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Abstract—We study the problem of constructing a graph
Fourier transform (GFT) for directed graphs (digraphs), which
decomposes graph signals into different modes of variation with
respect to the underlying network. Accordingly, to capture low,
medium, and high frequencies we seek a digraph (D)GFT such
that the orthonormal frequency components are as spread as
possible in the graph spectral domain. To that end, we advocate
a two-step design whereby we 1) find the maximum directed
variation (i.e., a novel notion of frequency on a digraph) a can-
didate basis vector can attain and 2) minimize a smooth spectral
dispersion function over the achievable frequency range to obtain
the desired spread DGFT basis. Both steps involve non-convex,
orthonormality-constrained optimization problems, which are
efficiently tackled via a feasible optimization method on the Stiefel
manifold that provably converges to a stationary solution. We also
propose a heuristic to construct the DGFT basis from Laplacian
eigenvectors of an undirected version of the digraph. We show
that the spectral-dispersion minimization problem can be cast as
supermodular optimization over the set of candidate frequency
components, whose orthonormality can be enforced via a matroid
basis constraint. This motivates adopting a scalable greedy
algorithm to obtain an approximate solution with quantifiable
worst-case spectral dispersion. We illustrate the effectiveness of
our DGFT algorithms through numerical tests on synthetic and
real-world networks. We also carry out a graph-signal denoising
task, whereby the DGFT basis is used to decompose and then low
pass filter temperatures recorded across the United States.

Index Terms—Graph signal processing, graph Fourier trans-
form, directed variation, greedy algorithm, Stiefel manifold.

I. INTRODUCTION

N ETWORK processes such as neural activities at different
regions of the brain [13], vehicle trajectories over road

networks [6], or, infectious states of individuals in a population
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affected by an epidemic [17], can be represented as graph signals
supported on the vertices of the adopted graph abstraction to the
network. Under the natural assumption that the signal properties
relate to the underlying graph (e.g., when observing a network
diffusion or percolation process), the goal of graph signal pro-
cessing (GSP) is to develop algorithms that fruitfully exploit this
relational structure [26], [29]. From this vantage point, gener-
alizations of traditional signal processing tasks such as filtering
[15], [29], [33], [40], [42], sampling and reconstruction [4],
[21], statistical GSP and spectrum estimation [11], [22], [27],
(blind) filter identification [34], [37] as well as signal represen-
tations [38], [41], [44] have been recently explored under the
GSP purview [26].

An instrumental GSP tool is the graph Fourier transform
(GFT), which decomposes a graph signal into orthonormal com-
ponents describing different modes of variation with respect to
the graph topology. The GFT provides a method to equivalently
represent a graph signal in two different domains – the graph
domain, consisting of the nodes in the graph, and the frequency
domain, represented by the frequency components of the graph.
Therefore, signals can be manipulated in the frequency domain
to induce different levels of interactions between neighbors in
the network. Here we aim to generalize the GFT to directed
graphs (digraphs); see also [30], [31]. We first propose a novel
notion of signal variation (frequency) over digraphs and find
an approximation of the maximum possible frequency (fmax )
that a unit-norm graph signal can achieve. We design a digraph
(D)GFT such that the resulting frequencies (i.e., the directed
variation of the sought orthonormal basis vectors) distribute
as evenly as possible across [0, fmax]. Beyond offering parsi-
monious representations of slowly-varying signals on digraphs,
a DGFT with spread frequency components can facilitate more
interpretable frequency analyses and aid filter design in the spec-
tral domain. In a way, to achieve these goals we advocate a form
of regularity in the DGFT-induced frequency domain. A differ-
ent perspective is to consider an irregular (dual) graph support,
which as argued in [20] can offer complementary merits and
insights.

Related work: To position our contributions in context, we
first introduce some basic GSP notions and terminology. Con-
sider a weighted digraph G = (V,A), where V is the set of
nodes (i.e., vertices) with cardinality |V| = N , and A ∈ RN×N

is the graph adjacency matrix with entry Aij denoting the edge
weight from node i to node j. We assume that the edge weights
in G are non-negative (Aij ≥ 0). For an undirected graph, A
is symmetric, and the positive semi-definite Laplacian matrix
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takes the form L := D−A, where D is the diagonal degree
matrix with Dii =

P
j Aji . A graph signal x : V 7→ RN can be

represented as a vector of length N , where entry xi denotes the
signal value at node i ∈ V .

For undirected graphs, the GFT of signal x is often defined
as x̃ = VT x, where V := [v1 , . . . ,vN ] comprises the eigen-
vectors of the Laplacian [12], [26], [42], [44]. Interestingly, in
this setting the GFT encodes a notion of signal variability over
the graph akin to the notion of frequency in Fourier analysis
of temporal signals. To understand this analogy, define the total
variation of the signal x with respect to the Laplacian L as

TV(x) = xT Lx =
NX

i,j=1,j>i

Aij (xi − xj )2 . (1)

The total variation TV(x) is a smoothness measure, quantifying
how much the signal x changes with respect to the expecta-
tion on variability that is encoded by the weights A. Consider
the total variation of the eigenvectors vk , which is given by
TV(vk ) = λk , the kth Laplacian eigenvalue. Hence, eigenval-
ues 0 = λ1 < λ2 ≤ · · · ≤ λN can be viewed as graph frequen-
cies, indicating how the GFT basis vectors (i.e., the frequency
components) vary over the graph G. Note that there may be more
than one eigenvector corresponding to a graph frequency in case
of having repeated eigenvalues.

Extensions of the combinatorial Laplacian to digraphs have
also been proposed [5], [39]. However, eigenvectors of the di-
rected Laplacian generally fail to yield spread frequency com-
ponents as we illustrate in Section VI. A more general GFT
definition is based on the Jordan decomposition of adjacency
matrix A = VJV−1 , where the frequency representation of
graph signal x is x̃ = V−1x [30]. While valid for digraphs, the
associated notion of signal variation in [30] does not ensure that
constant signals have zero variation. Moreover, V is not neces-
sarily orthonormal and Parseval’s identity does not hold. From a
computational standpoint, obtaining the Jordan decomposition
is often numerically unstable; see also [7] and [10] for recent
stabilizing alternatives. On a related note, a class of energy-
preserving graph-shift operators with desireable properties are
constructed in [9]. Starting from the adjacency matrix of an arbi-
trary graph, the idea is to preserve eigenvectors (hence resulting
in the same GFT as in [30]) and replace the eigenvalues with
pure phase shifts. Recently, a fresh look at the GFT for digraphs
was put forth in [31] based on minimization of the (convex)
Lovász extension of the graph cut size, subject to orthonormal-
ity constraints on the desired basis. While the GFT basis vectors
in [31] tend to be constant across clusters of the graph, in general
they may fail to yield signal representations capturing different
modes of signal variation with respect to G; see Section III-A for
an example of this phenomenon. An encompassing GFT frame-
work was proposed in [12], which combines aspects of signal
variation and energy to design general orthonormal transforms
for graph signals.

Contributions and paper outline: Here we design a novel
DGFT that has the following desirable properties: P1) The
basis graph signals provide notions of frequency and signal
variation over digraphs which are also consistent with those
typically used for subsumed undirected graphs. P2) Frequency
components are designed to be (approximately) equidistributed

in [0, fmax], and thus better capture low, middle, and high
frequencies. P3) Basis vectors are orthonormal so Parseval’s
identity holds and inner products are preserved in the vertex
and graph frequency domains. Moreover, the inverse DGFT can
be easily computed. To formalize our design goal via a well-
defined criterion, in Section II we introduce a smooth spectral
dispersion function, which measures the spread of the frequen-
cies associated with candidate DGFT basis vectors. Motivation
and challenges associated with the proposed spectral-dispersion
minimization approach are discussed in Section III. We then
propose two algorithmic approaches with complementary
strengths, to construct a DGFT basis with the aforementioned
properties P1)–P3). We first leverage a provably-convergent
feasible method for orthonormality-constrained optimization,
to directly minimize the smooth spectral-dispersion cost over
the Stiefel manifold (Section IV). In Section V, we propose a
DGFT heuristic whereby we restrict the set of candidate fre-
quency components to the (possibly sign reversed) eigenvectors
of the Laplacian matrix associated with an undirected version
of G. In this setting, we show that the spectral-dispersion
minimization problem can be cast as supermodular (frequency)
set optimization. Moreover, we show that orthonormality can
be enforced via a matroid basis constraint, which motivates
the adoption of a scalable greedy algorithm to obtain an
approximate solution with provable worst-case performance
guarantees.

Relative to the conference precursors to this paper [35], [36],
here we offer a more comprehensive and unified exposition
of the aforementioned algorithmic approaches, comparing their
computational complexity and their performance against state-
of-the-art GFT methods for digraphs (Section VI). This way,
results become clearer and new insights as well as conclusions
can be drawn. We include all proofs and technical details miss-
ing from [35], [36], as well as new examples and results that
shed light on the properties of directed variation, the maximum
attainable frequency on a digraph, and the proposed dispersion
minimization problem. Numerical tests with both synthetic and
real-world digraphs corroborate the effectiveness of our DGFT
algorithms in yielding (near) maximally-spread frequency com-
ponents (Section VI). Concluding remarks and future research
directions are outlined in Section VII, while some technical
details are deferred to the Appendix.

Notation: Bold capital letters refer to matrices and bold low-
ercase letters represent vectors. The entries of a matrix X and a
(column) vector x are denoted by Xij and xi , respectively. Sets
are represented by calligraphic capital letters. The notation T

stands for transposition and IN represents the N ×N identity
matrix, while 1N denotes the N × 1 vector of all ones. For a vec-
tor x, diag(x) is a diagonal matrix whose ith diagonal entry is xi .
The binary-valued indicator function of a statement S is denoted
by I {S}, where I {S} = 1 if S holds true and I {S} = 0 oth-
erwise. Lastly, kxk = (

P
i x2

i )
1/2 denotes the Euclidean norm

of x, while trace(X) =
P

i Xii stands for the trace of a square
matrix X whose Frobenius norm is kXkF = [trace(XXT )]1/2 .

II. PRELIMINARIES AND PROBLEM STATEMENT

In this section we extend the notion of signal variation to
digraphs and accordingly define graph frequencies. We then
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state the problem of finding an orthonormal DGFT basis with
evenly distributed frequencies in the graph spectral domain.

A. Signal Variation on Digraphs

As per P1–P3, our goal is to find N orthonormal vectors cap-
turing different modes of variation over the graph G. We collect
these desired vectors in a matrix U := [u1 , . . . ,uN ] ∈ RN×N ,
where uk ∈ RN represents the kth frequency component. This
means that the DGFT of a graph signal x ∈ RN with respect to
G is the signal x̃ = [x̃1 , . . . , x̃N ]T defined as x̃ = UT x. The in-
verse (i)DGFT of x̃ is given by x = Ux̃ =

PN
k=1 x̃kuk , which

allows one to synthesize x as a sum of orthogonal frequency
components uk . The contribution of uk to the signal x is the
DGFT coefficient x̃k .

For undirected graphs, the quantity TV(x) in (1) measures
how signal x varies over the network with Laplacian L. This
motivates defining a more general notion of signal variation for
digraphs, called directed variation (DV), as

DV(x) :=
NX

i,j=1

Aij [xi − xj ]2+ , (2)

where [x]+ := max(0, x) denotes projection onto the non-
negative reals. Notice that [x]2+ = ([x]+ )2 , and for brevity we
omit the parenthesis. Similar to the total variation (1), the pro-
posed directed variation measure is non-negative, non-linear,
but convex and differentiable. To gain insights on (2), consider
a graph signal x ∈ RN on digraphG and suppose a directed edge
represents the direction of signal flow from a larger value to a
smaller one. Thus, an edge from node i to node j (i.e., Aij > 0)
contributes to DV(x) only if xi > xj . Accordingly, one in gen-
eral has that DV(x) 6= DV(−x) and we will exploit this property
later. Notice that if G is undirected, then DV(x) ≡ TV(x) be-
cause from Aij [xi − xj ]2+ and Aji [xj − xi ]2+ , one will be zero
and the other one will be equal to Aij (xi − xj )2 .

Analogously to the undirected case, we define the frequency
fk := DV(uk ) as the directed variation of the vector uk (cf. the
desired property P1 stated in Section I).

B. Challenges Facing Spread Frequency Components

Similar to the discrete spectrum of periodic time-varying sig-
nals, by designing the basis signals we would ideally like to have
N equidistributed graph frequencies forming an arithmetic se-
quence (cf. property P2 stated in Section I)

fk = DV(uk ) =
k − 1
N − 1

fmax , k = 1, . . . , N (3)

where fmax is the maximum variation attainable by a unit-norm
signal onG. Such a spread frequency distribution could facilitate
more interpretable spectral analyses of graph signals (where it
is apparent what low, medium and high frequencies mean), and
also aid filter design in the graph spectral domain.

Not surprisingly, finding a DGFT basis attaining the exact fre-
quencies in (3) may be impossible for irregular graph domains.
This can be clearly seen for undirected graphs, where one has
the additional constraint that the summation of frequencies is

constant, since
NX

k=1

fk =
NX

k=1

TV(uk ) = trace(UT LU) = trace(L). (4)

Moreover, one needs to determine the maximum frequency
fmax that a unit-norm graph signal can attain. For undirected
graphs, one has

fu
max := max

kuk=1
TV(u) = max

kuk=1
uT Lu = λmax , (5)

where λmax is the largest eigenvalue of the Laplacian matrix
L. However, finding the maximum directed variation is in gen-
eral challenging, since one needs to solve the (non-convex)
spherically-constrained problem

umax = argmax
kuk=1

DV(u) and fmax := DV(umax). (6)

To relate the maximum frequencies in (5) and (6), for a given
digraph G = (V,A) consider its underlying undirected graph
Gu = (V,Au ), obtained by replacing all directed edges in G
with undirected ones via Au

ij = Au
ji := max(Aij , Aji). Notice

then that fmax is upper-bounded by fu
max = λmax , the spectral

radius of the Laplacian of Gu . This is formally proved in Propo-
sition 2, but it is essentially because dropping the direction of
any edge can not decrease the directed variation of a signal.

C. Problem Statement

Going back to the design of U, to cover the whole spectrum
of variations one would like to set u1 = umin := 1√

N
1N (nor-

malized all ones vector of length N , i.e., a constant signal) and
uN = umax in (6). As a criterion for the design of the remaining
basis vectors, consider the spectral dispersion function

δ(U) :=
N−1X

i=1

[DV(ui+1)− DV(ui)]
2 (7)

that measures how well spread the corresponding frequencies
are over [0, fmax]. Having fixed the first and last columns of
U, it follows that the dispersion function δ(U) is minimized
when the free directed variation values are selected to form
an arithmetic sequence between DV(u1) = 0 and DV(uN ) =
fmax , consistent with our design goal; recall P2 in Section I.

Rather than going after frequencies exactly equidistributed as
in (3), our idea is to minimize the spectral dispersion

min
U

N−1X

i=1

[DV(ui+1)− DV(ui)]
2

subject to UT U = IN ,

u1 = umin ,

uN = umax . (8)

Problem (8) is feasible since we show in Appendix A that
umax defined in (6) is orthogonal to the constant vector
umin = 1√

N
1N . There is no need to explicitly add a constraint

enforcing that basis vectors ui are ordered, meaning that their
respective DV(ui) values increase with i. The solution of (8)
will be ordered, otherwise one could simply sort the candi-
date directed variation values and decrease the objective. As
an alternative definition of graph signal energy, one could adopt
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generalized orthonormality constraints UT MU = IN for some
positive definite M [12]. In any case, finding the global opti-
mum of (8) is challenging due to the non-convexity arising from
the orthonormality (Stiefel manifold) constraints as well as the
objective function [due to the cross-terms DV(ui)DV(ui+1)].
The spectral dispersion δ(U) is smooth though, and so there is
hope of finding good stationary solutions by bringing to bear
recent advances in manifold optimization.

In Section IV we build on a feasible method for optimization
with orthogonality constraints [43], to solve judiciously modi-
fied forms of problems (6) and (8) to directly find the maximum
frequency along with the disperse basis vectors. But before delv-
ing into algorithmic solutions, in the next section we expand
on the motivation behind spectral dispersion minimization. We
also offer additional graph-theoretic insights on the maximum
directed variation a unit norm signal can achieve.

III. ON SPREAD AND MAXIMUM DIGRAPH FREQUENCIES

Here, we further motivate the advocated DGFT design by
first showing how state-of-the-art methods may fail to offer sig-
nal representations capturing different modes of signal variation
with respect to G. For undirected graphs where the Laplacian
eigenbasis has well documented merits, we then show that the
said GFT in general does not minimize the spectral dispersion
measure (7). Even for such graphs where DV(x) ≡ TV(x), no-
tice that an identity akin to TV(x) =

PN
k=1 |x̃k |2TV(uk ) does

not hold here. This is because the basis U obtained by solving
(8) does not involve eigenvectors related to a signal variation
operator [12]. In Section III-B we revisit problem (6), namely
that of finding the maximum frequency over a given digraph.
We first identify some graph families for which the maximum
directed variation can be obtained analytically, and then provide
a general 1/2-approximation to fmax that will serve as a first
step for a greedy DGFT construction algorithm in Section V.

A. Motivation for Spread Frequencies

Directed graphs: The directed variation measure

DV0(x) :=
NX

i,j=1

Aij [xi − xj ]+ (9)

was introduced in [31] as the convex Lovász extension of
the graph cut size, whose minimization can facilitate identi-
fying graph clusters [17, Ch. 4]. Different from (2), the di-
rected variation measure (9) is not smooth and for undirected
graphs it boils down to a so-termed graph absolute variation
TV1(x) :=

PN
i,j=1,j>i Aij |xi − xj | [cf. (1)]; see also [3], [30].

To obtain a GFT for digraphs, the approach in [31] is to solve
the orthogonality-constrained problem

min
U

NX

i=1

DV0(ui), subject to UT U = IN . (10)

An attractive feature of this construction is that it can offer par-
simonious representations of graph signals exhibiting smooth
structure within clusters (i.e., densely connected subgraphs) of
the underlying graph G.

Fig. 1. Toy directed (left) and undirected (right) graphs used to motivate the
advocated DGFT design based on spectral dispersion minimization. For the
shown digraph, the GFT construction of [31] fails to yield signal expansions
with respect to different modes of variation. The Laplacian eigenbasis of the
shown undirected graph does not minimize the dispersion criterion in (8).

Consider the digraph with N = 4 nodes shown in Fig. 1 (left).
An optimal GFT basis U solving (10) takes the form

U =

⎡

⎢
⎢
⎢
⎣

0.5 c c c

0.5 a 0 b

0.5 b a 0
0.5 0 b a

⎤

⎥
⎥
⎥
⎦

,

where a=(1+
√

5)/4 ≈ 0.8090, b=(1−√5)/4 ≈ −0.3090,
and c = −0.5. These values satisfy a + b + c = 0, a2 + b2 +
c2 = 1, and c2 + ab = 0, which implies the orthonormality of
U. As a result, for all columns uk of U one has DV0(uk ) =
0, k = 1, . . . , 4, and hence the inverse GFT synthesis formula
x = Ux̃ fails to offer an expansion of x with respect to different
modes of variation (e.g., low and high graph frequencies).

Undirected graphs: When the edges of the graph are undi-
rected, the workhorse GFT approach is to project the signals
onto the eigenvectors of the graph Laplacian L; see e.g., [26],
[42], [44]. A pertinent question is whether the Laplacian-
based GFT minimizes the spectral dispersion function in (7),
where DV(x) ≡ TV(x) because G is undirected. To provide
an answer, we consider the graph shown in Fig. 1 (right)
and form its Laplacian matrix L. Denote the eigenvectors
of L as V = [v1 ,v2 ,v3 ,v4 ], with corresponding frequencies
[λ1 , λ2 , λ3 , λ4 ] = [0, 1, 3, 4]. To determine the DGFT basis U
satisfying our design criteria in (8), we first set u1 := v1 and
u4 := v4 which represent the frequency components associated
with minimum and maximum frequencies, respectively. Since
the Laplacian eigenvalues are distinct and we are searching for
an orthonormal basis, then it follows that v2 and v3 span the
hyperplane containing u2 and u3 . There is a single degree of
freedom to specify u2 and u3 on that plane, namely a simulta-
neous rotation of v2 and v3 . Accordingly, all the feasible basis
vectors {u2 ,u3} will be of the form
�
u2 u3

�
=

�
v2 v3

�
Rθ =

�
v2 v3

�
�

cos θ sin θ
− sin θ cos θ

�

,

where Rθ rotates vectors counterclockwise by an angular
amount of θ. Collecting the sought basis vectors in Uθ =
[v1 ,u2 ,u3 ,v4 ], in Fig. 2(a) we plot the dispersion function
defined in (7) as a function of θ. It is apparent from Fig. 2(a)
that δ(V) obtained from eigenvectors of the Laplacian is not a
global minimizer of the spectral dispersion function. As shown
in Fig. 2(a), the optimum basis is U := Uθ |θ≈0.4214 .

To further compare the frequency components obtained, the
horizontal lines in Fig 2(b) depict both sets of frequencies
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Fig. 2. (a) Spectral dispersion function (7) versus θ in radians, for the undi-
rected graph in Fig. 1 (right). Apparently, the solution U of (8) offers a more
disperse basis than the eigenvectors V of the Laplacian matrix. (b) Colored
boxes show the consecutive frequency differences obtained by V (left) and U
(right), while the specific directed variation values correspond to the horizon-
tal boundary lines. In this particular case, the optimum basis U yields exactly
equidistributed graph frequencies in [0, 4], as defined in (3).

Fig. 3. Some special families of digraphs for which fmax as defined in (6) can
be obtained analytically. (a) Directed path. (b) Directed cycle. (c) Unidirectional
bipartite graph, where all the edges go from vertices in V+ to those in V−.

{DV(vk )}4k=1 and {DV(uk )}4k=1 . As expected, the optimized
GFT basis U gives rise to frequencies that are more uniformly
spread in the graph spectral domain. Moreover, for this par-
ticular example the graph frequencies {DV(uk )}4k=1 form an
arithmetic sequence in [0, 4], which for general graphs may be
infeasible as discussed in Section II-B. In Sections IV and V we
propose two approaches with complementary strengths to find
spread frequencies for arbitrary digraphs.

B. Maximum Directed Variation

As mentioned in Section II-B, one challenge in finding
an approximately equidistributed set of frequencies on a di-
graph G(V,A) is to calculate the maximum frequency fmax .
The spherically-constrained problem (6) is non-convex and in
general challenging to solve [cf. (5) for subsumed undirected
graphs, whose solution is the spectral radius of the Lapla-
cian]. The following proposition asserts that for some particular
classes of digraphs (depicted in Fig. 3), the value of fmax can
be obtained analytically.

Proposition 1: Let fmax be the maximum directed variation
that a unit norm vector can attain as defined in (6).

1) Let G be the directed path (dipath) depicted in Fig. 3(a),
i.e., a digraph whose adjacency matrix has nonzero en-
tries Aij > 0 only for j = i + 1, i < N . Then, fmax =
2maxi,j Aij .

2) Let G be the directed cycle depicted in Fig. 3(b), i.e.,
a digraph whose adjacency matrix has nonzero entries

Aij > 0 only for j = modN (i) + 1, where modN (x) de-
notes the modulus (remainder) obtained after dividing x
by N . Then, fmax = 2maxi,j Aij .

3) Let G be a unidirectional bipartite graph as depicted in
Fig. 3(c), i.e., a bipartite digraph where V = V+ ∪ V−,
V+ ∩ V− = ∅, and whose adjacency matrix may only
have nonzero entries Aij > 0 for i ∈ V+ and j ∈ V−. Let
L be the Laplacian matrix of the underlying undirected
graph Gu [recall the discussion following (6)], with spec-
tral radius λmax . Then, fmax = λmax .

Proof: See the Appendices B, C, and D. �
Beyond the special digraph families in Proposition 1, it is not

clear how to solve (6). Next we show that fmax is upper-bounded
by λmax , the spectral radius of the Laplacian of the underlying
undirected graph Gu ; see Section II-B.

Proposition 2: For a digraph G, recall its underlying undi-
rected graph Gu and the spectral radius λmax of its Laplacian
L. Then, the maximum directed variation fmax defined in (6) is
upper-bounded by fu

max = λmax .
Proof: From the definition of directed variation (6), we have

fmax =
NX

i,j=1

Aij [umax,i − umax,j ]2+

=
NX

i,j=1
i<j

Aij [umax,i − umax,j ]2+ + Aji [umax,j − umax,i ]2+ .

Since Aij , Aji ≤ max{Aij , Aji} = Au
ij , then it follows that

fmax ≤
NX

i,j=1
i<j

Au
ij

�

[umax,i − umax,j ]2+ + [umax,j − umax,i ]2+

�

=
NX

i,j=1,i<j

Au
ij umax,i − umax,j

�2 = TV(umax).

Finally, because TV(umax) is upper-bounded by λmax in (5),
we conclude that fmax ≤ λmax . �

For general digraphs, Proposition 3 specifies how to find a
basis vector ũ with an approximate f̃max := DV(ũ) which is at
least half of fmax . Once more, the underlying undirected graph
Gu and the leading eigenvector of its Laplacian matrix will prove
instrumental to obtain the desired approximation.

Proposition 3: For a digraph G, recall its underlying undi-
rected graph Gu and the spectral radius λmax of its Laplacian
L. Let u be the dominant eigenvector of L, i.e., the unit-
norm vector u such that Lu = λmaxu. Then, a worst-case
1/2-approximation to fmax is given by

f̃max := max {DV(u),DV(−u)} ≥ fmax

2
. (11)

Proof: First recall that

λmax =uT Lu =
NX

i,j=1
i<j

Au
ij (ui − uj )2 =

1
2

NX

i,j=1

Au
ij (ui − uj )2 .
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Since Au
ij ≤ Aij + Aji and (ui − uj )2 = [ui − uj ]2+ + [uj −

ui ]2+ ,

λmax ≤ 1
2

NX

i,j=1

(Aij + Aji)
�

[ui − uj ]2+ + [uj − ui ]2+

�

= DV(u) + DV(−u).

In conclusion, at least one of DV(u) or DV(−u) is larger than
λmax/2, and this completes the proof since λmax ≥ fmax. �

In practice, we can compute max {DV(u), DV(−u)} for any
eigenvector u of the Laplacian matrix. This will possibly give a
higher frequency in G, while preserving the 1/2-approximation.

In Section V we will revisit the result in Proposition 3, to
motivate a greedy heuristic to construct a disperse DGFT basis
from Laplacian eigenvectors of Gu . But before that, in the next
section we develop a DGFT algorithm that in practice returns
near-optimal solutions to the spectral dispersion minimization
problem (7). While computationally more demanding than the
recipe in Proposition 3, we show in Section IV-A that the adopted
framework for orthogonality-constrained optimization can be as
well used to accurately approximate fmax .

IV. MINIMIZING DISPERSION IN A STIEFEL MANIFOLD

Here we show how to find a disperse Fourier basis for signals
on digraphs, by bringing to bear a feasible method for optimiza-
tion of differentiable functions over the Stiefel manifold [43].
Specifically, following the specification in Section II-C we take a
two step approach whereby: i) we find fmax and its correspond-
ing basis vector umax by solving (6); and ii) we solve (8) to
find well-spread frequency components U = [u1 , · · · ,uN ] sat-
isfying u1 = umin = 1√

N
1N and uN = umax . Similar feasible

methods have been also successfully applied to a wide variety
of applications, such as low-rank matrix approximations, Inde-
pendent Component Analysis, and subspace tracking, to name
a few [1].

The general iterative method of [43] deals with an orthogo-
nality constrained problem of the form

min
U∈Rn ×p

φ(U), subject to UT U = Ip , (12)

where φ(U) : Rn×p → R is assumed to be differentiable, just
like δ(U) in (7). Given a feasible point Uk at iteration k =
0, 1, 2, . . . and the gradient Gk = ∇φ(Uk ), one follows the
update rule

Uk+1(τ) =
�
In +

τ

2
Bk

�−1 �
In − τ

2
Bk

�
Uk , (13)

where Bk := GkUT
k −UkGT

k is a skew-symmetric (BT
k =

−Bk ) projection of the gradient onto the constraint’s tan-
gent space. Update rule (13) is known as the Cayley trans-
form which preserves orthogonality (i.e., UT

k+1Uk+1 = Ip ),
since (In + τ

2 Bk )−1 and In − τ
2 Bk commute. Other notewor-

thy properties of the update are: i) Uk+1(0) = Uk ; ii) Uk+1(τ)
in (13) is smooth as a function of the step size τ ; and iii)
d
dτ Uk+1(0) is the projection of −Gk into the tangent space
of the Stiefel manifold at Uk .

Most importantly, iii) ensures that the update (13) is a descent
path for a proper step size τ , which can be obtained through a

Algorithm 1: Directed Variation Maximization.
1: Input: Adjacency matrix A and parameter � > 0.
2: Initialize k = 0 and unit-norm u0 ∈ RN at random.
3: repeat
4: Evaluate objective φ(uk ) := −DV(uk ) in (2).
5: Compute gradient ḡk ∈ RN via (15).
6: Form Bk = ḡkuT

k − uk ḡT
k .

7: Select τk satisfying conditions (14a) and (14b).
8: Update uk+1(τk ) = (IN + τk

2 Bk )−1(IN − τk

2 Bk )uk .
9: k ← k + 1.

10: until kuk − uk−1k ≤ �
11: Return umax := uk and fmax := DV(umax).

curvilinear search satisfying the Armijo-Wolfe conditions

φ(Uk+1(τk )) ≤ φ(Uk+1(0)) + ρ1τkφ0τ (Uk+1(0)) (14a)

φ0τ (Uk+1(τk )) ≥ ρ2φ
0
τ (Uk+1(0)), (14b)

where 0 < ρ1 < ρ2 < 1 are two parameters [25]. One can show
that if φ(Uk+1(τ)) is continuously differentiable and bounded
below as is the case for problems (6) and (8), then there ex-
ists a τk satisfying (14a) and (14b). Moreover, the deriva-
tive of φ(Uk+1(τ)) at τ = 0 is given by φ0τ (Uk+1(0)) =
−1/2kBkkF ; see [43] for additional details. All in all, the iter-
ations (13) are well defined and by implementing the aforemen-
tioned curvilinear search, [43, Theorem 2] asserts that the overall
procedure converges to a stationary point of φ(U), while gen-
erating feasible points in the Stiefel manifold at every iteration.

A. Directed Variation Maximization

As the first step to find the DGFT basis, we obtain fmax by
using the feasible approach to minimize−DV(u) over the sphere
{u ∈ RN | uT u = 1} [cf. (6)]. The gradient ḡ := ∇DV(u) ∈
RN has entries ḡi , 1 ≤ i ≤ N, given by

ḡi = 2 AT
·i [u− ui1N ]+ −Ai·[ui1N − u]+

�
, (15)

where A·i denotes the ith column of the adjacency matrix A,
and Ai· the ith row.

The algorithm starts from a random unit-norm vector and
then via (13) it takes a descent path towards a stationary point.
The overall procedure is tabulated under Algorithm 1. It is of-
ten prudent to run the iterations multiple times using random
initializations, and retain the solution that yields the least cost.
Although Algorithm 1 only guarantees convergence to a sta-
tionary point of the directed variation cost, in practice we have
observed that it tends to find fmax = DV(umax) exactly if the
number of initializations is chosen large enough; see Section VI.
While finding fmax is of interest in its own right, our focus next
is on using the obtained umax to formulate and solve the spectral
dispersion minimization problem (8).

B. Spectral Dispersion Minimization

As the second and final step, here we develop an algorithm
to find the orthonormal basis U that minimizes the spectral
dispersion (7). To cast the optimization problem (8) in the form
of (12) and apply the previously outlined feasible method, we
penalize the objective δ(U) with a measure of the constraint
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Algorithm 2: Spectral Dispersion Minimization.
1: Input: Adjacency matrix A, parameters λ > 0 and

� > 0.
2: Find umax using Algorithm 1 and set umin = 1√

N
1N .

3: Initialize k = 0 and orthonormal U0 ∈ RN×N at
random.

4: repeat
5: Evaluate objective φ(Uk ) in (16).
6: Compute gradient Gk ∈ RN×N via (17).
7: Form Bk = GkUT

k −UkGT
k .

8: Select τk satisfying conditions (14a) and (14b).
9: Update Uk+1(τk ) = (IN + τk

2 Bk)−1(IN − τk

2 Bk)Uk .
10: k ← k + 1.
11: until kUk −Uk−1kF ≤ �

12: Return Û = Uk .

violations to obtain

min
U

φ(U) := δ(U) +
λ

2

�
ku1 − umink2

+ kuN − umaxk2
�

subject to UT U = IN , (16)

where λ > 0 is chosen large enough to ensure u1 = umin and
uN = umax . Since we can explicitly monitor whether the con-
straints are enforced, the choice of λ is often made via trial and
error; see also Section VI for an empirical demonstration. The
resulting iterations are tabulated under Algorithm 2, where the
gradient matrix G := ∇φ(U) ∈ RN×N has columns given by

g1 = [DV(u1)− DV(u2)] ḡ(u1) + λ(u1 − umin)

gi = [2DV(ui)− DV(ui+1)− DV(ui−1)] ḡ(ui), 1 < i < N

gN = [DV(uN−1)− DV(uN )] ḡ(uN ) + λ(uN − umax),
(17)

where the entries of ḡ are specified in (15). Once more, it is
convenient to run the algorithm multiple times and retain the
least disperse DGFT basis Û.

While provably convergent to a stationary point of (16),
Algorithm 2 does not offer guarantees on the global optimality
of the solution Û. Still, numerical tests in Section VI corrobo-
rate the effectiveness of the proposed optimization strategy and
its robustness with respect to the initialization. The computa-
tional complexity of Algorithm 2 is O(N 3) per iteration due to
the matrix inversion involved in the calculation of the Cayley
transform. In the next section we propose a lightweight heuris-
tic to construct spread DGFT basis using the eigenvectors of
Gu ’s Laplacian matrix. But before moving on, a remark on the
relationship between the DGFT and the DFT of discrete-time
signals is in order.

Remark 1 (Relationship with the DFT): The scope of the
proposed DGFT framework [in particular the notion of directed
variation in (2)] is limited to real-valued signals and basis vec-
tors. Accordingly, for the directed cycle graph in Fig. 3(b) which
represents the support of periodic discrete-time signals, one
would fail to obtain the (complex-valued) DFT as the solution
of (8). Still, one can modify the definition of directed variation

Fig. 4. (left) A directed cycle graph with N = 4 nodes. (right) The 4-point
DFT basis is recovered as the optimal solution of (19).

in (2) to recover the classical DFT when G is a directed cycle.
To this end, for a unit-norm complex-valued x consider

DVDFT(x) :=
1

PN
j,k=1 Ajk

NX

j,k=1

Ajk [mod2π (ωj − ωk )], (18)

where i =
√−1 is the imaginary number and ωj ∈ [0, 2π) de-

notes the phase angle of xj , the signal value at node j. Using
this definition, one can formulate the following complex-valued
spectral dispersion minimization problem [cf. (8)]

min
U

NX

r=1

[DVDFT(ur+1)− DVDFT(ur )]
2

subject to UH U = IN ,

u1 =
1√
N

1N ,

DVDFT(uN +1) = 2π, (19)

where H stands for conjugate transposition. Notice that uN +1
is not an optimization variable, and the third constraint fixes
[2π − DVDFT(uN )]2 as the last (i.e., r = N ) summand of the
objective function.

When G is the unweighted, directed cycle with N nodes,
the global optimum U∗DFT of (19) is the N -point DFT matrix,

with entries U ∗DFT,jk = 1√
N

e
−2 π i j k

N . The frequencies form an
arithmetic sequence, while covering the whole frequency range
[0, 2π); see Fig. 4. It is fair to say that the objective function
of (19) does not subsume its counterpart (7) as a special case
for real signals. While an iterative solver is not needed in this
particular case, the feasible method in [43] can accommodate
complex-valued Stiefeld manifold constraints.

V. A DIGRAPH FOURIER TRANSFORM HEURISTIC

As an alternative to the feasible method discussed in the pre-
vious section, here we consider the underlying undirected graph
Gu and use the eigenvectors of its Laplacian matrix to construct
a disperse set of frequencies. The reason for using the eigenvec-
tors of L is that i) they are widely used for undirected graphs
having good localization properties in the vertex domain; ii) we
can modify the frequencies (in the digraph G) by flipping the
sign of each Laplacian eigenvector; and iii) they can be used to
approximate fmax within a factor of 1/2 as asserted in Proposi-
tion 3. Unlike the undirected case, the directed variation of any
eigenvector u will in general be different from the variation of
−u; so we can pick the one that we desire without compromising
the orthogonality constraint.
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Fixing f1 = 0 and fN = f̃max from (11), in lieu of (3) we
will henceforth construct a disperse set of frequencies by using
the eigenvectors of L. Let fi := DV(ui) and fi := DV(−ui),
where ui is the ith eigenvector of L. Define the set of all can-
didate frequencies as F := {fi, f i : 1 < i < N}. The goal is
to select N − 2 frequencies from F such that together with
{0, f̃max} they form our well-spread Fourier frequencies. To
preserve orthonormality, we would select exactly one from each
pair {fi, f i}. We will argue later that this induces a matroid ba-
sis constraint on a supermodular (frequency) set minimization
problem described next.

A. Frequency Selection via Supermodular Minimization

To find the DGFT basis in accordance to the design criterion
in Section II-C, we define a spectral dispersion (set) function
that measures how well spread the corresponding frequencies
are over [0, f̃max]. For a candidate frequency set S ⊆ F, let
s1 ≤ s2 ≤ · · · ≤ sm be the elements of S in non-decreasing
order, where m = |S|. Then we define the dispersion of S as

δ(S) =
mX

i=0

(si+1 − si)2 , (20)

where s0 = 0 and sm+1 = f̃max [cf. (7)]. It can be verified that
δ(S) is a monotone non-increasing function, which means that
for any sets S1 ⊆ S2 , we have δ(S1) ≥ δ(S2). For a fixed value
of m, one can show that δ(S) is minimized when the si’s form
an arithmetic sequence, consistent with our design goal in (3).
Hence, we seek to minimize δ(S) through a set function opti-
mization procedure. In Lemma 1 we show that the dispersion
function (20) has the supermodular property. First, for com-
pleteness we define submodularity/supermodularity.

Definition 1 (Submodularity): Let S be a finite ground set.
A set function f : 2S 7→ R is submodular if:

f(T1 ∪ {e})− f(T1) ≥ f(T2 ∪ {e})− f(T2), (21)

for all subsets T1 ⊆ T2 ⊆ S and any element e ∈ S\T2 .
Equation (21) is also known as the diminishing returns prop-

erty. It means that adding a single element e results in less gain
when added to a bigger set T2 , compared to adding the same ele-
ment to a subset of T2 like T1 . The diminishing returns property
arises in many science and engineering applications including
facility location, sensor placement, and feature selection [24],
where adding a new sensor/feature or opening a new location
becomes increasingly less beneficial as one has more and more
of them already available. A set function f is said to be su-
permodular if −f is submodular, i.e., (21) holds in the other
direction. Roughly speaking, for supermodular functions, items
have more value when bundled together.

Lemma 1: The spectral dispersion function δ : 2F 7→ R de-
fined in (20) is a supermodular function.

Proof: Consider two subsets S1 ,S2 such that S1 ⊆ S2 ⊆ F,
and a single element e ∈ F\S2 . Let sL

1 and sR
1 be the largest

value smaller than e and the smallest value greater than e in
S1 ∪ {0, f̃max}, respectively (i.e., e breaks the gap between sL

1
and sR

1 ). Similarly, let sL
2 and sR

2 be defined for S2 . Since
S1 ⊆ S2 , then sL

1 ≤ sL
2 ≤ e ≤ sR

2 ≤ sR
1 . The result follows by

comparing the marginal values

δ(S1 ∪ {e})− δ(S1) = (sR
1 − e)2 + (e− sL

1 )2 − (sR
1 − sL

1 )2

= − 2(sR
1 − e)(e− sL

1 )

≤ − 2(sR
2 − e)(e− sL

2 )

= δ(S2 ∪ {e})− δ(S2). �
Recalling the orthonormality constraint, we define B to be

the set of all subsets S ⊆ F that satisfy |S ∩ {fi, fi}| = 1, i =
2, . . . , N − 1. Then, frequency selection from F boils down to
solving

min
S

δ(S), subject to S ∈ B. (22)

Next, in Lemma 2 we show that the constraint in (22) is a matroid
basis constraint. To state that result, we first define the notions
of matroid and partition matroid.

Definition 2 (Matroid): Let S be a finite ground set and let
I be a collection of subsets of S. The pair M = (S, I) is a
matroid if the following properties hold:

r Hereditary Property: If T ∈ I, then T0 ∈ I for all T0 ⊆ T.
r Augmentation Property: If T1 , T2 ∈ I and |T1 | < |T2 |,

then there exists e ∈ T2\T1 such that T1 ∪ {e} ∈ I.
The collection I is called the set of independent sets of the
matroidM. A maximal independent set is a basis. One can show
that all the basis vectors of a matroid have the same cardinality.

A matroid is a powerful structure used in combinatorial op-
timization, generalizing the notion of linear independence in
vector spaces. Indeed, it is not hard to observe that if S is a
set of (not necessarily independent) vectors, then the linearly
independent subsets of S form a valid independent family that
satisfies the above two properties. The uniform matroid, graphic
matroid, and partition matroid are other examples of matroids.
The latter one will be useful in the sequel.

Definition 3 (Partition matroid [32]): Let S denote a finite
set and let S1 , . . . ,Sm be a partition of S, i.e., a collection of
disjoint sets such that S1 ∪ · · · ∪ Sm = S. Let d1 , . . . , dm be a
collection of non-negative integers. Define a set I by A ∈ I iff
|A ∩ Si | ≤ di for all i = 1, . . . ,m. Then,M = (S, I) is called
the partition matroid.

All elements are now in place to establish that the orthonor-
mality constraint in (22) is a partition matroid basis constraint.

Lemma 2: There exists a (partition) matroidM such that the
set B in (22) is the set of all basis vectors ofM.

Proof: Recall Definition 3 and set S := F, Si := {fi, fi}
and di := 1 for all i = 2, . . . , N − 1, to get a partition matroid
M = (F, I). The basis vectors of M, which are defined as
the maximal elements of I, are those subsets A ⊆ F that sat-
isfy |A ∩ {fi, fi}| = 1 for all i = 2, . . . , N − 1, which are the
elements of B. �

B. Greedy Algorithm for DGFT Basis Selection

Lemmas 1 and 2 assert that (22) is a supermodular mini-
mization problem subject to a matroid basis constraint. Since
supermodular minimization is NP-hard and hard to approximate
to any factor [16], [23], we create a submodular function δ̃(S)
and use the algorithms for submodular maximization to find a
set of disperse basis U. In particular, we define
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Algorithm 3: Greedy Spectral Dispersion Minimization.
1: Input: Set of possible frequencies F.
2: Initialize S = ∅.
3: repeat

4: e← argmaxf∈F
n

δ̃(S ∪ {f})− δ̃(S)
o

.

5: S ← S ∪ {e}.
6: Delete from F the pair {fi, f i} that e belongs to.
7: until F = ∅

δ̃(S) := f̃ 2
max − δ(S), (23)

which is a non-negative (increasing) submodular function, be-
cause δ(∅) = f̃ 2

max is an upper bound for δ(S). There are sev-
eral results for maximizing submodular functions under ma-
troid constraints for both the non-monotone [19] and monotone
cases [2], [8]. We adopt the greedy algorithm of [8] due to
its simplicity (tabulated under Algorithm 3), which provides a
1/2-approximation guarantee (Theorem 1).

The algorithm starts with an empty set S. In each iteration,
it finds the element e that produces the biggest gain in terms
of increasing δ̃(S). Then it deletes the pair that e belongs to,
because the other element in that pair cannot be chosen by virtue
of the matroid constraint. The running time of the algorithm
is O(N 2), in addition to the O(N 3) cost of computing the
Laplacian eigenvectors.

Theorem 1 ([8]): Let S∗ be the solution of problem (22) and
Sg be the output of the greedy Algorithm 3. Then,

δ̃(Sg) ≥ 1
2
× δ̃(S∗).

Notice that Theorem 1 offers a worst-case guarantee, and Algo-
rithm 3 is usually able to find near-optimal solutions in practice.

In summary, the greedy DGFT basis construction algorithm
entails the following steps. First, we form Gu and find the eigen-
vectors of the graph Laplacian L. Second, the set F is formed
by calculating the directed variation for each eigenvector ui and
its negative −ui , i = 2, . . . , N − 1. Finally, the greedy Algo-
rithm 3 is run on the set F, and the output determines the set
of frequencies as well as the orthonormal set of DGFT basis
vectors comprising U.

Remark 2 (Computational complexity): While the heuristic
method is computationally more efficient than the feasible
method in Algorithm 2, it still requires a full diagonalization
of the graph Laplacian matrix which costs O(N 3). The com-
plexity of O(N 3) appears to be a bottleneck for large graphs
in all the state-of-the-art existing methods [12], [30], [31], [39].
For particular cases speedups may be obtained by exploiting
eigenvector routines for very sparse matrices, by relying on trun-
cated decompositions (which could suffice to approximately de-
compose smooth signals), or e.g., through greedy approximate
diagonalization to compute the Laplacian eigenbasis at lower
cost [18]. While certainly a very interesting and fundamental
problem, there has been little progress to date when it comes to
realizing the vision of a “fast” GFT, even for undirected graphs.

VI. NUMERICAL RESULTS

Here we carry out computer simulations on three graphs to
assess the performance of the algorithms developed to construct

Fig. 5. Synthetic digraph with N = 15 nodes and 2 directed edges depicted
as dashed arrows [31].

a DGFT with spread frequency components. We also compare
these basis signals with other state-of-the-art GFT methods.

Synthetic digraph: Using Algorithms 2 and 3 we construct
respective DGFTs for an unweighted digraph G with N = 15
nodes shown in Fig. 5, and compare them with the GFT put
forth in [31] that relies on an augmented Lagrangian optimiza-
tion method termed PAMAL, as well as with the eigenbasis
of the combinatorial Laplacian for directed graphs in [5]. To
define said combinatorial Laplacian for digraphs Ld , consider
a random walk on the graph with transition probability ma-
trix P = D−1

outA, where Dout is the diagonal matrix of node
out-degrees. Let Π = diag(π) be the diagonal matrix with the
stationary distribution π of the random walk on the diagonal.
Using these definitions, the combinatorial Laplacian for directed
graphs in [5] is given by Ld := Π− (ΠP + PT Π)/2.

One would expect that the proposed DGFT approaches –
which directly optimize the spectral dispersion metric – yield: i)
a more spread set of graph frequencies; also ii) spanning a wider
range of directed variations. This is indeed apparent from Fig. 6,
which depicts the distribution of frequencies (shown as vertical
lines) for all GFT methods being compared. In particular, notice
how the DGFT basis obtained via direct minimization of the
dispersion cost (Algorithm 2) yields an almost equidistributed
set of graph frequencies. To further quantify this assertion, we
first rescale the directed variation values to the [0, 1] interval and
calculate their dispersion using (7). The results are reported in
Table I, which confirms that Algorithms 2 and 3 yield a better
frequency spread (i.e., a smaller dispersion). While computa-
tionally more demanding, Algorithm 2 yields a more spread set
of graph frequencies when compared to the greedy Algorithm 3,
since it minimizes dispersion over a larger set [cf. (16) and (22)].
Finally, Fig. 7 shows the frequency components obtained via
Algorithm 2. Each subplot depicts one basis vector (column)
of the resulting DGFT matrix U, along with its corresponding
directed variation values defined in (2). It is apparent that the
first vectors exhibit less variability than the higher frequency
components. Moreover one can see that lower frequency com-
ponents have the additional desired property of being roughly
constant over network clusters; see also the design in [31].

We also use Monte-Carlo simulations to study the effect of λ
[cf. (16)] on the convergence properties of our algorithms. After
fixing umax and umin , we run Algorithm 2 for different values of
λ to find the DGFT basis of the graph in Fig. 5. The spectral dis-
persion in (7) and the Euclidean distance between uN (u1) and
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Fig. 6. Comparison of directed variations (i.e., graph frequencies) for the synthetic digraph in Fig. 5 and different GFT methods: eigenvectors of the combinatorial
Laplacian matrix Ld introduced in [5]; augmented Lagrangian method (PAMAL) in [31]; proposed greedy heuristic (Algorithm 3); and feasible method
(Algorithm 2). Colored boxes show the difference between two consecutive frequencies for each method, while the specific directed variation values correspond
to the vertical boundary lines. Ideally one would like to have N − 1 equal-sized boxes, but we argued that this is not always achievable. Notice how Algorithm 2
comes remarkably close to such a specification.

TABLE I
SPECTRAL DISPERSION δ(U) OF OBTAINED BASIS U USING DIFFERENT

ALGORITHMS FOR THE SYNTHETIC DIGRAPH IN FIG. 5

Fig. 7. DGFT basis vectors obtained using Algorithm 2 for the synthetic
digraph in Fig. 5, along with their respective directed variation values (frequen-
cies). Notice how the frequency components associated with lower frequencies
are roughly constant over node clusters.

umax(umin) averaged over 100 Monte-Carlo simulations are
shown in Fig. 8. Apparently, for the extreme value of λ = 0 fre-
quencies tend to be as close as possible, resulting in the smallest
value of δ(U). However, this solution is not feasible for prob-
lem (8). By increasing λ we trade-off dispersion for feasibility,
making u1 and uN closer to umin and umax , respectively. This
way, all constraints are satisfied resulting in a broader spectrum
approximately spanning [0, fmax]. For λ > 102 in Fig 8, u1 and
uN become fixed and the remaining basis vectors spread as
evenly as possible in the viable spectral band. Further exploring
these trade-offs (including the localization properties of the re-
sulting basis vectors) is certainly an interesting direction, which
is beyond the scope of this paper and its DGFT design goals.

Fig. 8. Effect of λ on the constraint violations ku1 − um in k, kuN − um axk
and spectral dispersion δ(U) in (16). We run Algorithm 2 for the graph in Fig. 5,
and average the results over 100 Monte-Carlo simulations. For larger enough
values of λ (here 102 ), we observe that the dispersion does not change and the
last two constraints in (8) are (almost) satisfied.

Fig. 9. (top) Convergence behavior of Algorithm 1 for finding the maximum
directed variation fm ax of unit-norm signals on the synthetic digraph in Fig. 5.
The boxes show the median and the 25th and 75th percentiles of fm ax vs. the
number of iterations k, obtained by running 100 Monte-Carlo simulations based
on independent initializations. (bottom) Likewise, but when using Algorithm 2
to minimize the spectral dispersion δ(U) in (7).

In Fig. 9 (top) we show the evolution of iterates for the fea-
sible method in [43], when used to find the maximum directed
variation (i.e., fmax ) for the same 15-node graph in Fig. 5.
We do so for 100 different (random) initializations and report
the median as well as the first and third quartiles versus the
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Fig. 10. Comparison of directed variations (i.e., graph frequencies) for the structural brain network and different GFT methods: eigenvectors of the combinatorial
Laplacian matrix Ld introduced in [5]; proposed greedy heuristic (Algorithm 3); and feasible method (Algorithm 2). Colored boxes show the difference between
two consecutive frequencies for each method, while the specific directed variation values correspond to the vertical boundary lines.

number of iterations. We observe that all the realizations con-
verge [43, Theorem 2], but there is a small variation among the
limiting values. This is expected because the feasible method is
not guaranteed to converge to the global optimum of the non-
convex problem (8). It is worth mentioning that after about 10
iterations, the exact value of fmax is achieved by a quarter of the
realizations (and this improves to half of the realizations with
about 30 iterations). Similarly, Fig. 9 (bottom) shows the me-
dian, first, and third quartiles of the dispersion function iterates
δ(Uk ), when minimized using Algorithm 2. Again, 100 dif-
ferent Monte-Carlo simulations are considered and we observe
that all of them robustly converge to limiting values with small
variability. This suggests that in practice we can run Algorithm 2
with different random initializations and retain the most spread
frequency components among the obtained candidate solutions.

Structural brain graph: Next we consider a real brain graph
representing the anatomical connections of the macaque cortex,
which was studied in [13], [28] for example. The network con-
sists of N = 47 nodes and 505 edges (among which 121 of them
are directed). The vertices represent different hubs in the brain,
and the edges capture directed information flow among them. To
corroborate that our resulting basis vectors are well distributed
in the graph spectral domain, Fig. 10 depicts the distribution of
all the frequencies for the examined algorithms except for the
PAMAL algorithm which did not converge within a reasonable
time. In Fig. 10, each vertical line indicates the directed vari-
ation (frequency) associated with a basis vector. Once more,
the proposed algorithms are effective in terms of finding well
dispersed and non-repetitive frequencies, which in this context
could offer innovative alternatives for filtering of brain signals
leading to potentially more interpretable graph frequency anal-
yses [14]. While certainly interesting, such a study is beyond
the scope of this paper.

Contiguous United States: Finally, we consider a digraph
of the N = 48 so-termed contiguous United States (excluding
Alaska and Hawaii, which are not connected by land with the
other states). A directed edge joins two states if they share a
border, and the direction of the arc is set so that the state whose
barycenter has a lower latitude points to the one with higher
latitude, i.e., from South to North (S–N). We also consider the
average annual temperature of each state as the signal x ∈ R48

shown in Fig. 11.1 It is apparent from the temperature map that
the states closer to the Equator (i.e., with lower latitude) have
higher average temperatures. This justifies the adopted latitude-
based graph construction scheme, to better capture a notion of
flow through the temperature field.

1Temperature data obtained from https://www.ncdc.noaa.gov

Fig. 11. Graph signal of average annual temperature in Fahrenheit for the
contiguous US states. In the depicted digraph, a directed edge joins two states
if they share a border, and the direction of the arc is set so that the state whose
barycenter has lower latitude points to the one with higher latitude.

We determine a DGFT basis for this digraph via spectral
dispersion minimization using Algorithm 2. The resulting first
and last 4 frequency modes are depicted in Fig. 13. The first
four vectors are smooth as expected. The last basis vectors are
smooth as well in the majority of the graph, but there exist a
few nodes in them such that a highly connected vertex is signif-
icantly warmer than its northern neighbors, or, colder than its
southern neighbors. For instance, in u48 Kentucky has markedly
high temperature. This high-frequency modes can indeed help
towards filtering out noisy measurements, as these spikes can be
due to anomalous events or defective sensors. It is worth men-
tioning that spikes in the low-frequency modes (i.e., at nodes
with no outgoing edges) may not be removed with an ideal low-
pass filter, due to the intricacies of the adopted digraph model.
For example, Vermont has a large signal value in u2 and u3
to render U orthonormal, but spikes in Vermont (a node with
no outgoing edges) have no effect on the directed variation.
To alleviate this limitation one could add lightly-weighted out-
going edges from dead ends, an interesting exploration that is
well-beyond the scope of this paper.

To corroborate the effectiveness of the obtained basis in a
denoising task, we aim to recover the temperature signal from
noisy measurements y = x + n, where the additive noise n is
a zero-mean, Gaussian random vector with covariance matrix
10IN . To that end, we use a low-pass graph filter with frequency
response h̃ = [h̃1 , . . . , h̃N ]T , where h̃i = I {i ≤ w} and w is
the prescribed spectral window size. The filter retains the first
w components of the signal’s DGFT, and we approximate the
noisy temperature signal by

x̂ = Udiag(h̃)ỹ = Udiag(h̃)UT y. (24)
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Fig. 12. Denoising a temperature signal supported in the contiguous US digraph in Fig. 11. (a) DGFT of the original signal (x̃) and the noisy signal (ỹ), along
with their cumulative energy distribution across frequencies. (b) A sample realization of the true, noisy, and recovered temperature signal for w = 3. (c) Ratio
of average recovery error using a low-pass filter to recovery error without filtering versus the window size for the two digraphs with South to North (S–N) and
random directed edges using the feasible method and PAMAL algorithm in [31]. As expected, on average the proposed method outperforms the PAMAL algorithm.
Moreover, the lowest error is obtained when filtering in the S–N digraph, which better captures the temperature flow from states with lower to higher latitudes.

Note that the filter H := Udiag(h̃)UT will in general not be
expressible as a polynomial of the graph’s adjacency matrix A
(or some other graph-shift operator [29]), since DGFT modes
need not be eigenvectors of the graph. Such a structure can
be desirable to implement the filtering operation in a distributed
fashion, and polynomial graph filter approximations of arbitrary
lineal operators like H have been studied in [33].

Fig. 12(a) compares the original signal and the noisy mea-
surements in the graph spectral domain induced by the DGFT.
The original signal is low-pass bandlimited, compared to the
noisy signal which spans a broader range of frequencies due to
the white noise. To better observe the low-pass property of the
original signal, we also plot the cumulative energy of both the
original and the noisy signals, defined by the percentage of
the total energy present in the first i frequency components for
i = 1, . . . , N . It is apparent from Fig. 12(a) that the first few
components of x capture most of its energy.

Fig. 12(b) shows a realization of the noisy graph signal y
superimposed with the denoised temperature profile x̂ obtained
using (24) with w = 3, and the original signal x. Filter design
and the choice of w is beyond the scope of this paper, but the
average recovery error ef = kx̂− xk/kxk, over 1000 Monte-
Carlo simulations of independent noise, attains a minimum of
approximately 12% and Fig. 12(b) shows x̂ closely approxi-
mates x.

For this denoising task, we compare Algorithm 2 with a
state-of-the-arte approach in [31]. The PAMAL algorithm [31,
Algorithm 2] fails to converge to an orthonormal basis within
a reasonable time; however, we terminate the routine after 100
iterations and work with the obtained basis. To assess the im-
portance of the network model, we repeat the whole denoising
experiment using a baseline contiguous US digraph (cf. Fig. 11),
where we choose the direction of edges uniformly at random.
To assess performance, we compute the relative recovery error
with and without low-pass filtering as ef and e = knk/kxk,
respectively. Fig. 12(c) depicts ef /e versus w averaged over
1000 Monte-Carlo simulations, which demonstrates the effec-
tiveness of graph filtering in the dual domain enabled by the
DGFT. Notice that our proposed approach outperforms the PA-
MAL method for both network models. Also, the minimum
recovery error justifies the choice of w = 3. The results from
the feasible method (S–N graph) are consistent with the energy
plot, as the first 3–4 components of x capture almost 99% of
the energy, and increasing the window size will only enhance

the noise. As expected, Fig. 12(c) shows that, on average, the
performance degrades for the randomized US network using
the fesible method, because the S–N digraph in Fig. 11 better
captures the temperature flow. While not shown here to avoid
repetition, similar results with slightly higher recovery errors
can be obtained using the greedy Algorithm 3.

For additional comparisons we also consider the following
state-of-the-art GFT approaches for digraphs: i) filter design
using adjacency matrix [30]; and ii) the directed Laplacian in
[39]. We apply the filter design in [30, Section V-B] to both the
adjacency matrix and directed Laplacian defined as Din −A,
where Din is the diagonal in-degree matrix. In the constructed
S–N digraph, the adjacency matrix and directed Laplacian have
only three and eight distinct eigenvalues, respectively. This lim-
its the degrees of freedom for filter design, in which the low-pass
graph filter is constructed through inverse polynomial interpo-
lation using the distinct eigenvalues of the graph-shift operator.
Such an ill-posed design gives rise to filters that amplify various
high-frequency modes where only noise is present, resulting in
large reconstruction errors. Furthermore, the Jordan decompo-
sition required in [39] is numerically unstable, an undesirable
effect that can be reduced using the Schur decomposition as pro-
posed in [10]. Although both the Jordan decomposition and the
Schur-based block diagonalization preserve the subspaces for
each eigenvalue, the degrees-of-freedom challenge remains as
we only have a few distinct eigenvalues. Since the recovery er-
rors obtained using [30, Section V] or [39] are very variable and
orders of magnitude higher than those reported in Fig. 12(c)
(e.g., the minimum average error over 1000 realizations is
4.58× 104 for the directed Laplacian), we have decided against
plotting them to avoid hindering the clarity of the figure. Over-
all, these comparisons corroborate the merits of adopting spread
(hence distinct) and orthogonal frequency modes, that also cap-
ture the notion of signal variation over a digraph.

Lastly, we compare our method against a Laplacian-based
denoiser on the undirected version of the contiguous US graph,
namely Gu . The said method utilizes the eigenvectors of the
Laplacian to implement an ideal low-pass filter as in (24). For
zero-mean Gaussian noise with variance 10 at each node, the
Laplacian eigenvectors result in a recovery error comparable
to the one obtained via DGFT-based filtering on the S–N di-
graph (approximately 12%). However, for other noise distri-
butions (e.g., exponential, Poisson, Gamma, and uniform) the
proposed approach outperforms the Laplacian-based low-pass
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Fig. 13. DGFT basis vectors obtained using Algorithm 2 for the contiguous
United States digraph in Fig. 11, along with their respective directed variation
values (frequencies). Eight frequency components are shown, corresponding to
the lowest and highest four frequencies in the graph.

filter on Gu . For example, the most notable performance differ-
ence is observed for additive noise drawn from an exponential
distribution with mean 5 (i.e., rate 1/5). In this case, our method
results in a minimum average recovery error of approximately
9% (the optimal bandwidth is w = 7), while the Laplacian-based
denoiser onGu still yields an error of around 12%. In conclusion,
the performance degrades using the Laplacian of Gu , especially
for non-Gaussian noise where a digraph model (and induced
DV-based denoiser) is more effective. Similar general trends
were obtained for other graph-shift operators on Gu .

VII. CONCLUSION

We considered the problem of finding an orthonormal set of
graph Fourier basis signals for digraphs. The starting point was
to introduce a novel measure of directed variation to capture the
notion of frequency on digraphs. Our DGFT design is to con-
struct orthonormal frequency modes that take into account the
underlying digraph structure, span the entire frequency range,
and that are as evenly distributed as possible in the graph spec-
tral domain to better capture notions of low, medium and high
frequencies. To that end, we defined a spectral dispersion func-
tion to quantify the quality of any feasible solution compared to
our ideal design, and minimized this criterion over the Stiefel
manifold of orthonormal basis vectors. To tackle the resulting
non-convex problems, we developed two algorithms with com-
plementary strengths to compute near-optimal solutions. First,
we used a feasible method for optimization with orthogonal-
ity constraints, which offers provable convergence guarantees
to stationary points of the spectral dispersion function. Second,
we proposed a greedy heuristic to approximately minimize this
dispersion using the eigenvectors of the Laplacian matrix of the

underlying undirected graph. The greedy algorithm offers the-
oretical approximation guarantees by virtue of matroid theory
and results for submodular function optimization. The overall
DGFT construction pipeline is validated on a synthetic digraph
with three communities as well as on a structural brain network.
Finally, we show how the proposed DGFT facilitates the design
of a low-pass filter used to denoise a real-world temperature
signal supported on a network of the US contiguous states.

With regards to future directions, the complexity of finding
the maximum frequency (fmax) on a digraph is an interesting
open question. If NP-hard, it will be interesting to find the
best achievable approximation factor (a 1/2-approximation was
given here). Furthermore, it would be valuable to quantify or
bound the optimality gap for the stationary solution of the fea-
sible method in the Stiefel manifold.

APPENDIX A
FEASIBILITY OF PROBLEM (8)

The following proposition ensures that the spectral dispersion
minimization problem (8) is feasible.

Proposition 4: The unit-norm basis vector umax defined in
(6) is orthogonal to the constant vector umin := 1√

N
1N .

Proof: Since umin := 1√
N

1N, we will show that uT
max1N =0.

Arguing by contradiction, suppose that the sum of the entries
in umax is not zero. We show that DV(umax) can be improved
in that case, which contradicts the optimality of umax .

Without loss of generality assume that uT
max1N = � > 0,

and define ū := umax − �
N 1N . First, note that DV(umax) =

DV(ū), since adding (subtracting) a constant to (from) all coor-
dinates will not change the directed variation. Second,

kūk2 = uT
maxumax − 2�

N
uT

max1N +
� �

N

�2
1T

N 1N = 1− �2

N
.

Therefore, we have a new vector ū with the same directed
variation but smaller norm. Now we can scale this vector as
αū (with α > 1) to obtain a normalized vector with DV(αū) =
α2DV(ū), which improves upon umax . �

APPENDIX B
PROOF OF PROPOSITION 1-1

We prove by induction (on the length of path) that the
maximum frequency on a dipath is twice the maximum edge
weight. Let x1 , x2 , . . . , xN be the signal values on the dipath
of length N − 1, with directed edges going from i to i + 1,
i = 1, . . . , N − 1. For the base case of N = 2, we have to
maximize A12(x1 − x2)2 subject to x1 ≥ x2 and x2

1 + x2
2 = 1.

The solution to this optimization problem is x1 =
√

2/2 and
x2 = −√2/2 which evaluates to A12(x1 − x2)2 = 2A12 . For
the inductive step, assume that the claim is true for a di-
path of length N − 1. We show that it should be the case
for N edges as well. If xN ≤ xN +1 in the optimal solution
for N edges, then for the last edge [xN − xN +1]+ = 0 and
the optimal directed variation is obtained from the first N − 1
edges, which is twice their largest edge weight by assump-
tion. Indeed, note that AN (N +1) cannot be the maximum edge
weight in this case, otherwise setting xN =

√
2/2 and xN +1 =

−√2/2 would improve the optimal solution and violates the
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assumption of xN ≤ xN +1 . Next, we assume xN > xN +1 . In
this case, we claim that xN should also be greater than or
equal to xN−1 . If not, we have xN−1 > xN > xN +1 , which
cannot be an optimal solution. To see this, we can swap the
value of xN with either xN−1 or xN +1 and improve the di-
rected variation because either A(N−1)N (xN−1 − xN +1)2 or
AN (N +1)(xN−1 − xN +1)2 is greater than A(N−1)N (xN−1 −
xN )2 + AN (N +1)(xN − xN +1)2 . Finally, if xN > xN +1 and
xN ≥ xN−1 , then the edge (N − 1, N) does not contribute to
the directed variation and the path is divided into two sections.
Since both kuk2 and DV(u) scale quadratically with u, one
can show (in general) that one of the optimal solutions should
be achieved by only the variations of a set of connected edges;
otherwise it is better to void the section with the lower ratio of
objective to norm, and scale up the other section. This means
that in our dipath example, once the edge (N − 1, N) has zero
objective, we can also make one of the two sections zero. The
claim is then true by the inductive assumption. The achievability
of the maximum directed variation follows by setting ±√2/2
on the edge with largest weight. �

APPENDIX C
PROOF OF PROPOSITION 1-2

There should be at least one edge (i, j) in the cycle for which
[xi − xj ]+ = 0, otherwise we obtain a closed loop of strict in-
equalities among consecutive xi values which is impossible.
Given that edge (i, j) has zero directed variation, the rest of the
cycle can be viewed as a dipath which has directed variation of
at most 2 times the largest edge weight by Proposition 1-1). The
same argument ensures the achievability of the solution. �

APPENDIX D
PROOF OF PROPOSITION 1-3

LetV+ andV− be the two node partitions of the unidirectional
bipartite graph, where the edges are constrained to go from V+

to V−. First, we show that in the optimal solution maximizing
the directed variation we must have xi ≥ 0 for all i ∈ V+ , and
xi ≤ 0 for all i ∈ V−. Otherwise, assume that there exists some
node j ∈ V− with xj > 0. Then we can improve the directed
variation by setting xj = 0, because j has only incoming edges
and decreasing xj will not decrease the variation on such edges
(and we gain some slack in the norm constraint by this change).
Similarly, we arrive at a contradiction if some node in V+ has
negative value.

With this information, we know that all the summands
Aij [xi − xj ]2+ in the objective are indeed equal to Aij (xi −
xj )2 , because i ∈ V+ , j ∈ V−, and xi ≥ 0 ≥ xj . Therefore, we
can replace the cost function with the total variation and solve
the following optimization problem instead

max
x

TV(x) = xT Lx

subject to xT x = 1

xi ≥ 0, i ∈ V+

xj ≤ 0, j ∈ V−.

(25)

Assume that we relax problem (25) by dropping the inequality
constraints. Once we do that, the solution will be λmax . The
next lemma shows this relaxation entails no loss of optimality.

Lemma 3: For an undirected bipartite graph
G = (V1 ,V2 ,A) with Laplacian matrix L, let u ∈ RN

be the dominant eigenvector of L (corresponding to λmax ).
Then u has the same sign over the coordinates of each partition
(i.e., non-negative for V1 and non-positive for V2 or vice versa).

Proof: If by contradiction that were not the case, we could
change the signs (maintaining the absolute values and vector
norm) to be positive in one partition (say V1) and negative
in the other (V2). This change does not decrease the absolute
difference between signal values on nodes incident to each edge,
and contradicts the fact that u maximizes TV(u) = uT Lu =
PN

i,j=1,j>1 Aij (ui − uj )2 . �
By virtue of Lemma 3, either u or −u is feasible in (25) and

attains the optimum objective value λmax . �
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