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ABSTRACT

We address the problem of inferring an undirected graph from nodal
observations, which are modeled as non-stationary graph signals
generated by local diffusion dynamics on the unknown network.
We propose a two-step approach where we first estimate the un-
known diffusion (graph) filter, from which we recover the eigenvec-
tors of the so-called graph-shift operator (a matrix representation of
the graph). We then estimate the eigenvalues by imposing desir-
able properties on the graph to be recovered. To catry out the initial
system identification step, we assume that second-order statistics of
the inputs are available. While such quadratic filter identification
problem boils down to a non-convex fourth order polynomial mini-
mization, we propose a semidefinite relaxation with provable perfor-
mance guarantees. Finally, numerical tests illustrate the use of the
proposed algorithm to unveil urban mobility patterns.

Index Terms— Network topology inference, graph signal pro-
cessing, diffusion process, semidefinite relaxation.

1. INTRODUCTION

Consider a network represented as a weighted and undirected graph
G, consisting of a node set N of cardinality N, an edge set £ of
unordered pairs of elements in N, and edge weights A;; € R such
that A;; = Aj; # 0for all (4,5) € €. The edge weights A;; are
collected in the symmetric adjacency matrix A € RV*Y. More
broad]l\y, one can define a generic graph-shift operator (GSO) S €
RY*N as any matrix having the same sparsity pattern than that of
G [1]. Although the choice of S can be adapted to the problem at
hand, it is often chosen as either A, the Laplacian L := diag(A1) —
A, or its normalized counterparts [2].

Our focus in this paper is on identifying graphs that exl%lain the
structure of a random signal. Formally, let x = [z1, ..., zn]* € RY
be a zero-mean graph signal with covariance matrix Cx = E [XxT} ,
in which the ith element z; denotes the signal value at node ¢ of
an unknown graph G with shift operator S. We say that the graph
S represents the structure of the signal y € RY if there exists a
diffusion process in the GSO S that produces the signal y from the
input signal x, that is

y=ao[[}2,(I-aS)x=37, S x. (1)

When x is white so that Cx = I, (1) is equivalent to saying that the
graph process y is stationary in S; see e.g., [3, Def. 1], [4], [5] and
Section 2.1 for further details. Here though, we deal with more gen-
eral non-stationary signals y that adhere to linear diffusion dynamics
as in (1), but where the input covariance Cx can be arbitrary.
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The justification to say that S represents the structure of y is that
we can think of the edges of G, i.e. the non-zero entries in S, as di-
rect (one-hop) relations between the elements of the signal. The dif-
fusion described by (1) modifies the original correlation by inducing
indirect (multi-hop) relations. In this context, our goal is to recover
the fundamental relations dictated by S from a set of independent
samples of a non-stationary random signal y, as well as knowledge
of Cx. This additional information on the input x is the price paid
to accommodate the more general non-stationary generative models
for y, and is not needed when identifying the structure of stationary
graph signals [6,7].

Relation to prior work. Workhorse topology inference approaches
construct graphs whose edge weights correspond to nontrivial cor-
relations between signals at incident nodes [8,9]. Acknowledging
that the observed correlations can be due to latent network effects,
alternative statistical methods rely on inference of partial correla-
tions [8, Ch. 7.3.2]. Under Gaussianity assumptions, this line of
work has well-documented connections with sparse precision matrix
estimation [10-13] as well as high-dimensional sparse linear regres-
sion [14]. Extensions to directed graphs include structural equation
models (SEMs) [15-17], Granger causality [9, 18], or their nonlinear
(e.g., kernelized) variants [19,20]. Recent graph signal processing
(GSP)-based network inference frameworks postulate that the net-
work exists as a latent underlying structure, and that observations
are generated as a result of a network process defined in such a
graph [6,7,21-24]. Different from [21,23,25,26] that infer structure
from signals assumed to be smooth over the sought graph, here the
measurements are assumed to be related to the graph via linear fil-
tering as in (1). Two works have recently explored this approach by
identifying a symmetric GSO given its eigenvectors [6, 7], but both
rely on observations of stationary signals.

Paper outline and contributions. In Section 2 we formulate the
problem of identifying a GSO that explains the fundamental struc-
ture of a random signal diffused on a graph. To solve this prob-
lem, we propose a two-step approach whereby we: i) identify the
GSO’s eigenbasis from a judicious graph filter estimate; and ii) rely
on these spectral templates to estimate the GSO’s eigenvalues such
that the inferred graph is sparse. This second step is discussed in Sec-
tion 2.2. The estimation of the diffusion filter in step i), which is not
required when the signals are stationary [6], is analyzed in Section 3
and is one of the main contributions of the paper. More specifically,
we focus on scenarios where second-order statistical information of
the inputs is available. In this setting, filter identification boils down
to a non-convex fourth-order polynomial minimization problem. In
Section 4 we develop an efficient algorithm based on a semidefi-
nite relaxation with provable performance guarantees to deal with
this non-convex optimization problem. Numerical tests in Section 5
illustrate the application of the proposed method to reveal urban mo-
bility patterns in New York City. Additional comprehensive perfor-
mance evaluations as well as comparisons to other methods can be
found in [27]. Concluding remarks are given in Section 6.
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2. PROBLEM STATEMENT

To formally state the topology inference problem, recall the symmet-
ric GSO S associated with the undirected graE}h G. Upon defining
the vector of coefficients h := [ho, ..., hp_1]" € R” and the sym-
metric graph filter H := Zf;ol St € RV*N [1], by virtue of the
Cayley-Hamilton theorem the model in (1) can be rewritten as

y = (X5 ms') x = Hx, 2

for some particular h and L < N. Given a set ) := {y<p) }521 of P
independent samples of a non-stationary random signal y adhering
to the network diffusion model (2), the problem is to identify the
GSO S that is optimal in some sense as described in Section 2.2.

Because S is symmetric it is diagonalizable. Accordingly, define
the eigenvector matrix V := [v1, ..., vy] and the diagonal eigen-
value matrix A to write S = VAV7”. Fundamental to the topol-
ogy inference approach developed here is to note that because H is
a polynomial on S, then: i) all such graph filters (spanned by the
unknown coefficients h) have the same eigenvectors; and ii) these
eigenvectors are the same as those of the shift, namely V. In other
words, while the diffusion implicit in H obscures the eigenvalues of
the GSO, the eigenvectors V are preserved as spectral templates of
the underlying network topology.

Section 2.1 describes how to leverage (2) to obtain the GSO
eigenbasis from a set of nodal observations ), by first estimating
the unknown graph filter H. We show that the information in Y is in
general not enough to uniquely recover H. Hence, we will resort to
prior statistical knowledge on (possibly multiple) input signals x to
aid identifiability. Section 2.2 outlines how to use the spectral tem-
plates V to recover the desired GSO by estimating its eigenvalues A
and, as byproduct, the graph shift S = VAV itself.

2.1. Challenges facing non-stationary observations

Consider estimating the eigenbasis V of the filter H that governs the
diffusion in (2). To gain insights, suppose first that x is white so that
Cx = I and the covariance matrix of y = Hx is given by

Cy :=Elyy'] = EHx(Hx)"]| = HE[xx"|JH=H>. (3)

Using the spectral decomposition of S = VAVT to express the
filter in the graph frequency domain as H = ZlL:_OI h(VAVT) =
V(ZZL;O1 hAY)VT, we can diagonalize the covariance matrix as

2
Cy=V (Zf;ol hlAl) VT, @

Such a covariance expression is precisely the requirement for a graph
signal to be stationary in S [3, Def. 2.b)]. In this setting, (4) shows
that the eigenvectors of the shift S, the filter H, and the covari-
ance C, coincide. As a result, to estimate V from the observa-
tions ¥ = {y™}f_, it suffices to form the sample covariance
C, = = 25:1 y® (y®)T and use its eigenvectors as spectral
templates to recover S [6,7]; see also Section 2.2.

The broader focus of the present paper is on identifying the GSO
S that is considered to be the best possible description of the struc-
ture of a non-stationary signal y = Hx [cf. (2), where x is not
white]. For generic (non-identity) input covariance matrix Cx, we
face the challenge that the signal covariance [cf. (3)]

C, = HC,H ®)

is no longer simultaneously diagonalizable with S. This rules out

using the eigenvectors of the sample covariance Cy as spectral tem-
plates of S. Still, as argued following (2) the eigenvectors of the

GSO coincide with those of H. This motivates using realizations
of observed signals together with prior statistical information on the
excitation inputs X to identify the filter H, with the ultimate goal of
estimating its eigenvectors V. This system identification task in the
graph setting is the subject of Section 3, but before we close the loop

showing how to recover a sparse S given its estimated eigenbasis V.

2.2. Using the spectral templates to recover a sparse shift

Given estimates V of the filter eigenvectors, recovery of S amounts
to selecting its eigenvalues A and to that end we assume that the shift
of interest is optimal in some sense. At the same time, we should
account for the discrepancies between V and the actual eigenvectors
of S, due to finite sample size constraints and unavoidable errors in
estimating the filter. Accordingly, we build on [6] and seek for the
shift operator S that: (a) is sparse, meaning that few edge weights
are non-zero; (b) belongs to a convex set S that specifies the desired
type of shift operator (e.g., the adjacency A or Laplacian L); and (c)
is close to VAV in the Frobenius-norm sense. One can thus solve

S* :=argmin ||S|l;, s.to [|[S— VAV |z <e, (6
ASeS

which is a convex optimization problem for the choice of a sparsity-
promoting ¢;-norm criterion, and € is a tuning parameter chosen
based on a priori information on the imperfections.

The constraint S € S in (6) incorporates a priori knowledge
about S. If we let S = A represent the adjacency matrix of an
undirected graph with non-negative weights and no self-loops, we
can explicitly write S = Sa as follows

SAIZ{S|S»;]' >0, SG./\/IN7 Sii:O, stjlzl}- (@)

The first condition in Sa encodes the non-negativity of the weights
whereas the second condition incorporates that G is undirected,
hence, S must belong to the set My of real and symmetric N x N
matrices. The third condition encodes the absence of self-loops,
thus, each diagonal entry of S must be null. Finally, the last condi-
tion fixes the scale of the admissible graphs by setting the weighted
degree of the first node to 1, and rules out the trivial solution S =0.
Other GSOs (e.g., the Laplacian L and its normalized variants) can
be accommodated via minor modifications to S; see [6].

3. QUADRATIC GRAPH FILTER IDENTIFICATION

Consider m = 1, ..., M diffusion processes on G, and assume that
the observed non-stationary signal y,,, corresponds to an input X,,
diffused by an unknown graph filter H = ZZL:_Ol hiS'. While re-
alizations of the excitation input process x,, may be challenging to
acquire, information about the statistical description of x,, could
still be available and used to estimate H. Specifically, assume that
the excitation input processes are zero mean and their covariance
Cx,m = E[xmxL] is known. Further suppose that for each in-
put x,,, we have access to a set of output observations )V, :=

{y%’)}fgl, which are then used to estimate the output covariance

Cy,m via sample averaging. Since under (2) the ensemble covari-
ance is Cy . = E[ymyL] = HCx,nH [cf. (5)], the aim is to
identify a filter H such that matrices Cy,m and HCy ,,, H are close.

Assuming for now perfect knowledge of the covariance matri-
ces, the above rationale suggests studying the solutions of the system
of matrix quadratic equations

Cym=HCyxmH, m=1,...,M. ®)

It is insightful to consider first the case where M = 1 and hence-
forth we drop the subindex m so that we can write (8) as (5). Given
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the eigendecomposition of the symmetric and positive semidefinite
(PSD) covariance matrix Cy = Vy Ay VL, the principal square
root of Cy is the unique symmetric and PSD matrix C;,/ ? which sat-
. 1/2 ~1/2 P 1/2 1/2~7;T

isfies Cy = G,/ "Cy/~. Itis given by Cy/~ = Vy Ay/ "V, where
A;,/ ? stands for a diagonal matrix with the nonnegative square roots
of the eigenvalues of C,,. With this notation in place, the solutions of
the matrix quadratic equation Cy = HCxH in (5) are specified in

the following proposition (the proof is omitted due to lack of space,
but the details can be found in [27]).

Proposition 1 Introduce the symmetric and PSD matrix Cxyx =
C,1(/ 2CyC,1(/ 2, whose eigenvectors are denoted by 'V xyx. If the in-

put covariance matrix Cx is nonsingular, all symmetric solutions
H € My of (5) are given by

H = C;/*Cii Viyxdiag(b) Vo Cx /2, ©)
where b € {—1, l}N is a binary (signed) vector.

Inspection of (9) shows that the filter is non-identifiable for M = 1.
Indeed, there are 2% possible solutions to the quadratic equation (5),
which are parametrized by the binary vector b.

For M > 1, the set of feasible solutions to the system of equa-
tions (8) is naturally given by

M
Hu= ) {H € My |bme{-1,1}" and (10)
m=1
H = C;,ir/12 C}céfzx,nLnyxymdiag(bm)szx,mc;}réz } .

It is thus conceivable that as M grows and, therefore, the number of
equations increases, the cardinality of s shrinks and the problem
is rendered identifiable (up to an unavoidable sign ambiguity because
if H € My is a solution of (8), so is —H). Next, we show that with
as few as M = 2 excitation inputs having covariances Cx ; and
Cx,2 with identical eigenvectors, uniqueness can be attained as long
as their eigenvalues are sufficiently different (see [27] for a proof).

Proposition 2 Consider the system of equations (8) for M = 2 and
suppose that Cx1 = Udiag(A1)U” and Cx,2 = Udiag(A2)U7.
Then (8) has a unique symmetric solution, i.e, H = VAVT is
identifiable up to a sign ambiguity if the following conditions hold:
C-1) All eigenvalues in A1 are distinct;

C-2) Al,i )\2,]' 7é AL]' )‘277" for all i?j;

C-3) V and U do not share any eigenvector; and

C-4) rank(H) = N.

Conditions C-1) and C-2) encode a notion of richness on the input
signals. In fact, condition C-2) is the specialization for M = 2 of a
requirement on the Kruskal rank of a matrix related to the eigenval-
ues of the excitation processes. From this vantage point, it follows
that larger values of M facilitate the fulfillment of this requirement,
corroborating our initial intuition regarding uniqueness of H. More-
over, from the proof arguments it follows that symmetry of H is
essential [27]. Actually, if one lifts the symmetry assumption and all
input covariances have the same eigenvectors, the problem remains
non-identifiable for any M.

4. SEMIDEFINITE RELAXATION

Here we show that the graph filter identification task can be tack-
led using semidefinite relaxation (SDR) [28], a convexification tech-
nique which has been successfully applied to a wide variety of non-
convex quadratically-constrained quadratic programs (QCQP) in ap-
plications such as MIMO detection [29] and transmit beamform-
ing [30]. To that end, we first cast the problem of identifying H

— given by the simultaneous fulfillment of the M equalities in (10) —
as a Boolean quadratic program (BQP). With © denoting the Khatri-
Rao product, the ensuing result follows.

Proposition 3 Form =1,..., M form A, := (Cxrh* Viyse.m)®
(C;}%Qc,lcé,i,mvxyx,m) c RY*XN und consider the unknown bi-

nary vectors b, € {—1, 1}N. Define ¥ € RNQ(M*I)XNM as

A —A; 0 0 0
0 Ay —-Asz - 0 0
W= . . . ) . . (an
o 0 0 A1 —Au
andb = [bl, ... . bY])T € {=1,1}"M. Ifrank(¥) = NM — 1,

then the filter can be exactly recovered (up to a sign) as vec(H") =
A 1b], where b is the first N x 1 sub-vector of the solution to the
following BQP problem

b" ¥ Wb, (12)

b* = argmin

be{—1,1}NM

Problem (12) offers a natural formulation for the setting whereby
{Cy.m}M_, are replaced by sample estimates, and one aims at

minimizing the residuals 271;1;11 |Ambm — Apiibma|? =

b7 & T ¥b in the least-squares sense. Given a solution of (12) with
W replacing ¥, H € My can be estimated as [cf. (9)]

M
2 1 —1/2/A1/2 C : * \x77T —-1/2
H= M 7;:1 Cx,n/z Cxélx,mvxyx,mdlag(bm)nyx,mcx,'n{ .

13)
Even though the BQP is a classical NP-hard combinatorial op-
timization problem [28], via SDR one can obtain near-optimal so-
lutions with provable approximation guarantees. To derive the SDR
of (12), first introduce the NM x NM symmetric PSD matrices
W := ¥T® and B := bb”. By construction, the binary ma-
trix B has rank one and its diaj%onal entries are B;; = b? = 1.
Conversely, any matrix B € RVM>*NM that is PSD (henceforth de-
noted B > 0), satisfies B;; = 1, and rank(B) = 1 necessarily
has the form B = bb”, for some b € {—1,1}"*. Using these
definitions, one has b Wb = tr(WB) and (12) is equivalent to

glil(l)tr(WB) s.torank(B)=1, By =1,i=1,...,NM.

The only source of non-convexity in the above formulation is the
rank constraint, and dropping it yields the convex SDR

B* = argmintr(WB), s.toB;=1,i=1,..., NM, (14)
B>0

which coincides with the bidual (dual of the dual) problem of (12).
Problem (14) is a semidefinite program (SDP) and can be solved us-
ing an off-the-shelf interior-point method [31]. It is immediate that
a rank-one optimal solution B* = b*(b*)” of (14) solves the orig-
inal BQP as well; however, in general rank(B™*) # 1. To generate a
feasible solution of (12) from B*, we adopt the so-termed Gaussian
randomization procedure [28,32]. The overall scheme is tabulated
under Algorithm 1.

All in all, the recipe to estimate the graph filter via the SDR
approach entails the following steps. First we calculate {Am}ﬁle
from {Cyﬁm, me}%:l using the expression in the statement of
Proposition 3, and form ¥ asin (11) to finally obtain W =97y,
Next, a feasible solution b+ to the BQP is obtained after running Al-
gorithm 1 with W and an appropriate choice of L as inputs. Finally,
H is estimated using (13).
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Algorithm 1 Graph filter identification using SDR

1: Input: W = 7W® € My and L € N.
2: Solve the SDP in (14) to obtain B*.

3: forl=1,...,Ldo

4:  Draw z; ~ N(0,B*).

5:  Round b; = sgn(z;).

6: end for ) .

7: Determine [* = argmin bf Wh;.

8: Return b« =1,..L

Computational complexity. The SDR entails dropping a rank con-
straint after “lifting” a (binary) vector-valued problem with N M
variables to a matrix-valued one with NM (N M + 1)/2 variables.
Accordingly, the complexity of a general-purpose interior point
method to solve the resulting SDP is O(N" M log(1/¢)), for a
prescribed solution accuracy € > 0 [28]. Such a cost could hin-
der applicability of the SDR approach in Algorithm 1 to problems
involving very large networks. For those scenarios, lightweight
proximal-gradient iterations in [27] can still find stationary solutions
with lower memory requirements and O(M N?) complexity per
iteration. However, nothing can be said a priori on the quality of the
aforementioned stationary points, while the SDR-based solutions of
this paper offer quantifiable approximation guarantees.

Performance guarantee. To obtain approximation bounds we will
leverage a result in [32] stated as Theorem 1 below, which offers
guarantees for an extension to the maximum cut problem

b W'D, 15)

max
be{-1,1}NM

where the weight matrix W’ = 0 may have negative entries. As we
show next, (15) can be rendered equivalent to the BQP (12). Define
W' = AmaxInam — W > 0, where Amay is the largest eigenvalue
of W. Forb € {—1,1}" then bYW’'b = NM Amax — b Wb
and the problems are equivalent.

Theorem 1 ([32]) Let b* be the solution of problem (12) or equiv-

alently (15) for W' := AmaxI — W = 0. Let by~ be the output of
Algorithm 1. Then,

2 (") TW'b* <E [(Bl*)TW’f)l*] < (b")"W'b".

™
A guarantee for the BQP (12) thus follows immediately.

Corollary 1 Let b™ be the solution of problem (12) and b+ be the
output of Algorithm 1. For v = (1 — Z) AmaxNM > 0, then

™

v+ %(b*)TWb* >E [(Bz*)TWBz*] > (b)TWb*.  (16)

Notice that although the bounds in (16) offer guarantees in terms of
the expected objective value, particular realizations by« tend to fall
within those bounds with high probability if the number L of random
draws in Algorithm 1 is chosen sufficiently large.

5. UNVEILING URBAN MOBILITY PATTERNS

We implement our SDR graph topology inference method (Algo-
rithm 1) in order to detect mobility patterns in New York City from
Uber pickups data'. We have access to times and locations of pick-
ups from January 1% to June 29™ 2015 for 263 known location IDs.
For simplicity, we cluster the locations into N = 30 zones based
on their geographical proximity; shown as red pins in Fig. 1. These

IDataset from https://github.com/fivethirtyeight/
uber-tlc-foil-response
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Fig. 1: New York’s mobility pattern inferred from 2015 Uber pickups data.
Most edges connect Manhattan with the other boroughs indicating that Uber
is widely used to commute to/from the suburbs.

zones represent the nodes of the graph to be recovered. The total
number of pickups aggregated by zone during a specific time hori-
zon can be regarded as graph signals defined on the unknown graph.
More specifically, we consider M = 2 graph processes: weekday
(m = 1) and weekend (m = 2) pickups. Moreover, we consider
that the pickups from 6am to 11am constitute the inputs of our pro-
cess whereas the pickups from 3pm to 8pm comprise the outputs.
To be more precise, for a specific day we aggregate all the pickups
within 6-11am to form an input signal x and similarly we group all
the pickups within 3-8pm to generate the associated output signal y.
If the day considered is a weekday, we think of this pair as being gen-
erated from process m = 1, and if it is a weekend we consider the
pair coming from process m = 2. We repeat this procedure for all
the days included in the period of study, and estimate input-output
covariance pairs {Cx.m, Cy.m}2,—1. We then run Algorithm 1 to
infer an underlying graph filter H and solve (6) given the estimated
eigenbasis of H to find a sparse mobility pattern.

The recovered graph is depicted in Fig. 1, where the weights
of the recovered edges are represented by the edge widths. Given
the nature of the input and output processes considered, the graph
is a sparse description of the mobility pattern of people throughout
the day. Most connections occur between Manhattan and the other
boroughs (Queens, Bronx, Staten Island, Brooklyn, and Newark),
while only a few edges connect zones within Manhattan. This indi-
cates that people use Uber to commute from their homes in the sub-
urbs to their work (or leisure activities in the weekends) in the city.
These findings are consistent with exploratory research of this same
dataset [33] as well as a recent New York Times article: “Uber has
deployed thousands of black cars across Manhattan . . . but the ride-
hail app is booming in the other boroughs, with half of all Uber rides
now starting outside Manhattan. .. ” [34]. Lastly, observe that the
JFK, Newark, and LaGuardia airports are strongly connected with
Manhattan and the other boroughs, as expected.

6. CONCLUSIONS

We studied the inference of an undirected network from observations
of non-stationary signals diffused on the unknown graph. Relative to
the stationary setting, the main challenge was that the GSO eigenvec-
tors differ from those of the output signal covariance matrix. Thus,
we leveraged that the sought eigenbasis is preserved by the diffusing
graph filter. However, the identification of this filter from the co-
variance led to a non-convex optimization, which was handled by a
semi-definite relaxation with provable recovery guarantees.
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