c), while the total ion current (TIC) was
282 considerably lower across all metaproteome samples (Figure
283 Sa—b,d), implying more peaks of lower intensity in the
284 metaproteome samples. This high complexity of metaproteo-
285 mics samples presents significant challenges to current
286 chromatographic and mass spectrometry workflows. For
287 example, real-time feature identification (peak picking)
288 software on mass spectrometers has not been optimized to
289 process chimeric peak features that appear to be ubiquitous in
290 metaproteomic samples, where chimeric features are peaks so
291 close in mass to other peaks preventing a successful charge
292 state estimate that is needed to trigger ms® fragmentation in
293 bottom up DDA experiments. Moreover, the low abundance of
294 many ions in metaproteomic samples (as observed in Figure

=3

o

4c) poses an additional challenge, where the numerous low 295
abundance peaks among more abundant ones remain 296
uncharacterized due to physical limits on the number of ions 297
entering the mass spectrometer at any time, a problem that can 298
challenge both DDA and DIA methods. 299

Metaproteomic approaches have made progress in address- 300
ing the challenges of this sample complexity. For example, 301
chromatographic approaches have been improved by applying 302
two-dimensional chromatography'®** or gas phase fractiona- 303
tion””?** to distribute the sample complexity for mass 304
spectrometry analysis across subsamples or temporal chroma- 30s
tographic separation as a means to obtain deeper metapro- 306
teomes. Moreover, DIA approaches have been utilized to 307
address the crowded and complex nature of ion chromato- 308
grams that are specific to metaproteomics,”*® although 309
bioinformatic pipelines for mixed community DIA data sets 310
are still being developed. Finally, the application of targeted 311
methods offers improved sensitivity and absolute quantitation 312
of biomarkers for environmental stress by targeting represen- 313
tative peptides.”'"'* 314

Future collaboration with hardware and software developers 315
could also greatly improve metaproteomic research efforts. For 316
example, effort could be expended to capture greater 317
information about the numerous low intensity ions that are 318
missed by real-time and postprocessing algorithms due to 319
several factors including insufficient ions trapped for high- 320
quality ms® fragmentation spectra, ions being chimeric with 321
other nearby peaks, and lack of charge state assignments. 322
Recent efforts in improving detection of chimeric peaks may be 323
useful in this regard when applied to metaproteomic 324
applications.** 325

Finally, there is an important need for intercomparison and 326
intercalibration efforts with regard to protein extraction 327
efficiency and mass spectrometry accuracy and precision. 328
Chemical oceanographers have a legacy of successful 329
intercalibration efforts that have enabled global scale studies 330
of ocean chemistry, such as the recent GEOTRACES (an 331
international study of the marine biogeochemical cycles of 332
trace elements and their isotopes) trace elements and isotope 333
global section program.*® For ocean metaproteomics, uniform 334
preparation of large batches of intercalibration samples may be 335
challenging given that samples can vary in biological 336
composition and sampling methodologies, and likely multiple 337
smaller initial intercomparison studies might first be needed. 333
Alternatively, simpler “synthetic” metaproteome samples could 339
be created by mixing of laboratory microbial isolates that could 340
be made in large batches and distributed, although these may 341
not reproduce the depth of biological diversity nor a realistic 342
environmental chemical matrix. Intercalibrations could be 343
applied to the two current major approaches to ocean 344
metaproteomic mass spectrometry analysis: global discovery 34s
data sets and targeted metaproteomics, with studies providing 346
metagenomic databases and isotopically labeled peptide 347
standard materials to facilitate analyses, respectively. Moreover, 343
intercalibration exercises could be conducted on consensus 349
standard sample sets of some example biological communities 3s0
initially, such as seawater microbial communities that are well- 351
characterized with respect to metagenomic data, although 3s2
eventually many types of biological materials could be selected 3s3
for intercalibration (sediments, biofilms, etc.). Finally, future 354
additional types of metaproteomic analyses could be added for 3ss
intercomparison such as data independent analysis and post- 3s6
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Figure 4. (a) Three-dimensional representation (axes of retention time (min), m/z, and intensity) of complex spectra associated with an
environmental ocean sample from the Equatorial Pacific from the METZYME expedition (200 m depth, produced in MzMine2**). Comparison of
a 3 m/z ms' mass window (575—3578 m/z, 140—141 min) from (b) human proteome spectra (HeLa cell line) and (c) ocean metaproteome (120 m
depth) provides an example of the high complexity of environmental samples due to the biological diversity.

translational modifications within metaproteomic environ-
mental samples.

Metaproteomic Data Analysis

Data analysis of mass spectra from metaproteomics experi-
ments presents many challenges compared to single organism
proteomics. In particular, each metaproteome mass spectral
data set can contain tremendous biological diversity whose
composition is often largely unknown. Furthermore, estab-
lished proteomic workflows that conduct peptide-to-spectrum
matching (PSM) by comparing peptide precursor and
fragment ion masses to corresponding predicted masses
using genomic reference databases were never designed to
handle the inherent complexity and multiple biological entities
within metaproteomic data sets, and hence approaches thus far
have been improvised adaptations. The expanse of unknown
biological diversity often results in metaproteomic protein
database searches that are typically large and of redundant
nature. This has an effect on database selection, data-search
algorithm utilized, subsequent FDR statistics,"*” and protein
inference.***’ Additionally, metaproteomics shares the chal-
lenge of functional and taxonomic assignments with meta-

genomics, relying on a comparative approach with model
organisms, resulting in many proteins of unknown function or
taxon. Finally, metaproteomic workflows typically involve the
integration of multiple software tools, making documentation
and reproducibility difficult as tools evolve. Despite these
challenges, multiple approaches have been developed over the
last 13 years (Table S1). The analytical workflows that have
been developed to date are mainly comprised of (a) database
generation, (b) database search, and (c) taxonomy and
functional analysis.

Database Type (Genome, Metagenome, Metatran-
scriptome, Custom). In order for PSM algorithms to assign
peptide sequences to spectra from MS experiments, the
observed tandem mass spectra are cross-correlated and scored
against theoretical spectra generated in silico from the
provided protein sequences. The collection of protein
sequences is generated from available genomic, metagenomic,
or metatranscriptomic sequence information and commonly
referred to as the genomic or protein database. High scoring
peptide spectral matches (PSMs) are then reported with their
corresponding protein sequence and annotation from the
original database. Importantly for metaproteomics, the

DOI: 10.1021/acs.jproteome.8b00761
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Figure S. Peak analysis of human cell line and ocean metaproteome samples by identical chromatographic and mass spectrometry conditions. (a—
b) Number of peaks identified replicates (top rows) and the total ion current (TIC, bottom rows) of the sample in Hela (Panel A, replicates Hela-
A, Hela-B, and Hela-C) and an ocean metaproteome sample (Panel B, depth 40, 60, 120, 150, and 250 m, Metzyme Expedition Station 3). Samples
were run during the same week on the same nanospray column (see methods) with similar amounts of protein injected (0.5 ug for Hela per
injection, 1 ug for ocean metaproteome). (c) Total number of peaks by sample type showed a higher number peaks in ocean metaproteome
samples, while (d) TIC by sample showed much lower summed peak intensity within the metaproteome samples, consistent with the $75—578 m/z

window shown in Figure 4.

peptides and proteins reported are dependent on the
coherence of the original genomic sequence information
relative to the organism(s) present in the sample. More
often than not in metaproteomics, each sample’s composition
of biological diversity is unknown or its characterization is
limited by the depth of DNA sequencing and final assembly. As
a result, if a peptide sequence is not in the database, the
peptide will not be identified nor will its contribution to a
protein identification be included in the experiment.
Furthermore, quality of gene prediction algorithms can affect
protein detection: if protein-encoding genes are missed during
the initial gene prediction phase, then they will not be included
in the protein search database. While gene prediction from
prokaryotic genomes is relatively straightforward, it becomes
challenging for more complex microbial eukaryotic genomes,
owing to the complexity and diversity of eukaryotic gene
structure (e.g., predicting introns and exons). However,
eukaryotic gene prediction algorithms are continually advanc-
ing, and indeed proteomics plays a large role in the accurate
identification of protein encoding regions of eukaryotic
genomes through proteogenomic efforts.’*~>* Additionally,
the incomplete nature of peptide fragmentation yields high
variability in final peptide interpretations, making database
choice and construction pivotal.> Finally, the occurrence of
similar but not identical protein sequences (homologues) in
closely related organisms adds significant complexity to
metaproteomic search databases.

There are three main approaches for creating metaproteomic
databases: (1) sequence and assemble a metagenome, (2)
assemble a database from the public environmental genomic
repositories, and (3) create a pseudo-metagenome by including
desired taxonomic classes or species. The composition of the
protein search database used to search the mass spectra from a
metaproteomic sample has a profound effect on biological
conclusions.”® Timmins-Schiffiman et al. reccommended a best
practice for environmental proteomics of corresponding site
and time specific metagenomes in order to generate accurate
proteomic databases to assign peptide sequences and protein
annotations.>*'%*>% While this avenue represents the ideal
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scenario, at some point sufficient metagenomic coverage of 439

specific environments should allow decoupling between
genomic and proteomic analyses as a large inventory accrues
of deeply sequenced data sets from diverse environments.””

440
441
442

However, as evolution is a dynamic process, resequencing of 443

these environments will be required to capture continued
community adaptation to changing environments and evolu-
tionary forces which are already evident in repeated marine
sequencing efforts over seasonal time scales.”®

There are a variety of publicly available metagenomics data
sets that marine metaproteomics researchers have used, for
example, the ]J.C. Venter Institute’s Global Ocean Sampling
(GOS) database.”**™°" In addition, there are environmental
metagenomics databases available at major repositories and
portals such as EBI, JGI, and iMicrobe (https://www.ebi.ac.
uk/metagenomics, https://img.jgi.doe.gov, http://www.
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imicrobe.us). For eukaryotic phytoplankton and protists,
genomic, transcriptomic, and metagenomic resources are
considerably more scarce, though recent availability of the
Marine Microbial Eukaryote Transcriptome Sequencin
Project (MMETSP) has begun to address this challenge.
The application of large databases (either public or
metagenomics) still suffers from limitations with respect to
sensitivity of identifications. One approach to alleviating this
problem applied a “metapeptide database” from shotgun
metagenomics sequencing and demonstrated a significant
increase in the number of identifications presumably due to
a more accurate and compact database as com(}))ared to an
assembled predicted metaproteome and NCBInr.”’

Finally, the selection and compilation use of individual
microbial genomes for a metaproteomic database can also be
useful in metaproteome analysis. Given that many of the major
microbial taxa in the oceans were discovered in recent decades
and in many cases there are few laboratory isolates and
accompanying genomes, there is significant need to amend
large public databases with new representative microbial
genomes.64_66 In contrast to metagenomic data sets, these
genomes of cultivated isolates also provide clarity with regard
to taxonomic attribution that can be obfuscated by limitations
of metagenomics assembly and annotation. Increasing
availability of single cell genomic data (single amplified
genome; SAGs) can also contribute significantly to databases
for metaproteomic analysis. Notably however, the SAG
technology does not produce complete genomic sequences
(unclosed genomes), and hence care must be taken when
trying to interpret the absence of a protein using metagenomics
or SAG databases to avoid false negatives. For eukaryotic
metaproteome analysis, transcriptome data can also serve as a
useful source of sequence for the protein database generation
since full genomic information of marine eukaryotes is
relatively rare and the DNA architecture is more complex
due to the prevalence of noncoding intron regions intertwined
with the protein-coding exons. A recent study from the Ross
Sea of Antarctica found that for a diverse bloom community
with abundant eukaryotic phytoplankton, a combined database
of transcriptomes from cultured isolates and field metatran-
scriptome provided a richer metaproteome result than either
database alone."

Search Engine. In common DDA proteomic workflows,
the search engine that conducts the PSM analysis is central to
protein discovery and identification. Application of these PSM
algorithms (e.g, SEQUEST, X!Tandem)®’ ™ have been
successfully applied to metaproteomic analyses, despite the
fact that they were never designed to deal with the complexity
of metaproteomic data sets. Search algorithms are chosen
based on the following factors such as the ability to search large
databases, speed, and the ability to generate outputs that are
compatible with downstream processing steps such as peptide
or PSM output with robust FDR threshold calculations. Most
of the suggested database generation strategies generate large
databases, which in turn affect the sensitivity of identifications.
Multiple strategies have been suggested to increase peptide
identifications. This includes the two-step method for
searching large databases;”"”"* and a cascaded search
method.”> Muth et al. have recommended using a database
sectioning approach so that searches against subsets of a large
database may increase the number of identifications.” They
have also suggested using multiple search algorithms in order
to increase the percentage of peptide spectral matches in a data

set. For example, SearchGUI/PeptideShaker,”® which uses at
least eight open-source search algorithms, can facilitate this
multipronged approach and can be used to search against large
databases.> Irrespective of the choice of search algorithms, the
goal is to generate outputs with maximal coverage of mass
spectra that are compatible with the next steps of taxonomic
analysis, functional analysis, and subsequent targeted valida-
tion.

Despite these initial successes, it is apparent that these
workflows and algorithms could be improved upon to confront
significant challenges of spectral complexity, metaproteomic
protein inference, and taxonomic attribution within environ-
mental samples. Specifically, the presence of numerous low
abundance peak features, discerning chimeric peaks (Figure 2),
and assignment of corresponding peptide charge states are
difficult for current PSM algorithms and likely result in
significant underestimation of peptide identifications within
metaproteomic spectra. Application of de novo search
algorithms and spectral libraries could also improve identi-
fication of peptides from metaproteomics samples.””

Taxonomic and Functional Annotation. Metaproteo-
mics has a distinct utility in determining the protein functional
expression by a microbial community.”* However, the
functional interpretation of a metaproteomics data set is
inherently reliant upon the underlying annotation of the
protein search database, including the prediction of protein-
encoding genes from genomic data and the subsequent
functional annotation of the predicted proteins. While much
of the taxonomic and functional attribution of metaproteomic
results can leverage metagenomic annotation pipelines, there
are aspects that are unique to metaproteomics. In particular,
the basal unit of proteomic identification is generally the
tryptic peptide (due to the effectiveness of trypsin in
proteolytic digestions), resulting in amino acid sequence
coverage without overlaps, except in cases of missed cleavages.
Due to the presence of unknown biological diversity, it is
possible to have tryptic peptides that are shared within or
across species. As a result, the greatest confidence in
metaproteomic discovery occurs on the peptide level, and

creates a need in metaproteomic research for investigation of ss7

sequence taxonomy on the peptide level. This is also an issue
since inference of specific taxonomy tends to be more difficult
than function in typical sequence analysis (e.g, BLAST), due
to the sharing of biochemical capabilities by many organisms.
Two web-based applications are available for this, Unipept and

Metatryp, that search DNA sequence data for the presence of s63

user entered tryptic peptide sequences and estimate the lowest
common ancestor (LCA; kingdom, phylum, genus or species)
for each peptide query'*”*”? (Figure 2b). The applications are
distinct in the DNA sequence databases they search, with
Unipept searching the UniProt genomic database as well as
providing cross-referenced EC numbers and GO terms,*® while
Metatryp allows use of custom genomic data and metagenomic
data (including single amplified genomes and metagenome
assembled genomes) with a focus on marine environments
(http://metatryp.whoi.edu).'* The choice of database can
affect results; for example, currently Unipept maps 51% of the
peptides from the Morris et al. South Atlantic data set” to
sequences within Uniprot, implying that genomic data
availability still hinders interpretation of ocean metaproteomic
data sets (https://unipept.ugent.be/mpa). There are addi-
tional bioinformatic tools for taxonomic analyses that may be
useful for metaproteomic research such as MEGAN’®
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microbiome software that computes taxonomic profile by
assigning PSMs from a metaproteomics experiment to an
appropriate taxonomic unit within the NCBI taxonomy. In
addition, the recently developed MetaProteomeAnalyzer that
uses outputs from SearchGUI/PeptideShaker®" has taxonomic
analysis capability.

Connecting protein functions with metaproteomic data sets
is a key goal that can be accomplished in variety of ways.
BLAST analyses of the metagenomics contigs being used for
PSMs provide high-quality searches by using longer sequences,
but require availability of well-annotated metagenomics
databases. Additional software is available for downstream
metaproteomic functional analysis including peptide-level
MetaGomics®® or Unipept,*> protein-level (for example,
MEGAN®), protein orthologs (for example, EggNOG
mapper”” or metaprotein/protein-group level (for example,
MetaProteomeAnalyzer). Each of these methods uses distinct
annotation databases, such as UniProt (for example software
tools such as MetaGomics, Unipept or MetaProteomeAna-
lyzer™®) or NCBInr (MEGAN) or EggNOG database
(EggNOG mapper) to assign functional categories. Functional
analysis tools generate functional ontologies such as Gene
Ontology (GO; for example, MetaGOmics, MEGAN, Unipept
and EggNOG mapper), KEGG orthology groups (for example,
EggNOG mapper, MEGAN and MetaProteomeAnalyzer), EC
numbers (for example, Unipept and MetaProteomeAnalyzer),
and EggNOG orthologous groups (EggNOG mapper) are
used for deciphering the functional state of a microbiome.

While these annotation approaches described above are
useful, it is worth acknowledging that there is a continuing
challenge in interpretation of metaproteomics data that is
inherited from metagenomic research regarding the process of
annotating protein function from gene sequence data. The vast
majority of protein annotations are assigned not from direct
experimental evidence, but rather from sequence similarity to a
previously annotated protein or protein family in a metabolic/
ortholog database (e.g., KEGG, COG, METACYC, PFAM).
This leads to several issues. The first is that annotation transfer
based upon sequence similarity has resulted in the propagation
of misannotations in large genomic databases over time, with
the most common form of misannotation resulting from “over
annotation”—annotation of a gene to a deeper level of
functional characterization than the supporting evidence
provides.86 Even minor errors or discrepancies in annotation
transfer can result in massive error Isvl'opagation.87 Common
irregularities in gene annotation can cause serious issues for the
metaproteomics researcher who is reliant upon these
annotations to give biological context to proteomic data.
Some of these annotation irregularities include gene
annotations in which one gene name is assigned very different
functional descriptions, instances where the gene name for a
particular function has changed over time, or cases where only
one function of a multifunctional enzyme is provided.®’
Similarly, novel functions can be discovered for previously
unannotated hypothetical proteins.'®*® These issues can be
compounded if a custom search database comprised of
genomes annotated by different means is used for peptide
and protein identification, as is common in oceanographic
studies. Moreover, as genomic data are updated with improved
annotation information, an ability to pass this new information
onto deposited processed metaproteomic results will be
needed, and could be accomplished with versioning of
deposited data sets.

A barrier to managing the spread of misannotations is that
for some databases, such as GenBank NR, there are currently
no means for the community to submit additional manually
curated annotations and corrections. Fortunately, newer
techniques for genome annotation which rely on methods
beyond simple pairwise sequence similarity—most notably, the
use of machine learning based algorithms—outperform the
former pairwise similarity and BLAST based annotation
transfer methods.” Protein functional prediction from
sequence data is a growing field itself, and will likely benefit
from coupling powerful predictive algorithms with high-quality
systems data to provide deeper, more accurate, and more
meaningful characterizations.

Another common issue is where only a single function is
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reported for a protein family that is comprised of proteins of 6s8

divergent function. For example, in Colatriano et al,>®
numerous proteins are assigned to the DMSO reductase
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enzyme superfamily, which is comprised of a number of ¢s1

functionally distinct proteins including nitrate reductases
involved in anaerobic respiration as well as nitrite oxidor-
eductase involved in dissimilatory nitrite reduction. Only
through fine-scale phylogenetic analysis of the identified
proteins could the true function as nitrite reductases be
determined. However, in many cases, the relationship between
phylogeny and function within protein families is unknown. In
metaproteomics, this is especially problematic for transporter
proteins which are often abundant in metaproteomics data sets
and are attractive since they may be used to infer substrate
utilization patterns that are directly relevant to global
biogeochemical cycles. However, transport function is often
poorly conserved with these families, and hence sequence
analysis is no substitution for the critical biochemical and
genetic studies capable of characterizing protein function
directly.lé’90 In conclusion, there are significant challenges and
room for improvement in the assignment of annotation
information to metaproteomic data sets, and cooperation
with genomics researchers and organizations, as well as
incorporating an ability to reanalyze data sets and submit
updated versions will be important components of future
metaproteomic data management.

Challenges in Ocean Metaproteomic Data Sharing

There is potentially great value in sharing raw and processed
environmental metaproteomics data within ocean sciences and
beyond. As with most ‘omics sciences, each data set contains
far more information than the data-generator’s laboratory can
interpret. Proof that a gene is synthesized into protein form, as
well as its variation in spatial or temporal distribution, can
provide valuable biological and chemical information about the
environment. Yet due to the complexity and newness of this
data type, there are challenges unique to metaproteomics in
reporting and disseminating this information. In a workshop in
2017, we discussed these challenges, and organized the
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following information in an attempt to provide a first set of 696

best practices to Ocean Metaproteomics Data Sharing.
Interoperability between ocean metaproteomic observations
and their related environmental data requires that the
relationships between these data are explicitly known. Defining
these relationships helps to communicate proper use when
integrating disparate data within a shared domain.”' While
defining these relationships helps humans properly integrate
data, software and tools need something more. In the past, this
meant developing software to a specific set of data types that
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forced data to follow certain conventions for variables names
and structure. Yet current standards for integrating data on the
web enable software to infer how disparate data can be
integrated when they are described using semantic web
schemas and rulesets. In doing so, these disparate data do
not need to be transformed to conform to the software.
Instead, the data are described using semantic web
technologies for proper integration. The semantic web
provides a framework for classification of data and its
relationships in what are called ontologies, or vocabularies.
These ontologies are logical groupings of terms and the axioms
that define the how data from that domain are to be described.
These terms can define cardinality rules or other logical
expressions that enable humans and machines to make
inferences over the data. Instead of transforming the original
data to force it to conform to software, software can be written
to conform to an ontology. As a result, this leaves the data
intact and moves the work of integrating data to describing
how it maps to the ontology.””

Bl CONNECTIONS TO KEY ENVIRONMENTAL
METADATA AND DATA

Environmental research requires unique metadata to provide
context for comparisons across space and time. These
metadata include numerous attributes associated with sampling
from the oceans or other natural environments that are most
often not included in the data model in biomedically focused
proteomics repositories. For example, there is geospatial and
environmental contextual information that is critical to
interpreting results such as latitude and longitude, depth, and
sampling environment (e.g., pelagic water column or benthic
sedimentary location). For the pelagic environments, there is
critical methodological information regarding sample collec-
tion parameters including filtration pore size range(s) or
sediment trap deployment conditions for sinking particles. For
benthic environments, key sedimentary environmental details,
organism (coral, whale, plankton, zooplankton, etc.), or human
built environments (ship hull surface) need to be described. In
addition, local time of sampling can be important to detect
short-term (diurnal) changes or long-term (seasonal or
environmental change) processes. In addition to these
metadata, there is also important contextual information
derived from co-occurring chemical, biological, or physical
measurements, such as temperature, macronutrient and
micronutrient abundances, salinity, light intensity, and bio-
logical diversity, to name a few parameters. Carefully defining
the data and metadata model will also facilitate connections to
environmental data management holdings such as those at the
Biological and Chemical Data Management Office for Ocean
Science in the US (www.bco-dmo.org), and various national
data repositories will facilitate access to this contextual
information. Table 2 provides a list of recommended metadata
for best practices of ocean metaproteomic samples data
management to be provided at the time of deposition.
Making connections between metaomics data sets and
environmental data is a widely sought goal that is difficult to
achieve. Enabling interoperability between ocean metaproteo-
mic observations and their related environmental data requires
that the relationships between these data are explicitly known.
Defining these relationships helps to communicate proper use
when integrating disparate data within a shared domain.”!
While defining these relationships helps humans properly
integrate data, software and tools need something more. In the

Table 2. Recommended Metadata for Best Practices in
Ocean Metaproteomics Data Sharing

when

reporting metric notes/units available

Project Metadata
expedition identifier

lead PI, contact info,
ORCID identifier

Co PI, contact info, \/

ORCID identifier
Contextual Metadata

latitude degrees N
longitude degrees W
sampling depth

habitat type Pelagic, benthic, reef, ship-hull, host-

associated, other
temperature degrees Celsius
salinity
chlorophyll-a
concentration

oxygen
concentration

<O L =

other analytes
measured

links to environmental data repositories

Sample Acquisition Metadata
sampling method filtration, sediment trap, coring, other
volume of water liters

sample represents

filter type membrane (PC, PS), glass fiber, quartz,
other
filter size micron pore size

A S

prefilter(s) used if applicable: micron pore size, filter
type

see Table S2

see Table S2

see Table S2

Sample Extraction Methods
Mass Spectrometry Methods
Data Analysis Methods
Metaproteomics Data
Analysis Metadata

database used for
PSM or targeted
method
development

metagenomic, metatranscriptomic,
genomic sequences used; link to
sequence repository

taxonomy analysis
method

software/algorithm used

functional analysis
method

software/algorithm used

past, this meant developing a certain piece of software to a
specific set of data types. Yet current technologies, such as the
semantic web, enable software to understand how data can be
integrated through well-defined schemas and rulesets. Using
ontologies, a semantic web technology, data, and their
necessary relationships can be described in ways that machines
can enforce cardinality constraints and make inferences that
are helpful for ensuring a proper integration.”

Due to this fundamental importance of metadata associated
with metaproteomics results, deposition of raw data into
existing proteomic repositories designed primarily for labo-
ratory studies (e.g.,, Pride, Massive, and Chorus) could create
challenges for researchers in locating and manipulating
collections of environmental data sets.”> While these raw
data repositories are already valuable in hosting environmental
proteomic data, the proper data management of large amounts
of metadata can be viewed as a burden beyond what those
entities are funded to provide, as has been observed in
metagenomics data management spheres. As a result,
intermediary environmental metaproteomics portals that host
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Table 3. Key Datatypes Needed for Ocean Metaproteomic Data Sharing

data type
raw mass spectra files

protein identifications ~ MS/MS sample name

attributes

open data format, parameters, corresponding environmental and mass spectrometry metadata (see Tables 2 and S2)

sequence identifier (e.g, metagenome locus or genome ORF)

product name, taxon, taxon ID, KEGG, E.C., PFam

quantitative value(s) (spectral count)

peptide identifications

MS/MS sample name, sequence identifier (e.g.,, metagenome locus or genome ORF), peptide sequence, peptide start index, peptide stop

index, precursor mass, retention time, statistical score of peptide, quantitative value (spectral count, MS' peak area, fragment ion peak
areas from SRM/MRM/PRM analyses, calibrated SI unit concentrations)

FASTA of amino acid
sequences of all
identified proteins

full sequence of DNA or RNA used for peptide-to-spectrum mapping

corresponding sequence identifier (e.g,, metagenome locus or genome ORF)

processed data sets and full metadata archives can serve a
valuable function as a link to raw data repositories and
cocollected or colocated environmental data sets. Hopefully
either raw data repositories will work with environmental
communities in collecting environmental metadata as well as
cooperating to enable web-based connections between raw
data repositories and processed data portals. In order to foster
a high level of data sharing, reanalysis, and intercomparison, it
is important for data generators to preserve a number of data
facets and metadata, at the time of publication and archiving.

B DATA TYPES USEFUL FOR METAPROTEOMIC
DATA SHARING

In addition to the unique and critical metadata and
environmental data that need to be provided, the metapro-
teomic data sets also require several distinct types of raw and
processed data (see Table 3) in order to allow reproducibility
and to enable a deep interrogation of their attributes in
environmental data portals such as the future Ocean Protein
Portal. Within processed data sets these include protein
identifications with associated functional and taxonomic
information (if known), full amino acid sequences, correspond-
ing peptide sequences of discovered peptides, quantitative
information for both proteins and peptides (e.g, spectral
counts, precursor or fragment intensities), and associated
statistical threshold used for generating these data (e.g., protein
and peptide FDRs). For raw data, these include the raw mass
spectrometry files converted to a platform-independent format
as well as the sequence databases used to generate them. An
important distinction from model organism studies is the
fundamental importance of the peptide-level data to
metaproteomics: the ability to have access to detailed
peptide-level information with corresponding geospatial and
temporal information will be critical to enabling users to
directly interrogate the peptides that were actually measured in
the oceans, as opposed to relying on protein inference that may
be incorrect due to insufficient metagenomic coverage.

B QUANTIFICATION: UNITS, INTERCALIBRATION,
INTEROPERABILITY, AND NORMALIZATION

The ability to make comparisons of results across global scales
of time and space in the oceans is a key appeal for embarking
on ocean metaproteomic research science. Indeed, the ability
of proteins to record the functional attributes of each
population of marine microbes could allow a “personalized
medicine” of the oceans,”” where long-term metaproteomic
records would track changes in environmental stresses
experienced by major taxa, and their resultant influence on

global biogeochemical cycles and implications for sustain-
ability. In ocean sciences, the few long-term time series
available allow studies of the impacts of global change on the
oceans. However, achieving the ambitious goal of integrating
metaproteome studies into global change science will require a
sufficient level of confidence regarding the accuracy and
precision of analyses to allow detection of changes between
samples sets. Metaproteomic data sets have reported
quantitative results in a variety of units thus far, including
total or normalized spectral counts, precursor intensities, or
calibrated absolute concentrations (fmol L' seawater).
Because the biological “matrix” of an environmental location
can change with time, there is a particular value in absolute
measurements that record peptide and protein abundances in
SI units per liter that can be unequivocally compared across
time. As a result, focusing on attributes that enable
interoperability between samples, even as technologies
(including chromatography, mass spectrometry, and infor-
matics) and reference databases improve, is an important
aspect of ocean metaproteomic data sharing. Efforts to
harmonize across analytical platforms to improve intercompar-
ability may be possible even in relative measurements
(nonabsolute) through the calibration of signal intensity
using a common reference material.”* As described earlier,
efforts toward intercalibration of targeted metaproteomic
analyses, as well as intercomparison of global relative
abundance studies are critical to validating current measure-
ments and enabling future comparisons. Similarly, allowing
versioning of data sets will enable reanalysis of and
reinterpretation of historical data sets that can then be used
for temporal comparisons as both reference metagenomic
databases and PSM algorithms improve.

Another consideration in the use of metaproteomic data is
the choice of whether to normalize protein data to another
protein or parameter. This choice may reflect scientific culture
to some degree: in biological spheres normalization is routine
in order to provide organismal or ecological context, while in
chemical oceanography normalization is rarer due to an
appreciation for the importance of relaying absolute quantities
of molecules or elements per volume of seawater and the
fundamental interoperability of absolute units. Notably,
normalization approaches developed for single-organism
proteomics are not always applicable or appropriate for
metaproteomics. For example, assumptions of a constant
background proteome (in terms of uniformity of biological
organism(s) present) are not valid in many environments
depending on spatial or temporal scales being studied.
Moreover, the influence of differences in species abundance
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across samples should be considered when considering
normalization of metaproteomic data sets;”> for example,
when biological community composition changes across the
sampling regime normalization to a particular organism may
not be appropriate. While there have been advances in data
processing approaches that address aspects of this issue,*”
significant challenges remain.

B PEPTIDE LEVEL REPORTING

Most publication guidelines for proteomics experiments
recommend at least two peptides be identified to confidently
report the identification of a specific protein. In the case of
metaproteomics, however, it is understood that SNPs, amino
acid variations, and substitutions associated with natural
biological diversity within species or strain-level populations
are common. As a result, it is possible to generate numerous
high-quality PSMs in metaproteomics that are “one-hit-
wonders”, likely due to a combination of challenges described
above, including limitations associated with the application of
mass spectrometry and PSM algorithms to highly complex
samples, availability of a suitable database due to limited
metagenomic coverage and quality, as well as the inherent
biological diversity of a given protein (and its host organism)
present in each nonclonal population found in the natural
environment. In most cases, the natural biological diversity
within species or strain-level populations is of great interest. It
is not uncommon for peptide sequences (typically tryptic
peptides) to be shared between closely related organisms. In
marine microbiology, it is becoming common for multiple
strains from a single species to have their genomes sequenced
and physiology studied. These strains are described as being
ecotypes that inhabit distinct environmental niches and can
have overlapping distributions allowing co-occurrence within
individual environmental samples.”® As a result, the assignment
of multiple high-quality PSMs to a single protein sequence
derived from a single isolate genome sequence is not as
straightforward as with clonal populations of model laboratory
organisms. If multiple ecotypes are present with slight
variations in peptide sequence, the assignment of peptides to
protein sequences could need reconsideration. Indeed, this
subject intersects with the larger question regarding the
appropriate definition of microbial species itself. Nevertheless,
it has been demonstrated that this complexity can be taken
advantage of in order to design targeted metaproteomic
workflows that can interpret peptide biomarker abundances on
a large ocean biome scale and that multiple peptide biomarkers
provide consistent results.”

As a result, the two-peptide rule may not be appropriate for
metaproteomics. There is precedence for not using the two-
peptide rule in splice variant analysis and detection of post-
translationally modified amino acid sites. With the subsequent
arrival of high resolution mass spectrometry and stringent
FDR-based analyses, high-quality PSM that do not map to a
single protein sequence can have considerable value, and their
inability to have multiple peptides mapping to a protein are
likely related to numerous other challenges associated with
metaproteomic diversity and dynamic range as described
above, rather than necessarily being false positive identifica-
tions. The ability to report multiple peptides to a specific
protein and its resultant percent peptide coverage itself
becomes associated with uncertainty if there are multiple
species with similar but not identical protein sequences. The
adoption of identification of protein families may become a

useful approach in metaproteomics where detection of 944

peptides with small variation in sequence diversity can
aggregate to a high confidence detection of a protein family
belonging to multiple ecotypes of a species, or a defined higher
taxonomic level particularly when interested in the bio-
geochemical impact of an enzyme.

Because of these challenges, targeted metaproteomic and
informatics efforts have focused on the tryptic peptide level,
using suites of tryptic peptide biomarkers as proxies for
proteins and processes of interest. Informatic tools such as
Unipept and Metatryp focus on tryptic peptides by conducting
analysis of shared tryptic peptides between different genomes
or metagenomes in order to maximize taxonomic interpreta-
tion of peptide identification. While the consensus on what
should be considered the best practice for a high-quality
peptide identification is beyond the scope of this review, it is
clear that combining high-resolution mass spectrometry
capabilities, low false discovery rate, observance of peptides
in multiple spectra, visual inspection when possible, and other
factors can contribute to high-quality peptide identifications.

B ENCOURAGING PROPER DATA USE

As metaproteomics is a relatively young data type, there is
potential for misunderstanding or misuse of results leading to
incorrect interpretations. These could have an inadvertent
detrimental effect of resulting in lost time chasing false leads or
loss of confidence in metaproteomic methods.”” When used by
expert data generators, this risk is lessened due to a thorough
understanding of the limitations and methodology behind the
data. However, in the effort to share metaproteomic results
with a broader community of nonexpert users, there is
considerable risk that researchers will incorrectly attempt to
merge data units inappropriately and/or apply inappropriate
data transformations that could result in incorrect interpreta-
tion. For example, spectral counts are a popular quantitative
unit in proteomics that is powerful in assessing changes in each
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individual protein’s relative abundance across a range of 979

samples. However, efforts to compare abundances between
different proteins using relative abundance measurements such
as these should be minimized or replaced by calibrated
targeted measurements due to the variable influence of protein
size (and resultant number of tryptic peptides) and the
ionization efficiency of those peptides on each protein’s
spectral count amplitude range. Nonexpert users may be
tempted to conduct meta-analyses of spectral count results that
could lead to faulty conclusions. As a result, efforts to educate
and encourage dialogue among data generators and nonexpert
users are important in fostering proper use of shared data sets.

Providing effective means for attribution of effort for those
involved in data generation is also important. Ideally, this could
include inviting the generator of a data set of interest to
collaborate and be a coauthor in studies. In addition,
acknowledging the use of a data set by citing original data
release manuscripts and DOI identifiers assigned to the data
set will be important in enabling data use to have metrics. The
attribution component is important in the sustainability of data
sharing projects, as this will incentivize the use of data sharing
portals and repositories by generators. If data generators feel
they are not being properly attributed, they may be reluctant to
share data and/or may seek more obscure avenues for meeting
data sharing requirements. Learning about data use policy
experience of prior metagenomics and large ocean programs
such as GEOTRACES will be valuable in this regard.
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100 l CONCLUSIONS

1007 Metaproteomics data sets have the potential to become a
1008 valuable data type to the ocean science community in that they
1009 represent a metabolic record of the status of the key microbial
1010 components within specific geographic environments through
1011 time. With significant regional and global ecosystem changes
1012 now occurring,98 having access to detailed metabolic records
1013 through proteomic analyses of key environments could be
1014 particularly useful in providing an understanding of anthro-
1015 pogenic impacts on natural ecosystems. Given that marine
1016 ecosystems are important to human society in a variety of
1017 ways, including maintaining Earth’s habitability through
1018 microbial biogeochemical cycling, economic activities such as
1019 fisheries and aquaculture, and strategic and security importance
1020 to naval operations, the development and sharing of marine
1021 metaproteomic data sets will likely contribute to the long-term
1022 goal of developing a sustainable human society. This creates a
1023 distinct set of use cases for environmental proteomic data sets
1024 compared to those of laboratory cultivated organism or clinical
1025 proteomes, where planetary scale geospatial and temporal
1026 information are critically important metadata, and correspond-
1027 ing environmental data are fundamental to contextualizing
1028 environmental metaproteomic results. Moreover, the amount
1029 of research funding going into biomedical proteomic research
1030 vastly outweighs comparable resources in the ocean environ-
1031 ment, making scarce ocean data sets of considerable value.
1032 These underlying differences in data usage and investment
1033 between environmental and biomedical proteomic data sets
1034 demonstrate a need for distinct data sharing strategies, and we
1035 have proposed some best practices with regard to metadata
1036 needs for ocean metaproteome data sharing, as well as
1037 summarized challenges associated with conducting metapro-
1038 teomic research in hopes of inspiring innovation and
1039 collaboration.

140 Il EXPERIMENTAL METHODS

1041 While the data presented in this review manuscript were largely
1042 previously published,” some novel interpretations of the data
1043 have been included to demonstrate the complexity of
1044 metaproteome samples. The methods for these comparisons
1045 are briefly described below. A human cell line (HeLa) and
1046 ocean metaproteome samples (METZYME KM1128, Station S
1047 0°N 158°W 40, 60, 120, 150, and 200 m depth, 0.2 ym filter
1048 pore size, prefiltered with 3.0 ym pore size) were analyzed
1049 under identical chromatographic and mass spectrometry
1050 conditions to provide examples of sample complexity run
1051 within S days of each other. Protein extraction for
1052 metaproteomics was conducted using SDS detergent and
1053 tube gel purification as previously described.” Protein extracts
1054 were analyzed by liquid chromatography—mass spectrometry
10ss (LC—MS) (Michrom Advance HPLC coupled to a Thermo
1056 Scientific Fusion Orbitrap mass spectrometer with a Thermo
107 Flex source). A total of 0.5 g (HeLa) or 1 ug (ocean) of each
1058 sample (measured before trypsin digestion) was concentrated
1059 onto a trap column (0.2 X 10 mm ID, S ym particle size, 120 A
1060 pore size, C18 Reprosil-Gold, Dr. Maisch GmbH) and rinsed
1061 with 100 uL of 0.1% formic acid, 2% acetonitrile (ACN),
1062 97.9% water before gradient elution through a reverse phase
1063 C18 nanospray column (0.1 X 400 mm ID, 3 um particle size,
1064 120 A pore size, C18 Reprosil-Gold, Dr. Maisch GmbH) at a
1065 flow rate of 300 nL/min. The chromatography consisted of a
1066 nonlinear 200 min gradient from 5% to 95% buffer B, where A

was 0.1% formic acid in water and B was 0.1% formic acid in
ACN (all solvents were Fisher Optima grade). The mass
spectrometer was set to perform MS scans on the Orbitrap
(240 000 resolution at 200 m/z) with a scan range of 380 m/z
to 1580 m/z. MS/MS was performed on the ion trap using
data-dependent settings (top speed, dynamic exclusion 15 s,
excluding unassigned and singly charged ions, precursor mass
tolerance of +3 ppm, with a maximum injection time of 150
ms).

Quantitive Peak Comparisons

Comparisons of the relative complexity of ocean metaproteo-
mic samples (METZYME expedition, Station 3, depths 40, 60,
120, 150, and 250 m) with a human cell line sample run in
triplicate was conducted. A total of 0.5 pg of Hela was injected
per replicate, while 1 ug of ocean metaproteomic sample was
injected per sample, as described above. Precursor peak data
were extracted from raw files using ProteoWizard’s MSCon-
vertGUI to text file using the vendor (Thermo) peak picking
algorithm, and applying two filters: the peak picking algorithm
(set for MS Levels 1 only) followed by MS level filter MS level
1 only. The number of precursor peaks per MSI, total ion
count (TIC), and chromatographic time information were
then extracted from the output files using a custom Python
script, summed, and visualized (Figure ).
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