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M.T. Bell1, B. Douçot2, M.E.Gershenson3, L.B. Ioffe2, and A. Petković4
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I. INTRODUCTION

The idea of quantum simulations emerged in the early
’80s out of the realization of the fundamental difficulty of
emulating complex quantum system using classical com-
puters. Over time, this idea has evolved into a sub-field
of quantum computing.[1] Similar to the quantum com-
puters, quantum simulators are based on the networks
of quantum bits (qubits). However, in contrast to the
fully-fledged quantum computers, quantum simulators do
not employ discrete gate operations and error correction
codes. The quantum simulators with tunable parameters
are designed to emulate only certain types of Hamiltoni-
ans. However, it is possible to show that a very general
Hamiltonian can be simulated by seemingly restricted
class of spin chains with XX and YY interactions.[9, 10]
One hopes that such simulators will allow one to de-
sign novel quantum system and explore phenomena and
regimes inaccessible in the past. Furthermore, quantum
simulators enable the experimental study of quantum an-
nealing in the context of adiabatic quantum computation.
Modern quantum simulators are based on several plat-
forms, which include cold atoms [7, 12], cold ions [6], and
superconducting qubits [13].

Our research focuses on designing artificial spin sys-
tems - tunable 1D Josephson arrays with controlled in-
teractions – that emulate the quantum 1D models. The
integrable model of a 1D Ising spin chain in the trans-
verse magnetic field serves as a paradigm in the context
of nonequilibrium thermodynamics and quantum critical
phenomena [11, 20]. Both the transverse field Ising and
XY models, being relevant to a broad range of physical
systems, played a crucial role in the understanding of
quantum phase transitions [20]. These models have gen-
erated a formidable body of the theoretical activity over
the past fifty years. Recently, these models have played
a crucial role in the development of quantum annealing
techniques and adiabatic quantum algorithms [14].

In the past, the experimental study of quantum spin
dynamics in 1D has been largely limited to microscopic
spins in condensed-matter systems. It has been demon-
strated that such quasi-1D spin materials as LiHoF4 and
CoNb2O6 can be continuously tuned across the quantum
phase transition (QPT) [5, 8, 19]. Though these works
opened up new vistas in the studies of transverse field
Ising model, the experimental realization of 1D quantum
spin models in well-controllable and tunable systems re-
mains a challenge. Indeed, as an experimental tool, the
quasi-1D spin systems in solids are limited in several re-

spects: (i) the inter-chain interactions are not negligi-
bly weak, and, thus, these systems are inevitably quasi-
1D, (ii) the exchange interactions between the nearest-
neighbor spins cannot be varied, (iii) the exchange in-
teractions are the same for all pair of spins, which does
not allow for exploring the effect of disorder and phase
boundaries without adding a significant amount of impu-
rities, and (iv) the available experimental tool for these
systems - scattering of neutrons - interacts only with a
narrow class of excitations. Flexibility in the design of ar-
tificial spin systems, which are free from these limitations,
facilitates bridging the gap between the theoretical study
of ideal spin chains and the experimental investigation of
bulk magnetic samples. In particular, this flexibility al-
lows one to address an important issue of the effects of
disorder on the statics and dynamics of transverse field
spin models. Recently, the transverse-field Ising model
was realized in the chain of artificial and fully-controllable
spins - eight flux qubits with tunable spin–spin couplings
[14]. We pursue a similar approach using specially de-
signed one-dimensional Josephson ladders.

The paper is organized as follows. In Section II we in-
troduce the Josephson ladder as a novel platform for the
study of the 1D quantum phase transition. The theory of
these quantum systems is presented in Section III. The
microwave experiments on characterization of the spectra
of these novel quantum systems are described in Section
IV. The outlook is provided in Section V.

II. 1D JOSEPHSON LADDERS

The Josephson ladders designed for the study of
1D QPT represent a 1D chain of coupled asymmetric
SQUIDs (Fig. 1). The unit cell of the ladders is similar
to that of the Josephson arrays developed as superinduc-
tors (the elements with the microwave impedance much
greater than the resistance quantum h/e2) [3]. Each unit
cell contains a single smaller junction with the Josephson
energy EJS in one arm and three larger Josephson junc-
tions with the Josephson energy EJL in the other arm
(Fig. 1a). The adjacent cells are coupled via one larger
junction.

The ladders are characterized by the ratio of Joseph-
son energies of the larger and smaller junctions, r ≡
EJL/EJS . For r greater than the critical value r0 the
Josephson energy of the ladder as a function of the phase
ϕ across the ladder has only one minimum at ϕ = 0 re-
gardless of the magnitude of the external magnetic field
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perpendicular to the ladder’s plane. The value of ro de-
pends on the ladder length and the strength of quantum
fluctuations (in the quasiclassical case, ro = 5 for an in-
finitely long ladder) (see Section III). The regime r > r0,
where the ladder can be characterized by the Josephson

inductance LJ ∝ (d
2EJ (ϕ)
dϕ2 )−1 [21], was comprehensively

studied in [3].

If r < ro, the double-minima dependence EJ(ϕ) is re-
alized over a range of the magnetic flux ΦC < Φ < Φ0/2
where ΦC(r) is the critical flux, Φ0 = π~/e is the flux
quantum. Figures 1c,d show that at a fixed r < ro,
the spontaneous symmetry breaking occurs at a criti-
cal value of the flux ΦC(r) and the single-minimum en-
ergy EJ(ϕ) is transformed into a double-minima func-
tion. The Josephson inductance diverges with Φ ap-
proaching ΦC(r) (hence, the term “superinductance”);
quantum phase fluctuations eliminate the divergency.

In the double-minima regime, the direction of currents
in the ladder unit cells induced by an external magnetic
field can be viewed as two states of the 1/2 pseudo-spins.
As the potential barrier between these states increases,
the quantum phase fluctuations decrease and the global
broken-symmetry state emerges. The appearance of the
double well potential in a single cell below r(Φ) does not
imply a global phase transition in the whole system. The
large scale quantum fluctuations destroy the global order
parameter if the barrier between two minima is too small.
The global order parameter is formed at smaller rc(Φ)
shown as a solid curve as a result of the phase transition
of the Ising type. The distance between the lines is of
the order of δr ≈ 0.1 for realistic arrays. Note that the
magnetic field that drives the ladder across the QPT,
B < Φ0/A, where A is the area of the unit cell, is very
weak (∼ 1G in our experiments).

We emphasize that Josephson ladders with
EJL/ECL � 1 have exponentially small probabil-
ity of phase slip processes in which the phase changes
by ∼ 2π. This implies that the static offset charges
on individual islands have no effect on the quantum
states of the ladder. We shall neglect the effects of
these charges and phase slip processes in the following
discussion. The estimate for the phase slip rate can be
found in [3].

The low-energy physics of the ladders close to the QPT
can be mapped on the ϕ4 model, which is relevant to
a wide range of physical phenomena, from quark con-
finement to ferromagnetism. Near the critical point this
model is equivalent to the integrable model of 1D Ising
spin chain in the transverse magnetic field. Flexibility of
the array design and tunability of the parameters of in-
dividual Josephson junctions offer several unique oppor-
tunities for exploration of the 1D quantum phase tran-
sitions. For example, this novel platform facilitates the
study of effects of non-integrability and disorder on QPTs
and the emergence of ergodic behavior in almost inte-
grable quantum systems.

III. THEORY OF LONG JOSEPHON LADDERS

A. Effective action of the low energy modes of the
long chains

As we show below the long chain displays the phase
transition that occurs as a function of the ratio r =
EJL/EJS at fixed flux through unit cell or, at a fixed r,
as a function of the flux through each unit cell. As usual
in phase transitions, the critical properties are not sen-
sitive to the parameter that drives the transition, so we
focus on the transition driven by r below. Small modifi-
cations introduced by transition driven by magentic field
were discussed in [3]. The most important is the fact that
close to r = r0 the effective distance from the critical line
is quadratic function of Φ− Φ0/2.

We start by reviewing the properties of short chains
in which one can neglect the phase variation between
adjacent elements and its variation in time. Consider a
small portion of the fully frustrated ladder shown in Fig.
2. The translational invariance implies that the solution
is described by two phases across larger junctions: α at
the “vertical” junctions and β at the “horizontal” ones.
The energy per unit cell that contains two larger and one
smaller junctions is given by

E(α, β) = −EJL(cosα+cosβ)−EJS cos(π−2α−β). (1)

At EJL � EJS the first term in Eq. (1) dominates and
E(α, β) has a minimum at (α, β) = (0, 0). The expansion
near this point gives

E(2)(α, β) =
EJS

2
[ α β ]

[
r − 4 −2
−2 r − 1

] [
α
β

]
, (2)

which is a quadratic form with eigenvalues EJL and
(r − 5)EJS. The second eigenvalue changes sign as the
ratio r = EJL/EJS decreases, signaling the instability
and appearance of a nontrivial ground state. The long
chains display the properties similar to the critical Ising
model at r slightly less than the critical value of the ra-
tio, r0 = 5, as explained below.[16] Exactly at ro = 5
the function E(α, β) becomes flat along the eigenvector
(2, 1) but remains steep in the orthogonal direction (see
Fig. 2c). We introduce new coordinates in the “flat” and

“steep” directions: γ = (2α + β)/
√

5, δ = (α − 2β)/
√

5.
Figure 1(c) shows the energy plotted along the flat direc-
tion. Neglecting the phase deviations in the steep direc-
tion, the total phase across the elementary block is given
by ϕeb = 3/

√
5γ.

At r > ro the ground state values of phases γ and ϕ,
γ0, and ϕ0, are zero. Deviations of the total phase from
ϕ0 = 0 result in the quadratic increase of the energy

E(2)(ϕ) =
EJL

2
δrγ2.

where δr = (r − ro)/r. At the optimal point (δr = 0)
the phase stiffness vanishes and the phase fluctuations
are limited by the next-order quartic term:
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Figure 1. The unit cells, potential energy, and phase diagram of the Josephson ladder [3]. Panel (a): The unit cells of the ladder
include smaller and larger Josephson junctions with Josephson energies EJS and EJL, respectively. All cells are threaded by
the same magnetic flux Φ ; the phase difference across the ladder is ϕ2 −ϕ1 = ϕ. Panel (b): The design of the ladder. Bottom
electrodes of the Josephson tunnel junctions are shown in blue, top electrodes - in red. Panel (c): The Josephson energy EJ(ϕ)
of a ladder with the ratio EJL/EJS ≡ r < r0 calculated for three values of the flux: Φ = 0 (dashed curve), Φ = ΦC (solid curve),
and Φ = Φ0/2 (dash-dotted curve). The energy is periodic in phase with the period 2π, here we show only a single branch.
Panel (d): Phase diagram of the ladders on the r-plane. For r < r0 the broken-symmetry phase is formed at ΦC < Φ < Φ0/2
(the shaded region) characterized by order parameter M = 〈φ〉. In the latter phase the phases of most cells have the same
sign, φ ≈ φ0 in the majority of the cells for the state with M > 0 and φ ≈ −φ0 for M < 0. As r is increased the number of
cells in which the phase does not obey the ’majority’ rule increases, the phase become completely random above the transition
φ = ±φ0 where the disordered state is formed.
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Figure 2. Array schematics. Exactly at the full frustration
the classical ground state of the array corresponds to transla-
tionally invariant pattern of phases differences α = α′, β = β′

shown in panel a. Away from the full frustation the period is
doubled and phases α 6= α′, β 6= β′. In the absence of ground
capacitance the kinetic energy of the array depends only on
local phase differences α and β. For a generical fluctuation
varying in space, the phases in different plaquettes become
different, αj 6= α, etc. The presence of ground capacitance
(panel b) leads to a small term that depends on the global
phase Θ =

∑
j<i(αj + βj) that becomes relevant for long

chains. The lower panel shows the energy as a function of the
coordinates α, β. Close to the minimum the energy changes
slowly in the direction indicated by the black line.

E(4)(γ) =
1

24

(
25− 17r

25

)
EJSγ

4 ≈ 0.9EJSγ
4 (3)

where in the last equality we replaced the numerical coef-
ficient by it value at r = ro. At smaller r < ro the ground
state corresponds to a non-zero value of |γ0(r)| ∝

√
δr .

The appearance of a non-zero γ0 implies a phase transi-
tion that breaks Z2 symmetry γ → −γ.

Close to the phase transition the phase fluctuations be-
come relevant. We derive the action of these fluctuations
assuming that they are slow in space and time. We be-
gin with spatial fluctuations. For a general space varying
phase one gets

E = −EJL

∑
i

(cosαi−1/2 + cosαi+1/2 + cosβi)

−EJS

∑
i

cos(π − αi−1/2 − αi+1/2 − βi)

where we label phases of each wire by the coordinates of
their centers, so that the phases of horizontal wires have
integer coodinates and the centers of the vertical ones
have half-integer coordinates. Expanding in the phases
αi, βi � 1 and taking the Fourrier transform we get the
quadratic part of the energy of the fluctuation with mo-
mentum k:

E(2)(k) =
EJS

2

∑
k

[αk, βk]

[
r + 2ξk ξk
ξk r − 1

] [
α−k
β−k

]
.

(4)
where ξk = −2 cos(k/2). Expanding it for small k and
leaving only the contribution of the slow mode α =
2/
√

5γ and β = 1/
√

5γ we get for the energy per unit
cell

E(2)(k) =
1

2
EJL

[
3

5r
(∇γ)2 + δrγ2

]
. (5)
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The kinetic energy per unit cell is due to the capaci-
tors of the larger and smaller junctions. We assume
that CL = rCS and express the result in the units of
ECL = (2e)2/CL:

T =
1

2ECL

[(
dα

dt

)2

+

(
dβ

dt

)2

+
1

r

(
d (2α+ β)

dt

)2
]

=
(r + 5)

2rECL

(
dγ

dt

)2

(6)

Away from the critical point the interaction between
fluctuations can be neglected. In this regime the spec-
trum of the slow fluctuations characterized by (5,6) is
given by relativistic dependence

ω2 = (ck)
2

+m2 (7)

c2 =
3

5(r + 5)
EJLECL

m2 =
rδr

5(r + 5)
EJLECL.

Note that at all r the velocity is relatively small be-
cause it is due to the Josephson energy of the small junc-
tions and charging energy of the large ones, so that the
wave dispersion is always small in the Josephson chain of
this type. As the optimal point δr = 0 is approached the
gap in the spectrum closes and the fluctuations become
more relevant. At large EJL/ECL � 1 the width of the
fluctuational regime, δr∗ where the effects of the interac-
tion (3) are relevant is small. In the following discussion
of this regime we assume r ≈ r0 = 5 so that the full
action becomes

S =

∫
Ldtdx

L =
1

ECL

(
dγ

dt

)2

+
EJL

2

[
3

25
(∇γ)2 + δrγ2 +

9

25
γ4
]

Rescaling the variables

x =

√
3

5
s

t =

√
2

EJLECL
τ

γ =
5

3
√

2
η

we reduce it to a fully dimensionless form

S =
1

2g

∫ {(
dη

dτ

)2

+ (∇η)2 + δrη2 +
1

2
η4

}
dτdx (8)

where

g =
3
√

6

5

√
ECL
EJL

(9)

We estimate the width of the fluctuational regime
where the spectrum (7) is not valid by computing the
fluctuational corrections to the action (8). In the leading
approximation one can neglect the quartic term. We get
leading correction to the coefficient of η4 term is

9g

8πδr

so that the width of the fluctuational regime δr∗ ≈ g.

B. Mapping to Ising model

The transition to the ordered state breaks Z2 symme-
try and belongs to the same universality class as the Ising
model. In the ordered state the field η acquires average
η = ±η0 where η0 = (−δr)1/2 ; in this regime the low en-
ergy excitations are domain walls with the static energy

ε0 =
1√
2

1

g
δr3/2

Because the time needed to create and destroy a do-
main wall is τ = δr−1/2, the action correponding to this
process is S ∼ δr/g which again tells us that the width
of the fluctuational regime is δr∗ ≈ g.

Outside of the fluctuational regime the kinetic energy
of the domain wall moving with velocity v is

v2

2
√

2g
δr3/2

implying the mass m = δr3/2/
√

2g. The Lorentz invari-
ant equation compatible with these limits for the domain
wall energy spectrum is

ε(k) = (m2 + k2)1/2

In the ordered phase and inside the critical fluctuational
regime the model should be similar to the quantum Ising
model

H = T
∑
i

σxi + J
∑
i

σzi σ
z
i

where t and J are smooth functions of δr. Comparing
the spectra of the domain wall in the Ising model and
action (8) we see that

J ≈ m/2

T ≈ 1

2ma2

in the ordered phase at J � T where a is the distance
between the Ising spins. The distance a is set by the
domain wall size a2 = 1/ |δr| .

The Ising model has transition to the ordered state at
J = T , translating it into the parameters of the original
model we see that the transition happens at

δrc = −cg
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Figure 3. Characteristic spectra of the excitations in Ising
model at (blue) and slightly away (yellow) from the transition.
At low energies the spectra become relativistic with the mass
that vanishes at the transition. In the presence of ground
capacitance the spectra as a function of k remain qualitatively
similar.

where c ∼ 1.
Close to the transition into the ordered state the exci-

tations of the Ising model are Majorana fermions

c†p(k) = (−1)
∑

j<k np(j)σ+
p (k)

np(j) =
[
σzj (p) + 1

]
/2.

Qualitatively these excitations describe the domain
walls in the Ising model that propagate with a constant
velocity exactly at the transition, i.e. have relativistic
spectrum. The fermionic nature of these excitations de-
scribes the exclusion principle of domain walls. Gener-
ally, away from the transition point the spectrum of these
excitations is the same as for free but massive one dimen-
sional fermions:

ε(k) = 2
√

T 2 + J2 − 2T J cos(ka). (10)

We now discuss the mapping of the matrix elements
of the physical operators to the operators of the Ising
model. The physical currents through the individual
junctions are J = EJL sinα, J = EJL sinβ and J =
−EJS sin(2α + β). Thus, the current operator is gener-
ally given by J = cJEJLη where cJ ∼ 1 is numerical
coefficient that depends on the particular current stud-
ied. In the critical regime in which locally η = ±η0 so the
current operator is directly related to the Ising variable

Ĵeff = cJEJLη0σ
z. (11)

External flux noises interact directly with the current op-
erators by Hnoise = δΦextĴ . Below we discuss the effect
of this interaction on the decay and dephasing of Majo-
rana modes with spectrum (10).

The charge operator associated with larger and smaller
junctions are QL1 = id/dα, QL2 = id/dβ, QS =
id/d(2α+ β). These charges interact with the potentials
created by stray charges on each island. As before, we
focus on the effect of this interaction with the soft modes
described by the Ising variables. Consider a single unit
cell described by the local Hamiltonian

H = −ECL
4

(
d

dγ

)2

+
1

2
EJL

[
+δrγ2 +

9

25
γ4
]

This Hamiltonian has two low energy states Ψ±(γ) that
correspond to symmetric and antisymmetric states that
become eigenstates of Ising operator σx after mapping
to Ising model. These states are split by the energy
δE = E− − E+ that becomes δE = 2t in the Ising
model. Assuming that δE �

√
ECLEL, i.e. that Ising

modes are well separated from the rest of the spectrum,
we can evaluate the matrix element of the charge opera-
tor Qγ = id/dγ between these states:

〈+ |Qγ | −〉 = i
T

Ec
η0

Symmetry of the states show guarantees that all other
matrix elements of the charge are zero, thus

Q̂eff =
T

Ec
η0σ

y. (12)

Note that the matrix element of the charge operator
contains two factors that are small in the regime where
the model (8) can be mapped to Ising model: η0 � 1
and T /Ec � 1.

C. Matrix elements of the physical operators close
to the critical point

Close to the critical point the matrix elements of both
the external charge and flux are given by operators that
act on the effective Ising variables (11,12). We evaluate
the effect of these operators on the low energy (Majorana)
modes of the critical Ising model. To compute the matrix
elements of the σyi operator between the ground-state
and low energy excited states, it is convenient to use the
Jordan-Wigner transformation in the form:

σxi = 1− 2c†i ci (13)

σzi =

i−1∏
j=1

(1− 2c†jcj)

 (ci + c†i ) (14)

σyi =

i−1∏
j=1

(1− 2c†jcj)

 i(ci − c†i ) (15)

Here it is assumed that we have a ladder with N unit
cells, so the index i runs from 1 to N . Note that the
Ising Hamiltonian is changed into its opposite after per-
forming a π rotation around the x axis of the spins on
one sublattice (e.g. for i even). Doing this changes the
dispersion relation into:

ε(k) = 2
√

T 2 + J2 − 2T J cos(ka) (16)

which is convenient, because the minimum of this disper-

sion relation occurs at k = 0. Introducing Ai = ci + c†i
and Bi = c†i − ci allows then to write the Ising Hamilto-
nian as:

H = −T
N∑
i=1

AiBi − J
N−1∑
i=1

BiAi+1 (17)
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The single excitation creation and annihilation operators

γ†k, γk are written as:

γk =
N∑
j=1

(φkjAj + χkjBj)

γ†k =
N∑
j=1

(φkjAj − χkjBj) (18)

where the coefficients φkj and χkj are real. These operators
are determined by the condition that [H, γk] = −ε(k)γk,
which gives:

2tφkj − 2Jφkj+1 = −ε(k)χkj (19)

2tχkj − 2Jχkj−1 = −ε(k)φkj (20)

With open boundary conditions, we have to solve these
equations, together with the constraints χk0 = 0 and
φkN+1 = 0. The allowed values of k are determined by:

sin(kaN)

sin(ka(N + 1))
=

T

J
(21)

Note that k = 0 and k = π are both excluded, because
they lead to vanishing amplitudes φkj and χkj . Therefore,
we have to search for real solutions in the interval 0 < k <
π. There are exactly N such solutions when T /J > N

N+1 ,
which corresponds to the paramagnetic phase. In the
other case T /J < N

N+1 , we get only N − 1 real solutions
and one complex solution k = iκ, where κ is given by:

sinh(kaN)

sinh(ka(N + 1))
=

T

J
(22)

and the corresponding energy is:

ε(iκ) = 2
√

T 2 + J2 − 2T J cosh(κa) (23)

which lies inside the gap of the infinite chain. The real
solutions have the form:

φkj = φk0
sin(ka(N + 1− j))

sin(ka(N + 1))
(24)

χkj = −φk0
ε(k)

2J

sin(kaj)

sin(ka)
(25)

and the bound state wave-function is obtained by ana-
lytical continuation from k to iκ. Canonical fermionic
anticommutation relations are satisfied provided:

N∑
j=1

φkjφ
k′

j =

N∑
j=1

χkjχ
k′

j =
δkk′

4
(26)

When k = k′, these relations fix the value of φk0 in the
above expressions for φkj and χkj . Completeness can then
be used to show that:

Aj = 2
∑
k

φkj (γk + γ†k) (27)

Bj = 2
∑
k

χkj (γk − γ†k) (28)

Note that the k sums have to incorporate the bound-state
when /J < N

N+1 .

The ground-state of the system |0〉 is determined by
the condition that γk |0〉 = 0 for all allowed k’s. As
shown earlier, we have to evaluate the matrix element of
σyi between the ground-state and low lying states. The
Jordan-Wigner representation for σyi can also be written
as:

σyi = −i

i−1∏
j=1

AjBj

Bi (29)

so it is the product of an odd number of fermionic oper-
ators. Therefore, σyi couples the ground-state to excited
states containing an odd number of elementary fermionic
excitations. The simplest of these states are of the form

γ†k |0〉. Evaluation of the matrix elements is straighfor-
ward, using Wick’s theorem. For this, we need the basic
correlators, which are easily determined from (27), (28)
and the completeness relations:

〈0|AiAj |0〉 = δij (30)

〈0|BiBj |0〉 = −δij (31)

〈0|AiBj |0〉 = −4
∑
k

φki χ
k
j (32)

〈0|Biγ†k|0〉 = 2χkj (33)

Because the correlations of Aj operators with themselves
are purely local, and similarly for the correlations of Bj
operators, we see that upon computing 〈0|σyi γ

†
k|0〉, each

Ai has to be paired with a Bj , and γ†k has to be paired
with the remaining Bj operator. This leads to the deter-
minantal formula:

〈0|σyi γ
†
k|0〉 = −iDetCki (34)

Here, Cki is an i× i matrix given by:

Cki =


G1,1 G1,2 G1,3 ... G1,i

G2,1 G2,2 G2,3 ... G2,i

... ... ... ... ...
Gi−1,1 Gi−1,2 Gi−1,3 ... Gi−1,i
Dk

1 Dk
2 Dk

3 ... Dk
i

 (35)

where Gi,j = 〈0|AiBj |0〉 and Dk
i = 〈0|Biγ†k|0〉, which are

given by Eqs. (32) and (33), respectively. Such deter-
minantal expressions for the Ising form factors are well-
known, see e.g. [15]. For their actual evaluation on a
finite size chain with open boundary conditions, we used
numerics. The results are shown in Fig 4. As one might
expect the flux operator proportional to σz acquires large
matrix elements in the ordered state. Because the ground
state in a finite system is a symmetric combination of up
and down ferromagnetically ordered state, the non-zero
matrix elements correspond to the 01 transitions. Simi-
larly, the charge operator acquires large matrix elements
between ground and the first excited states in the disor-
dered state of the Ising model. In both cases these matrix
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elements imply decay rate of the first excited state. The
matrix element of higher energy states display similar
behavior.

D. Effect of non-zero ground capacitance

In a realistic ladder of Josephson junctions each ele-
ment of the ladder has a non-zero ground capacitance as
shown schematically in Fig.2 b. For instance, in the lad-
ders implemented experimentally, the ration CG/CL ≈
0.05−0.1. Though small, such capacitance has significant
effect on the low energy spectrum because it introduces
the terms in the effective action of the elementary block
that depend on the time derivative of the total phase:

δL =
1

2ECG

(
dΘ

dt

)2

(36)

where ECG = (2e)2/CG and total phase Θ is related to

the low energy mode variable γ by OΘ = 3/
√

5γ.
The full kinetic energy of the low energy modes be-

comes

T =
(r + 5)

2rECL

[
1 +

κ2

k2

](
dγ

dt

)2

(37)

where

κ2 =
9r

5(r + 5)

ECL
ECG

� 1 (38)

is the inverse characteristic length associated with the
ground capacitance.

The appearance of the length κ−1 (38) implies that
the effective Coulomb interaction between the charges is
screened at distances L > κ−1, in terms of the charge
variable, qγ conjugated to γ the energy (37) becomes

T =
rECL

2(r + 5)

k2

k2 + κ2
q2γ (39)

In the linear regime where non-linear effects can be ne-
glected this addition changes the spectrum (7) to become

ω2 =
(ck)2 +m2

1 + κ2

k2

(40)

that displays additional softnening at low wave vectors
ck � (cκ,m): ω ≈ mκ−1k. The softening of the
spectrum (40) is observable only if it occurs outside of
the critical regime, i.e. at δr > g that corresponds to
κ > g ≈ (ECL/EJL)1/2.

In order to evaluate the effect of the ground capaci-
tance on the low energy modes in the critical regime we
evaluate the effect of the additional kinetic energy (36)
on the effective action of the Majorana quasiparticles. It
is convenient to represent the action as due to the inter-
action with the scalar field φ:

δL = i
dη

dt
φ+

EG
2

[
(Oφ)2 + κ2φ2

]
(41)

where EG = (2/5)ECG. The last term in (41) is due to
the screening of the Coulomb interaction at short scales
discussed above. Repeating the same arguments that led
us to (12) for the charge operator we get that additional
terms in Lagrangian density (41) translate into

δH = T η0σ
x
i φ(xi) +

EG
2

[
(Oφ)2 + κ2φ2

]
(42)

for the effective Ising model that describes vicinity of the
transition point.

In the fermionic representation these terms imply weak
residual interaction between fermionic densities σxi =

1−2c†i ci. This interaction leads to the self-energy correc-
tion, Σ(k), to the fermionic Green function. The impor-
tant property of the long range interaction between spins
or fermionic modes (18) is its dependence on momentum
k but not ω. Physically it is due to the instanteneous
and long-range nature of Coulomb interaction. Such in-
teraction leads to the self-energy corrections that depend
on momentum but not on frequency and thus violate the
Lorentz invariance of the low energy spectra. Qualita-
tively, the effect of the Coulomb interaction is to attract
the spin flips (fermion densities) at short scales. The ap-
pearance of frequency independent Σ(k) implies that the
minimum of the energy ωk(r) occurs at different r for
different k.

In the experiment discussed in Section IV one studies
the frequency dependence on the value of the flux, not
on r. This is equivalent to the motion in the horizontal
direction in the phase diagram of Fig. 1d instead of the
vertical one. The shift in r of the position of the min-
ima implies that the corresponding parabolas at which
ωk(r,Φ) has a minimum are shifted up for larger k that
translates into the downshift in the value of the flux at
which ωk(Φ) has a minimum for constant r.

The analytical expressions for the shift of ωk(r,Φ) can
be obtained close to the Ising critical point. Exactly at
the critical point of the Ising model without (42) correc-
tions the fermionic density has power law correlators that
translates into power law correlations

〈σx0σxr 〉 =
1

π2r2

which can be described as the correlator of the free
bosonic fields, s. In this hydrodynamic description the
addition of the terms (42) does not change the quadratic
nature of the energy. The Green function, D of the bose
field acquires a self energy

Σ(k) =
(T η0)

2

EG

1

k2 + κ2

that has no frequency dependence. This self energy cor-
rection has exactly the effect discussed above: it shifts
the position of singularity in D(ω, k) away from ω = ε(k)
line that implies the shift in the spectrum of elementary
(fermionic) excitations. In particular, the positions of the
minuma, rmin, of ωk(r,Φ) as a function of r for different
k happen at different r. The effect is maximal for k ∼ κ
at which Σ ∼ cg that leads to the shift in rmin ∼ g.
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Figure 4. Matrix elements of the relevant physical operators between lowest energy states close to quantum critical point of the
Ising model, from left to right: matrix element of the dimensionless charge operator σy between two lowest states, the same
matrix element between the ground and the second excited state and matrix element of flux noise σz between the ground state
and the lowest excited state.

Figure 5. Simplified diagram of the microwave setup [3].
Panel (a): Schematic description of the on-chip circuit. The
Josephson ladder, in combination with the capacitor CK ,
forms a resonator which is coupled to the readout LC res-
onator via the kinetic inductance LC of a narrow supercon-
ducting wire. Panel (b): The on-chip circuit layout of the
tested circuit inductively coupled to the microwave (MW)
feedline. Panel (c): Simplified circuit diagram of the mea-
surement setup.

IV. EXPERIMENTAL DATA

Our microwave measurements were designed to explore
the spectrum of low-energy modes of Josephson ladders
near the 1D QPT and the “lifetime” of these modes. The
experimental set-up for these spectral and time-domain
measurements has been described in Refs. [2, 4]. Briefly,
in these experiments the Josephson ladder was coupled
to the lumped-element readout resonator via the kinetic
inductance LC of a narrow superconducting film (Figs.
5a,b). The ladders, the readout circuits, and the mi-
crowave (MW) transmission line on the chip were fabri-
cated using multi-angle electron-beam deposition of Al
films through a lift-off mask (for fabrication details see

Figure 6. Microwave spectroscopy of the low-energy internal
modes of the ladders with r ≤ r0 as a function of the magnetic
flux in the unit cells. Panel (a): A 24-cell ladder with r = 3.2.
The resonance modes are periodic in the flux with the period
Φ0. Two critical points are located symmetrically with re-
spect to Φ = Φ0/2. At the critical points the single-minimum
dependence EJ(ϕ) is transformed into a double-minima func-
tion; this corresponds to the QPT between the“paramagnetic”
and “ferromagnetic” phases. Panel (b): A 92-cell ladder with
r = 3.2. Resonance frequencies of several of low-energy modes
are shown near the critical point. With approaching the crit-
ical point at Φ ≈ 0.45Φ0 we observed pronounced softening
of the low-energy modes of the ladder. Arrows indicate the
position of the critical point, Φcr(k), that is shifted for dif-
ferent modes due to the long-range interactions between the
array’s unit cells. In the limit of infinite chain length we ex-
pect the critical point to be located at t Φcr(0)/Φ0 ≈ 0.46.
The position of the minuma was extracted from the data for
low energy mode by fitting the spectrum to a polynomial.

Refs. [3]). The in-plane dimensions of the Josephson
junctions varied between 0.1×0.1µm2 and 0.3×0.3µm2;
the area of a unit cell was 15µm2. The global magnetic
field, which determines the fluxes in all superconducting
loops, has been generated by a superconducting solenoid.

In the dispersive measurements of the ladder spectra
the resonance of the readout resonator was monitored
at the frequency f1 while the ladder was excited by the
second-tone frequency fS (Fig. 5c). The microwaves at
the probe frequency f1 are transmitted through the mi-
crostrip line coupled to the Josephson ladder and LC
resonator. The amplified signal is mixed by mixer M1
with the local oscillator signal at frequency f2. The
intermediate-frequency signal at Ω = 30MHz is digitized
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by a 1 GS/s digitizing card. The signal is digitally mul-
tiplied by sin(Ωt) and cos(Ωt), averaged over an integer
number of periods, and its amplitude A and phase are ex-
tracted. The reference phase (which randomly changes
when both f1 and f2 are varied in measurements) is found
using similar processing of the low-noise signal provided
by mixer M2 and digitized by the second channel of the
ADC. In the second-tone measurements, the tested cir-
cuit is excited by the microwaves at frequency fS coupled
to the transmission line via a coupler. Excitation of the
ladder modes by the microwaves at the frequency fS re-
sulted in a change of its impedance [22]; this change was
registered as a shift of the resonance of the readout res-
onator. The low-energy modes were measured as a func-
tion of the flux in the ladder’s unit cells within the MW
frequency range of our microwave setup 0.5− 20GHz.

In the time-domain experiments, we have observed
Rabi oscillations for a “qubit” formed by the ladder and
a shunting capacitance CK . The resonant mode of the
ladder was excited by a short (∼ 0.02− 10µs) MW pulse
at the second-tone frequency fS and the population of
the excited level, averaged over many repetitive mea-
surements, were recorded at the end of the pulse. The
Rabi time for the lowest-energy mode exceeded 2µs for
the arrays with 92 unit cells. This observation demon-
strates that the multi-junction arrays can be considered
as quantum (not limited by decoherence) systems over a
relatively long time scale. These measurements will be
discussed elsewhere, below we focus on the spectroscopic
data.

The results of measurements of the resonance frequen-
cies of several low-energy modes of the ladder with r < r0
are shown in Fig. 6. The nominal parameters [17] of the
junctions in this chain were

EJS = 4.8 K, ECS = 0.41 K

EJL = 15.6 K, ECL = 0.14 K (43)

For these parameters we estimate g ≈ 0.1. The ground
capacitance in this experiment was Cg ∼ 20CL, so
the characteristic length due to Coulomb interactions is
κ−1 ≈ 5 in the units of elementary plaquette. For these
parameters one expects to observe relativistic spectrum
of the low energy modes with c ∼ 10 − 20 GHz a0 where
a0 ∼ 3 elementary plaquettes that would lead to the fre-
quency difference between lowest modes ∆f = 1−2 GHz
in a complete agreement with the observations. The fre-
quency shift (defined as difference between the minimal
frequency of a mode and its frequency at Φcr(0)), due
to the Coulomb interaction is approximately ∼ 0.3∆f
which is compatible with the small value of κ ≈ 0.2.

The resonance frequencies vary periodically with the
flux; the period of this dependence ∆Φ = Φ0. We have
observed the mode softening with approaching the quan-
tum critical points, symmetrically positioned with re-
spect to the flux Φ0/2. This is the key feature of the
transverse field Ising model. According to this model,
the phases on both sides of the quantum critical point

(the quantum paramagnet and ferromagnet, in Ising spin
terminology) are characterized by different types of ex-
citations. In the paramagnetic phase the relevant exci-
tations are flips of individual spins. These excitations
become gapless exactly at the critical point. In contrast,
the excitations in the ordered (“ferromagnetic”) phase are
the domain walls (or described as kinks) between differ-
ent ground states (“vacua”). Even though any supercon-
ductor is a bosonic system, the lowest-energy excitations
in the ladders are expected to have fermionic nature; the
higher-energy excitations are composite particles made of
these fermions (similar to the appearance of quarks and
mesons). The emergence of non-trivial excitations near
the quantum phase transition and their properties is one
of the main themes of the present and future research.

The gradual shift of the minima of different modes
shown in Fig. 6b is due to the non-zero ground capac-
itance of the unit cells that result in a small but non-
negligible long-range interaction between the pseudo-
spins in full agreement with the theory presented in Sec-
tion III. The non-zero Cg is not a “bug” but a “feature”:
variation of the ground capacitance of individual cells en-
ables fabrication of the devices characterized by different
types of coupling between the unit cells in similar ladders,
which makes possible emulation of the range of quantum
models such as Ising and XY models in transverse mag-
netic field. Interactions between the cells of Josephson
arrays (“spins”) can be tuned by changing the Josephson
energies of the larger and smaller junctions. This tuning
remains a challenge for other solid-state systems [11, 20].

For long (92-unit-cell) chains we could not trace the
low-energy modes on the “ferromagnetic” side of the
QPT. We attribute it to a large magnetic (flux) noise
in our system. As shown in section III C the matrix el-
ements of the charge and flux noise between low energy
states have opposite behavior: the effect of the charge
noise is lower while the flux noise is much stronger on the
ordered side of the transition. Notice that the decay is
proportional to the square of the matrix elements shown
in Fig. 4, so the decay due to the flux noise grows by a
factor ∼ 106 in the ordered phase while the decay due to
the charge noise is larger by a factor ∼ 103 in the disor-
dered phase. The effect of the charge noise is suppressed
by a small factor that translates the matrix element of
the Ising operators into the matrix element of the physi-
cal charge, the effect is opposite for the flux noise. Com-
paring the equations (11,12) relating the dimensionless
matrix operators shown in Fig. 4 to the physical noise
we see that the decay rate due to the charge noise is ad-
ditionally decreased by a factor (t/Ecη0)2 . δrc while
the decay rate of the flux noise is enhanced by the factor
(EJLη0/ω)2where ω is the mode frequency. This makes
the effect of the flux noise on the ordered side of the
transition very large whilst the effect of the charge noise
remains moderate.
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Figure 7. The data of the first-tone spectroscopy of the
readout resonator resonance. In the “paramagnetic” phase
(Φ/Φ0 < 0.45,Φ/Φ0 > 0.55), the readout resonance is sharp.
Avoided crossings are observed when the ladder modes cross
the resonator resonance frequency. In the “ferromagnetic”
phase (0.45 < Φ/Φ0 < 0.55) the resonance is smeared.

V. CONCLUSION AND OUTLOOK

Controllable-by-design interactions between the pseu-
dospins implemented as two states of the cells of the pe-
riodic Josephson junction ladder enabled us to study the
phase boundaries between ordered and disordered phases
and critical behavior close to this transition. In particu-
lar, the study of microwave properties allowed us to find
the full low energy spectrum of this system.

Close to the transition the low energy degrees of this
system are described by the ϕ4 model [20] that displays
the transition from disordered to ordered phase that be-
longs to Ising universality class. In the Ising model the
low energy excitations are Majorana quasiparticles, thus
our observation of the low energy modes of the long lad-
ders can be viewed as a direct probe of Majorana exci-
tations in this system. Note, that in contrast to the spin
chains where only pairs of Majorana particles can be pro-
duced and studied by scattering techniques, Josephson
ladders allow us to sudy the full low energy spectrum, in
particular the fermionic excitations. An appealing anal-
ogy is provided by the particle physics in which fermionic
excitations are quarks while pair of those correspond to
pions. In this analogy the spectrum shown in Fig. 6 cor-
responds to quarks while the spectrum studied in spin
chains to pions.

The developed experimental platform will allows us to
address various fundamental issues. First, it allows to in-
troduce the disorder in a controllable manner and study
the appearance of the intermediate glassy non-ergodic
phases. Second, it allows to introduce interactions be-
tween pseudospins that violate exact integrability of the
effectibe Ising model that describes the system at large
scales. For instance, the ground state capacitance re-
sult in a long range attraction between kinks in the Ising
model in the ordered state. This allows one to study how
ergodic behavior reappears in almost integrable quantum
systems.

We envision the future work that will address the emer-
gence of the symmetries near the critical point in the
Josephson ladders. By measuring different microwave re-
sponse of the ladders in different phases and extracting
the excitation spectra and their matrix elements, one can
fully explore the behavior of this system near the criti-
cal point and extract the critical indices. By introducing
controllable scattering in the junction parameters, one
can explore the effects of disorder on the quantum phase
transitions in 1D.

Another exciting line of research is the effect of non-
integrability on the excitation decay and dephasing. Be-
cause in the critical regime the lowest energy excitations
are equivalent to the ones of the effective Ising model
at the critical point, the integrability implies that these
excitations have an infinite lifetime. In realistic arrays
the integrability becomes approximate and excitations
acquire a finite, albeit long lifetime. In the extensive
time-domain measurements, the decoherence rate in the
1D Josephson ladders can be extracted from Rabi oscil-
lations and Ramsey fringes as a function of proximity to
the critical point. We expect that the residual interaction
between quasiparticles leads to much faster decoherence
rates at higher energy. These measurements address an
important issue of the emergence of classicality in closed
quantum systems.

A potential extension of these experiments is the in-
tentional gradual variation of the unit cell parameters
in the ladders. The idea is to produce ladders character-
ized by a smooth transition region between the symmetry
broken and unbroken states. The position of the phase
boundary (or distance between two boundaries) within
a ladder with gradual change in the position-dependent
parameter r(x) can be varied by the magnetic field that
controls the proximity of individual cells to the critical
point. We expect that the boundary between single-
well (“paramagnetic”) and double-well (“ferromagnetic”)
phases supports the zero-energy (Majorana) mode that
can be probed by our spectroscopic methods. A crucial
question that we plan to address is the mechanisms of
the decoherence relevant for this mode.

Finally, by combining few ladders together one can get
the experimental realization of very exotic quantum ob-
jects such as the two channel Kondo problem with its
1/2ln2 entopy due to exactly degenerate Majorana quasi-
partciles [18].
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