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ABSTRACT: Enzymes are the ultimate entities responsible
for chemical transformations in natural and engineered
biosynthetic pathways. However, many natural enzymes suffer
from suboptimal functional expression due to poor intrinsic
protein stability. Further, stability enhancing mutations often
come at the cost of impaired function. Here we demonstrate
an automated protein engineering strategy for stabilizing
enzymes while retaining catalytic function using deep
mutational scanning coupled to multiple-filter based screening
and combinatorial mutagenesis. We validated this strategy by
improving the functional expression of a Type III polyketide
synthase from the Atropa belladonna biosynthetic pathway for
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tropane alkaloids. The best variant had a total of 8 mutations with over 25-fold improved activity over wild-type in E. coli cell
lysates, an improved melting temperature of 11.5 #+ 0.6 °C, and only minimal reduction in catalytic efficiency. We show that the
multiple-filter approach maintains acceptable sensitivity with homology modeling structures up to 4 A RMS. Our results
highlight an automated protein engineering tool for improving the stability and solubility of difficult to express enzymes, which

has impact for biotechnological applications.

KEYWORDS: deep mutational scanning, high-throughput screening, enzyme stability, heterologous pathway expression,

polyketide synthase, tropane alkaloids

B iomanufacturing is a sustainable alternative to chemical
synthetic routes for production of high-value products.’
Key factors influencing the rapid advancement of this field
include the dramatic increase of available gene coding
sequences, reduced cost of synthetic DNA synthesis and
assembly,2 and improved computationa13 and experimental‘*’5
tools for engineering biology. Still, generating sufficient end
titers and specific productivities to be cost competitive with
plant-derived or traditional chemical synthetic routes remains a
grand challenge, especially for compounds derived from plant
specialized metabolism. For example, extensive engineering
efforts led to only microgram per liter titers for reconstitution
of opioid biosynthetic pathways®™® and precursors of
monoterpene indole alkaloids’ in yeast. These reported titers
are between three and 6 orders of magnitude too low for
supplanting other routes to these chemicals.

The reasons why many plant metabolic pathways yield low
titers are multifaceted: intermediate products can build up and
be toxic, pathways can be imbalanced, gene expression for
pathway members are not optimized, among many other
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reasons. Nonetheless, at the heart of any pathway are the
enzymes responsible for chemical transformation. Consider
such a linear pathway of heterologously expressed enzymes.
The maximum possible flux (J,,,,) for this pathway is given by
the product of the turnover number (k) and the
concentration of active enzyme ([E],..) for the weakest
pathway enzyme:

]max = kcat X [E]active (1)

In other words, negligible product flux occurs whenever the
concentration of any active enzyme in the pathway approaches
zero. In fact, many biomanufacturing platforms have low
productivities and titers because one or more pathway
enzymes, when overexpressed, have very little activity.”'™"*

Intrinsic protein biophysics can account for the limited
active expression for many of these enzymes. Native proteins
are marginally stable, and their native expression levels are
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often at their solubility limit.'° Expression in a different
environment can thermodynamically favor the unfolded state
or result in aggregation. It follows that stabilization of such
poorly expressed enzymes can improve performance of
synthetic metabolic pathways. For example, we previously
developed a synthetic levoglucosan utilization pathway in
E. coli.' Strains harboring the original enzyme, levoglucosan
kinase (LGK) from Lipomyces starkeyi, showed weak growth
with levoglucosan as the sole carbon source. Strains expressing
a thermally stable LGK had 15-fold higher specific growth rates
and flux than that of LGK. The catalytic efficiencies for the two
enzymes were essentially identical, and the sole difference
between the two strains was three point-mutations that
increased the melting temperature of the protein by 5.1
°C—this increase correlated with an increase in functional
enzyme expression. Additionally, the Tang group at UCLA
demonstrated that engineering improved solubility and
heterologous expression of simvastatin synthase in E. coli
increased the productivity of a whole-cell biocatalytic
process.'”

The above findings have not been extended generally to
other biomanufacturing platforms for several reasons. One,
modifying active expression by promoter engineering is much
easier than by protein engineering. However, in many cases a
strong promoter will not drive production of enough active
enzyme—this effect is clearly seen by results from Wheeldon
and colleagues in metabolic engineering of ester pathways.'®
Two, the above pathways are examples where the rate-
determining step was governed by a single enzyme. Many
pathways of interest would have multiple poorly behaved
enzymes, making the engineering challenge more difficult.
Three, the protein engineering challenge itself is daunting: one
has to identify solubility-enhancing mutations, filter away
mutations that destroy catalytic activity, and, because the
stabilizing effect of any single mutation is often modest,
combine many solubility-enhancing mutations at once. This
challenge is compounded by the fact that many of the pathway
enzymes have neither solved structures nor high throughput
activity assays, preventing traditional computational design'’
and directed evolution approaches, respectively.

To address this challenge, we recently identified stabilizing
“hits” using high-throughput screens for stability and solubility
in deep mutational scanning experiments.20 Existing compre-
hensive single-mutation functional data sets for two enzymes
were compared against data sets generated with the solubility
screens. We found a greater than 90% probability of choosing a
catalytically neutral mutation by filtering out mutations that
were near the active site, not evolutionarily conserved, or
buried in the protein core. These encouraging results suggested
to us that automated stabilization of proteins using data-driven
methods, even in the absence of an activity screen, may be
possible. This stabilization method has the following character-
istics: (i) use of deep mutational scanning to identify nearly all
mutations that improve soluble expression; (ii) predictive
identification of a subset of these mutations that do not impact
catalytic efficiency; (iii) combine multiple (>5) mutations
simultaneously into new designs.

Here we tested this method rigorously using a recently
uncovered biosynthetic pathway to tropinone, a common
intermediate for nearly all plant tropane alkaloids (TA).*’
Specifically, we identified solubility-enhancing mutations in a
Type 111 polyketide synthase from Atropa belladonna (Ab) that
expresses very poorly in both bacterial and yeast systems. We

then designed new variants with improved in vivo and in vitro
stability without appreciably impacting catalytic efliciency.
Finally, we developed an automated computational screening
process for rapid identification of potential beneficial
mutations, which was robust even in the absence of a high-
quality structural model. Combined, our results showcase the
use of data-driven approaches to improve enzyme stability and
provide a new engineering tool for biotechnology.

Bl RESULTS AND DISCUSSION

Nearly all TAs, including anticholinergics hyoscyamine and
scopolamine, come from the central precursor tropinone
(Figure la). In Ab, tropinone is derived from the pathway
precursor putrescine by four enzymes: putrescine N-methyl
transferase (PMT2), N-methylputrescine oxidase (MPO2), a
type III PKS pyrrolidine ketide synthase (PyKS), and the
cytochrome P, tropinone synthase (TS)/CYP82M3 (Figure
la).

To test our enzyme stabilization method, we chose PyKS as
several lines of evidence clearly point to poor functional
expression. First, attempts to express and purify PyKS from
E. coli for previous biochemical characterization work”" yielded
extremely low levels of active protein in the absence of a
glutathione S-transferase (GST) solubility tag. Essentially all of
the protein was insoluble, and activity sharply declines at
temperatures in excess of 25 °C. Second, we quantified the
mean fluorescence of GFP-tagged Ab gene products expressed
in Saccharomyces cerevisiae BY4710°” by flow cytometry and
found that the PyKS expressing cells were less fluorescent
compared to the other genes, indicating poor soluble
expression of GFP-tagged PyKS relative to the other pathway
enzymes in yeast (Figure 1b). Third, while PMT2 expression
in Nicotiana benthamiana results in high yields of N-
methylputrescine that diminishes substantially when MPO2
is coinfiltrated with PMT?2, the tropinone yield is ~20-fold less
with simultaneous PyKS and TS expression, suggesting that
PyKS and/or TS expression is limiting”' Together, these
considerations prompted us to engineer increased functional
expression of PyKS.

In effort to improve the expression of the PyKS, we sought
to use deep mutational scanning coupled to a high-throughput
screen for stability and solubility.”* We first explored the use of
yeast surface display (YSD) coupled to FACS as our previous
work utilized this screening platform. The PyKS coding
sequence was cloned into the pETConNK backbone™ and
expressed in S. cerevisize EBY100 by galactose induction. We
were unable to successfully display the PyKS on the yeast
surface (Supporting Figure S1) despite testing several alternate
induction temperatures (18—30 °C) as well as mutating a
potential N-linked glycosylation site at Asn339 to alanine that
we hypothesized could disrupt proper folding and display on
yeast surface.

On the basis of the failure of PyKS to yeast display, we
assessed an alternative screen involving fusing a protein of
interest to a monomeric GFP variant. Upon expression, folded
proteins will permit the folding and subsequent chromophore
formation of GFP, while unfolded proteins will be non-
fluorescent.” Expression of a protein library can then be
screened by fluorescence intensity using FACS (Figure 2a).
We first assessed the ability of the screen to identify known
stabilizing mutants of the model protein LGK. We fused LGK
to fluorescent protein variant mGFPmut3,”* created a
comprehensive single-site saturation mutagenesis library
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Figure 1. Tropane alkaloids (TA) pathway from Atropa belladonna
(Ab). (a) The conversion of putrescine to N-methylputrescine by
PMT?2 is the first committed step in TA biosynthesis. The enzyme
engineered for improved solubility in this work, PyKS, performs two
rounds of ketide synthase (Claisen condensation) activity on N-
methyl-A'-pyrrolinium with two units of malonyl-CoA to form 4-(1-
methyl-2-pyrrolidinyl)-3-oxobutanoic acid. Hyoscyamine and scopol-
amine are medicinally relevant small molecules. (b) Expression yield
of Ab genes in yeast via GFP-tagging confirms poor heterologous
expression of PyKS. Fluorescence of S. cerevisiae strain BY4710 cells
expressing GFP-tagged Ab genes under galactose induction was
quantified using flow cytometry. Error bars represent one standard
deviation of at least three independent measurements.

using nicking mutagenesis,”® and induced fusion protein
expression by IPTG in E. coli BL21 Star (DE3). Individual
cells were sorted using FACS, and two populations were

collected: a gated reference population and the top 5% of cells
based on GFP fluorescence intensity. Libraries were harvested,
prepared, and deep sequenced in a standardized pipeline.*®
Detailed statistics for library deep sequencing and FACS
sorting are given in Table S1 and Table S2, respectively. The
resulting deep sequencing data sets were converted to a
solubility score centered about a wild-type score of zero. A
solubility score greater than zero indicates that the protein
fusion has a higher fluorescence than the wild-type fusion. The
per-position scores are provided in Supporting Data S1.

We evaluated the ability of the solubility deep mutational
scans to identify known stabilizing mutations in LGK (Table
S3). These mutations were previously shown to rescue enzyme
solubility in the context of other destabilizing mutations with
an in vitro characterized change in melting temperature (AT,,)
> 1 °C in the parental background.'® We identified a mutation
as stabilizing if its solubility score was above 0.15, which
corresponds to a mean fluorescence intensity of 10% above the
wild-type sequence. The GFP fusion screens with this
threshold identified 9/12 of these mutations (p-value 2.0 X
107%). Changing the threshold for identifying solubility-
enhancing mutations based on the distribution of synonymous
wild-type codons did not alter the significance of the results
(Table S4).

It is well-known that many stability-enhancing mutations
result in enzymes with reduced catalytic efficiency.”” There-
fore, we asked whether we could predict mutations resulting in
neutral or improved catalytic efficiency. To this end, we closely
followed filtering methods of our previous work using YSD
screens.”’ Briefly, we compared a previously published single-
mutation fitness data set'’ with the GFP fusion data set. We
classified mutations by distance to active site, evolutionary
conservation as quantified by a position specific scoring matrix
(PSSM), and degree of burial in the protein core measured by
contact number. We assessed a strict multiple filter (PSSM >
0, distance to active site >15 A, contact number <16, and no
mutations involving a proline), naive Bayes classification, and a
hybrid method combining filtering on PSSM > 3 with Bayes
analysis on the remaining filters. Consistent with our previous
results using YSD, the multiple filter performed best (Figure
2b): for the GFP screening data set the probability of finding a
neutral mutation is 71% with only a 3% chance of uncovering a
deleterious mutation. While only 34 LGK mutations (out of
>6000 total) pass this stringent multiple filter, most proteins
can be stabilized sufficiently with approximately S5—15
mutations.

Buoyed by these results, we next sought to apply the
validated method to engineer PyKS variants with improved
functional expression. The objective was to perform a GFP-
fusion deep mutational scan on PyKS (Figure 2a), filter the
resulting hits for probability of maintaining catalytic activity
with the multiple filter, and then combine multiple mutations
into active designs with improved expression. We performed
the deep mutational scanning experimental and analysis
pipeline as for LGK in which we sorted a single-site saturation
mutagenesis library of PyKS fused to GFP with FACS and
deep sequenced the top 8% of the population by fluorescence.
Unfortunately, the reference population for the gene tile
covering residues 157—234 did not grow after FACS, and so
we chose to omit these positions from further analysis.

Deep sequencing the reference population revealed 84.3%
coverage of single nonsynonymous (NS) mutations (5107/
6060, see Table SS for complete library statistics). Nonsense
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Figure 2. Deep mutational scanning using GFP-fusion solubility screen and filtering to identify catalytically neutral stabilizing mutations. (a)
Method overview. A comprehensive site-saturation library for a protein of interest (POI) is generated using nicking mutagenesis (1). The POI is
genetically encoded as an N-terminal fusion to GFP (2), where upon expression folded POIs will permit the folding and subsequent chromophore
formation of GFP, while unfolded protein will be nonfluorescent. The amount of folded fusion protein per cell correlates with solubility/stability of
the POI variant. The library is expressed in E. coli and screened for GFP fluorescence using FACS (3), and the resulting pre- and postscreening
libraries are deep sequenced (4). (b) Results from applying various filtering strategies to the levoglucosan kinase (LGK) GFP-fusion and fitness
selections data sets. The best strategy “Multiple filter” includes distance to active site (15 > A), PSSM (>0), contact number (<16), and exclusion
of mutations to/from proline. (c) The frequency of beneficial (solubility-enhancing) mutations of PyKS identified from the GFP-fusion experiment
as a function of distance to catalytic active site. (d) Structural analysis of high solubility score mutations indicates that many improve surface charge
characteristics (S284K, N64D), hydrophobic core packing (T245A), and secondary structural elements like loops (A121G). The gray surface

representation is the dimer subunit. C167 is the putative catalytic nucleophile.

mutations had a mean solubility score of —0.653 + 0.48 (1
s.d.), which was significantly lower than the mean of —0.0561
+ 0.54 for missense mutations (p-value <0.0001, two-tailed
unpaired Student’s f test). To evaluate the reproducibility of
the method, we performed replicate sorting, deep sequencing,
and analysis for one gene tile. The Pearson’s correlation
coeflicient between replicates was found to be 0.72, which is
low compared to previous deep mutational scanning experi-
ments (coefficients of 0.85*° and 0.93°® have been previously
reported from our lab). As reproducibility generally improves
with increasing depth of sequencing coverage, we calculated
Pearson’s correlation coeflicients for mutations with at least
100 read counts in the reference population and found the
coeflicient improves to 0.83. Thus, the relatively low depth of
coverage in this experiment partially but not completely
explains the relatively high variance between replicates. Since
we are interested in variants with improved functional
expression, we next asked how correlation scales with coverage
for variants with a solubility score at or above 0.15. We found
that variants with >50 or >100 average selected read counts
had a Pearson’s of 0.84 (n = 247) or 0.90 (n = 193),
respectively (Supporting Figure S2). These were deemed
reasonable thresholds for reliability of the deep sequencing
experiment to identify stabilizing mutations. Full data sets for
the PyKS deep mutational scan are provided in Supporting
Data S2.

The GFP-fusion experiment identified an astounding 1115
beneficial missense mutations (solubility score at or above
0.15) with >S50 selected read counts (19.4% of total tested).
To facilitate analysis, we generated a comparative model of
PyKS with I-TASSER using default options” (PDB file for
model provided in Supporting Data S3). Hits were spread
across the primary and tertiary sequence of PyKS (Figure 2c),
with 246 out of 303 tested positions (81.2%) showing at least
one mutation with an improved solubility score. These
mutations occur at the surface of the enzyme, near the
putative active site in the core, as well as at the potential
homodimer interface (Figure 2d).

These 1115 individual hits were sorted using the multiple
filter validated on the LGK data set, with the adjustment of
permitting mutations with a higher contact number (24
cutoff instead of <16) through if they passed a more stringent
PSSM filter cutoff (>3 instead of >0). This adjustment is
justified as filtering on PSSM > 3 alone shows comparable
results to the multiple-filter method (Figure 2b). The resulting
set of hits postfilter was comprised of 116 mutations at 56
unique positions spread throughout the protein sequence and
structure (Figure 3a and Table S6). Notably, there were
approximately 3 times more filter-passing hits for PKS than
LGK.

We first tested the solubility screen and the multiple-filter
method before making combinatorial designs. Thus, we
produced 6 of these 116 point mutants (VI12I, S37A,
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Figure 3. Combinatorial PyKS designs enable higher enzyme flux via engineered enzyme stability. (a) Positions with filtered solubility-enhancing
hits are shown in yellow surface representation on the PyKS model structure. (b) Relative expression yield and bulk lysate activity from E. coli
lysates expressing wild-type and stabilized PyKS designs. Cells overexpressing each sample were lysed and assayed for PyKS activity as well as GFP
fluorescence intensity (485/507 nm). Measurements are normalized relative to wild-type. Error bars represent one standard deviation of three
independent measurements. (c,d) Ky, and k,, kinetic characterization of untagged (no GFP-fusion) purified wild-type and designed PyKS enzymes.
Error bars represent one standard deviation of three independent measurements. NS = not statistically significant. (e) Apparent melting
temperatures (Tj, ) of wild-type and designed PyKS enzymes. Error bars represent one standard deviation of three technical replicates.

Table 1. Characterization of Solubility-Enhancing Hits Identified from PyKS Scan”

DKA Est. DKA Est.

Distance to Cone. (uM) | Cone. (uM)

Solubility Active Site Contact Relative DKA Response replicate replicate
Mutation Score (A) PSSM score Number RFU/OD600" Factor® 19 2d
WT 1.00 1 0.8 1
Vi21 0.206 39.1 3 10 1.24 0.62+0.13 0.5 0.6
2315 3 14 1.86 1.27 +0.004 1.1 1.2
19.4 -2 29 1.43 0.007 £ 0,002 0 0
25.0 3 19 341 3.39+ 0,58 2.7 3.6
32.1 6 13 3.21 430+ 0.85 3.4 4.6
19.0 0 29 0.47 0.025 + 0.013 0 0
18.5 3 21 2.09 1.40 £ 0.28 1.4 1.1
209 6 10 1.73 1.25+ 048 0.9 1.6

“Yellow highlight indicates mutations that fail the multiple-filter method. PFluorescent units for GFP relative to OD600 of culture normalized
relative to wild-type. “Response factors refer to WT normalization of peak areas for DKA (4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid). These
peak areas refer to area under the curve for LC—MS/MS analysis of DKA. Error bars indicate 1 s.d. of technical replicates (n = 2). “Estimated
concentration of DKA in reported enzyme assays based on standard curves run within 1 week of the experiment.

M11SR, A121G, T245A, S284K) along with two mutants with
high solubility scores that did not pass the filter (P106A:
proline mutation, not evolutionarily conserved, high contact
number; A143V: high contact number). These mutants, along
with the wild-type sequence, were expressed in E. coli BL21
Star (DE3) and induced with IPTG under standard conditions.
Lysates of GFP-fused PyKS mutants were tested for their
relative fluorescence intensity per ODg, (expression yield) and

PyKS enzymatic activity’' (Table 1). Whereas the 6 mutants
that passed the filter had comparable or improved expression
yield and activity to wild-type, both A143V and P106A
expressed as soluble fusion proteins but had no measurable
catalytic activity. These results highlight the importance of
employing the binary filter for discriminating desired

stabilizing mutations that are catalytically neutral.
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Figure 4. Automated generation of filter-passing mutations with a PyRosetta script is robust for use on predicted structural models. Precision (a),
sensitivity (b), and specificity (c) were calculated by comparing the results of running our PyRosetta mutation filtering script on five different PDB

crystal structures and their corresponding decoy sets (see methods).

We next selected 21 mutations at 19 positions to include in
combinatorial libraries, which were constructed using multisite
nicking mutagenesis”® (primer sequences listed in Table S7).
BL21 Star (DE3) cells expressing the combinatorial libraries
were cultured, induced with IPTG and screened by a
combination of FACS and visible plate screening. Given the
large theoretical size of the combinatorial library (2.1 x 10°),
FACS enrichment prior to visual plate screening enabled us to
discard the bulk of “failures” and thus only screen the top
variants for fluorescence intensity by eye. There were three
clear hits from this fluorescence-based screening, which we
named PyKS.D1, PyKS.D2, and PyKS.D3 (full amino acid and
nucleotide sequences are listed in Supporting Text S1). These
designs had 8—11 total mutations with 6 in common: PyKS.D1
(V12I, S37A, N64E, M11SR, A121G, L235V, T245A, S284K,
1301V, S318E, D366E), PyKS.D2 (V12I, S37A, N64D,
MI11SR, Al121G, T245A, G357A, D366E), and PyKS.D3
(V121, S37A, N64E, N9OM, M115R, A121G, T245A, D366E).
On the basis of the homology structure, the shared mutations
generally appear to alter surface charge characteristics, core
packing, loop flexibility, or dimeric interface contacts (Figure
2d). For example, N64E/D introduces a negative charge to a
patch on the surface that is otherwise positive, while T245A
lies at the dimeric interface where it presumably strengthens
the protein—protein interaction. Lastly, A121G likely improves
loop flexibility.

We performed lysate relative expression and activity
measurements exactly as performed for the point mutants.
Compared with wild-type, all three designs had a greater than
10-fold improvement in relative expression, with PyKS.D1
showing a 27.1 + 0.14-fold improvement in relative activity
(Figure 3b). When lysate activity is normalized to gene
expression, PyKS.D1 observed a 1.89 + 0.027-fold improve-
ment over wild-type. This higher functional expression is not
the result of increased mRNA expression as all variants had
statistically insignificant or slightly decreased mRNA ex-
pression relative to PyKS wild-type (Supporting Figure S3).
Thus, we conclude that most of the relative lysate activity
improvement can be attributed to improved gene expression
from improved protein solubility and/or stabilization.

To confirm that these designs were not dependent on being
in the GFP fusion context, we produced and purified
recombinant PyKS, PyKS.D1, and PyKS.D2 and evaluated
their activity on malonyl-CoA and starter unit N-methyl-A1-
pyrrolinium cation as substrates (Supporting Figure S4). PyKS
is an efficient enzyme, with a k., of 47 s and approximately
20 uM Ky for both substrates. Both PyKS.D1 and PyKS.D2
had similar activity to PyKS (Figure 3c and 3d): PyKS.D1 has
a marginally higher average k., and PyKS.D2 has a slightly

lower average k., but neither is significantly different than
PyKS (p-value = 0.29 and 0.16, respectively, Figure 3d). There
was also no statistically significant difference in Michaelis
constant for either substrate (Figure 3c). We also assessed the
apparent melting temperatures (T, ,,) using a well-established
dye-shift thermal assay™® (Supporting Figure S5). While PyKS
had a T,,,p of 409 % 0.2 °C, both PyKS.D1 (47.5 % 0.1 °C)
and PyKS.D2 (52.4 + 0.4 °C) showed statistically significant
(p < 0.0001 for both) increases in melting temperatures
(Figure 3e). It is important that we are not claiming that all
thermally stabilizing mutations improve functional expression.
Improvements to functional expression result from several
effects including aggregation propensity, thermodynamic
stability, and kinetic folding and oligomerization rates; these
effects are only somewhat correlated with thermal stability.
However, these results confirm that our designs that result in
higher function expression in vivo also have higher thermal
stability in vitro while maintaining statistically similar catalytic
parameters to wild-type PyKS.

Finally, to facilitate automatic generation of a list of
mutations to pass into a combinatorial library, we wrote a
custom python script for PyRosetta.”" Given an input enzyme
sequence and structure, this script evaluates the four different
components of the filter, returning a positive (passed filter) or
negative (failed filter result) value for every possible point-
mutation in the protein sequence. This script has been
integrated into the Rosetta Macromolecular software package
and is available on GitHub (User: raisanoshin). Details for
using the script can be found in Supporting Text S2.

The multiple filter includes terms that do not require
structural information (PSSM, mutations involving proline) as
well as terms that do (distance to active site, contact number).
A final key question to assess the general utility of our method
is how precise, sensitive, and specific the multiple-filtering
method is for enzymes with approximated 3D structures
generated with homology modeling. While not all enzymes will
have experimentally determined structures, almost all enzyme
classes (e.g., polyketide synthases, P450s, glycosyl hydrolases,
terpene synthases, etc.) have at least one solved structure. In
these cases, comparative models can be calculated with
accuracies of approximately 4—S A RMSD or better using
current comparative modeling computational software pack-
ages.>

To assess the accuracy of using our PyRosetta script to
generate an accurate list of filter-passing mutations on enzymes
where a predicted structural model is used as input, we used
decoy sets of varying RMSD for six different enzymes with
their corresponding experimentally determined structures. We
compared the results of running the script on each decoy with
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results using the solved structure, generating true positives
(TP), false positives (FP), true negatives (TN), and false
negatives (FN) for each mutation in the set of all possible
mutations. We then calculated precision, sensitivity, and
specificity as a function of model RMS shown in Figures
4a—c. For this specific application, the most important
criterion is precision, as incorporating too many false positives
into designs would disrupt catalytic efficiency of the enzyme.
Here, the precision is 0.8 or better up to 4 A RMS (Figure 4a).
Beyond 4 A RMS the precision vacillates between 0.6 and 1.0.
Also important is the sensitivity of the method because we
typically end up with 30—50 mutations that pass the filter. For
RMS values until 5 A the sensitivity remains above 0.4 (Figure
4b), which still allows recovery of enough mutations to fix
poorly expressed enzymes. The least important metric is
specificity, which we include for completeness. Here the
specificity remains above 0.8 for RMS lower than 5 A (Figure
4c).

B CONCLUSIONS

In this work, we performed a high-throughput screen for
stability and solubility to test thousands of mutations on a
protein sequence. Combinations of those mutations using a
stringent multiple filter led to Type III PyKS designs with
enhanced functional expression in E. coli. There are several
important takeaways from this project.

First, this work provides validation for the filtering method
previously developed by Klesmith et al” Results from the
point-mutation analysis indicate that although certain muta-
tions provide stabilizing effects, if the position is highly
conserved in nature a mutation is likely to be deleterious for
function. Indeed, proline 106 is a canonical example of this
stability/function trade-off. P106 lies in the middle of a helix,
where prolines are generally disfavored, and the solubility
screen indicates that several other residues at this position
improve overall stability of the protein. However, the PSSM
indicates that proline is highly conserved and thus important to
catalytic function. The P106A variant increased the solubility
of the PyKS-GFP fusion but almost completely ablated activity.

Second, our integrated method has now been validated on 3
different enzymes (PyKS, LGK, TEM-1 BLA)*® and thus is
ready for general deployment toward difterent biotechnological
applications. A potential strategy moving forward would be to
generate structural models for enzymes of interest, run the
filtering script to obtain a list of passing mutations, test only
the subset, and then combine hits into new designs. While
deep sequencing driven protein science enables the generation
of previously unthinkable amounts of mutational data,> testing
hundreds versus thousands of mutations needed for a
comprehensive scan of a gene is certainly more practical and
economical. We anticipate several potential platforms would
benefit from enzyme stabilization.

Finally, this PyKS is part of a recently described tropane
alkaloid pathway. While beyond the scope of the present work,
our immediate next steps are to develop biomanufacturing
platforms for tropane alkaloids. Our intent is to test the
hypothesis that stabilized PyKS variants (and potentially other
enzymes) can improve pathway yields, titers, and productiv-
ities.
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